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Dislocations in ceramics are increasingly recognized for their promising potential in applications such
as toughening intrinsically brittle ceramics and tailoring functional properties. However, the atomistic
simulation of dislocation plasticity in ceramics remains challenging due to the complex interatomic
interactions characteristic of ceramics, which include a mix of ionic and covalent bonds, and highly
distorted and extensive dislocation core structures within complex crystal structures. These
complexities exceed the capabilities of empirical interatomic potentials. Therefore, constructing
neural network potentials (NNPs) emerges as the optimal solution. Yet, creating a training dataset that
includes dislocation structures proves difficult due to the complexity of their core configurations in
ceramics and the computational demands of density functional theory for large atomic models
containing dislocation cores. In thiswork, we propose a training dataset fromproperties that are easier
to compute via high-throughput calculation. Using this dataset, we have successfully developed
NNPs for dislocation plasticity in ceramics, specifically for three typical functional ceramics: ZnO,
GaN, and SrTiO3. These NNPs effectively capture the nonstoichiometric and charged core structures
and slip barriers of dislocations, as well as the long-range electrostatic interactions between charged
dislocations. The effectiveness of this dataset was further validated by measuring the similarity and
uncertainty across snapshots derived from large-scale simulations, alongside extensive validation
across various properties. Utilizing the constructed NNPs, we examined dislocation plasticity in
ceramics through nanopillar compression and nanoindentation, which demonstrated excellent
agreement with experimental observations. This study provides an effective framework for
constructing NNPs that enable the detailed atomistic modeling of dislocation plasticity, opening new
avenues for exploring the plastic behavior of ceramics.

Dislocations in both structural and functional ceramics are rapidly gaining
attention due to their intriguing potential in property tuning, and thus are
nowperceived as promising atomic-scale entities for next-generation device
applications1–10. As a type of topological one-dimensional defect, disloca-
tions in ceramics feature non-stoichiometry and excess charge at their cores
and local strain field around the cores, making them powerful entities for
“defect engineering”. By manipulating dislocations into ceramics or inter-
acting dislocations with other defects, one can harness unprecedented
mechanical properties and tailored functional properties. Examples include
exceptional plasticity6, anisotropic thermal transport7, controllable ferro-
electric properties8,9, and enhanced photoconductivity10. Despite the sig-
nificant effect and exciting application potential of dislocations in ceramics,
the detailed structure and stability of dislocations, aswell as the atomic-scale

understanding of dislocation behaviors, are still challenging mainly due to
their complication of the basic crystalline structures and the technical dif-
ficulty of the experiment, e.g., well-prepared samples and high-resolution
ultramicroscopy11,12.

Atomistic simulations play increasingly important roles in revealing
atomic-scale insights into dislocations in ceramics. Density functional
theory (DFT) calculations provide detailed atomic and electronic structures
but are limited by the size and time scales it can handle. This restricts its use
for many dislocation-related problems in ceramics, e.g., dislocation inter-
action with grain boundary13, which often needs models with thousands to
millions of atoms. In contrast, molecular dynamics (MD) simulations can
study large systems of millions of atoms on a nanosecond scale. The chal-
lenge in conducting realistic MD simulations lies in the requirement for a
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natural interatomic potential. A wide array of empirical and semi-empirical
potentials have beendeveloped for ceramics, including the rigid ionmodel14,
Stillinger-Weber (SW)15, Vashishta16, ReaxFF17, COMB318, and SMTB-Q19

potentials. However,many of these potentials were not designed to describe
dislocations. The verification of their predictive power has been limited to
relatively narrow domains of physical conditions directly relevant to their
applications in the initial studies. These empirical potentials, based on fixed
analytical function forms, lack the sophistication to accurately capture the
energy surface of highly distorted dislocation core structures.

In recent years, advances in integratingDFT calculationswithmachine
learninghave led to the development of neural networkpotentials (NNPs)20,
which learn the potential energy landscape directly from reference DFT
datasets21. They maintain near-DFT accuracy while affording atomic
resolution at larger system sizes and time scales, comparable to classical
interatomic potentials. NNPs have been successfully developed for several
ceramic materials, e.g., TiO2

22, ZnO23, TiN24, Cu2O
25, KNbO3

26, GaN27,
SrTiO3

28, and HfO2
29. Most of these potentials focus on near-equilibrium

configurations, with few being validated for modeling and simulating dis-
locations. Several NNPs have been constructed and validated for disloca-
tions in metals and their alloys30–33. However, given the significant
differences between dislocation nature in metals and ceramics, such as the
nonstoichiometric and chargeddislocation core in ceramics34 and themixed
ionic-covalent bonding in ceramic materials, developing NNPs for dis-
location plasticity in ceramics remains particularly challenging.

The primary issue lies in generating a training dataset that includes
dislocation structures due to the complexity of their core configurations in
ceramics and the computational demands involved, typically requiring the
models composed of hundreds of atoms. This issue has also impeded the
construction of NNPs for dislocation plasticity in ceramics using the newly
developed on-the-fly active learning technology35,36. Active learning
employs biased or unbiased MD simulation to generate candidate pools
serving as training datasets. Active learning automatically targets regions
with inaccurate energy predictions, eliminating the manual trial-and-error
process of evaluating potential performance and designing new training
configurations. Capturing the highly distorted dislocation core structures
within this framework is particularly difficult because these structures exist
in high-energy states, making them rare events37. As a result, it is essential to
additionally incorporate dislocation structures in active learning. This
requires automated generation of these structures along with computation

of theirDFTenergies to achieve the active learning process. Consequently, it
remains a significant question whether an alternative training dataset, one
that eliminates the need to construct dislocation structures and is
straightforward to generate automatically, can be effectively utilized to
construct NNPs for dislocation plasticity in ceramics.

In this work, we propose a training dataset easy to compute via high-
throughput calculation for the construction of NNPs for dislocation plas-
ticity in ceramics, using three typical functional ceramics ZnO, GaN, and
SrTiO3 as prototypes. Wurtzite ZnO and GaN are direct wide bandgap
semiconductors38 with significant potential for various applications, while
cubic SrTiO3, a typical perovskite oxide, has high dielectric constants,
making it attractive for capacitors, varistors, and more39. The mechanical
and functional tailoring of dislocations in these three ceramics has been
widely studied experimentally10,40–44; however, the atomic-scale mechanism
remains largely unexplored. The NNPs developed in this study provide
powerful tools for detailed atomisticmodeling and simulation of dislocation
plasticity in these three ceramics. They also suggest an effective framework
to construct NNPs, opening new avenues for exploring the plastic behavior
of ceramics. The dataset, easy to compute via high-throughput calculation
could also be used in the on-the-fly active learning of NNP for dislocation
plasticity in ceramics. For instance, the structures within this dataset can
serve as candidate pools, automatically selected for inclusion in the training
dataset during the active learning process.

Results
A general recipe of easy-to-compute training datasets
To address the challenge of constructing accurate dislocation core config-
urations and calculating their DFT energies for a training dataset, this study
shifts focus from complex dislocation core structures, which necessitate
large models and substantial computational resources, to simpler
dislocation-related structures, that enable high-throughputDFT calculation
(see Fig. 1). Ultimately, we aim to demonstrate that such simplified model
datasets, excluding any dislocation core structures, can effectively describe
dislocation properties and prove to be a powerful tool for developing NNPs
for dislocation plasticity in ceramics.

The dislocation-related structures include uniformly deformed struc-
tures, cleavage structures, and stacking fault structures. The training dataset
involving the dislocation-related structures not only eliminates the need to
construct complex dislocation configurations but is also readily computable

Fig. 1 | Strategy and workflow of the construction
of NNP for dislocation plasticity in ceramics in
this work. The dislocation-related structures were
generated using our open-source ADAIS code45

together with the VASP code46, enabling high-
throughput DFT calculations. The basic structures
provide a description of the essential properties of
materials, which serve as the foundation of an NNP.
For more details on the implementations, work-
flows, and execution examples of the ADAIS code,
one may refer to our previous publication45. In
addition to the broad validation across various
properties, the effectiveness of the training dataset
and NNPs was further confirmed by assessing the
similarity to the training dataset and evaluating the
uncertainty through the ensemble-based method,
using snapshots derived from large-scale
simulations.
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through high-throughput calculation. It is made possible by our open-
source ADAIS code45, along with the Vienna ab initio simulation package
(VASP) code46. The ADAIS code has been designed specifically to auto-
matically ascertain anisotropic ideal strength utilizing high-throughput
DFT calculations.

Aside from the unit cell’s structure files and a series of deformation
directions, no additional parameters or files were required to yield the
ultimate training dataset of dislocation-related structures. It is suitable for
target ceramics with any crystal structure or symmetry. For more details on
the implementations, workflows, and execution examples of the open-
source ADAIS code, one may refer to our previous publication45. In com-
parison,models that include complex dislocation cores need to bemanually
constructed, as their core structures and boundary conditions must be
thoroughly checked before calculating their DFT energy to serve as training
datasets. Furthermore, dislocation-related structures are typically composed
of only tens of atoms.These structures are considerably smaller compared to
models that incorporate dislocation cores, which are typically composed of
hundreds of atoms. As a result, the generation of the training dataset
becomes more efficient and less computationally demanding.

These dislocation-related structures represent various modes of
deformation along specific deformation directions corresponding to the slip
systems of the target ceramics, thereby closely aligningwith their dislocation
properties. In uniformly deformed structures, all crystal cell layers are dis-
placed uniformly along designated directions47,48. This study employed
uniform deformations of uniaxial tension, uniaxial compression, and pure
shear. In contrast, cleavage and stacking fault structures involve localized
deformations in the given directions, affecting only two neighboring atomic
planeswhile other layersmaintain their original positions47,48. The energetics
of these highly deformed structures are fundamental in describing not only
the crystal instability, which leads to dislocation nucleation and cracking,
but also the notably distorted atomic structure near the dislocation core.

The deformation directions were chosen based on the crystal’s sym-
metry, usually covering all inequivalent low-index crystallographic orien-
tations and planes, alongwith previously reported slip systems for the target
ceramics. In this work, for wurtzite ZnO and GaN, typical deformation
directions on the basal {0001}, prismatic I {1010}, prismatic II {1120},
pyramidal I {1011}, and pyramidal II {1122} planes in the hexagonal close
packing (HCP) structure are considered, as shown in Fig. 2a. In thewurtzite
structure, there are two different slip planes, i.e., glide-set and shuffle-set, on
basal (0001) and prismatic I (1010) planes (see Fig. 2b). Several of these
deformation directions have been reported in wurtzite ZnO and GaN. For
instance, the {1011}h1210i and {0001}h1210i slip systemswere observed for
{2110} indentation, and that for {1010} indentationwas {1010}h1210i49. The
{0001} basal and {1011} pyramidal dislocations were found under {0001}
indentation50,51. For the cubic SrTiO3, the typical deformation directions on
the {001}, {011}, and {111} planes were considered, as shown in Fig. 2c,

several of which have been observed in cubic SrTiO3. For instance, under
uniaxial compression, the {110}h110i and {100}〈010〉 slip systems are
activated at low and high temperatures, respectively41. The straight and
highly 〈111〉-orientated 〈110〉-type 35.26° dislocations were found in the
polished SrTiO3 single crystals

52.
In addition to dislocation-related structures, the training dataset

includes distorted structures, elastically deformed structures, defect/
boundary structures, surface structures, amorphous structures, and isolated
atoms, akin to those used in conventional NNPs. These basic structures
provide a description of the essential properties of materials, such as lattice
constants and elastic constants, which serve as the foundation of an NNP.
Thedistortedstructureswere generated throughab initioMDsimulations at
finite temperatures or by applying random distortions to atoms within the
structures. Unlike uniformly deformed structures, which mainly con-
centrate on configurations that are nearing instability, elastically deformed
structures are focused onmaintainingwithin the elastic limit. The unrelaxed
surface structures are identical to the cleavage structures with a significant
separation distance between the deformed neighboring planes. For further
details about the training dataset, please refer to Tables S2, S6, S10 in the
Supplementary Materials.

Training NNPs with small atomic structures raises concerns about
their accuracy when applied to large-scale simulations. The complexity and
diversity inherent in larger systems may not be adequately represented by
small-scale training datasets, potentially leading to biases and inaccuracies
in the simulations. As a result, the reliability of the training dataset in large-
scale simulations requires further verification. In this work, beyond a broad
validation across various properties, the effectiveness of our training dataset
was further confirmed by measuring the similarity to the training dataset
and assessing theuncertainty throughan ensemble-basedmethod53–56, using
snapshots derived from large-scale simulations (see Fig. 1).

The general recipe proposed in this work for generating easy-to-
compute training datasets via high-throughputDFT calculations eliminates
the need to create complex dislocation configurations, and is suitable
regardless of the crystal structure and symmetry of the target ceramics.
Consequently, it can be readily applied to other important ceramics, such as
wurtziteAlN, InN, andSiC; cubicMgO; and cubic and tetragonal perovskite
oxides like BaTiO3, KNbO3, DyScO3, BiFeO3, MgSiO3, and PbTiO3.
Additionally, it is applicable to complex crystal structures, including ZrO2,
CeO2, and UO2.

Accuracy and performance of neural network potential
The accuracy and performance of the NNP were first validated across
various properties, including lattice constants, elastic constants, elastic
moduli, phonon dispersion, surface energy, energy under volumetric strain,
cleavage energy, formation energy of planar defects, SFE, dislocation core
structure, and dislocation slip barrier. The NNP’s performance concerning

Fig. 2 | Typical slips systems in ZnO, GaN, and SrTiO3. a Typical slip systems on
the basal {0001}, prismatic I f1010g, prismatic II f1120g, pyramidal I f1011g, and
pyramidal II f1122g planes in the hexagonal close packing (HCP) structure. b Basal

and prismatic I planes of shuffle-set and glide-set in the wurtzite structure. c Typical
slip systems on the {001}, {011}, and {111} planes in the cubic structure.
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the phonon dispersion is particularly noteworthy, as depicted in Fig. 3. The
phonon dispersion curves predicted by the NNP exhibit a reasonable
agreement with the DFT results. In the following section, we will illustrate
and discuss the performance of the NNP on dislocation-related properties.
In this work, the dislocation dipole model with periodic quadrupolar
arrangements57–60 was used to determine the dislocation core structure and
slip barrier (see Fig. 4). Please refer to Table 1 and the Supplementary
Materials for detailed information on other validation results.

Stacking fault energy. Figure 5 illustrates the performance of the NNP
in predicting the SFEs of pyramidal planes in wurtzite ZnO and GaN,
compared with the results fromDFT and empirical potential. Additional
NNP-determined SFEs are presented in Figs. S13 and S25 in the Sup-
plementary Materials. The NNP-predicted SFEs are in good agreement
with the DFT results, providing a robust foundation for atomistic
simulations of dislocation plasticity in wurtzite ZnO andGaNusing these
NNPs, given that the SFE is a fundamental property for dislocation
nucleation and slip61,62. The empirical potentials considerably over-
estimate the SFE (see Figs. 5c, d). For instance, the predicted unstable SFE
of ZnO (1011)[1210] via the analytic bond-order63 and Buckingham-
type64 empirical potentials are 2.68 and 1.68 J/m2, respectively, sig-
nificantly larger than those of DFT and NNP, which are 1.30 and 1.28 J/
m2, respectively.

Figure 6a, b illustrate the performance of the SrTiO3NNP in predicting
the (110)[110] SFE, compared with the results from DFT and the pair
empirical potential65. The NNP results align well with the DFT results,
whereas the pair empirical potential65 overestimates the SFE. The formation
of a nonstoichiometric stacking fault in cubic SrTiO3 through the dis-
sociation of a [012] dislocation, where two (001) Ti-O layers end up
neighboring across the stacking fault plane due to the absence of a (001) Sr-
O layer, has been reported66, as depicted in Fig. 6c. Figure 6d presents the
relative energies of the stacking faults with respect to the most stable con-
figuration that features a 1/2[010] displacement component (see Fig. 6c).

The NNP results agree well with the DFT results, even though these results
were not included in the training dataset. The pair empirical potential65 fails
to predict this nonstoichiometric model. Other SFE results predicted by the
NNP are presented in Fig. S34 in the Supplementary Materials, demon-
strating good agreement with the DFT results.

Dislocation in wurtzite ZnO and GaN. Figure 7a, b depict the atomic
structure of a basal glide-set 60° partial dislocation dipole in wurtzite
ZnO, with a stacking fault situated between two partials. Each partial has
an extra Zn or O atom at the dislocation core, referred to as the Zn core
and O core, respectively. These nonstoichiometric dislocation cores are
charged. To demonstrate the performance of the NNP for the charged
dislocation cores and the long-range electrostatic interaction between
them, one partial dislocation in the dipole model was displaced by a
distance d (see Fig. 7c). The resulting energy change, ΔEtotal, originates
from three sources: (1) the elastic interaction between dislocations,
ΔEelastic; (2) the SFE due to the change in the area of the stacking fault,
ΔESFE; and (3) the long-range electrostatic interaction between the
charged dislocations, ΔEelectro.

In this study, we determined the extra charge at the dislocation core
through Bader charge analysis67 after DFT static calculation, yielding values
of +0.88e and −0.88e for the Zn and O cores, respectively. We then cal-
culated ΔEelectro using the Ewald summation68 with setting two virtual
charged atoms (±0.88e) at the positions of the dislocation core. Figure 7d
presents the energy change ΔEtotal calculated by the NNP and DFT using a
dipole model of (n, m) = (12,4). The NNP results align well with the DFT
results. It is important to note that the training dataset did not include these
dislocation structures. The discrepancybetween theNNPandDFT results is
significantly smaller thanΔEelectro (see Fig. 7d), suggesting that the NNP can
accurately account for the long-range electrostatic interaction, which is not
truncated at the cutoff radius, even though the charge information is not
included in the NNP. It’s worth noting that theminimum distance between
two charged partial dislocations is ~12Å at d = ±4(a/2), which is sig-
nificantly larger than the cutoff radius of NNP (i.e., 7.0Å).

The accuracy of the NNP has recently been further enhanced by
employing additional neural networks to construct environment-
dependent atomic charges, thereby explicitly accounting for long-range
electrostatic interactions23,69. As demonstrated in thiswork, even for systems
with substantial charge transfer between atoms, such as nonstoichiometric
dislocation core structures, long-range electrostatic interactions can be
captured with high accuracy in an effectively screened manner by short-
rangedNNPs.Moreover, explicitly including electrostatic interactions using
the atomic charges increases the computational costs of NNP because a
second set of neural networks is introduced23,69, and an Ewald summation68

or PPPM solver70 has to be used to calculate the electrostatic energies and
forces. Therefore, in this study, we employed short-ranged NNPs and
achieved excellent accuracy compared to DFT results, even for non-
stoichiometric and charged dislocation core structures.

The Peierls potential of the basal glide-set 60° partial dislocation in
ZnO, as calculated through NNP and DFT, is illustrated in Fig. 8a. The
results presented herein are the average values for the dislocations with O
core and Zn core. The Peierls barrier, as determined through ZnO NNP, is

Fig. 3 | NNP performance for the phonon dis-
persion compared with the DFT results. awurtzite
ZnO, b wurtzite GaN, and c cubic SrTiO3.

Fig. 4 | Dislocation dipole model with periodic quadrupolar arrangements used
forMD simulation of dislocation. The periodic cell of the arrangement is shown by
the green-shaded area, with Ci representing its periodicity vectors. The cut vector of
the dislocation dipole is denoted by V.
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Table 1 |NNPandDFTpredicted latticeconstants (aandc inÅ), elastic constants (cij inGPa), polycrystalline shear (μ) andbulk (κ)
moduli (in GPa) of wurtzite ZnO, wurtzite GaN and cubic SrTiO3

a c c11 c12 c13 c33 c44 c66 μ κ Note

wurtzite ZnO 3.287 5.305 201 120 101 213 38 41 43.42 129.17 This work, NNP

3.287 5.306 188 107 94 201 37 40 41.22 129.59 This work, GGA-PBE

3.278 5.291 GGA-PBE23

191.5 108.7 95 206.7 41.4 38 PBE110

221.1 105.9 87.4 234.3 57.6 53.4 PBE+U110

3.195 5.160 LDA111

3.148 5.074 LDA+U111

3.25 5.21 Exp.112

190 110 90 196 39 40 Exp.112

206 117 118 211 44.3 44.6 Exp.113

209.7 121.1 105.1 210.9 42.47 44.29 Exp.114

wurtzite GaN 3.224 5.290 335 143 123 392 79 92 93.38 204.25 This work, NNP

3.248 5.282 329 128 96 355 86 100 99.42 183.44 This work, GGA-PBE

356 146 115 382 91 105 205 LDA115

3.190 5.189 Exp.116

3.189 5.178 Exp.117

390 145 106 398 105 123 Exp.118

cubic SrTiO3 3.901 331 106 98 109.20 189.00 This work, NNP

3.895 351 103 114 118.03 186.04 This work, GGA-PBEsol

319.3 97.5 113 GGA-PBE119

290.7 93.9 110.9 BLYP119

3.895 352 105 116 GGA-PBEsol28

317.2 102.5 122.35 Exp.120

The theoretical values and experimental data previously published in the literature are also shown for comparison.

Fig. 5 | Accuracy and performance of NNP on the
SFEs of ZnO and GaN. a, b Diagrams depicting
a pyramidal I and b pyramidal II planes in the
wurtzite structure. The in-plane lattices are accen-
tuated by red lines, and the slip planes are under-
scored by black dashed lines. c, d The calculated
SFEs of the pyramidal planes using NNP, DFT, and
empirical potentials for c ZnO (1011)[1210], and
dGaN (1122)[1123]. The analytic bond-order63 and
Buckingham-type64 empirical potentials of ZnO, as
well as the analytic bond-order121 and SW122

empirical potentials of GaN, were employed for
comparison.
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0.018 eV/Å, a value that closely aligns with theDFT result of 0.017 eV/Å via
a simulation cell of (n,m) = (12,4). Figure 8c shows the average value of the
Peierls potential for the basal glide-set 60° partial dislocations with N core
and Ga core in GaN. The Peierls barrier of GaN, at 0.054 eV/Å (NNP) and
0.062 eV/Å (DFT) with amodel size of (n,m) = (12,4), significantly exceeds
that of ZnO.

ThePeierls potential of thedislocationwith either anOcore,Zncore,N
core, or Ga core was also calculated within a large dipole model of (n,
m) = (48,16), where only one dislocation wasmoved. In amodel of this size,
the variations in elastic and electrostatic interactions, as the distance
between twopartial dislocations shifts, are negligible.Along thedirectionsof

stacking fault growth and decline, there is a difference in the Peierls barrier
and Peierls stress of the partial dislocation. Owing to the positive SFE, the
Peierls barrier and Peierls stress are more pronounced along the stacking
fault growth directions. As shown in Fig. 8b, d, the basal glide-set 60° partial
dislocationwithOcore orNcore, i.e., 0.011 eV/Å forOcore and0.044 eV/Å
forN core, has a smaller Peierls barrier compared to the dislocation withZn
core or Ga core (0.029 eV/Å for Zn core and 0.061 eV/Å for Ga core) along
the stacking fault growth direction. Utilizing Eq. (2), the Peierls stresses
along the direction of stacking fault growth are determined to be 1.2 and
3.8 GPa for O core and Zn core in ZnO, and 6.4 and 9.4 GPa for N core and
Ga core in GaN, respectively.

Fig. 6 | Accuracy and performance of NNP on the
SFEs of SrTiO3. a Structures and b energy profile of
the (110)[110] stacking fault in cubic SrTiO3, as
calculated by NNP, DFT, and pair empirical
potential. cNonstoichiometric stacking fault formed
with the dissociation of [012] dislocation in cubic
SrTiO3

66, where two (001) Ti-O layers are positioned
as neighbors across the stacking fault plane due to
the absence of a (001) Sr-O layer. d Relative energies
of the stacking faults compared to the most stable
configuration, which includes a 1/2[010] displace-
ment component (i.e., u = 0.5). The results of the
pair empirical potential65, NNP in ref. 28, and DFT
in ref. 66 are shown for comparison. Black dashed
lines in (a, c) highlight the slip planes.

Fig. 7 | Accuracy and performance of NNP on the
dislocation in ZnO. a, b Atomic structure of the
basal glide-set 60° partial dislocation dipole with Zn
core and O core: a viewed along the dislocation line,
and b viewed perpendicular to the (0001) plane of
the region outlined by the black dashed rectangle in
(a). The black broken line in (b) represents dis-
location lines along the cores. c Dislocation dipole
model with periodic quadrupolar arrangements
composed of positively charged (Zn core) and
negatively charged (O core) basal glide-set 60° par-
tial dislocations, where one dislocation is displaced
by a distance d from its initial position. The periodic
cell of the arrangement is shown by the green-
shaded area. d Energy change ΔE of the dislocation
dipole model as a function of the displacement d,
with a model size of (n, m) = (12,4).
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Dislocation in cubic SrTiO3. The 〈001〉 edge dislocation with a 〈001〉
Burgers vector, {110} glide plane, and h110i line vector has been inves-
tigated in experiment71. Upon inserting the 〈001〉 edge dislocation dipole,
as shown in Fig. 9a–c, the dislocation cores are found to be polar. They
consist of alternating (SrTiO2)

2+ layers (see Fig. 9a) and (SrTiO4)
2− layers

(see Fig. 9b). A charge balance was achieved by moving one of the two
extra oxygen atoms along the [110] column from the negatively charged
core to the positively charged core, resulting in two reconstructed and
nonpolar dislocations.

The energy difference between the dislocation dipole models before
and after charge balance originates from two factors: (1) the core energy,
resulting from the reconstruction of the dislocation core structure after
charge balance (ΔEcore), which ismodel-size independent; and (2) the long-
range electrostatic interaction between charged dislocations (ΔEelectro). Upon
achieving charge balance, the long-range electrostatic interaction sig-
nificantly diminishes. As the model size increases, ΔEelectro decreases, and
with an infinitemodel,ΔEelectro→ 0. The elastic interaction of the dislocation
dipole models before and after charge balance, which is a function of the
Burgers vector and the distance between dislocations72, is assumed to be
equal (i.e., ΔEelastic = 0) as the Burgers vector and the distance between dis-
locations remain unchanged.

Figure 9e presents the results of the energy difference between the
dislocation dipole models before and after charge balance as a function of
the distance x defined in Fig. 9d. The energy differenceΔE, as determinedby
NNP, is−0.17 eV/Å at x = 29Å. This aligns closely with the DFT result of
−0.18 eV/Å and converges towards the ΔEcore, i.e., −0.37 eV/Å, as the
model size increases. The negative value of ΔEcore suggests that the charge-
balanced 〈100〉 edge dislocation is more stable compared to its counterpart
without charge balance. The ΔEelectro ¼ ΔEtotal � ΔEcore decreases from
0.20 eV/Å at the distance x = 29Å to ~0 at the distance x = 91Å. The energy
difference predicted by the pair empirical potential does not converge at a
distance x greater than 400Å (see Fig. 9e), as the ΔEelectro encompasses not
only the electrostatic interaction between the charged dislocation cores, but
also the electrostatic interaction between the charged dislocation core and
each atom with a fixed charge.

The dislocation with a 〈110〉 Burgers vector, {110} glide plane and
〈111〉 line vector, and thus, of mixed character, has been reported in
experimental studies52. The Burgers vector can be decomposed into its edge
(1/3h112i) and screw (2/3〈111〉) components. As depicted in Fig. 10a–c, the
charged 〈110〉mixed dislocation dipole was initially inserted, followed by a
charge balance operation moving one of the extra oxygen atoms from the
negatively charged core to the positively charged core.

Owing to the presence of the stable SFE (see Fig. 6b), the 〈110〉mixed
dislocation tends to split into two partials with a 1/2〈110〉Burgers vector on
a {110} plane, thereby creating a stacking fault on this plane. Fig. 10d
illustrates the optimal configuration of 〈110〉 mixed dislocations. The
splittingdistance is ~24Å, which aligns closelywith the experimental results
of 25Å52. The stable SFE (850mJ/m2) predicted by NNP and DFT is
comparable to those estimated in the experiment, i.e., 606.087 ± 76.66mJ/
m2. In comparison, due to the larger stable SFE of 1280mJ/m2 predicted by
the pair empirical potential65, the splitting distance is 12Å.

Plastic deformation tests and experimental comparisons
Compression of c-oriented GaN nanopillar. Figure 11 illustrates the
snapshots of the atomic configuration of c-oriented GaN nanopillar

Fig. 8 | Accuracy and performance of NNP on the dislocation in ZnO and GaN.
Peierl potential of the basal glide-set 60° partial dislocation for a, b ZnO and
c, d GaN, calculated using the dislocation dipole models and the NEB method.
a, c Average values of the Peierls potential for the dislocations with O core and Zn
core in ZnO (a), as well as those with N core and Ga core in GaN (c). b, d The Peierls
potential of the dislocation with either an O core, Zn core, N core, or Ga core, which
was calculated by moving only one dislocation within a large dipole model of (n,
m) = (48,16). The DFT results are provided for comparison.

Fig. 9 | Accuracy and performance of NNP on the
dislocation in SrTiO3. a Positively and b negatively
charged 〈001〉 edge dislocations in c the dislocation
dipole model, which has a h110i line vector and a
{110} slip plane. For the charge-balanced dislocation
core, one of the two extra oxygen atoms along the
[110] column was relocated from the position
marked by the solid circle in (b) to the position
indicated by the dashed circle in (a). d Dislocation
dipole model with periodic quadrupolar arrange-
ments, comprising positively and negatively charged
dislocations, which result in long-range electrostatic
interaction. The periodic cell of the arrangement is
delineated by the green-shaded area. e Energy dif-
ference ΔE between the dislocation dipole models
before and after charge balance as a function of the
distance x defined in (d). The results ofDFT and pair
empirical potential65 are also shown for comparison.
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under a compressive engineering strain ε =−0.1164, projected along
[1100] and [0110]. The 1/3h1213idislocations are activated, and their slip
planes have an angle of ~58° with respect to the basal plane (highlighted
by black dashed lines in Fig. 11c, e). It is indicated that the primary slip
system is on the pyramidal II plane. This is in good agreement with
experimental results73, which found that the first formed dislocations in
microcompressed c-oriented GaN micropillars are 1/3h1123i{1122}
dislocations. A secondary slip band oriented at an angle of ~72° relative to
the basal plane was also observed experimentally, with a Burgers vector of
1/3h1213i73. It doesn’t match any major slip system in GaN. As shown in
Fig. 11e, f, similar secondary slip planes were also observed, highlighted
by the red dashed lines. It is found the secondary slip planes are also the
pyramidal II planes but not parallel with the view direction [0110],
showing an angle of ~70° from the basal plane. Our simulation results
suggest a plausible interpretation for the experimentally observed sec-
ondary slip band73. The compression simulation of the c-oriented GaN
nanopillar with the same parameters was also performed using the SW
empirical potential for comparison. The results are shown in Fig. S1 in the
Supplementary Materials. No obvious pyramidal dislocation is observed
due to the overestimated SFE by this empirical potential, as shown in
Fig. 5d.

Nanoindentation of (0001)-oriented ZnO. Figure 12 displays snap-
shots of dislocation structures of wurtzite ZnO under (0001)
nanoindentation, indicating that basal and pyramidal dislocations
nucleate and slip. It is in good agreement with experimental
results50,74–76. In detail, the basal dislocation includes both the basal
shuffle-set 1/3h1120i full dislocation and the basal glide-set 1/3h1100i
partial dislocation. The primary pyramidal dislocation is the 1/
3h1213i dislocation on the pyramidal I plane, and it aligns ~60° to the
(0001) surface. A few dislocations on the pyramidal II plane are also
observed, as shown in Fig. 12d. The nanoindentation simulation with
the same parameters was also performed using the Buckingham-type
empirical potential for comparison. The results are shown in Fig. S2 in
the Supplementary Materials. There is little pyramidal dislocation
observed due to the overestimated SFE by this empirical potential
(see Fig. 5c).

Fig. 10 | Accuracy and performance of NNP on the dislocation in SrTiO3.
a Positively and b negatively charged 〈110〉mixed full dislocations in c the dislocation
dipolemodel,whichhasa 〈111〉 linevectoranda {110} slipplane.Blackcircleshighlight the
oxygen atoms at the dislocation core. For the charge-balanced dislocation core, one of the
extra oxygen atoms at the dislocation core wasmoved from (b) to (a). dCharge-balanced
〈110〉mixed dislocation in its glide dissociated form, cut from a larger dislocation dipole
model. The locations of partial dislocations, determined based on the Sr-O FCC sublattice
via the dislocation extraction algorithm (DXA)95, are highlighted by blue ⊥ symbols.

Fig. 11 | Compression of c-oriented GaN nano-
pillar. a, bModel of a c-oriented GaN nanopillar.
c–f Snapshots of atomic configurations under a
compressive engineering strain of ε =−0.1164,
projected along c,d [1100] and e, f [0110]. Theywere
analyzed via (c, e) the identify diamond structure
(IDS) method94, and (d, f) the dislocation extraction
algorithm (DXA)95 based on the Ga HCP sublattice.
The slip planes are highlighted by black and red
dashed lines, with angles of approximately 58° and
70° from the basal plane, respectively. Atoms within
perfect wurtzite structures are not shown in (a–c, e).
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Atomic environment similarity and atomic force uncertainty
As discussed in section “A general recipe of easy-to-compute training
datasets”, training NNPs with small atomic structures often prompts
questions about their accuracy in large-scale simulations. Therefore, in this
work,we further validated the effectiveness of the trainingdataset andNNPs
through similarity measurement and uncertainty quantification. The
similarity measures the minimum distance Di of the local atomic environ-
ment between the atom i in the lager-scale simulation and any atoms in the
training dataset (i.e., Eq. (4)). NNPs usually provide more reliable predic-
tions for structures that exhibit higher similarity to the training dataset.

Figure 13a shows themaximumvalue ofDi, denoted asmax
i
fDig, in the

dipole model of basal shuffle-set 1/3h1120i edge dislocation with reference
to different sets of structures within the training dataset. The dipole models
were relaxed by DFT at initial and saddle configurations as the dislocation
slippedalong the [1120]directions.The inclusionof stacking fault structures
significantly increases the similarity between the training dataset and the
dislocation core structures, compared to using only basic structures. It is
evident as the value of max

i
fDig decreases from 1.67 to 1.04 for the initial

configuration. Furthermore, the similarity quantified byDi for atoms in the
snapshot of the ZnO (0001) nanoindentation simulation is displayed in Fig.
13c, d. Corresponding results for GaNNNP and SrTiO3 NNP can be found
in Figs. S3 and S4 in the Supplementary Materials. The inclusion of
dislocation-related structures, particularly the uniformly deformed struc-
tures, effectively enhances the similarity, indicated by a decrease in the value
of Di, between the training dataset and the defected structures where dis-
locations nucleate and slip. The inclusion of cleavage structures in the
training dataset has little effect on the similarity of the dislocation core
structures and nanoindentation snapshots shown in Fig. 13. Nonetheless, it
could be beneficial for other forms of ceramic dislocation plasticity simu-
lations, e.g., dislocation emission from a notch or crack tip. Therefore, our
training dataset is highly optimized and effective,maintaining aminimal yet
sufficient size, to construct the NNP for dislocation plasticity in ceramics.

Given a specific training set, multiple well-trained NNPs typically
provide similar predictions near existing samples. However, their predic-
tions can diverge significantly in areas far from the existing data, serving as a
basis for approximate, yet useful, uncertainty quantification of NNPs53–56.
This uncertainty offers an estimation of the reliability of NNPs for new and
unseen configurations in large-scale systems. In thiswork, the uncertainty σi

of atom i was determined through the variances of the predicted atomic
forces by the NNPs in an ensemble (see Eq. (7)).

As shown in Fig. 13b, the NNPs constructed using a training dataset
that includes both basic and dislocation-related structures effectively
describe the core structure with an uncertainty smaller than 40meV/Å. For
the atoms in the defected structures in the snapshot of ZnO (0001)
nanoindentation simulation, the value of uncertainty σi ranging from 101 to
102 meV/Å is one to twoorders ofmagnitude smaller than themagnitude of
the atomic force Fi

�
�� ��

2, which ranges from 102 to 103 meV/Å (see Fig. 13e).
Here, Fi

� represents the atomic force vector predicted by the NNP used to
perform the nanoindentation simulation. All of these results reveal that the
developedNNPs show reliable prediction (i.e., less uncertainty) for new and
unseen configurations in large-scale systems.

Furthermore, the scatter plot of σi and Di is shown in Fig. 13f for ZnO
NNP and in Fig. S3d in the Supplementary Materials for GaN NNP, sug-
gesting that there is not a strong correlation between similarity and
uncertainty, with considerable deviation observed. While NNPs typically
providemore reliable predictions (i.e., lower uncertainty) for structureswith
higher similarity to the trainingdataset, as indicatedby a lowerDivalue, both
similarity and uncertainty metrics are necessary to validate the reliability of
NNPs in large-scale simulations.

Discussion
In this work, we demonstrated the construction of NNP for dislocation
plasticity in ceramics, using the dislocation-related structures as a training
dataset, which eliminates the need to construct complex dislocation core
structures andare readily computable throughhigh-throughput calculation.

The complexnature of dislocation cores in ceramics, alongwith the need for
expansive models often composed of hundreds of atoms for dislocation
modeling, make the creation of dislocation structures and the computation
ofDFT energy for training datasets a demanding task.Our proposed dataset
effectively addresses these challenges.

The effectiveness of our dataset was validated by the accuracy and
performance of the developed NNPs across various properties, especially
those not included in the training dataset. Examples include the SFE of
pyramidal I and II planes, and the chargedcore structuresand slipbarriersof
dislocations in wurtzite ZnO and GaN. Furthermore, Fig. 6b shows the SFE
results calculated using the NNP from ref. 28, developed without
dislocation-related structures in the training dataset. While this NNP
accurately describes the structural phase transitions in SrTiO3, its failure to
predict SFE highlights the importance of including dislocation-related
structures in the training dataset, as proposed in this study. By initializing
with this NNP and adding dislocation-related structures as a training
dataset, a newNNPwas constructed, demonstrating excellent performance
for the nonstoichiometric stacking fault and dislocation core structures,
which were not included in the training dataset. The effectiveness of our
dataset was further validated by measuring the similarity of snapshots
derived from large-scale simulations to the trainingdataset andassessing the
uncertainty of the developed NNPs for new and unseen configurations in
large-scale systems. The dislocation-related structures effectively enhance
the similarity between the training dataset and the defected structureswhere
dislocationsnucleate and slip.ThedevelopedNNPs showreliableprediction
(i.e., less uncertainty) for new and unseen configurations in large-scale
systems.

Overall, the training dataset proposed in this work accurately repre-
sents the structures under dislocation-dominated plastic deformation in
ceramics, and provides an effective framework for constructing NNPs that
enable the detailed atomistic modeling of ceramic plasticity, opening new
avenues for exploring the plastic behavior of ceramics. This straightforward
dataset can be easily created using our open-source code ADAIS, regardless
of the crystal structure and symmetryof the target ceramics.Thedataset easy
to compute via high-throughput calculation could also be used in the on-
the-fly active learning of NNP for dislocation plasticity in ceramics.

Methods
Details of NNP training
The DeepMD-kit software package77,78 was employed to construct the
NNP. 20% training dataset was randomly selected as a testing set to
determine the occurrence of overfitting. The ZnO and GaN NNPs were
entirely newly trained, whereas the training of SrTiO3 NNP was initi-
alized with the existing SrTiO3 NNP reported in ref. 28. The training
parameters are detailed in Table S1 in the SupplementaryMaterials. The
root mean square errors (RMSEs) of energy and atomic force are
3.5 meV/atom and 57.2 meV/Å for the ZnO NNP, 5.5 meV/atom and
84.7 meV/Å for the GaN NNP, and 2.5 meV/atom and 89.6 meV/Å for
the SrTiO3 NNP, respectively.

Tables S2, S6, and S10 in the SupplementaryMaterials list the training
dataset used to construct the NNPs of ZnO, GaN, and SrTiO3, all of which
were calculated via DFT calculations. Three typical ZnO polymorphs were
considered, including cubic rocksalt (B1), cubic zinc-blende (B3), and
hexagonal wurtzite (B4), as shown in Fig. S5 in the Supplementary Mate-
rials. At ambient conditions, the thermodynamically stable phase is
wurtzite79. Zinc-blende ZnO can be stabilized only by growth on cubic
substrates, and rocksalt ZnOmay be obtained at relatively high pressures79.
Two typical GaNpolymorphswere considered, including cubic zinc-blende
(B3) andhexagonalwurtzite (B4), as shown inFig. S19 in theSupplementary
Materials. GaN usually crystallizes in the wurtzite structure at ambient
conditions, but GaN thin films grown epitaxially on various substrates have
been reported to be in the zinc-blende structure80,81. Two typical SrTiO3

polymorphs were considered, including cubic (Pm3 m) and tetragonal (I4/
mcm)phases, as shown inFig. S28 in the SupplementaryMaterials. At room
temperature, SrTiO3 has a cubic structure. Below 105 K, it undergoes an
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antiferrodistortive structural transition, transforming to the tetragonal
phase82,83.

Density functional theory calculation
Our DFT calculations were performed using the Vienna ab initio
simulation package (VASP) code46. We employed the projector aug-
mented wave (PAW) method84 with the Perdew–Burke–Ernzerhof
(PBE) version85 of the generalized gradient approximation (GGA) as
the exchange-correlation functional for ZnO and GaN. In the case of
SrTiO3, we utilized the Perdew–Berke–Ernzerhof revised for solids
(PBEsol)86. An energy cutoff of 520 eV (500 eV) was applied for ZnO
and GaN (SrTiO3). We chose an energy convergence criterion of 10−6

eV/cell and the Gaussian method87 with a smearing width of 0.01 eV
for the electronic self-consistency calculation. A force convergence
criterion of 10−3 eV/Å was implemented for ionic relaxation. The
Monkhorst–Pack k-mesh88 was used with 6000 k-points per reciprocal
atom (KPPRA)89,90 for ZnO and GaN, and with KSPACING of 0.15 for
SrTiO3. We determined the elastic constants via the AELAS code90,
and calculated the polycrystalline bulk and shear moduli using the
Voigt–Reuss–Hill approximation91,92. Table 1 presents the lattice
constant, elastic constant, and elastic moduli, all of which align
excellently with previously published theoretical values and experi-
mental data, thereby validating the DFT parameters used in this work.

Molecular dynamics simulation
AllMD simulationswere performed using the large-scale atomic/molecular
massively parallel simulator (LAMMPS) code93.We analyzed andvisualized
atomic configurations of dislocation with the identify diamond structure

(IDS)94 and dislocation extraction algorithm (DXA)95 tools of the OVITO
program96. The phonon dispersion curve was calculated via a combination
of phonoLAMMPS97 and PHONOPY98.

The dislocation core structure and slip barrier were studied via the
dislocation dipole model with periodic quadrupolar arrangements57–60

as shown in Fig. 4. The periodicity vectors C1, C2, and C3 are defined
from the unit vectors a1, a2, and a3, i.e., C1 = a1, C2 = na2, and
C3 ¼ n

2 a2 þma3, where the dislocation line is parallel with C1. In
addition, a homogeneous strain εpl needs to be applied to the simulation
cell to accommodate the plastic strain created by the dislocation
dipole99,100 as

εpl ¼
1
2Ω

ðb� V þ V � bÞ ð1Þ

where⊗ is the tensor product,Ω = (C1 ×C2) ⋅C3 is the supercell volume,b is
the Burgers vector, andV is the cut vector of the dislocation dipole (see Fig.
4), whose magnitude is the area of the cut and whose direction is normal to
the cut plane.

We constructed the initial atomic structure of the dislocation using
the elastic displacements of the Volterra dislocation, which are exact at
large distances from the dislocation core but are only approximate near
the core. The structures of the dislocation dipole are then relaxed within
a fixed cell.

By applying thenudged elastic band (NEB)method101–103,we canderive
the Peierls potential, which is the dislocation energy Edisl(x) as a function of
its core center position x along the slip direction. From this Peierls potential,
we can then estimate the Peierls barrier EP and Peierls stress τP

104,105

Fig. 12 | Nanoindentation of (0001)-
oriented ZnO. a (0001)-oriented ZnO slab model
used in the nanoindentation simulation.
b–d Snapshot of dislocation structures at an
indentation depth h = 5.0 nm, projected along
b [1120], c [1210], and d [1100] directions. The slip
planes that are parallel to the projection direction are
emphasized with red rectangles.
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associated with dislocation slip:

EP ¼ max
x

fEdislðxÞg �min
x
fEdislðxÞg

τP ¼ max
x

1
b
∂EdislðxÞ

∂x

n o ð2Þ

whereb is themagnitudeof theBurgers vectorbof dislocation.Additionally,
we investigated the effect of the cell geometry (i.e., the values ofm and n) on
the Peierls potential.

Nanopillar compression simulation
A c-orientedGaNnanopillarmodelwith adiameterof 29 nmanda lengthof
53 nm was prepared, consisting of ~2.3 million atoms (see Fig. 11a, b). The
models are periodic along the [0001] direction. Themodelwas relaxedusing
the NPT ensemble at a temperature of 300 K and a timestep of 0.001 ps for
50 ps to release the stress along the [0001] direction. Subsequently, a uniaxial
compressive load was applied by linearly rescaling the system length in the
[0001] direction at a constant strain rate of 5 × 107 s−1 in an NVT ensemble
at 300 K.

Fig. 13 | Atomic environment similarity and atomic force uncertainty.
aMaximum value of similaritymeasurementDi, i.e., max

i
fDig, in the dipolemodel of

basal shuffle-set 1/3h1120i edge dislocation in reference to different sets of structures
within the training dataset. b The dipole models, color-coded by the uncertainty σi,
were relaxed by DFT at (Upper) initial and (Lower) saddle configuration as the
dislocation slipped along [1120] directions. c–f Similarity and uncertainty for atoms
in the snapshot shown in Fig. 12d, where only the results of the atoms within the

defected structures are used. c Average value and d distribution of Di with reference
to different sets of structures within the training dataset. The scatter plot of the σi

with e the magnitude of atomic force F i
�

�� ��
2
and f the Di. F i

� represents the atomic
force vector predicted by the NNP used to perform the nanoindentation simulation.
Points in the graph are color-coded as value frequencies in each bin. Bin sizes are
e [5,5] and f [0.0030,5].
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Nanoindentation simulation
An atomistic slab model of wurtzite ZnO, measuring
30.0 nm× 30.0 nm× 30.0 nm and consisting of ~2.1 million atoms, was
constructed. The orientation of themodel was set as x: [1100], y: [1120], and
z: [0001] (see Fig. 12a). Before the nanoindentation simulations, the model
was relaxed in an NPT ensemble at a temperature of 5 K and a timestep of
0.001 ps for 50 ps to release the in-plane stresses. To perform the
displacement-controlled nanoindentation simulation, the z position of the
spherical indenter with a radius Rind = 10 nmwas controlled tomove along
the z-axis at a speed of 5.0 m s−1 at a temperature of 5 K.

The repulsive force between the indenter and the slab model was
assumed as follows:

FðrindÞ ¼
�Λðrind � RindÞ2 rind ≤Rind

0 rind>Rind

(
ð3Þ

where rind represents the distance of the atoms in the slab model to the
centroid of the spherical indenter tip; Λ denotes a force constant related to
the effective stiffness of the indenter106,107, whichwas typically on theorder of
several eV ⋅Å−3 and was set to 1.0 eVÅ−3 in this work. A nanoindentation
simulation with Λ = 10.0 eVÅ−3 was also performed, and the results are
identical to those ofΛ = 1.0 eVÅ−3. During the indentation simulation, the
center of mass of the atomic slab model was fixed, and the x and y
dimensions of the slabmodel were relaxed such that the normal stress was 0
Pa in these directions.

Similarity measurement
The similarity of the atom i in the simulation snapshot to the trainingdataset
is quantified as theminimum “distance"Di of atom i from any atom j in the
training dataset108:

Di ¼ min
j

kGsim
i � Gdataset

j k
2 ð4Þ

whereG is afixed-size vector of atoms todescribe their local environmentup
to the cutoff radius rcut

20,109;Gsim
i andGdataset

j are theG vectors of the atom i in
the simulation snapshot and the atom j in the training dataset, respectively.
A smaller value ofDi indicates a greater similarity. In terms of the distances
rij and rik of the atom i from its neighbors j and k and the angle subtended by
those distances θijk, the radial and angular components of G are given by:

Grad
i ¼ P

j≠i
e�ηðrij�rsÞ2 f ðrijÞ

Gang
i ¼ 21�ζ

P
j;k≠i

½1þ cosðθijk � θsÞ�ζe�η½12ðrijþrikÞ�rs�2 f ðrijÞf ðrikÞ
ð5Þ

where the smooth cutoff function f is given by

f ðrijÞ ¼
1
2 cos

πrij
rcut

� �
þ 1

h i
rij ≤ rcut

0 rij > rcut

(
ð6Þ

and η, ζ, rs, and θs are parameters, different for the radial and angular
components. The vectorG consists ofmultipleGrad

i andGang
i elements, each

ofwhich is generatedbyvarying theparametersη, ζ, rs, andθs. Table S1 in the
Supplementary Materials shows all values of there parameters selected in
this study. The cutoff values rcut are the same as those in NNP, i.e., 7.0Å for
ZnO and GaN, and 6.0Å for SrTiO3.

Uncertainty quantification
Ensemble-based models are among the most widely used and reliable
methods for uncertainty quantification53–56. As proposed in ref. 53,
ensemble-based methods surpass single deterministic models in terms of
generalization and robustness, including methods like mean-variance

estimation, deep evidential regression, and Gaussian mixture models. An
ensemble involves training multiple neural networks using various
sources of randomness during the training process, such as different
initializations, stochastic optimization, or hyperparameter choices.
Uncertainty is estimated by the variance of predictions from these NNPs
within the ensemble, with greater prediction variation indicating higher
uncertainty.

In the present work, we utilized ensemble-based models. Ten distinct
NNPs were trained, which were independently initialized using different
randomseeds, influencingboth the parameter initialization and the random
selection of the testing dataset (which is 20% of the entire dataset). Since
forces are derivatives of energy, they tend to display higher variability when
overfitting occurs or when predictions are made outside the training
domain. Therefore, forces are more suitable descriptors of epistemic
uncertainty compared to energy-derived measures. For atom i in a system,
themth NNP in the ensemble, which consists of a total ofMNNPs (M = 10
in this work), predicts the atomic forcesFi

m. The uncertainty estimates σi for
atom i are provided by the variances of the predicted atomic forces, which
can be computed as

σ i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

XM
m¼1

Fi
m � F̂

i
��� ���2

2

vuut ð7Þ

where F̂
i
is the arithmetic mean of the predictions from each NNP in the

ensemble, i.e., F̂
i ¼ 1

M

PM
m¼1 F

i
m.

Data availability
All the training datasets and potential files used and/or constructed during
the current study are available from the corresponding author on reasonable
request.

Code availability
The code ADAIS to generate the dislocation-related structures via high-
throughput DFT calculation as the training dataset is open-source. The
source code and execution examples are available in our published article
(see ref. 45).
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