
Title Spin-down of Solar-mass Protostars in
Magnetospheric Accretion Paradigm

Author(s) Takasao, Shinsuke; Kunitomo, Masanobu; Suzuki,
K. Takeru et al.

Citation The Astrophysical Journal. 2025, 980(1), p. 111

Version Type VoR

URL https://hdl.handle.net/11094/100435

rights This article is licensed under a Creative
Commons Attribution 4.0 International License.

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



Spin-down of Solar-mass Protostars in Magnetospheric Accretion Paradigm

Shinsuke Takasao1 , Masanobu Kunitomo2,3 , Takeru K. Suzuki4,5 , Kazunari Iwasaki6 , and Kengo Tomida7
1 Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

2 Department of Physics, Kurume University, 67 Asahimachi, Kurume, 830-0011, Fukuoka, Japan
3 Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, Bd de l’Observatoire, CS 34229, 06304 Nice cedex 4, France

4 School of Arts & Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro, Tokyo, 153-8902, Japan
5 Department of Astronomy, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo, 113-0033, Japan

6 Center for Computational Astrophysics, National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588, Japan
7 Astronomical Institute, Tohoku University, Sendai, Miyagi 980-8578, Japan

Received 2024 May 12; revised 2024 December 13; accepted 2024 December 13; published 2025 February 10

Abstract

Stellar spin is one of the fundamental quantities that characterize a star itself and its planetary system. Nevertheless,
stellar spin-down mechanisms in protostellar and pre-main-sequence stellar phases have been a long-standing
problem in star formation theory. To realize the spin-down, previous axisymmetric models based on the
conventional magnetospheric paradigm have had to assume massive stellar winds or produce highly time-variable
magnetospheric ejections. However, this picture has been challenged by both numerical simulations and
observations. With a particular focus on the propeller regime for solar-mass stars, we propose a new picture of
stellar spin-down based on our recent 3D magnetohydrodynamic simulation and stellar evolution calculation. We
show that failed magnetospheric winds, unique to 3D models, significantly reduce the spin-up accretion torque,
which make it easier for the star to spin-down. Additionally, the amplitude of time variability associated with
magnetospheric ejections is reduced by 3D effects. Our simulation demonstrates that the star spins down by
generating a conical disk wind, driven by a rotating stellar magnetosphere. Our theoretical estimates, inspired by
the numerical model, suggest that the conical disk wind is likely to play a crucial role in extracting stellar angular
momentum during the protostellar phase. As magnetospheric accretion is expected to occur in other accreting
objects such as protogiant planets, this study will also contribute to the understanding of the angular momentum of
such objects.

Unified Astronomy Thesaurus concepts: Protostars (1302); Pre-main sequence stars (1290); Stellar magnetic fields
(1610); Early stellar evolution (434)

1. Introduction

Stellar spin is a key parameter to determine stellar properties
of solar-mass stars, such as the level of magnetic activities. The
mechanism that regulates the stellar spin evolution has been
one of the long-standing problems in star formation theory (see,
e.g., J. Bouvier et al. 2014 for a review). Accreting stars receive
not only mass but also angular momentum from the accretion
flows, which increases the stellar angular momentum. In
addition, stellar contraction via radiative cooling (the Kelvin–
Helmholtz contraction) results in stellar spin-up if the stellar
angular momentum is conserved or increases in response to
accretion. However, observations show that most of the pre-
main-sequence (pre-MS) stars are rotating at speeds much
lower than their breakup velocity (e.g., W. Herbst et al. 2007),
which implies that mechanisms to spin down the stars are
operating effectively. The median value is approximately 10%
of the breakup velocity (e.g., F. Gallet & J. Bouvier 2013). A
very similar problem is also found for planetary-mass objects
(M. L. Bryan et al. 2018). Therefore, the spin-down problem is
a common issue for accretion in stellar- and planetary-mass
regimes.

Many theoretical models have been proposed to describe
accretion modes that can realize the slow stellar rotation in the
magnetospheric accretion paradigm. In the magnetospheric

paradigm, the stellar field truncates the inner disk at the so-called
magnetospheric radius rmag (e.g., L. Hartmann et al. 2016). A
widely discussed idea is the “disk-locking” picture (P. Ghosh &
F. K. Lamb 1979; M. Camenzind 1990; A. Koenigl 1991). We
define the corotation radius, rcor, as the radius at which the
material in a Keplerian orbit corotates with the star. The standard
disk-locking models assume that all the stellar field lines retain a
closed magnetic geometry even at larger radii of r ? rcor. Stellar
field lines penetrating the disk outside rcor rotate faster than the
disk, which results in the generation of the spin-down torque on
the star. The star will reach a state of spin equilibrium when the
spin-up accretion torque balances with the spin-down magnetic
torque (see also A. Collier Cameron & C. G. Campbell 1993;
P. J. Armitage & C. J. Clarke 1996). In this paradigm, the spin
equilibrium is realized when rcor is close to but larger than rmag.
To achieve spin equilibrium in the classical T Tauri phase,
standard models commonly require a stellar dipole field strength
of ∼1 kG. Some observations found correlation between the
presence of disks and the stellar spin (S. Edwards et al. 1993;
J. Bouvier et al. 1997), which appears to be consistent with the
expectation of the disk-locking scenario (see also C. Fallscheer &
W. Herbst 2006; L. Cieza & N. Baliber 2007; L. Venuti et al.
2017).
Despite some success, the standard disk-locking models

have been challenged theoretically. D. A. Uzdensky et al.
(2002) theoretically showed that a large portion of the stellar
fields will inflate to open up due to the differential rotation
between the star and disk, which results in the reduction of the
spin-down torque (see also D. Lynden-Bell & C. Boily 1994).
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S. Matt & R. E. Pudritz (2004) examined the disk-locking
theory by taking this effect into account, finding that the
modified theory fails to explain the stellar spin-down.

A critical issue of the disk-locking models is the lack of
considerations of mass-loss processes. Protostars generally
have collimated jets with a speed similar to the escape velocity
in the vicinity of the star (~100 km s−1; e.g., T. Ray et al.
2007). F. Shu et al. (1994) proposed an axisymmetric steady
model to relate the stellar rotation and jet launching in the
magnetospheric accretion paradigm, which has been called the
X-wind model (see also E. C. Ostriker & F. H. Shu 1995;
S. Mohanty & F. H. Shu 2008). Although the X-wind model
has provided great insights about the star–disk interaction, it is
now recognized that the model poses many difficulties. The
X-wind model cannot be used for general spin-down arguments
because the model assumes that the star will always accrete
near its disk-locked state while keeping the relation rcor ≈ rmag.
The model hypothesizes the formation of magnetocentrifugally
driven winds from the magnetospheric boundary, while no
magnetohydrodynamic (MHD) simulations have found such
X-winds. M. M. Romanova et al. (2009) pointed out that
conical winds similar to X-winds can form, but the winds are
nonsteady and driven by a combination of centrifugal and
magnetic pressure gradient forces. J. Ferreira (2013) summar-
ized some other critical issues in more detail.

Based on these experiences, theoretical studies have begun
to carefully examine the roles of various winds and their
temporal variability. R. V. E. Lovelace et al. (1999) analyzed
the launching of conical winds from the magnetospheric
boundary around a rapidly rotating star with rcor < rmag (note
the difference from the X-wind model). The regime is called a
propeller regime (e.g., A. F. Illarionov & R. A. Sunyaev 1975;
M. M. Romanova et al. 2018). They found that the spin-down
torque by the conical disk winds or jets can be comparable to
the spin-up torque due to accretion, although the result depends
on the property of turbulent magnetic diffusivity. J. Ferreira
et al. (2000) also argued the importance of such winds in a
different magnetic configuration where magnetic reconnection
plays a role (see also S. Hirose et al. 1997). Another approach
is to focus on the stellar winds. By noting that a fraction of the
stellar fields have to be open in magnetospheric accretion
(G. V. Ustyugova et al. 2006), S. Matt & R. E. Pudritz (2005)
proposed that the strong stellar wind powered by accretion will
carry away the angular momentum along the open fields. In
addition, C. Zanni & J. Ferreira (2013) performed nonsteady
2D axisymmetric MHD simulations and found that magneto-
spheric ejections can play a role in the stellar spin-down.

Although the above studies have greatly advanced our
understanding of angular momentum flows around the star,
the updated axisymmetric models still have faced some
challenges. Two-dimensional MHD simulations have found
that the stellar spin-down will be possible with the help of
polar jets, conical disk winds, and/or magnetospheric
ejections (M. M. Romanova et al. 2004; P. S. Lii et al.
2014; M. M. Romanova et al. 2018; L. G. Ireland et al. 2022).
However, the stellar accretion rate in such simulations shows
significant time variability when the star is in the propeller
regime, which is inconsistent with observations, as discussed
in F. Gallet et al. (2019). The strong stellar wind may spin
down the star without producing significant time variability,
but the stellar wind mass-loss rate ( MSW) required for the
spin-down is problematic. The MSW of the accretion-powered

stellar wind should be smaller than ~1% of the accretion rate
Macc because of the energy constraint (S. R. Cranmer 2008;
C. Zanni & J. Ferreira 2011). This is in contrast to the
conclusion derived from 2D MHD models that the spin-down
torque by the stellar wind can dominate the spin-up torque by
accretion only if MSW is larger than approximately 10% of
Macc (G. Pantolmos et al. 2020; L. G. Ireland et al. 2021).
We consider that the challenges highlighted above stem from

the inherent limitations of 2D axisymmetric models. In reality,
accreting flows interact with the rotating magnetosphere
through nonaxisymmetric processes, such as turbulent mixing,
which are not captured by axisymmetric models. The
axisymmetric models necessitate assumptions about turbulent
magnetic diffusivity to simulate penetration. G. V. Ustyugova
et al. (2006) demonstrated that the mass-loss rate from conical
disk winds varies significantly based on these model assump-
tions, complicating the assessment of different winds’ roles in
stellar spin-down. Furthermore, axisymmetric models maintain
perfect coherency in the azimuthal direction, which is an
assumption not upheld in 3D cases. MHD instabilities
at the magnetospheric boundary, for example, can disrupt
this coherency by facilitating accretion flows that
penetrate the stellar magnetosphere (e.g., A. K. Kulkarni &
M. M. Romanova 2008). To address these limitations, a
transition to 3D modeling is necessary.
Recently, S. Takasao et al. (2022, hereafter ST22) performed

3D MHD simulations of magnetospheric accretion and
presented a new picture of angular momentum transport in
the magnetospheric accretion paradigm. We showed that a star
in the propeller regime can spin down by driving a conical disk
wind without showing a significant time variability in the
accretion rate, which again highlights the importance of the
conical disk wind. Considering the updates provided by our 3D
MHD simulations, we derive the upper limit of the spin-down
time. This study focuses on the spin-down torque by the
conical disk winds driven by the rotating magnetosphere. We
take into account the stellar evolution and estimate the upper
limit of the spin-down time at each age. We show that the 3D
effects of star–disk interaction are key to resolving the
challenges of the stellar spin-down.

2. General Picture of Accretion and Ejection

2.1. A Brief Review of 2D Models

As we are interested in the stellar spin-down, we only
consider the propeller regime. We first review general proper-
ties of 2D models and then give an overview of key results of
the 3D MHD simulation by ST22, with a particular focus on
the 3D effects.
Previous 2D studies predict the following types of ejections

(e.g., M. M. Romanova et al. 2018):

1. Stellar winds.
2. Magnetospheric ejections.
3. Disk winds.
(a) Conical disk winds driven by star–disk interaction.
(b) Disk winds driven by disk fields.

The left panel of Figure 1 illustrates the above structures. The
stellar winds blow from the polar regions. If the protostar is in
the strong propeller regime (rcor = rmag), the magnetically
driven polar jet will also appear (M. M. Romanova et al. 2005).
Magnetospheric ejections are plasma ejections associated
with magnetic reconnection of the stellar magnetosphere
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(e.g., M. R. Hayashi et al. 1996; C. Zanni & J. Ferreira 2013).
They occur when the stellar magnetic fields are sufficiently
twisted by the differential rotation between the protostar and
disk gas (e.g., D. Lynden-Bell & C. Boily 1994). Note that in
the 2D models the reconnection region extends in the azimuthal
direction as a ring owing to the axisymmetry. As a result, the
magnetospheric ejections take the form of a torus-like structure.
In the magnetosphere–disk interface, disk gas penetrates in
response to an effective diffusivity that imitates the turbulent
diffusion. A fraction of the penetrating flow accretes onto the
protostar, while the rest of it is expelled away as conical disk
wind by the rotating stellar magnetic fields. The conical disk
winds often show a north–south asymmetric structure (e.g.,
P. S. Lii et al. 2014), where accretion occurs in one hemisphere
and ejections can proceed in the other hemisphere. The conical
disk wind will be surrounded by the disk wind driven by the
disk fields.

In the propeller regime, the protostar is expected to expel the
angular momentum to the disk gas via the magnetosphere–disk
interaction. However, a quantitative conclusion is difficult to
draw due to some assumptions. Previous studies investigated
the mass and angular momentum transfer by commonly
assuming that the magnetosphere is nearly rigidly rotating
with the protostar (e.g., R. V. E. Lovelace et al. 1999;
G. V. Ustyugova et al. 2006; C. R. D’Angelo &
H. C. Spruit 2010). However, the rotation profile of the
magnetosphere depends on the details of the twisting of the
magnetosphere through the magnetosphere–disk interaction
(e.g., W. Kluźniak & S. Rappaport 2007). We also note that the
bifurcation of the accretion and ejection is sensitive to the
adopted diffusivity model (G. V. Ustyugova et al. 2006). The
mass loading to the magnetosphere in the 2D models occurs
through the effective diffusivity, which imitates turbulent
mixing (e.g., F. Shu et al. 1994). (We note that magnetic
reconnection between the magnetosphere and disk fields can
provide another path of mass loading; see, e.g., S. Hirose et al.
1997; J. Ferreira et al. 2000). However, details about the
(effective) magnetic diffusivity remain poorly understood.
Therefore, it is necessary to examine the assumption about
the rigid rotation and the properties of the turbulent mixing
using 3D MHD simulations.

The accretion torque Jacc is commonly approximated as (e.g.,
S. Matt & R. E. Pudritz 2005)

( ) 
*J M GM r , 1acc mag¢ =

where M is the rate of mass accretion onto the protostar, G is
the gravitational constant, and M* is the protostellar mass. The
above estimate is based on the assumption that the accreting
flows bring the angular momentum which they have at the
magnetospheric boundary to the protostar. However, 2D MHD
simulations find that the winds emanating from the magneto-
spheric boundary carry away a part of the angular momentum
of the accretion flows (C. Zanni & J. Ferreira 2013; L. G. Irel-
and et al. 2021). Therefore, it is reasonable to use the
expression  J K Jacc acc acc= ¢ for a more realistic accretion torque,
where 0 � Kacc � 1. Previous 2D models find a reduction of
the spin-up torque by a few tens of percent: Kacc ≈ 0.7–0.8
(C. Zanni & J. Ferreira 2013; L. G. Ireland et al. 2021).
2D models predict that accretion in protostars in the

propeller regime may cease and occur in an episodic way,
which seems to be inconsistent with observations. Although the
star–disk interaction in 2D depends on the adopted diffusivity
models, G. V. Ustyugova et al. (2006) suggest that powerful
outflows can almost quench accretion in the propeller regime.
However, protostars systematically show higher accretion rates
than T Tauri stars (e.g., E. Fiorellino et al. 2021), which raises a
question about the accretion quenching. Time-variable accre-
tion is also a common result of 2D models. The accretion rate
can change by an order of magnitude as a result of magneto-
spheric ejections (M. M. Romanova et al. 2004; P. S. Lii et al.
2014). C. Zanni & J. Ferreira (2013) and L. G. Ireland et al.
(2022) clarify the importance of magnetospheric ejections for
stellar spin-down, and some observations indeed find indica-
tions of ejections (J. Bouvier et al. 2023). However,
observations do not commonly find such strong variability,
challenging our understanding based on 2D models. The above
challenges motivate us to perform 3D simulations.

2.2. An Overview of the 3D Model of ST22

Figure 2 presents a snapshot of our 3D simulation (Model A
of ST22). The accretion disk is turbulent in response to

Figure 1. Schematic illustration of the accretion and ejection structures in 2D (left) and 3D (right) models. The illustration for the 3D model is based on the results
of ST22.
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magnetorotational instability (MRI; S. A. Balbus &
J. F. Hawley 1991). Therefore, we can study the magneto-
sphere–disk interface without assuming an effective diffusivity,
although we still require a convergence check of the results by
performing higher-spatial-resolution simulations. The ejections
found in previous 2D models also appear in the model: namely
stellar winds, magnetospheric ejections, and asymmetric
conical disk winds. The 3D model further exhibits additional
types of winds. A key distinction between the 2D and 3D
models lies in the presence of turbulence and nonuniform
structures in the azimuthal direction. Asymmetric jets are
indeed commonly observed in young protostars (L. Podio et al.
2021), which seems to provide observational support to our
model.

In three dimensions, the mass loading to the magnetosphere
is mediated not only by the turbulent mixing but also the
penetration of filamentary flows. Figure 3 presents an example
of filamentary accretion flows penetrating into the magneto-
sphere. A schematic illustration is given in the right panel of
Figure 1. It has been recognized that similar unstable
magnetospheric accretion occurs in slowly rotating stars as a
result of magnetic Rayleigh–Taylor instability (A. K. Kulkarni
& M. M. Romanova 2008; A. A. Blinova et al. 2016), but the
stability in the propeller regime was unclear. ST22 showed that
penetrating accretion flows can also form even in the case of
the propeller regime, though in response to different instabil-
ities (probably the magnetogradient-driven instability; K. Hira-
bayashi & M. Hoshino 2016). The difference in the stellar spin
rate appears in the thickness of the filaments: Filaments in the
propeller regime are thicker than those in slow rotators. We can
understand the result as that the velocity shear in the
magnetosphere smears out their small-scale structure. The
formation of penetrating flows prevents the accumulation of
mass at the magnetospheric edge and suppresses the amplitude

of time variability in accretion, which is distinct from the 2D
models.
The penetrating flows drag the disk toroidal fields, which

allows them to continuously transport their angular momentum
to the disk gas. Figure 3 displays some field lines threading the
flow. The field lines go through the midplane and extend to the
other side of the disk. As can be seen, magnetic fields in the
penetrating flows are connected with the protostar, probably
because they experience magnetic reconnection with the stellar
field. Note that the field lines are trailing with respect to the
stellar rotation, which indicates that the penetrating flow is
efficiently losing angular momentum. The trailing fields also
exert spin-down torque onto the protostar.
The penetrating flows are often accompanied by slowly

outgoing flows as a back-reaction of accretion. The radial speed
of the accelerated gas is considerably smaller than the escape
velocity. Therefore, the outflows will fail to escape from the
stellar gravity. We categorize these as a type of “failed
magnetospheric winds.” In ST22, we describe them as a type of
turbulent winds because of their disturbed structures. However,
as the penetrating flows have coherent structures, they are not
necessarily turbulent. A more detailed analysis of the angular
momentum flows is presented in Appendix A.
We identify another type of failed magnetospheric winds

associated with MRI turbulence. Three-dimensional MHD
simulations have commonly found turbulent disk winds above
MRI-turbulent disks (e.g., T. K. Suzuki & S.-i. Inutsuka 2009;
X.-N. Bai & J. M. Stone 2013; S. Takasao et al. 2018). As their
acceleration is inefficient due to their turbulent nature, most of
the winds fail to escape (indicated as green arrows in Figure 1).
When they fall, they continuously shear the magnetic field and
increase the Maxwell stress. The continuous growth of the
Maxwell stress leads to a runaway removal of angular
momentum from the accreting material. As a result, failed
winds can form patchy accretion streams with a velocity similar
to the free-fall velocity (S. Takasao et al. 2018). The
mechanism of the angular momentum loss is similar to the
onset of MRI and the other type of failed magnetospheric
winds (see also Z. Zhu & J. M. Stone 2018; J. Jacquemin-Ide
et al. 2021 for similar flows at larger scales). The failed disk
winds drive outflows when they fall as a back-reaction of
angular momentum loss. ST22 demonstrate that the failed
winds also form just around the turbulent magnetosphere–disk
interface. The failed winds hit the magnetosphere and become a
part of the magnetospheric funnel accretion flows.
Figure 4 presents a schematic illustration of the failed

magnetospheric winds. The two types of winds are shown: the
failed winds associated with a penetrating flow, and the failed
winds emanating from the turbulent magnetosphere–disk
interface (see also Figure 3 regarding the field structure of
penetrating flows). The difference between the two types of
winds lies in the mechanisms which produce the accretion
streams. The penetrating flows are created by MHD instabilities
at the magnetospheric boundary, while the patchy structure of
the winds from the magnetospheric boundary is formed by the
disk turbulence. In both cases, accreting flows experience
runaway angular momentum loss by twisting the magnetic
fields. As a result, the rate at which angular momentum is
injected into the protostar is significantly lower than the

classical estimation ( Jacc
¢
). The simulation suggests that

Kacc = 0.1 is a reasonable choice, although this value may

Figure 2. Accretion and wind structures of the 3D MHD simulation (Model A
of ST22; rcor = 1.5R* and rmag ≈ 2.5R*). The left and right panels show
density and temperature cutouts, respectively. Lines denote magnetic field
lines. The stellar surface is colored with the radial component of the magnetic
fields.
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evolve in response to the stellar and disk evolution, which
needs to be investigated in future studies.

The rotation profile of the magnetosphere is found to be
different from expectations based on 2D models because of the
presence of penetrating flows (see Section 3.4 of ST22). The
penetrating flows which form around the midplane have a
substantial inertia. After penetration, the dense flows persist in
rotating for a few orbits before ultimately descending to the
protostar, despite the effects of magnetic braking. As a result,
they force a large body of the magnetosphere to rotate nearly at
Keplerian velocity. Therefore, the assumption of rigid rotation
inside the magnetosphere is found to be invalid. Rather,
Keplerian rotation in the magnetosphere–disk interface seems
to be a better assumption (the assumption of rigid rotation will
be valid in the case that the accretion rate is so small that
penetrating flows cannot affect the rotational profile of the
magnetosphere). W. Kluźniak & S. Rappaport (2007) also
investigated a smooth transition of the rotational profile from a
Keplerian disk to a rotating star. Their analytical solutions
indeed show a similar near-Keplerian rotation in the outer
magnetosphere. However, their analytical solutions do not
match the result of our 3D models, probably because their

analytical model lacks 3D effects such as the forced rotation by
penetrating flows and the vertical transport of angular
momentum by stellar fields.
The role of magnetospheric ejections in stellar spin-down

seems to be limited in 3D, although they play critical roles in
2D models. Our 3D model does not show significant time
variability in the accretion rate even though magnetospheric
ejections occur, which indicates that magnetospheric ejections
are not as violent as found in 2D models. The difference is
related to the penetrating flows. In 2D models, the stellar
magnetosphere can be coherently twisted by the rotating gas
that accumulates at the magnetospheric boundary. However, in
3D the gas does not accumulate at the magnetospheric
boundary but forms penetrating flows. The penetrating flows
cannot twist the magnetosphere coherently because they only
twist a part of the stellar magnetosphere. The resulting
magnetospheric ejections are patchy in the azimuthal direction
(Figure 1), which results in a weaker energy release than in 2D
cases (see ST22 for more reasons why it is difficult for
powerful magnetospheric ejections to occur in 3D).
We also note that, in Model A of ST22, distinguishing

between magnetospheric ejections and conical disk winds is
difficult in many cases. The conical disk wind itself shows a
significant density inhomogeneity (Figure 2), probably because
the turbulent disk gas is accelerated by fluctuating fields. In
addition, magnetospheric ejections with coherent structures are
uncommon. For these reasons, we include magnetospheric
ejections as a part of the conical disk winds in our analysis. We
consider that this treatment will not significantly affect our
arguments about the conical disk winds as long as the time
variability is insignificant.
In summary, the nonuniform magnetospheric structure in the

azimuthal direction (including turbulence) is key to explaining
the spin-down of protostars showing a low level of variability.
The nonuniform structure allows accretion and ejection to
occur simultaneously. Because of the “traffic control” of mass
and angular momentum flows, the 3D model shows a much
lower level of variability than 2D models. Accretion flows

Figure 3. An example of filamentary accretion flows penetrating into the magnetosphere (t = 151.1 days of Model A of ST22). The structure is viewed from two
different points of view. The density isosurface is colored in blue. Four field lines threading the penetrating flow are denoted as yellow lines.

Figure 4. A schematic illustration of the two types of failed magnetospheric
winds. Orange lines denote magnetic field lines associated with failed winds.
Brown lines with arrows indicate failed winds. Dark blue arrows show the flow
of angular momentum along field lines.
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around the magnetosphere take filamentary or patchy struc-
tures. They lose a large fraction of angular momentum during
their fall in a runaway manner, which results in a reduction of
the spin-up torque by accretion. The filamentary penetrating
flows force the magnetosphere to rotate nearly at Keplerian
speed, which indicates that Keplerian rotation of the magneto-
sphere is a more realistic assumption than rigid rotation around
the magnetosphere–disk interface. Torus-like magnetospheric
ejections found in 2D models are rare in 3D because of the
localization of magnetic reconnection regions in the azimuthal
direction, which suggests that their role in stellar spin-down
should be limited in 3D. Therefore, we focus on the spin-down
torque by conical disk winds.

3. Modeling Spin-down Torque by Conical Disk Winds

In general, the spin-down torque by a magnetically driven
wind can be estimated as follows:

( ) ( ) J M r r , 2wind wind A
2

0» W

where Mwind is the wind mass-loss rate, rA denotes the Alfvén
radius, and Ω(r0) is the angular velocity of the magnetic field at
the radius of the wind base r = r0 (e.g., I. Pascucci et al. 2023).
The Alfvén radius indicates the size of the so-called Alfvén
surface, where the poloidal velocity of the plasma flow is equal
to the poloidal Alfvén velocity. The magnetic field inside the
Alfvén surface nearly rigidly rotates with the star. To calculate
the spin-down torque, we need to estimate each component on
the right-hand side of Equation (2).

We consider a more specific functional form of Equation (2)
for the conical disk winds. Considering that a large portion of
the magnetosphere rotates nearly at Keplerian velocity because
of the penetrating accretion flows, the rotation rate of the
magnetosphere at the magnetosphere–disk interface will
reach nearly a Keplerian value there, ΩK(rmag). Namely,
Ω(r0) = ΩK(rmag), which is distinct from the common
assumption of rigid rotation, Ω(r0) = Ω*. This eliminates the
explicit dependence of the stellar spin rate on the spin-down
torque (Equation (2)).

The Alfvén radius rA for conical disk winds will be
comparable to or larger than the magnetospheric radius because
the mass loading mainly occurs at r = rmag. Indeed, it is of
order a few rmag in Model A of ST22 (see Appendix B). To
clarify the relation between the two, we write rA as rA = fArmag,
where fA is a nondimensional value that is larger than unity.
The functional form of fA will depend on relevant quantities
such as the stellar spin rate and mass-loss rate. In this study, we
follow the suggestion by J. Ferreira et al. (2000) to consider a
possible range of fA. Considering observations of jets and an
analytical solution of disk winds based on J. Ferreira (1997),
J. Ferreira et al. (2000) inferred that the magnetic lever arm λ,
which is defined as r rA

2
cor
2l» , will be in the range of

2  λ  7. We note the relation / /( )f r rA
2

cor mag
2l = . The

range corresponds to 1  fA  3 in the case of a weak propeller
regime (rmag ≈ rcor). The value of fA may be close to unity in
the case of a strong propeller regime owing to a high mass-loss
rate. Despite uncertainties about the magnetic lever arm, the
value of fA seems to be limited in a small range. Therefore, in
this study we assume that the value can be approximated as a
constant when the protostar drives the conical disk winds and
we adopt fA = 2 as a fiducial value. This assumption needs to
be examined in future studies.

The spin-down torque by conical disk wind driven from the
magnetospheric boundary can then be estimated as

( ) ( ) J f M r r , 3CDW A
2

CDW mag
2

K magW»

where MCDW denotes the mass-loss rate of the conical disk
wind. We introduce the wind mass-loss efficiency feff such that
 M f MCDW eff acc= , where 0 < feff < 1 and Macc is the accretion
rate onto the star. In Model A of ST22, feff ≈ 0.1–0.2, which
seems to be similar to observational estimations of the
efficiency (e.g., T. Ray et al. 2007). The efficiency will be
determined by the details of the mass loading to the magneto-
sphere, which will depend on the property of turbulence and
the stellar and disk parameters. Nevertheless, we theoretically
infer that  M MCDW accµ and ( )f 0.1eff = , as argued in
Appendix C. Considering the numerical result, we adopt
feff = 0.2 as a fiducial value here. We also compare the mass
loading between a stellar wind and a conical disk wind in
Appendix D to emphasize the importance of the conical disk
winds.
This study uses Equation (3) to estimate the upper limit of

the spin-down time of the protostar in the propeller regime, by
considering that conical disk winds are the main carrier of
stellar angular momentum. ST22 showed that conical disk
winds are continuously blowing in propeller regimes, while
they are intermittent and sometimes absent in nonpropeller
regimes (Model B and C in ST22), which implies that feff
depends on the stellar spin. This result limits our discussion to
the propeller regime only. This study further assumes that a
protostar will reach a spin equilibrium once it decelerates to a
point where rcor ≈ rmag as a result of the balance between the
spin-up and spin-down torques. M. Long et al. (2005)
suggested that, in 2D simulations, rcor ≈ fcor,eqrmag in the
spin-equilibrium state, where fcor,eq = 1.3–1.5 (see also
J. Bouvier et al. 2007). We note that the value of fcor,eq might
differ in 3D models. The details of achieving a spin
equilibrium, however, is beyond the scope of this study.
Considering the uncertainties in the current understanding, we
choose fcor,eq = 1 for calculating the angular momentum of a
protostar in spin equilibrium.
A protostar in spin equilibrium may reenter the propeller

regime by spinning up in response to the disk and stellar
evolution. In this case, we consider that the protostar will again
start to blow continuous conical disk winds and spin down
itself. We also estimate the spin-down timescale for this case by
assuming that the protostellar spin rate is close to the value in
spin equilibrium.

4. Stellar Evolution Model

To compute the spin-down timescale across different stellar
ages, it is necessary to calculate key stellar parameters, such as
the radius and moment of inertia, for an accreting star. We
utilize the Modules for Experiments in Stellar Astrophysics
(MESA) code to simulate the evolution of a young accreting
star to facilitate these calculations. However, it is important to
note that this study is designed to estimate the upper limit of the
spin-down time at various stellar ages. For simplicity, we
employ MESA solutions that do not account for the effects of
stellar rotation as references, thereby omitting the calculation of
long-term spin evolution. Assumptions regarding the stellar
magnetic field, such as the stellar dynamo and the removal of
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fossil fields, will influence the initial conditions for spin
evolution (e.g., S. Takasao et al. 2019). Additionally, the size
of the stellar magnetosphere, which may vary with the disk's
magnetic field, remains poorly understood (e.g., J. Ferreira
et al. 2000). Given these complexities, a detailed analysis of
long-term spin evolution is reserved for future studies. This
section provides brief explanations of our methods. For more
detailed descriptions, readers are referred to Appendix E.

The accretion rate Macc is a function of time (stellar age), tage.
We assume a constant rate of  M M10 yracc

5 1= - - until
3.1 × 104 yr. After that, it decreases as

( )M t , 4a
acc ageµ -

where a > 0 is a measure of the rapidness of the decrease in the
accretion rate. Considering the estimation by L. Hartmann et al.
(1998), we adopt a= 3/2 as a fiducial value. The resulting final
mass of the star is 1Me, which is achieved at t= 10Myr. We
have confirmed that our conclusions are insensitive to the
choice of the index a (Appendix E).

We assume that the dipole magnetosphere is established in a
sufficiently early phase (possibly  0.1 Myr). The magneto-
spheric radius rmag is calculated using the equation derived
in ST22, a modified version of the Ghosh & Lamb relation
(P. Ghosh & F. K. Lamb 1979):
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where h¢ denotes a twist of the magnetic fields. The detailed
dependence of h¢ on the thermal property of the disk gas needs
to be investigated in future studies, but we set the value to unity
for a conservative discussion. ST22 derived the above equation
very similarly to the Ghosh & Lamb relation using the angular
momentum transfer equation. We note that the magnetospheric
radius in this study is defined as an azimuthally averaged
quantity for the disturbed magnetosphere (see also
A. A. Blinova et al. 2016; S22). Equation (5) approximately
agrees with the results of ST22. Observations indicate that
CTTSs generally host kilogauss surface magnetic fields (e.g.,
C. P. Johnstone et al. 2014). The field strength is comparable to
or larger than the field strength determined by the pressure
balance between the surface gas pressure and the magnetic
pressure (P. N. Safier 1999; C. M. Johns-Krull 2007). Con-
sidering the observations, we adopt 1–2 kG as a typical value of
the stellar field. We assume that the above formula is valid in
the propeller regime.

The dipole field assumption seems reasonable, particularly
for young and rapidly rotating T Tauri stars (S. G. Gregory
et al. 2012). Magnetic obliquity will affect the inner disk
structure when the inclination angle is greater than a few tens of
degrees (M. M. Romanova et al. 2003). However, observations
suggest that the majority of stars show an inclination angle of
∼10o only (P. McGinnis et al. 2020). Therefore, we ignore the
effects of misalignment and discuss the spin-down process
based on our 3D model (ST22), where the axis of the dipole
field is aligned with the rotation axis.

When we calculate the stellar angular momentum, we take
two angular speeds as references. One is the maximum stellar
spin, and the other is the value for a spin-equilibrium state.
M.-K. Lin et al. (2011) suggest that gravitational torques
prevent a protostar from spinning up to more than half of its
breakup velocity. Considering their result, we take the
maximum angular velocity of the protostar, *,maxW , as 0.5Ωbr,

where /* *GM Rbr
3W = is the breakup angular speed. When a

protostar is in spin equilibrium (rcor = fcor,eqrmag and
fcor,eq ≈ 1), the stellar angular velocity is estimated to be

/ ( )* f r,eq cor,eq
3 2

K magW = W- . In this study, to define the propeller
regime, we simply assume that fcor,eq = 1 in a spin equilibrium.
The detailed condition of spin equilibrium is beyond the scope
of this study.

5. Upper Limit of the Spin-down Time

We first describe the general evolution of key stellar
quantities. Panel (a) of Figure 5 displays the evolution of the
accretion rate (see Equation (4)). The stellar radius evolves in
response to accretion and Kelvin–Helmholtz contraction, as
shown in the panel (b). We also plot a line of /

*R tage
1 3µ - as a

reference, which is predicted for a star on the Hayashi track.
This scaling is particularly relevant to the period
tage  0.5–1Myr in our model. Before the Hayashi phase,
the stellar radius slightly increases due to deuterium burning in
the period spanning 0.1 to 0.3 Myr. Panel (b) also shows the
evolution of rmag. In the case of B* = 1 kG, rmag ≈ 20Re at
tage = 0.3 Myr. As R* and rmag decline approximately similarly
during 0.3–1 Myr, we can approximate rmag/R* as a constant
in this period. The detailed functional form is shown in
Appendix E. After approximately 1Myr, the magnetospheric
radius declines more slowly than the stellar radius because of
reduction of the accretion rate (Equation (5)). The stellar
moment of inertia I* also decreases in response to the reduction
in the stellar radius (panel (c)). In the plot, I* is normalized by

 I M R0
2= . *k

2 is the moment of inertia normalized as follows:
/* * * *k I M R2 2= . The figure shows that *k

2 is nearly constant in
the period of interest, suggesting that * * *I M R 2µ .
Panels (d)–(f) of Figure 5 display the evolution of the

quantities of the stellar spin at a maximum spin rate and in a
hypothetical spin equilibrium where rcor = rmag is assumed.
Panel (d) shows the stellar rotation periods in the two states.
The period of ~4 days in the state with rcor = rmag is similar to
observed values for T Tauri stars (J. Bouvier et al. 2014). The
corresponding stellar angular momenta are indicated in panel
(e). We write the maximum stellar angular momentum as

**J I,max max= W and the angular momentum of a star in spin
equilibrium as / ( )**J f I r,eq cor,eq

3 2
K mag= W- . In this study, we focus

on young fast rotators and thus assume that the core and
envelope rotate at the same velocity (e.g., F. Gallet &
J. Bouvier 2013). Figure 5(f) shows JCDW calculated using
Equation (3). JCDW declines as time proceeds because the mass-
loss rate MCDW and the rotating arm fArmag decrease. Therefore,
we expect a strong angular momentum loss in the early phase,
as argued by J. Ferreira et al. (2000).
We calculate the spin-down time tsd for the case that the

stellar angular momentum is extracted only by a conical disk
wind emanating from the magnetospheric boundary. tsd is
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estimated as

( )
*t

J

J
. 6sd

CDW
=

The upper limit of the spin-down time corresponds to the case
that the stellar angular momentum is * *J J ,max= . We denote
the upper limit as / *t J Jsd,up ,max CDW= . If other spin-down
mechanisms such as massive stellar winds are important, the
spin-down time will be smaller. Here, we ignore the
contribution of the spin-up torque by accretion. As we will
see later, this assumption seems to be valid as long as the spin-
up torque is significantly reduced by failed magnetospheric
winds, as seen in the 3D simulation (Section 2.2).

The upper limit of the spin-down time, tsd,up, is shown in
Figure 6. For the fiducial case of feff = 0.2 and B* = 1 kG, the
spin-down time is smaller than the stellar age in the range
tage  1 Myr. This result demonstrates that a conical disk wind
can significantly slow down a protostar before tage = 1 Myr.
The result only weakly depends on the stellar field strength.
The efficiency of the conical disk winds ( feff) has a stronger
impact on the spin-down time (compare the dashed and solid
lines). Our estimation presented here corresponds to an update
of the previous estimation by A. Koenigl (1991). We also
derive the scaling relations of tsd,up at the pre-MS stage, which
is presented in Appendix F.

To illustrate the significance of the spin-down torque by
conical disk winds, we compare it with other possible spin-
down torques discussed by previous studies:

1. The torque by stellar wind, J .SW

2. The torque by magnetospheric ejection, J .ME

As they depend on the stellar spin rate, a direct comparison
requires a detailed calculation of the time evolution of the
stellar spin rate. As this is beyond the scope of this study, we

calculate these torques in a propeller regime by assuming that
rcor = 0.8rmag.
We briefly describe the calculation methods for the above

two torques. We provide detailed expressions for JSW and JME
in Appendix G. For the mass-loss rate of the stellar wind, MSW,

Figure 5. Evolution of key quantities. Panel (a): the stellar accretion rate. Panel (b): the stellar radius (black solid line) and the magnetospheric radius (blue solid and
dashed lines). Panel (c): the moment of inertia; the black and blue lines show I*/I0 and k*, respectively. Panel (d): the rotational periods for maximum rotation (solid)
and in a hypothetical spin-equilibrium state (dashed), where rcor = rmag is assumed. Panel (e): the stellar angular momenta for maximum rotation (solid) and in a
hypothetical spin-equilibrium state (dashed). Panel (f): the spin-down torque by a conical disk wind (B* = 1 kG).

Figure 6. The spin-down time tsd for a star rotating at Ω* = 0.5Ωbr (therefore,
tsd,up). The fiducial model is indicated by the solid blue line. The region where
the spin-down time for the models with the fiducial field strength (1 kG) is
shorter than the stellar age is filled with blue. The gray solid line shows the line
for tsd = tage. The dotted line shows a scaling of t t c

sd ageµ , where
c = 59/42 ≈ 1.4.
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we assume  M f MSW SW acc= and fSW = 0.1, which would be a
minimum value for the stellar wind to spin down the protostar
(e.g., F. Gallet et al. 2019; L. G. Ireland et al. 2021). We note
that this high efficiency (~10%) seems to be difficult to realize
in reality (S. R. Cranmer 2008; C. Zanni & J. Ferreira 2011).
For JME, we adopt the analytical expression of F. Gallet et al.
(2019) based on axisymmetric models (M. Livio &
J. E. Pringle 1992; P. J. Armitage & C. J. Clarke 1996;
S. Matt & R. E. Pudritz 2005). We note that the magnitude of
the torque could be highly overestimated because of the
axisymmetric assumption (see Section 2.2). Therefore, we
should take the value as a reference.

Figure 7 compares the different torques which can be exerted
on a star in the propeller regime with rcor = 0.8rmag. To
calculate JCDW, we use our Equation (3) and adopt feff = 0.2
and B* = 1 kG. Namely, we assume that JCDW does not
explicitly depend on the stellar spin rate Ωast. The accretion
torque which takes into account the 3D effect,  J J0.1acc acc= ¢ ,
is also shown. JCDW is similar to JSW for the given parameter
set, which indicates that the conical disk winds can provide as
large a spin-down torque as the hypothetical massive stellar
winds. If the actual accretion torque is ~ J0.1 acc¢ or smaller, as
suggested by the 3D MHD simulation, the spin-down torques
can dominate the spin-up torque. The spin-down torque by
magnetospheric ejections is unimportant in this case, but the
torque is sensitive to the choice of rcor. If we adopt
rcor = 0.5rmag, we find that  ~J JME CDW. Again, we note that
the magnitude is likely to be overestimated as the formula for
JME is based on axisymmetric models. If magnetospheric
ejections are indeed the primary mechanism for angular

momentum transport, we require a theory to account for the
observed weak time variability in protostellar accretion.

6. Discussion

Considering the numerical results of ST22, we propose that
the magnetically driven winds just around the magnetosphere
are key to resolving the spin-down problem. Failed magneto-
spheric winds, which only appear in three dimensions,
significantly reduce the spin-up torque. When a protostar is
in the propeller regime, powerful conical disk winds will
appear and extract the stellar angular momentum. A combina-
tion of the two leads to an efficient angular momentum loss.
The mass-loss rate can be ~10% of the accretion rate as a result
of direct mass loading from the inner disk to the rotating
magnetosphere (Appendix C). Our study shows that a higher
accretion rate in the earlier phase leads to a larger wind mass-
loss rate. This is the main reason why younger protostars have
larger spin-down torque by conical disk wind.
Recent models of spin evolution hypothesize the presence of

massive stellar winds (e.g., F. Gallet et al. 2019; L. Gehrig et al.
2022), but this assumption has been challenged from an
energetic perspective. Our estimation suggests that, in the
propeller regime, conical disk winds will play a critical role in
stellar angular momentum loss. If stellar winds play a
significant role, the spin-down mechanism will depend heavily
on the properties of the accreting object. The detailed spin
evolution is influenced by the initial conditions, stellar
evolution (e.g., stellar contraction), and disk evolution. Thus,
to reach a more robust conclusion, it is essential to incorporate
all key factors into a comprehensive model.
In Section 2.2, we have argued that the interaction between

the stellar fields and disk fields determines how the mass and
angular momentum transfer (see also Appendices A and C).
Here, we briefly note the importance of magnetic reconnection
between the stellar and disk poloidal fields, which has not been
investigated in detail in this study. J. Ferreira et al. (2000)
argued that efficient mass loading via magnetic reconnection to
the rotating winds will be key in increasing their spin-down
torque. On the other hand, M. M. Romanova et al. (2011)
performed 2D MHD simulations and showed that magnetic
reconnection reduces the accretion torque by decreasing the
total magnetic flux of the stellar fields threading the disk (see
also K. Parfrey & A. Tchekhovskoy 2017). How the disk fields
affect the stellar spin evolution in 3D will be an interesting
topic for future studies. As our model (S22) is initialized with a
magnetized torus, magnetic reconnection between the stellar
and disk poloidal fields will be operating (the presence of the
disk fields is a noticeable difference from Z. Zhu et al. 2024).
However, a plasma β based only on poloidal fields is much
larger than unity in the inner disk outside the magnetosphere,
which suggests a minor role of such reconnection in our model.
There are some caveats about our numerical simulations. The

3D simulations of ST22 which motivate this theoretical study
have smaller magnetospheric radii (~2R*) than the value used
in this study, as we adopted a relatively weak stellar field
strength (∼160 G) to avoid numerical difficulties. The relation
between rm and rA for more realistic situations remains to be
studied. Another issue is the numerical treatment of the stellar
wind. Since the properties of stellar winds remain unclear
observationally, it is important to investigate how the results of
this study depend on the stellar wind model. A detailed
consideration on the efficiency of the conical disk wind feff is

Figure 7. Different torques being exerted on a star with rcor = 0.8rmag (a
reference state of the propeller regime). The red line shows the torques by the
conical disk wind. The blue dotted line indicates the accretion torque based on
the simple estimation, J acc¢ . The blue solid line denotes J0.1 acc¢ , an accretion
torque that takes into account the angular momentum extraction by some
winds. Other torques are also plotted for comparison. The green dotted line
shows the spin-down torque by magnetospheric ejections. The dashed golden
line denotes the spin-down torque by stellar wind in the case
that  M M0.1SW acc= .
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also necessary. The dependence on the stellar spin will
particularly affect the behavior of the star near spin
equilibrium. As the efficiency is relevant to turbulent mixing,
checking convergence with higher-spatial-resolution simula-
tions also remains an important task.

Studying stellar spin is crucial for testing scenarios of stellar
and disk evolution. Observations have revealed the diversity in
the structure of protoplanetary disks (J. Bae et al. 2022).
Differences in the disk structure will lead to different accretion
histories, such as episodic accretion outbursts. As our study
indicates the tight relationship between accretion and spin-
down, it is possible that the stellar spin distribution is a
consequence of the diversity in the disk accretion histories (see
also L. Gehrig & E. I. Vorobyov 2023). Stellar spin also affects
chemical mixing in the stellar interior, and thus stellar
evolution. Lithium may be a good tracer of the history of
internal mixing because its abundance is sensitive to it. Some
studies suggest that models which take into account the effects
of rotational mixing may explain the origin of lithium-depleted
stars (J. Bouvier et al. 2016; P. Eggenberger et al. 2022).
Accurate interpretation of the stellar surface abundance is
important for testing planet formation scenarios because the
surface abundance would depend not only on the internal
mixing but also on how planet formation affects the abundance
of accreting materials (M. Kunitomo et al. 2022). Further
studies of spin evolution are thus required for our under-
standing of how star-planet systems including the solar system
are born and evolve.
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Appendix A
Analysis of Angular Momentum Flux

We investigate the angular momentum flow around a
protostar by analyzing the spatial distributions of the angular
momentum flux and toroidal fields on some spherical surfaces.
The left column of Figure 8 displays the result at a spherical
radius of r = 2R*, which is close to the magnetospheric radius.
The Reynolds stress (top panel) takes a large negative value
around the midplane, which means that accreting flows are
transporting angular momentum inward. We also see some
patchy regions with positive values. Some of them correspond
to failed magnetospheric winds (see Section 2.2). The Maxwell
stress shows positive values in almost all directions (second
panel). It takes larger positive values around the midplane
because strong toroidal fields exist there in response to the
magnetosphere–disk interaction (bottom panel). The sum of
the Reynolds and Maxwell stress results in a net spin-down
torque (ST22). We note the total flux displays a complicated
structure that is highly nonuniform in the azimuthal direction
(third panel), which is distinct from the picture based on the
axisymmetric model.
The right column of Figure 8 shows the result near the stellar

surface, r = 1.2R*. The Reynolds stress displays a spotty
structure, which is formed by patchy accretion flows. The
Reynolds stress shows negative values only in the northern
hemisphere as asymmetric accretion occurs. The Maxwell
stress shows large positive values in the range 30o  |θ|  60o.
The spin-down Maxwell stress is produced by the back-
reaction of driving the conical disk winds and failed magneto-
spheric winds. Indeed, a large part of the stellar field lines
driving these winds emanate from the latitudinal range
(Figures 2 and 3). The total flux indicates that a large fraction
of the spin-up torque by accreting flows is compensated by the
magnetic spin-down torque, which results in a smaller rate of
angular momentum injection than the classical estimation, Jacc

¢
.
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Appendix B
Structure of the Alfvén Surface

Figure 9 shows the structure of the Alfvén surface. The
colors denote the poloidal Alfvén speed VA,p, and the black
lines with arrows indicate the averaged poloidal field structure.
The magnetosphere expands in the southern hemisphere, and
the conical disk wind is blowing along the expanding field
lines. The white lines indicate the locations where the poloidal
plasma velocity is equal to VA,p. The white line in the conical
disk wind region shows the Alfvén surface.

ST22 demonstrates that the outward angular momentum flux
takes the largest value around the latitude of approximately 45o

or slightly larger at the stellar surface (see the right column of
Figure 8 of this study and Figure 19 of ST22). Note that the
field lines driving the conical disk winds are connected with the
northern hemisphere of the star. Considering this result, we
focus on the field line emanating from the latitude of
approximately 45o at the stellar surface. The field line intersects
the Alfvén surface approximately at a cylindrical radius of 5R*
(see the location indicated by the yellow arrow). As the

Figure 8. Analysis of angular momentum transfer at r = 2.0R* (left) and 1.2R* (right) for Model A of ST22. From top to bottom, fang,h,r = Rρvrvj, fang,m,r = −RBrBj/
4π, fang,h,r + fang,m,r, and Bj. Note that accretion mainly occurs in the northern hemisphere.
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magnetospheric radius is approximately 2.5R*, we find
rA ≈ 2rmag. Therefore, we adopt fA = 2 as a fiducial value in
this study. A detailed dependence of the Alfvén radius on the
properties of accretion and stellar magnetic fields should be
investigated in future studies. The Alfvén surface inside the
electric current sheet of the expanding magnetosphere comes
closer to the protostar (~2R*). However, because the field
strength in the current sheet is weaker than the surrounding
field, the angular momentum transport inside the current sheet
is unimportant.

Appendix C
Theoretical Estimation of Mass-loss Rate of Conical

Disk Wind

Let us define the accretion rate in the disk as Macc,d. From the
law of conservation of mass, we get

( )  M M M . C1acc,d acc CDW= +

The majority of the accreting material falls onto the protostar as
a result of angular momentum loss ( Macc). The rest of it is
loaded onto the rotating magnetospheric field via mixing and is
ejected away as conical disk wind ( MCDW). Figure 10 displays a

schematic illustration of the bifurcation of the mass flow. Here,
we investigate the bifurcation ratio.
We first note the difference in magnetosphere–disk interac-

tion between 2D and 3D models. In 2D models, the accreting
material enters the magnetosphere as a result of effective
turbulent diffusion (see also the left panel of Figure 1). In other
words, accreting material penetrates the magnetosphere as a
result of diffusive mixing; in such models, the bifurcation ratio
is sensitive to the assumed effective diffusivity and viscosity
(G. V. Ustyugova et al. 2006), which are highly uncertain. In
three dimensions, the mass loading to the magnetosphere
occurs differently. A part of the disk mass is loaded through
turbulent mixing at the magnetospheric boundary, which may
be modeled using an effective diffusivity as done in 2D models.
In addition, the 3D model shows filamentary flows penetrating
into the magnetosphere (Figures 3 and 4). These penetrating
flows possess strong toroidal fields because they are dragging
the disk toroidal fields and continuously shearing them up (see
Section 2.2). They retain their coherent structure even in the
magnetosphere, possibly because their strong toroidal fields
prevent the flows from breaking up. Their coherent structure
motivates us to treat the mixing and penetration of the accretion
flows separately. The mixing operates mainly at the magneto-
spheric boundary, which is outside the corotation radius in the
propeller regime. Therefore, we expect that most of the gas
loaded via mixing will be blown away by a combination of
centrifugal and Lorentz forces (G. V. Ustyugova et al. 2006;
M. M. Romanova et al. 2009). However, the penetrating flows
can enter inside the magnetosphere due to their large inertia.
The bifurcation ratio of the mass flow will depend on the

rates of gas penetration and mixing. The rate for the accreting
material in the magnetosphere to fall onto the protostar is
expressed as tacc,mag

1- . The rate for mixing (which is essential for

mass loading to the conical disk wind) is written as tmix
1- . By

using them, we can write the rate of mass loading to the
magnetosphere, Mload, as follows:

( )

 



M M

M . C2

t

t t

t

t t

load acc,d

acc,d

mix
1

mix
1

acc,mag
1

acc,mag

mix acc,mag

=

=

+

+

-

- -

A fraction of the loaded mass will be blown away as conical
disk wind, while the rest of it will accrete onto the protostar as a
funnel flow. By introducing a nondimensional parameter fCDW,

Figure 9. The structure of the Alfvén surface. Colors denote the poloidal
Alfvén speed. White contours indicate Alfvén surfaces where the poloidal
velocity is equal to the poloidal Alfvén speed. Black lines with arrows denote
magnetic field lines projected on this plane. The yellow arrow indicates the
location of the Alfvén point discussed in the text of Appendix B. The data are
temporally and azimuthally averaged. The time average is performed during the
period t = 190.1–199.4 days after the simulation starts.

Figure 10. Illustration of the bifurcation of the mass flow. The black arrow
indicates the accreting flow in the disk. A fraction of the accreting gas is loaded
onto the rotating stellar magnetic fields via turbulence (indicated as yellow
arrows) and becomes conical disk wind (orange arrows). The rest of it falls
onto the star (dark blue arrow).
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which denotes the partition rate, we obtain

 M f M .CDW CDW load=

The value of fCDW should depend on the details of the
dynamics (e.g., the distributions of the Lorentz and thermal
forces along the field line) and geometrical effects (e.g., north–
south asymmetry). Nevertheless, we expect that a large portion
of the loaded mass will gain angular momentum from the
protostar as the magnetospheric boundary is outside the
corotation radius: rcor < rmag (therefore, we expect that fCDW
is comparable to unity). This assumption should be examined
in future studies. From the law of conservation of mass
(Equation C1), we get

( )
( ) M

f t

t f t
M

1
. C3CDW

CDW acc,mag

mix CDW acc,mag
acc=

+ -

If fCDW is insensitive to the dynamics and geometrical effects at
the magnetospheric boundary, this equation explains why
MCDW is proportional to Macc.
We estimate tacc,mag and tmix by referring to the results

of ST22. As the gas penetrating the magnetosphere falls onto
the protostar within 1–2 orbital rotation periods, we take
tacc,mag ≈ tK(rmag), where tK(r) denotes the Keplerian orbital
time at the radius of r. The timescale of mixing should be
related to the level of the velocity fluctuation (or rms
fluctuating velocity) around the magnetospheric boundary, δv.
The diffusion coefficient due to turbulence in the Keplerian
disk can be expressed as

( )D
v1

3
, C4

2

K

d
»

á ñ
W

where 〈δv2〉 denotes the azimuthally and temporally averaged
turbulent velocity. Using this expression, the mixing timescale

can be estimated as

( )t
R

D
, C5mix

2
=

D

where ΔR is the width of the transition layer between the
magnetosphere and the disk.
We measure the velocity fluctuation in the simulation.

Figure 11 displays the velocity fluctuation measured around the
equatorial plane. The bracket indicates the azimuthally and
temporally averaged quantities. δvR and δvj are the radial and
azimuthal components, respectively, which are the most
relevant to the mixing. cs is the sound speed. We calculate
δv as v v vR

2 2 2d d d= + j . The figure indicates that

/v c 0.5s
2dá ñ á ñ » around the magnetospheric boundary

(R ≈ 2.5R*). We note that it is likely the value presented
here depends on the numerical resolution. A convergence
check is the last remaining task. Nevertheless, we take the
measured value as a fiducial value for a better comparison
between our simulation and order-of-magnitude calculation. As
the vortex size is expected to be limited by the disk thickness or
the pressure scale height H, we can rewrite tmix as

/
( ) ( )t t r

R

H

v c
4

0.5
, C6

s
mix K mag

2 2
2

d
»

D á ñ á ñ
-

⎛
⎝

⎞
⎠

⎛

⎝
⎜

⎞

⎠
⎟

where we have used the relation /H c2 s K= W .
Using the above parameter sets, we finally find

( )



M

M
f

t

t

f
0.2

0.8
, C7CDW

acc
CDW

acc,mag

mix

CDW= » ⎛
⎝

⎞
⎠

where we set the order-unity parameter fCDW to be 0.8 by
considering imperfect mass loading to the conical disk
winds. This result indicates that feff = 0.1–0.2 is a reasonable
value. A larger feff may be possible if the velocity fluctuation
level is larger than the one considered here (G. V. Ustyugova
et al. 2006). Rapid rotators may show a larger fluctuation
level because the toroidal fields at the magnetospheric
boundary are more strongly amplified than in slow rotators
(Figure 11 of ST22). We note that the discussion here only
focuses on the bifurcation ratio near the wind-launching
region. The above mass-loss rate should be larger than the
mass-loss rate of the gas escaping from stellar gravity
because not all the wind gas will escape from the system. If
the acceleration is insufficient, a fraction of the wind gas will
fall back to the disk or the protostar. It is worth noting that
the above estimate is close to but a factor of a few larger than
the typical ratio of the mass-outflow rate of the jet to the
accretion rate (0.05–0.1; see, e.g., M. Fang et al. 2018). We
also note that the above discussion ignores the role of
magnetic reconnection between the stellar and disk poloidal
fields (J. Ferreira et al. 2000). If the reconnection plays a
critical role in the mass loading, we will have to consider the
effect.

Appendix D
Comparison of Mass Loading between the Stellar Wind

and the Conical Disk Wind

Figure 12 compares mass loading between the stellar wind
and the conical disk wind. In the case of the stellar wind, the

Figure 11. The velocity fluctuation measured around the equatorial plane. The
time average is performed during the period t = 190.1–199.4 days after the
simulation starts.
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mass is loaded from the stellar atmosphere. This is also true
for accretion-powered stellar wind models (S. Matt &
R. E. Pudritz 2005; S. R. Cranmer 2008). Coronal gas
which passes through the Alfvén surface becomes stellar
wind. In the case of a conical disk wind, the wind mass is
loaded from the accretion disk at a place distant from the
stellar surface. Small-scale magnetic reconnection driven by
turbulent motions allows materials to be loaded onto the
rotating stellar magnetic fields. In both cases, mass loading
occurs inside the Alfvén surfaces. However, in the case of a
conical disk wind, the mass is loaded where the gravitational
potential is shallower than at the stellar surface. Therefore,
blowing the massive wind is less expensive in terms of
energy.

J. Ferreira et al. (2000) also note the advantage of the
conical disk wind. They studied a situation in which the disk
has a poloidal field that can reconnect with the protostellar
magnetic fields, which is likely in the early phase of star
formation (see also S. Hirose et al. 1997). The reconnection
creates a rotating open field and loads the disk gas to the field
simultaneously, which leads to the formation of a conical wind
mediated by reconnection (which the authors denote a
reconnection X-wind). They show that a protostar driving a
reconnection X-wind can spin down in a way consistent with
observations.

The mass loading in 3D is similar to what is assumed in
J. Ferreira et al. (2000) in the sense that magnetic reconnection
is relevant. However, the 3D model suggests that the presence
of large-scale disk poloidal fields will not be necessary for the
reconnection-mediated mass loading. The disk in our 3D model
has a finite poloidal field, but the azimuthally averaged poloidal
field of the disk appears to be turbulent (see Figure 6 of ST22).
Therefore, the strength of the disk field is too weak for the
reconnection X-wind to blow. Our study demonstrates that the
reconnection-mediated conical disk wind plays important roles
in stellar spin-down in a broader situation than previously
considered.

Appendix E
Models of Stellar Evolution and Accretion

We calculated the evolution of young stars following
M. Kunitomo & T. Guillot (2021). We used the MESA stellar
evolution code version 12115 (B. Paxton et al. 2011). We refer
the reader to M. Kunitomo & T. Guillot (2021) and the series of
papers by Paxton et al. for details of the computational method
in this work.
We started from a protostellar phase with a seed of mass

0.1Me. We adopted an accretion rate  M M10 yr5 1= - - for
tage�t1 and /( ) M M t t10 yr5 1

age 1
1.5= ´- - - for t1 < tage <

107 yr following L. Hartmann et al. (1998), where
t1 = 31,160 yr (see Figure 3 of M. Kunitomo & T. Guil-
lot 2021). The resulting final mass is 1Me. We neglect the
effects of rotation and stellar winds on stellar evolution.
We note that the accretion rate M is still uncertain. Our

fiducial model ( M tage
1.5µ - ) based on L. Hartmann et al.

(1998) seems reasonable from the viewpoint of viscous
accretion with a constant viscosity α parameter (N. I. Shak-
ura & R. A. Sunyaev 1973; see discussions in L. Hartmann
et al. 1998). However, recent observational studies have
suggested another empirical relation in which M tage

1.07µ -

(L. Hartmann et al. 2016). To see the impact of this
uncertainty on our conclusion, we have simulated a
protostellar evolution with the latter accretion rate. The
resulting final stellar mass is 1Me, as in the fiducial model.
Figures 13 and 14 show the evolution of stellar key
quantities and spin-down time, respectively, as in
Figures 5 and 6. Due to the higher accretion rate in the
late phase, this model results in an even shorter spin-down
time than the fiducial model in Figure 6 (see also
Appendix F). Therefore, we confirm that the conclusion of
this study (i.e., the successful spin-down of protostars due to
conical disk wind) is not affected by uncertainties in the
accretion rate.
The model used in this work is the same as the “K2” model

of M. Kunitomo & T. Guillot (2021, their Table 1) except for
accretion heating.8 M. Kunitomo & T. Guillot (2021, their
Section 3.1.2) modeled the accretion heating with ξ = 0.1,
whereas in this study we used ξ = 0.5 (i.e., higher-entropy
accretion), resulting in the evolution being more similar to the
classical case. Since the A2 parameter, which controls the
opacity increase (see their Section 3.1.5), has little impact on
the pre-MS radius evolution, we set A2 = 0. We adopted the
same input parameters (i.e., initial composition, mixing-length
parameter, and overshooting parameter) as the K2 model with
A2 = 0 in M. Kunitomo & T. Guillot (2021), which were
optimized with solar observational constraints.
The evolution of the magnetospheric radius is described by

the scaling of / /
*r R Mmag
12 7

acc
2 7µ -

under the assumption that
both B* and M* are constant with time. The stellar evolution
model shows that

( ) ( )
*

r

R
F t4.3 , E1

mag
age»

Figure 12. Comparison of mass loading between the stellar wind (top) and the
conical disk wind (bottom). Note that in both cases mass loading occurs inside
the Alfvén surface.

8 The data and inlist files for the MESA simulations are available on
Zenodo under an open-source Creative Commons Attribution license:
doi:10.5281/zenodo.14524940.
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where F(tage) can be described as follows:

( )( ) ( )



F t

t

t

1 Myr 1for 0.3 Myr

Myr 1for .
E2tage

age

1 Myr

0.190

age
age

»
<⎧

⎨
⎩

The model shows that the value of F(tage) is approximately
unity in 0.3 Myr  tage  1Myr. We can derive a scaling
relation for later evolution by using the relations of /

*R tage
1 3µ -

and M tacc age
1.5µ - . Because of the weak dependence of F(tage)

on time, rmag/R* slowly changes with time and is of the order
of unity in the time range of interest. Therefore, we
approximate rmag/R* as a constant.
This study assumes that stellar contraction occurs owing to

the stellar radiation only. But, the conical disk wind also
removes energy from the protostar and enhances the stellar
contraction (J. Ferreira et al. 2000). Considering the results of
J. Ferreira et al. (2000), the stellar radius is insensitive to this
effect (at most ∼10%; see their Figure 2). Therefore, our
discussion based on the Kelvin–Helmholtz contraction will
remain valid even with that effect.

Appendix F
Scaling Relations of Spin-down Time

Using the definitions of *J ,max and JCDW, we can show that
tsd,up scales as follows:

/ / / /

( )
( )

( )





* *

* * *

t
I R

f M r r

f f B M R M

0.5

. F1

sd,up
K

A
2

CDW mag
2

K mag

eff
1

A
2 2 7 15 14 5 14

acc
6 7

W
W

=

µ - - - - -

As the spin-down time tsd,up only weakly depends on the stellar
radius, deuterium burning before ~0.5 Myr has a minor impact
on tsd,up. At the pre-MS star stage, the stellar mass is nearly
constant. If feff, fA, and B* do not significantly change during
the evolution, the spin-down time will mainly depend on R*
and M . In this case,

/ ( )t t t , F2
a

sd,up age

5
42

6
7

age
59 42µ =

+

for a= 3/2. The gray dotted line in Figure 6 indicates this
scaling. This scaling is consistent with the results.
It is interesting to note that the spin-down time (tsd,up)

decreases as the accretion rate increases if the accretion torque
is always considerably smaller than the spin-down torque as
considered in our model. In the actively accreting phase, the

Figure 14. Same as Figure 6 but with another accretion rate (L. Hartmann
et al. 2016).

Figure 13. Same as Figure 5 but with another accretion rate (L. Hartmann et al. 2016).
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protostar shows a larger stellar radius and a higher mass-loss
rate of conical disk wind. As the spin-down torque is an
increasing function of the stellar radius and the wind mass-loss
rate, the protostar spins down efficiently in the early phase.

Appendix G
Torques by Magnetospheric Ejection and Stellar Winds

According to F. Gallet et al. (2019), the torque by
magnetospheric ejection can be written as

/

( ) * *J K
B R

r
K

r

r
, G1ME ME

2 6

mag
3 rot

mag

cor

3 2

= - ⎜ ⎟
⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥

where KME = 0.21 and Krot = 0.7 are nondimensional
parameters calibrated by the 2D MHD simulations of C. Zanni
& J. Ferreira (2013). Note that within this formula the torque
represents a spin-down torque when its value is negative. As
F. Gallet et al. (2019) indicate, the nondimensional calibration
parameters are actually not fixed as constants but vary as
functions of the model parameters. Given the limited parameter
range investigated by C. Zanni & J. Ferreira (2013), we align
with their model by adopting a rcor/rmag ratio similar to their
results. In the propeller regime of their C01 case, rcor/rmag

ranged approximately from 0.77 to 0.94 (see their Table 2).
Based on this, we set rcor/rmag = 0.8 as the standard value for
Figure 7.

The spin-down torque by stellar winds can be expressed as

( ) 
*J M r , G2SW SW A

2W=

where MSW is the mass-loss rate of the stellar wind and rA is the
averaged Alfvén radius. Following S. P. Matt et al. (2012), we
write rA as

( )


* *

* *
*r K

B R

M K v R
R , G3A

m

1

2 2

SW 2
2

esc
2 2 2

=
+ W

⎡

⎣
⎢

⎤

⎦
⎥

where /* *v GM R2esc = is the escape velocity, m= 0.2177,
K1 = 1.3, and K2 = 0.0506. Note that F. Gallet et al. (2019)
adopt K1 = 1.7, which is larger than the value given by
S. P. Matt et al. (2012). We also assume that the massive stellar
wind is powered by accretion via unknown mechanisms and
has an efficiency of 10%:  M f MSW SW acc= and fSW = 0.1. Note
that both the linear relation between MSW and Macc and the
origin of the large efficiency are assumptions and remain
elusive.
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