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Abstract

In this paper, by utilizing some functional inequalities and combining with De Giorgi-Moser
iteration technique, we obtain some estimates for the weighted L*-norm of eigenfunctions of
the Witten-Laplacian on smooth metric measure spaces, which enables us to establish the up-
per bounds for multiplicity of corresponding eigenvalues. We remark that those estimates are
established without any assumption on curvature. As an important application, we prove the
uniform convergence of the heat kernel of weighted parabolic equation on smooth metric mea-
sure spaces. In addition, our result remains ture for some isomorphism classes of weighted Rie-
mannian manifold with boundary satisfying certain conditions. Furthermore, by the standard
theory of elliptic and parabolic equations, we prove the regularity and uniqueness of parabolic
heat kernel on smooth metric measure spaces.

1. Introduction

Let M" be an n-dimensional compact Riemannian manifold with nonempty boundary
OM" and f be a smooth function on M". We say that the triple (M", g,e”/dv) is a metric
measure space, where e~/ dv denotes the weighted Riemannian volume density on M". Met-
ric measure spaces also arise in smooth collapsed Gromov-Hausdorff limits. The metric
measure space has been studied extensively in geometric analysis and Kéhler geometry in
recent years. The most remarkable example is Perelman’s work in [19], where he introduced
a functional involving an integral of the scalar curvature with respect to a weighted measure
such that the Ricci flow becomes a gradient flow of such a functional. During the last two
decades, metric measure spaces has been studied extensively in geometric analysis. For
instances, O. Munteanu and J. Wang [16-18] have obtained gradient estimates for positive
weighted harmonic functions. G. F. Wei and W. Wylie in [22] have proved the weighted
volume comparison theorems.

The so-called Witten-Laplacian (or f-Laplacian, drifting Laplacian), which is associated
with the metric measure space, is defined by

Apu=: Au—(Vf,Vu) = ¢/div (e Vu),

where A is the Laplacian on M". Clearly, if f is a constant, the Witten-Laplacian is exactly
the Laplacian. Next, we introduce two inner products of Dirichlet type as follows: for any
u,w € C3(M),
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[u, w] ::f uAfwe_fdv, and Dlu, w] ::f (Vu, Vw)e™ dv.

n

Then, for the functions u, w given above, we have the following weighted Green formula
(1.1) —Dlu, w] = [u,w] = [w,u] = -D[w, u],

which means that the Witten-Laplacian is a self-adjoint operator with respect to the weighted
measure e~/ dv and Dirichlet boundary value. The Witten-Laplacian is an important elliptic
operator and has been widely studied in the probability theory and geometric analysis (see,
e.g.,[4,7,8,15,16,22]). We consider the following Dirichlet problem of the Witten-Laplacian

{Afu+l“u:0, in M"

1.2
(1.2) u=0, on oM"

on a given smooth compact metric measure space (M", g, e~/ dv) with the boundary dM". It
is easy to know that there exists a discrete set of eigenvalues

0<T < <T3<--<Tp <0 = 400,

where each eigenvalue is repeated according to its multiplicity. Let I'; be the i-th eigenvalue
of the eigenvalue problem (1.2) and u; be the corresponding eigenfunction of I';. It is easy
to check that the set {1;};°, forms an orthonormal basis with respect to the weighted Lﬁ.—
norm. In particular, when f is a constant, (1.2) is just the Dirichlet eigenvalue problem of
the Laplacian on smooth Riemannian manifolds. For this special case, Li [12] investigated
the spectrum of Laplacian, where he estimated for the upper bound of eigenfunctions and
the multiplicities of eigenvalues of the Laplacian. As applications, Chavel and Feldman [2]
studied the spectrum of manifolds with small handles, where they proved the convergence of
eigenvalues of small handles. For the general case, estimates for eigenvalues of the Witten-
Laplacian have been attracting more and more attention of many mathematicians in recent
years (see, e.g., [3,8, 11,24]). In [8], Futaki, Li and Li gave a lower bound estimate for the
first non-zero eigenvalue of the Witten-Laplacian on compact Riemannian manifolds. As
an application, they derived a lower bound estimate for the diameter of compact gradient
shrinking Ricci solitons. By using the upper bound estimate of the heat kernel and an ar-
gument of Li-Yau [13], Wu-Wu [23] derived eigenvalue estimates of the Witten-Laplacian
on compact smooth metric measure spaces. Based on the functional inequalities established
in Section 2, we obtain some estimates for the upper bounds of the eigenfunctions and the
multiplicities of eigenvalues of the Witten-Laplacian. We refer the reader to Theorem 3.1
in Section 3 and Corollary 4.2 in Section 4, respectively. Also, we give some lower bounds
for the eigenvalues of Dirichlet eigenvalue problem (1.2) of Witten-Laplacian without any
curvature condition. See Theorem 4.9 in Section 4.

We consider the heat kernel of the Witten-Laplacian on smooth metric measure spaces
with nonempty boundary. The heat equation on M" x (0,7), 0 < T < oo, of the Witten-
Laplacian is given by

(Af - %) v(x,t) = 0.

Typically, we consider solving it by prescribing an initial data vy on M" with vy € L}(M"),
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i.e.,

lin(} v(x, 1) = vo(x).
11—

Here, as for the notation L;(M ™), we refer the reader to Section 2. The fundamental solution
for the heat equation is a kernel function ¥ ((x, y, ) defined on M" x M" x (0, co) with the
property that the function v(x, r) defined by

u(x, 1) = f ¥ (x, y, Hug(y)e ' dy
Mﬂ

solves the heat equation
0
(1.3) (Af - E)v(x, t)=0 on M" x (0, )

with the initial condition (IC for short)

(1.4) }in& v(x, 1) = vo(x),

in the sense of L;(M”). When M" is a compact manifold with boundary, a natural boundary
condition (BC for short) is the Dirichlet BC. In this situation, the solution is required to
satisfy

(1.5) u(x,t) =0 on OM" x (0, o)

in addition to (1.3) and (1.4). Charalambous-Lu [1] obtained f-heat kernel estimates and
essential spectrum by analyzing a family of warped product manifolds. Wu-Wu [23] derived
a local Gaussian upper bound for the f-heat kernel on complete smooth metric measure
spaces with nonnegative Bakry-Emery Ricci curvature. By De Giorgi-Nash-Moser theory,
Wu and Wu derived a Harnack inequality for positive solutions of the f-heat equation and
Gaussian upper and lower bound estimates for the f-heat kernel on complete smooth metric
measure spaces with Bakry-Emery Ricci curvature bounded from below. Both upper and
lower bound estimates are sharp when the Bakry-Emery Ricci curvature is nonnegative (see
[24]). In this paper, without any assumption on curvature, we prove the uniform convergence
of the heat kernel of weighted parabolic equation on smooth compact metric measure spaces,
and refer the readers to Theorem 5.1 in Section 5. We note that the uniform convergence still
holds for the set of isomorphism classes of weighted Riemannian manifold with nonempty
boundary satisfying certain conditions. Furthermore, we discuss some important properties
of heat kernel with initial-boundary conditions (1.4) and (1.5). See Theorem 5.5 in Section
5.

2. Preliminaries

Denote by L?(M") the class of all measurable functions ¢ defined on M" for which
o 1¢1Pe~ dv < o0. Then, we shall verify that

1Ml vy = { f |¢|f’e‘de}
M}’l

is a norm on L?(M") provided that 1 < p < oco. In particular, L?(M") will be denoted
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by LP(M"™) when f vanishes. For any positive integer k and 1 < p < co, we consider the
following vector space W]]ﬁ’p (M"™) consists of all locally summable functions: ¢ : M" — R
such that for each multiindex o with @ < k, D%¢ exists in the weak sense and belongs to

L?(M”). The vector space leﬁ’p (M™) is called the weighted Sobolev space. In addition, when

p =2,k =1, we denote W}’Z(M") by H}’Z(M”). On the weighted Sobolev space, we define
a functional || - || p,r, Where k is a positive integer and 1 < p < oo, as follows:

1
P
Il f—{ > ||D%||LF(M,,)] L if T<p<o

0<|BI<k

Note that since any function is contained in L?(M"), it is contained in L‘;(M") for all p €
[1,2]. Since any eigenfunction u is continuous on M' = M"UOM", itis in L?(M”) for all
p > 1. Set

Vi(M") = f edv = 1Lz aamy-
The L*-norm ||M||L?°(Mn), given by
||u||L7(Mn) = sup |ul,
Mﬂ
is known to satisfy
. 1
@.1) Tim [l Vi (M) = g .

Denote by Wkp (M”) the closure if C’(M") in Wkp (M™). In particular, when p = 2, we

denote sz(M") and Wk (M") by H (M”) and H" f(M") respectively. As we shall only
consider the case p > 1, here no confusmn would happen for the various norms. Holder’s
inequality states that for p, g > 1 satisfying 1/p + 1/g = 1, we have

||90¢||L}.(Mn) < ||¢||L_’}(M11)||¢||L}(Mn),
for ¢ € LI(M™), o € LI(M").

DEeriniTion 2.1, Let M" be an n-dimensional compact Riemannian manifold with
nonempty boundary dM". Define the Dirichlet f-Sobolev constant of M" as

161,
6{) = n —
e W) ||90||

"/(" 1) n
Glown =0 (M)

where infimum is taken over all functions ¢ in the Sobolev space with Dirichlet boundary
condition. Furthermore, if f vanishes, we write 6’; as Gp.

Recall that the classical isoperimetric constant and Sobolev constant well reveal the re-
lations among the curvature, the topology and the function theory, and thus they are very
important concepts in geometric analysis. It is well-known that there are closed relation-
ships between isoperimetric constant and Sobolev constants. The relationship between these
constants were exploited in the study of eigenvalues of the Laplacian as early as the 1920’s
by Faber [6] and Krahn [10]. In [25], Zeng investigated the weighted isoperimetric constant
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and the weighted Sobolev constant in the sense of the weighted metric measure space. By
Definition 2.1, we know that, for all ¢ € W}’l(M”) with @y = 0,

f 1/n
2.2) 9 llyam = (Sp) " el o
Theorem 2.2. Ifn =2, then Hlf(M") C ;(M"), and
6f

(2.3) ||Vso||i§_(Mn) > ]1 B ||¢||L4(M,,

4[Ve(mm)
forall ¢ € Hé’f(M").
Proof. Given ¢ € C?(M"), applying (2.2) to the function & = ¢?, and then
||¢||L4(M”) < |||V‘70 |||Ll M” 4”‘70|V‘p|”LI(Mn) < 4||‘P|| Mn ”lVQD”lLZ(Mn

< 4]V eIy IV

which implies the conclusion. m|

However, for the case that n > 2, we need the following theorem.

Theorem 2.3. If n > 2, then M, (M") L]%”/ @=DpMmy, and

2 2
2.4 VIl 4gny = 1Dl L2102

forall ¢ € Hé’f(M"), where

2/n
(2.5) am =[S =220 - DY
Proof. Let h € Hé, f(M”), by Definition 2.1, we have

(2.6) VAl S lInl

Ll(Mn) = n/(n ”(M”

If we apply (2.6) to i = |p**~D/"=2) then we have

|2(n—l)/(n—2)”n

2(n—-1 -2
(27) ||V|<P| (=D}~ )”L‘(M")_ J;m(p L’}/(”‘U(Mn)'

Since

n

2(n—1)
L {,,—|||¢|"/<" Vellgm ;-

it follows from (2.7) that

2n(n l)

2(n—1) "
2.8) {n—mw“" I¥lligam 2 S = Sl

The Cauchy-Schwartz inequality implies that

2(n—-1) /(n=2) 2(n—-1))" =
(2.9) {n—lll "/ IVelll 1 arm) S P 2 i . IIIVﬂpllle(Mn

2
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Therefore, uniting (2.8) and (2.9), we have

2

2(n-1))" L Fo moD
(O A I 0, = S,

from which one can get (2.4). m]

In addition, we need the following lemma.

Lemma 2.4. If ¢, -, ¢ are linearly independent on M", g > 2, and 0 < I'y < T, <

-+ < Ty, then there exists a subset T C {1,--- ,k} such that
q
(2.10) f Zl",go, ~Ldv Sf FZ Z(p, e dv.
" M T

Proof. Let

F(Fh"',rk):f

ar2 —q(q—1>f e

Thus F is convex in each variable. Therefore F' may be majorized by, appropriately, replac-
ing each I'; by O or I';. But that is the claim. O

ZFM

and note that
g-2

Qi eTdv > 0.

RemMark 2.5. The assumption of linearly independent in Lemma 2.4 can be removed.
However, we will find that this condition automatically holds in the proof of Theorem 4.4.

3. Estimates for the weighted L*-norm of eigenfunctions

In this section, we investigate eigenfunctions of the Witten-Laplacian on smooth com-
pact Riemannian manifolds with non-empty boundary. By making use of those functional
inequalities and combining with De Giorgi-Moser iteration technique, we obtain some esti-
mates for the L;"-norm of eigenfunctions of the Witten-Laplacian. In other words, we prove
the following conclusion.

Theorem 3.1. Let M" be an n-dimensional compact Riemannian manifold with nonempty
boundary. Denote ¢;(n) by

where

(3.1) /3:{""72’ "=

If u is an eigenfunction of the eigenvalue I with the Dirichlet problem (1.2), then
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r \=»
1/2
Ullz=an < a(n u ,
il < ea(n) (cl(n)) leell 2 ary
where ¢|(n) is given by

) [”f] ((n=2)/2mn—-1)%, n>2,
i = “D/( (Vf<M))”2) n=2.

Proof. Notice that for any ¥ € H& f(M”) N C*2(M™OM"), and a > 1, it follows from the
weighted Green formula (1.1) that

(3.2) P2y u] = D[Py | = Qo - 1) f e\
=[@a =1/ [ IV, 0,

So for the eigenfunction u of the eigenvalue I', we have

(3.3) Pl ey = =[@a - 1)/e?] [ e
Then (2.3), (2.4) and (3.3) imply

(3.4) Tl ) = €10 | 0 = D/ |l I
Let a range over the numbers ﬁk, where k =0, 1,2, - - -, then we obtain

. 1/28/
il < Ml | {2V
u k+1 < WU 2o — - N
L o Ly Lo lam2pi—1

forallk=0,1,2,---. By (2.1), we have

o

|zl < [lull | | — i o
u||peopn ul| ;2 pm =
L (M") L2(M™) Ll Q) 287 — 1

r oo = 2j 1/2p/
= llutll 2 pgmy 4 —— H A
T () 21

j=0

r 26-1)
2
= C2(”)1/ ||u||L§(M") { } )

)

which is the claim. O

RemMark 3.2. By observing the proof of Theorem 3.1, we know that the De Giorgi-Moser
iteration technique is used to give the estimates for the weighted L norm of the eigenfunc-
tions. In fact, the similar iteration method will be used again to estabhsh the upper bounds
for the multiplicity of eigenvalues in next section.

4. Bounds for the multiplicity of eigenvalues

In this section, we investigate the multiplicity of eigenvalues. For this purpose, we firstly
need to prove the following proposition.
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Proposition 4.1. Let E be a finite-dimensional subspace of L%(M”) NCO%(M™). Then there
exists Y € E\{O} such that

(dim E>||w||i§,(m < Wl VAM®).

Proof. Let {;}!_, be an orthonormal basis of E with respect to the inner product of
L? (M™), and set

.1 F(x) = Z v > 0.

1

One easily sees that F is independent of the choice of the orthonormal basis. Also we may
assume that F is not identically zero. Let ||F ”L?(Q) = F(xp) > 0 for some xy € M". Define
the subspace Ej of E, which consists of those functions in £ vanishing at xy. Then, we have
dimEy=dimE — 1 and E = Ey @ E+, where Eé denotes the orthocomplement space of Ey
in E£. We can assume that i € Eé, which implies that | (x9) # 0 and i; (xo) = O for any
i=2,...,r. Therefore, from (4.1), we have

dimE = > Wil e, = 1y < 1Pl Ve(M")

= Y100 V(M") < Wl o)V (M"),

which implies that ¢ = ¢ is the desired function. O

Clearly, according to Theorem 3.1 and Proposition 4.1, we have the following.

Corollary 4.2. If T is an eigenvalue of Dirichlet eigenvalue problem (1.2), with multi-
plicity mr, then
(C/a(m)'PVi(M™),  n>2,

(42) mr < c2<n){( v,y
HMN/S)

n=2,
where c|(n) is given by (2.5).

REmARK 4.3. One might describe (4.2) as providing a lower bound of I" in terms of its
multiplicity mr.

We now give an adjusted version of the above argument which will produce a lower bound
for Iy, in terms of k. To this aim, we let 0 < I'j < I, < -+ < I'; be the first k eigenvalues
of M", {uy,u,,--- ,u} orthonormal eigenfunctions such that u; is an eigenfunction of I'; for
eachi =1,---,k. Set E = span{uy,--- ,u;}. We assume that n > 2, and let ¢;(n), B, be
defined as in (2.5), (3.1), respectively. By Theorems 2.3 and 3.1, we have for any € E,
a>1,

4.3) =[Py ] = a@l@a = D/ o,
Let @ = 1, then (4.3) implies
WA 2002y < =610 [0 0] < T/ 1) A 41

that is,
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(4.4) 2400y < T/ 1) W02y
For any fixed jin {0,1,2,---}, let h; € E have the property that

”(’DHLi,ﬁjH(M”) ||hj||L§ﬁj+l(Mn)

4.5)

||</7||L2f<M") ||hj||L_2f(M")

for all ¢ € E. The function A, can be written as
k
hj = Z niu;.
i=1

By setting a = 8/ in (4.3), and using Lemma 2.4, we obtain

y B 1 i 52/‘ 28/-1
i |’L§<Mn> <5 Tamm MY el < 5 (n) i Pl 1A
and, by noticing (4.5),

—1)/287!
il < Wl g [V

= | 2 rim
i
< Fk” Z ey 2pi+1
teT Lf (M

< Tyl W 3 it
teT

B-1)/2p"*!
)| :

| B-D/287!
Li.ﬁHl(M”) [Vf(M )]

[V

VMW“

V(M™)

WW[

< Tellll s, [ Vi(M"
:

M)

Therefore,

28/-1 i . 28/-1
Iy p~ 2 B-1/287!
{||hj||L;ﬂ/+1 (m} < [V {nhjnLiﬁf(Mn)} :

which implies

. . 2/ 1/(28/-1)
”h/”Li.ﬁ’”(M") Fk[Vf(Mn)] ! B2 [172;] 2,B/

(M™)

(46) 1/2ﬁj+1 S c](n) 2ﬁ] — 1 1/2ﬁ

[V [V(mm)]
Furthermore, one can obtain via iteration

~ 2/n 1/28-1)

||¢”L§N+I(M") - ”h’O“L;B(M”) ( )] 1/28 1_[ Fk [Vf(Mn)]
12841 = h . f 2, i _ 1
Wl [ V)] oMl o m a3
forally € E, j=0,1,2,---, which implies
2/n 1/28-1)
@7 1z army B ”hOHLZﬁ(M" I/Zﬁﬁ Lk [Vf(M")] B
2y~ hollzzarm) a(n) 2B -1 '

i=1
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forally € E.Nowi> 1,8 > 1imply
1728 <1/ - 1) < 1/B,

from which one obtains

1726 -1) le/(zﬁi— H<1/B-1).
i=1

Set
B 00 ﬁZi 1/2B'-1)
c-11 T
If
- 2/n
¢ (n) -

then (4.4) and (4.7) imply

(]2 (pam) r, b2 n=2)/2n
||'70||L§.(Mn) c(n)

for all ¥ € E, and Proposition 4.1 implies
2/n n—1
[ Te|vemm)]
k<C'{————
¢1(n)
for all k£ for which (4.8) is valid. If, on the other hand,
2/n
I | V(M™)
S St B [ ! ] <1

¢ (n) -

then (4.6), for j = 0, and (4.7) imply
Iz oy § C {Fka(Mn)}(n+2)/4
Wz [Vf(M")]l/z ¢1(n) ’

and, by Proposition 4.1, we have

k < C? {rkv.f(f‘/fn)}nm1
B ¢ (n) '

When n = 2, using the same argument as before, one can concludes that
3
AV e (M"
k< c2) TV
s
forallk=1,2,3,---, where

oo SN 1@
47
¢= 1_[ {2]’+1 — 1} :

J=1
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We summarize the above discussion as follows.

Theorem 4.4. There exists a positive constant C(n), depending only on n = dim M", such
that
-1
Fk[Vf(M”]n/z n
{7t1 ) , n>2,
(4.9) k< C(n) N

>b

forall k = Cn). If k < C(n) then (4.9 remains valid if Ty [V,(M™[™" Jey(n) > 1 (resp.,
Al Ve(M"™)/S > 1) and n > 2 (resp., n = 2). Otherwise, we have

w2241
r v o]\
{—cl(n) , n>2,
k < C(n) 3
ATV (M™) B
£ R

when

n/2 n—1

T [Ve(mm)] ATV A (M™)

e — <1 |resp.,——— <1
¢ (n) 6{)

andn > 2 (resp., n = 2).

ReMark 4.5. In Theorem 4.4, we also give a lower bound of eigenvalues of the eigenvalue
problem (1.2) without any curvature assumption.

5. Uniform convergence and uniqueness for the heat kernel

In this section, let us first consider the heat kernel of parabolic equation with IC (1.4) and
Dirichlet BC (1.5) of the Witten-Laplacian on smooth metric measure spaces. In particular,
any function vy € L?(M") can be written in the form

(o]

vo(x) = ) aigi(x)

i=1

a,-:f voqﬁ,-e_fdx.

[ee]

v, 1) = ) e Maig(x)

i=1

will satisfy (1.3) with Dirichlet BC (1.5) and IC (1.4). This is equivalent to saying that

with

Formally, the function given by

5.1) u(x, ) = f W Do) dy,
Mﬂ

if we define the kernel by
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(5.2) Wiy 1) = ) e gi0eiy).
i=1

Let us point out that the heat kernel defined by (5.2) is a formal sum, which means that v(x, ¢)
defined by (5.1) is just a formal solution to (1.3) with initial-boundary value conditions (1.4)
and (1.5). Therefore, it is necessary for us to discuss the uniform convergence of the heat
kernel (5.2) to guarantee that the formal solution is a suitable candidate. To this end, by
applying Theorems 3.1 and 4.4, we give the uniform upper bound of the heat kernel of
parabolic equation of Witten-Laplacian on smooth metric measure spaces. At this point, we
extend a result given by Chavel and Feldman in [2] to the metric measure spaces.

Theorem 5.1. Given positive constants T,u,7y, then the formal heat kernel, ¥ : M’ x
M x (0, 0) — R, associated to the Dirichlet eigenvalue problem (1.2), and given by

(o]

(5.3) Wtoy 0 = ) e u(xuy)

i=1
(where uy, uy, - - - is a complete orthonormal basis of L]%(M”), with each u; an eigenfunction
of ', i = 1,2,---) converges uniformly on M x M x [7,00), and for V (M") € (0,pu),
6’; € [y, ). Furthermore, an upper bound on Vy(M"), and a lower bound on 6{) provide

a uniform upper bound on the heat kernel, for times bounded away from zero.

Proof. We give the proof for n > 2. For n = 2 the argument is similar. For all r > 7 > 0,
by Theorem 3.1, we have

¥y Dl < 0 ) TP,
k=1

where c; only depends on y and the dimension n. Next, one determines ag := ao(n,7) > 0
for which

aSn/Z—Ze—aT < 1
for all @ > aq. From Theorem 4.4 we have
Ty 2 ea(n, p, k7D

for all kK > C(n), where c; is a constant depending on n, u,y. Taking

n—1
N =NGuy) = [(L)

+1,
Cz(l’l,,u, 7)

where [x] denotes a positive integer which is larger than or equals to x, we have
Iy > ap

for all k > N, which implies

[se]

2 - —2(n—1 —
> e < csmpy) Y T <cutnpy) YK,
k=N+1 k=N+1 k=N+1

where both ¢3 and ¢4 are two constants depending on n, i, y. Since the series
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2K
k=N+1
is convergent, the fundamental solution ¥ (x, y, t) is uniformly convergent. Since

lim "¢ = lim «
a—0 a—+00

there is a critical point &;; = a;(n, 7) > 0 of the function H(a) = a/?

variable «, such that

e”“T with respect to the

2 — _
ql/ e~ UT = sup a,n/Ze a/r’

a>0

cs:=c5(n,7) =«

which implies that

N
Z Fz/ze_r"T < ¢sN.
k=1

Therefor, we finish the proof of this theorem. m|

Remark 5.2. Note that any compact Riemannian manifold with boundary has a geodesi-
cally complete Riemannian extension (see Theorem A and Corollary B in [20]), so it can
be treated as a domain of a complete Riemannian manifold. However, the convergence of
(5.3) is uniform not only for fixed manifolds, but also for the set of isomorphism classes of
n-dimensional weighted Riemannian manifold with boundary satisfying V < ¢ and 6{) >y.

RemMark 5.3. According to Theorem 5.1, we know that kernel function given by (5.3) is
well defined on M" x M" x (0, o) and satisfies the Dirichlet BC (1.5) in both x and y for
t>0.

RemARK 5.4. By replacing the compact smooth metric measure spaces by the closed
bounded domain on the complete smooth metric measure spaces, the arguments will be
same through out this paper.

Next, we will prove the uniqueness for the parabolic heat kernel.

Theorem 5.5. Let M" be a compact manifold with boundary. The kernel function given
by (5.3) is the unique kernel, such that for any v, € L?(M"), the function given by

o 1) = f Wy Dvo(w)e dy

solves the heat equation (1.3) with Dirichlet BC (1.5) and initial condition (1.4). Moreover,
Wr(x,y,1) is a smooth function on (M"\OM") x (M"\OM") X (0, c0), which satisfies

¥ (x,y, e Wdy < 1,
M?l

and, it is nonnegative for all x,y, t. In particular, we have v(x,t) > 0 on M" X [0, +c0) when
v > 0.
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Proof. Noticing that
vo(x) = Y auu(x) in Li(M"),
i=1

it is easy to see that
(5.4) u(x, 1) = f Wy, voledy = ) e aui(x).
n l:1

Next, let us show that the series (5.3) converges in C* (N° X R,), where N’ denotes
(M™\OM"™) x (M™\ 0M"™). For this purpose, we assume that N is a product manifold M" x M"
with the smooth product Riemannian metric and the product volume measure dv = dudpu.
Since from [9, Theorem 7.4], one has

0
A ¥r(x,y,1) = E‘Pf(% y,t) = Ap,¥r(x,y,1),

the function W (x, y, 1) satisfies the heat equation

0 1
EW(X, y,1) = EAf,Nw(X, Y, 1)

with respect to the drifting Laplace operator Asy := Ay, + Ay, on the product manifold N,
where Ay, Ay, denote the drifting Laplacian on M" with respect to the variables x and y,
respectively, and it is straightforward to check that each function

Xk(xe Y, t) = e_trkuk(x)uk(y)

also satisfies the same equation. One then knows that the series ), yx(x, y, f) locally con-
verges to Wr(x,y, 1) in L} (N° x R;), which means that ¥ ¢(x, y, 1) and its derivatives are con-
tinuous functions on N xR, i.e., all these derivatives are the weak derivatives of ¥ r(x, y, 1)
on N’ X R.. Hence, the following equation

0 1
—YWe(x,y,t) = =AryVr(x,y, t
% r(x,y,0) SArN r(x,y, 1)

is satisfied in the weak sense in N° X R, . Furthermore, by Theorem 7.4 in [9], we know that
it is C™ topologically convergent on N° X R,.

On the meanwhile, elliptic regularity theory (see Theorem 5 and Theorem 6 of Chapter 6
in [5]) guarantees that v(x,t) € C*(M") for any fixed r > 0. For any non-negative integer
m, since the sequence )., FTe‘(”e)rfaiui(x) is uniformly convergent with respect to the

variable t as £ — 0, we have

A}’ (Z T+ gy x)] _ Z r e (%),
i=1

i=1
Furthermore, the function F;."e‘(’+‘9)rfu,-(x) remains uniformly bounded in I'; as &€ — 0, and

thus, one can switch the order of the limit under and the sum sign to yield
A? [Z e—ri(t+€)aiui(x)] — A? (Z e—rilaiui(x)] ,
i=1 i=1

as € — 0 in the sense of Lj%—norm. Therefore, for any non-negative integer k, we have
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w2k

2
vit+e,-) —u,-)ase — 0,

i.e., u(t + &, ) convergents to v(t, ), as € — 0 in the sense of the norm || - ”w/%k = Mok, fs
which means that, for any 7 > 0,

c=
v(it+e,-) —uvt,)ase — 0,

which is equivalent to say that v(f + &, -) is C*-topologically convergent to v(t,-) as € — O.
Thus, it is clear that v(z, x) is continuous in ¢ locally uniformly in x, which implies that v(¢, x)
is continuous jointly in ¢, x. Noticing that vy € L%(M”), applying the same argument as the
proof of Theorem 7.10 in [9], one can show that v(x, #) solves the Dirichlet heat equation
(1.3) with initial-boundary conditions (1.4) and (1.5) in the weak sense. Furthermore, using
Theorem 7.4 in [9] again, one can see that v(x, t) is a classical solution of the Dirichlet heat
equation (1.3) with initial-boundary conditions (1.4) and (1.5).
The strong maximum principle (see Theorem 2.9 in [14]) implies that

u(x,t) = f ¥ (x, y, Hvo(y)e ' dy > 0
Mﬂ

on (M™\OM™")x (0, o) whenever vy > 0 on M". Hence, it is not difficult to see that W ,(x, y, )
is also nonnegative on N° X R,. Next, we consider that v(x, f) is another solution of the heat
equation satisfies IC (1.4). According to the maximum principle (see Theorem 2.9 in [14]),
we know that the solution of the heat equation satisfies v(x, f) — v(x, t) = O since it vanishes
on (M" x {0}) U (OM" x (0, c0)). Thus, we conclude that the fundamental solution ¥ (x, y, )
is unique. Also, Theorem 2.9 in [14] implies that the property that

¥ (x,y, e/ dy < 1
M’l

follows from the fact that it solves the heat equation with initial condition vy = 1. O

REMARK 5.6. In particular, assume the boundary dM" is smooth, then one can conclude
that W,(x,y,1) € C*(M X M x (0, c0)).

Remark 5.7. Based on some properties of heat semigroup, Grigor’yan discussed some
important properties of abstract kernel functions without initial-boundary conditions, see
Theorem 7.13 and its remark in his celebrated book [9], where the existence of the heat
kernel is established by the Riesz representation theorem. Therefore, Grigor’yan’s argument
is so abstruse and non-trivial. However, given initial-boundary conditions, we can concretely
construct this heat kernel via the eigenfunction expansion formula, which enables us to
reprove some properties of kernel functions by a simple and elementary strategy.
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