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Abstract
We introduce random pre-branched Koch curves and construct loop-erased random walks on

these graphs. We prove the existence of the scaling limit and show that the sample path of the
limit process is almost surely self-avoiding, while it has box-counting dimension strictly greater
than 1.

1. Introduction

1. Introduction
A loop-erased random walk (LERW) is a process wherein loops are erased from a sim-

ple random walk in chronological order. It is a non-Markov walk whose path has no self-
intersection. Since its introduction on Zd by Lawler ([11]), this process has been extensively
studied. These studies have demonstrated the existence of the scaling limit on Zd for all d.
See, for example, [15] and [16] for d = 2, [10], [17], [18] and [22] for d = 3, and [12]
and [13] for d � 4. Also the growth exponents for LERW have been obtained. The growth
exponent for a random walk is the exponent for the number of steps needed to travel distance
N as N tends to infinity. See for example, [9], [19] and [14] for d = 2, [21] for d = 3, and
[12] and [13] for d � 4.

Studies such as [20], [8] and [7] have investigated LERWs on a fractal space, namely,
the Sierpiński gasket. Cao ([2]) studied loop-erased random paths on more general graphs
including some fractals.

A next step in investigating LERWs is to consider thier behavior within a random envi-
ronment. Brownian motion, which is the scaling limit of a simple random walk, has been
studied on random fractals, including random Sierpiński gaskets. See, for example, [5], [6],
and [1]. Whilest these papers studied Markov processes on random fractals, in this paper,
we deal with a non-Markov process on a random fractal. As far as the authors know, this
paper will be the first attempt in this direction. We work on a random branched Koch curve
so that we can make use of some results in [5] and to see how far we can go. In the process
we found that the 3-dimensional version of the branched Koch curve is of interest in itself;
it is not clear at first sight that the fractal satisfies the open set condition; in fact, it requires
a somewhat lengthy proof.

We prove the following theorems:

Theorem 1. For almost every environment ν, the loop-erased random walk on the random
pre-branched Koch curve converges almost surely to a continuous process X as the edge
length tends to 0.
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Theorem 2. For almost every environment ν, the sample path of the limit process is
almost surely self-avoiding. Specifically, for any 0 � t1 < t2 � T, X(t1) � X(t2), where T is
the time when the process reaches the end point of the random Koch curve.

Theorem 3. For almost every environment ν, the sample path regarded as a closed set
almost surely has box-counting dimension

dB =
log λ1−p

2 λ
p
3

log 3
,

where 0 < p < 1 is a constant that determines our random environment, λ2 = 10/3, and
λ3 = 29/8. In particular, dB is strictly greater than 1.

Our main tool for proving the above results is the ‘erasing-larger-loops-first’ (ELLF)
method, which was introduced to study LERW on the Sierpiński gasket [8]. In contrast
to the ‘standard’ LERW obtained by erasing loops in chronological order, our LERW is
constructed by erasing loops in descending order of the size of the loops; the resulting LERW
is proved to have the same distribution as the ‘standard’ LERW.

The structure of this paper is as follows. In Section 2, we define the random branched
Koch curve, which is the space we work on, and in Section 3 we construct random walks on
the random pre-branched Koch curves. In Section 4, we recall the ELLF method of loop-
erasing. Section 5 focuses on the generating functions of hitting times, which are crucial
for all of the proofs concerning the existence of the scaling limit in Section 6. Section 7 is
devoted to the proof for the self-avoiding property and the derivation of the box-counting
dimension of the limit process.

2. Construction of the random branched Koch curve

2. Construction of the random branched Koch curve2.1. Branched Koch curve and its 3-dimensional version.
2.1. Branched Koch curve and its 3-dimensional version. In this subsection, we define

the (non-random) branched Koch curve and its three-dimensional version.
To construct our fractals we begin with the definition of similitudes fi : R3 → R3, i =

1, 2, . . . , 8:

f1((x, y, z)) =
1
3

(x, y, z),

f2((x, y, z)) =
1
3

(x, y, z) +
(
2
3
, 0, 0

)
,

f3((x, y, z)) =
1
3

(−x,−y,−z) +
(
2
3
, 0, 0

)
,

f4((x, y, z)) =
⎛⎜⎜⎜⎜⎝−1

6
x +

√
3

6
y +

2
3
,

√
3

6
x +

1
6
y, −1

3
z
⎞⎟⎟⎟⎟⎠ ,

f5((x, y, z)) =
⎛⎜⎜⎜⎜⎝−1

6
x −
√

3
6
y +

1
2
, −
√

3
6

x +
1
6
y +

√
3

6
,−1

3
z
⎞⎟⎟⎟⎟⎠ ,
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f6((x, y, z)) =
⎛⎜⎜⎜⎜⎝1

6
x −
√

3
6
y +

1
3
,

√
3

18
x +

1
18
y − 2

√
2

9
z,

√
6

9
x +

√
2

9
y +

1
9

z
⎞⎟⎟⎟⎟⎠ ,

f7((x, y, z)) =
⎛⎜⎜⎜⎜⎝1

6
x +

√
3

6
y +

1
2
, −
√

3
18

x +
1

18
y − 2

√
2

9
z +

√
3

18
, −
√

6
9

x +

√
2

9
y +

1
9

z +

√
6

9

⎞⎟⎟⎟⎟⎠ ,

f8((x, y, z)) =
⎛⎜⎜⎜⎜⎝−
√

3
9
y +

√
6

9
z +

1
2
,

√
3

9
x +

2
9
y +

√
2

9
z +

√
3

18
, −
√

6
9

x +

√
2

9
y +

1
9

z +

√
6

9

⎞⎟⎟⎟⎟⎠ .
We define two transformations f (2) and f (3) on the class of non-empty compact subsets of

R
3: for a non-empty compact set A ∈ R3, let

f (2)(A) =
5⋃

i=1

fi(A),

f (3)(A) =
8⋃

i=1

fi(A).

The branched Koch curve F2 and the 3-dimensional branched Koch curve F3 are fractals
uniquely defined as the compact sets satisfying

F2 = f (2)(F2),

and

F3 = f (3)(F3),

respectively.
Since we study random walks, let us define pre-branched Koch curves, which are discrete

versions of the fractals.
Let F2

0 = F0 be a unit line segment placed on the x-axis, namely, F0 = {(s, 0, 0) ∈
R

3 : 0 � s � 1}. We define recursively a sequence of closed sets {F2
N} starting from F2

0:
F2

N+1 = f (2)(F2
N) for N ∈ Z+ = {0, 1, 2, . . .}. We call the sets F2

N , N ∈ Z+, the pre-branched
Koch curves (Fig.1 and Fig.2). We obtain the branched Koch curve F2 by taking the

closure of
∞⋃

N=0

F2
N , which is a well-known fractal with Hausdorff dimension log 5/ log 3 [3].

Fig.1. Similitudes f1– f5 with their orientations.
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Fig.2. First three steps of the construction of F2.

To consider random walks on the pre-branched Koch curves, we regard F2
N , N ∈ Z+ =

{0, 1, 2, . . .}, also as graphs consisting of the set of vertices G2
N and the set of edges E2

N
defined as

O = (0, 0, 0), a = (1, 0, 0),

G2
0 = {O, a}, G2

N+1 = f (2)(G2
N), N ∈ Z+,

and

E2
0 = {{O, a}}, E2

N+1 = f (2)(E2
N), N ∈ Z+.

The same notation F2
N will be used to represent both the closed set and the graph (G2

N , E
2
N),

for it will be clear in context what it means. In particular, F0 can mean a unit line segment
or a graph consisting of two vertices and an edge connecting them.

Next, we introduce the 3-dimensional pre-branched Koch curve.
Let F3

0 = F0 = {(s, 0, 0) ∈ R3 : 0 � s � 1}. We define recursively a sequence of closed
sets {F3

N} using F3
N+1 = f (3)(F3

N) for N ∈ Z+. We call the sets F3
N , N ∈ Z+, the 3-dimensional

pre-branched Koch curves (Fig.3). We obtain the 3-dimensional branched Koch curve

F3 by taking the closure of
∞⋃

N=0

F3
N .

Fig.3. First three steps of the construction of F3.

We regard 3-dimensional pre-branched Koch curves also as graphs with the set of vertices
G3

N and the set of edges E3
N , defined as

G3
0 = {O, a}, G3

N+1 = f (3)(G3
N) N ∈ Z+,

and

E3
0 = {{O, a}}, E3

N+1 = f (3)(E3
N) N ∈ Z+.

Here again the same notation F3
N will be used to represent both the closed set and the
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graph (G3
N , E

3
N).

Proposition 4. There exists a nonempty open set V such that

(i) F3 ⊆ V;

(ii)
8⋃

i=1

fi(V) ⊆ V;

(iii) fi(V) ∩ f j(V) = ∅, if i � j;
(iv) fi(V) ∩ f j(V) ⊂ G3

1. if i � j.

Here V denotes the closure of V. Conditions (ii) and (iii) constitute the open set condition
([3]), which leads to

dH(F3) =
log 8
log 3

.

The explicit form of V and the proof of Proposition 4 are given in Appendix.
The 3-dimensional branched Koch curve may not be so well-known as its 2-dimensional

couterpart, so let us give some geometrical explanations.

Let O = (0, 0, 0), a = (1, 0, 0), b =
(
1
3
, 0, 0

)
, c =

(
2
3
, 0, 0

)
, d =

⎛⎜⎜⎜⎜⎝1
2
,

√
3

6
, 0

⎞⎟⎟⎟⎟⎠ ,
e =

⎛⎜⎜⎜⎜⎝1
2
,

√
3

18
,

√
6

9

⎞⎟⎟⎟⎟⎠, and f =
⎛⎜⎜⎜⎜⎝1

2
,−
√

3
2
, 0

⎞⎟⎟⎟⎟⎠.
Note that Oa f forms an equilateral triangle 	Oa f with side length 1, and bcde forms a

tetrahedron with side length 1/3 (Fig.4).

Fig.4. 	Oa f and the tetrahedron bcde.

The similitude f3 maps 	Oa f onto the triangle 	cbd, preserving the order of the vertices,
which means that f3(O) = c, f3(a) = b, and f3( f ) = d. f4, f5, f6, f7 and f8 map 	Oa f onto
	cdb, 	dbc, 	bec, 	ecb, and 	edc, respectively, each preserving the order of the vertices.
If one maps the whole figure shown in Fig.4, then the image of e comes in the direction of
fi(
−−→
O f × −→Oa) relative to fi(	Oa f ).

2.2. Random branched Koch curve.
2.2. Random branched Koch curve. We define a random fractal, using the definition of

branched Koch curves given above. Let ν = (ν1, ν2, . . .) be an environment, where {νi}∞i=1 is a
sequence of i.i.d. random variables that take the value 2 with probability 1− p and the value
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3 with probability p, respectively, where 0 � p � 1.
Let σ be the shift operator, σ(ν1, ν2, ν3, . . .) = (ν2, ν3, . . .).
Recall that

f (2)(A) =
5⋃

i=1

fi(A),

and

f (3)(A) =
8⋃

i=1

fi(A).

Starting from F0 = {(s, 0, 0) ∈ R3 : 0 � s � 1}, define

FN(ν) = f (ν1) ◦ f (ν2) ◦ · · · ◦ f (νN )(F0).

We call FN(ν), N ∈ N, the random pre-branched Koch curves and the closure of
∞⋃

N=0

FN(ν), denoted by F(ν), the random branched Koch curve. In this paper, we will

work on these random pre-fractals and the limiting random fractal. Some examples of F2(ν)
are shown in Fig.5.

We regard FN(ν), N ∈ Z+ also as graphs; starting from G0(ν) = {O, a} and E0(ν) =
{{O, a}}, we define

GN(ν) = f (ν1) ◦ f (ν2) ◦ · · · ◦ f (νN )(G0(ν)),

and

EN(ν) = f (ν1) ◦ f (ν2) ◦ · · · ◦ f (νN )(E0(ν)).

Proposition 5. The random fractal F(ν) has Hausdorff dimension dH and Box dimension
dB:

dH = dB =
(1 − p) log 5 + p log 8

log 3
,

for almost every ν.

Since the proof is the same as that for the random Sierpiński gasket in [5] with equilateral
triangles replaced by similitudes of the closure of V , we omit the proof here.

3. Random walk on the pre-RBK

3. Random walk on the pre-RBK3.1. Paths on the pre-RBK.
3.1. Paths on the pre-RBK. In the following, we fix ν and write FN ,GN , and EN for

FN(ν),GN(ν) and EN(ν), respectively, whenever no confusion occurs.
For each N ∈ Z+, define a set of finite paths W ′N = W ′N(ν) on the graph FN = (GN , EN) by

W ′N = {w = (w(0), w(1), · · · , w(n)) : w(i) ∈ GN , {w(i − 1), w(i)} ∈ EN , 1 � i � n, n ∈ N}.
This gives the natural definition for the length (total number of steps) � of a path w =
(w(0), w(1), · · · , w(n)) ∈ W′N ; namely, �(w) = n.

For a path w ∈ W ′N and A ⊆ GM with M � N, we define the hitting time of A by
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Fig.5. Some examples of F3
2.

TA(w) = inf{ j � 0 : w( j) ∈ A},
where we set inf ∅ = ∞. In particular, we define a recursive sequence {T M

i (w)}mi=0 of hitting
times of GM as follows: Starting from T M

0 (w) = TGM , for i � 1, let

T M
i (w) = inf{ j > T M

i−1(w) : w( j) ∈ GM \ {w(T M
i−1(w))}}.

Here we take m to be the smallest integer such that T M
m+1(w) = ∞. The hitting time T M

i (w)
then can be interpreted as being the time (steps) taken for the path w to hit vertices in GM for
the (i + 1)-st time, under the condition that if w hits the same vertex in GM more than once
in a row, then we only count it once.

For each M ∈ Z+, we define the coarse-graining map QM :
∞⋃

N=M

W ′N → W ′M by

(QMw)(i) = w(T M
i (w)), for i = 0, 1, 2, . . . ,m,

where m is the smallest integer such that T M
m+1(w) = ∞. Thus,

QMw = (w(T M
0 (w)), w(T M

1 (w)), . . . , w(T M
m (w)))

is a path on the coarser graph FM. Note that for K < M, QK ◦ QM = QK holds.
In the following, we will write w(T M

i ) for w(T M
i (w)) whenever no confusion occurs.

Define the set of finite fixed-ends paths from O to a as

WN = WN(ν) = {w = (w(0), w(1), · · · , w(n)) ∈ W ′N : w(0) = O, w(T 0
1 (w)) = a, n = T 0

1 (w)}.
On each FN , define a simple random walk ZN starting at O:

P[ZN(0) = O] = 1.
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(3.1) P(N)
xy := P[ZN(i + 1) = y | ZN(i) = x] =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
deg x

, {x, y} ∈ EN ,

0, {x, y} � EN ,

where deg x denotes the degree of the vertex x in (GN , EN).
We focus on the fixed-ends random walk on FN that starts at O and is stopped at the

first hitting time of a, which is alomost surely finite. As a result, the random walk path
belongs to WN . This correspondence induces a natural measure on WN ; that is, for each
w = (w(0), w(1), . . . , w(n)) ∈ WN ,

PN[w] := P[(ZN(0), ZN(1) . . . , ZN(n)) = (w(0), w(1), . . . , w(n)) ] =
n∏

i=1

P(N)
w(i−1)w(i),

where we used P[w : T{a} < ∞] = 1.
Note that a coarse-grained fixed-ends random walk is again a fixed-ends random walk on

a coarser graph; that is, if M < N, then the distribution of QMZN is equal to PM.

4. Loop erasure by the erasing-larger-loops-first rule

4. Loop erasure by the erasing-larger-loops-first rule
For (w(0), w(1), · · · , w(n)) ∈ WN , if there are c ∈ GN , and i and j, 0 � i < j � n

such that w(i) = w( j) = c and w(k) � c for any k with i < k < j, then we call the
part [w(i), w(i + 1), . . . , w( j)] of the path a loop formed at c and define its diameter to be
d = maxi�k1<k2� j |w(k1) − w(k2)|, where | · | denotes the Euclidean distance. Note that a loop
can be a part of another larger loop formed at some other vertex. By definition, the paths in
WN have no loops with d � 1.

For each N ∈ Z+, let ΓN = ΓN(ν) be the set of loopless paths from O to a:

ΓN = { (w(0), w(1), · · · , w(n)) ∈ WN : w(i) � w( j), 0 � i < j � n, n ∈ N }.
We describe the loop-erasing procedure, starting with erasing loops from paths in W1

and going down to smaller loops. A great advantage of this method is that it involves the
repetition of the same operation, namely, the loop-erasure on W1, which enables us to apply
the theory of branching processes when considering the scaling limit.

Loop erasure for W1

(i) Erase all the loops formed at the starting point (in this case, O).
(ii) Progress one step forward along the path, and erase all the loops at the new position.

(iii) Iterate this process, taking another step forward along the path and erasing the loops
there, until the end point is reached (in this case, a).

Let Lw denote the resulting path, where we write L : W1 → Γ1 for the loop-erasing
operator. Fig.6 shows all the possible loopless paths from O to a on F1(ν) when ν1 = 3.

So far, our loop-erasing procedure is the same as that of the chronological method defined
for paths on Zd in [11].

For a general N, we erase loops from the largest-scale loops down, repeatedly applying
the loop-erasing procedure for W1. To describe this procedure, we introduce a path decom-
position based on the ‘statistical self-similarity’ and symmetry of the random pre-branched
Koch curves.
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Fig.6. Loopless paths on F3
1.

For w ∈ WN(ν) and M < N, we decompose w as

(4.1) (w̃;w1, · · · , w�(w̃)),

where w̃ = QMw and wi = (w(T M
i−1(w)), w(T M

i−1(w) + 1), · · · , w(T M
i (w))), i = 1, · · · , �(w̃).

Erasure of the largest-scale loops
(1) Decompose a path w ∈ WN(ν) into (w̃;w1, · · · , w�(w̃)), where w̃ = Q1w ∈ W1(ν), as

in (4.1) with M = 1.
(2) Erase all of the loops from w̃ by following the loop-erasing procedure for W1(ν) to

obtain Lw̃ ∈ Γ1(ν). Let Q̂1w denote this coarse, loopless path on F1(ν). To be more
precise, Q̂1w can be expressed as

Q̂1w = (w(T 1
0 ), w(T 1

s1
), · · · , w(T 1

sn
)),

or equivalently

Q̂1w(0) = O, Q̂1w(i) = w(T 1
si

), i = 1, . . . , n,

where

si = sup{ j : w(T 1
j ) = w(T 1

si−1+1) }.
(3) Restore the original fine structures to the remaining parts to obtain a path w′ ∈

WN(ν). Specifically, for each step i of Q̂1w, between w(T 1
si

) and w(T 1
si+1

), insert the
path segment wsi+1 = (w(T 1

si
), w(T 1

si
+ 1), · · · , w(T 1

si+1)) chosen from the original
decomposition in Step (1). Note that Q1w

′ = Q̂1w. The resulting path w′ has no
loops with d � 3−1.

We repeat these three steps within each 3−1–scale part to obtain a path that has no loops
with d � 3−2. We then move on to each 3−2–scale part, and so on, until no loops remain. We
illustrate this procedure by way of the following inductive steps.

Induction steps for loop erasure
Before we list the steps, we need to elaborate on the notion of 3−M-blocks. Note that if

M < N, then each part of FN(ν) that lies between two vertices x, y ∈ GM with {x, y} ∈ EM

is similar to FN−M(σMν), where σ is the shift operator defined in Section 2.2. We call such
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a subgraph a 3−M-block of FN(ν). Also for F(ν), 3−M-block is defined in the same manner,
which is similar to F(σMν).

Let 1 � M < N. Suppose that we have w ∈ WN(ν) such that QMw ∈ ΓM(ν) and w has no
loops with d � 3−M.

1) Decompose w to obtain (w̃; w1, · · ·wk), with w̃ = QMw, as in (4.1) (Fig.7, Fig.8 and
Fig.9).

2) From each wi = (w(T M
i−1(w)), w(T M

i−1(w) + 1), · · · , w(T M
i (w))), erase the largest-scale

loops, that is, the loops in QM+1w, according to the base step procedure (1)–(3)
above starting from w(T M

i−1(w)) (instead of O) until reaching w(T M
i (w)) (instead of

a) to obtain w̃i. Note that in Step (2), loops formed at the starting point may belong
to at most three adjacent 3−M-blocks. Erase all of those loops. Otherwise, step (2)
is the same as above.

3) Assemble (w̃; w̃1, · · · , w̃k) to obtain w′ ∈ WN , which is uniquely determined. Then
QM+1w

′ ∈ ΓM+1(ν) and w′ has no loops with d � 3−(M+1). �

Fig.7. w ∈ WN(ν); N = 2,M = 1.

Fig.8. w̃ = QMw, �(w̃) = 4.

We repeat these steps until no loops remain. Let Lw ∈ ΓN denote the resulting loopless
path. In this way, the loop erasing operator L, first defined for W1(ν), has been extended to
L :

⋃∞
N=1 WN(ν) → ⋃∞

N=1 ΓN(ν) with L(WN) = ΓN . Note that the operation described above
is essentially a repetition of loop-erasing for W1(ν).
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Fig.9. w1, w2, w3 and w4.

For w ∈ WN(ν), we defined Q̂1w in Step (2) for the erasure of the largest-scale loops. For
later use we define Q̂Kw on FK(ν) for all K < N as follows. Repeat the induction steps 1)–3)
K times until all loops with d � 3−K have been erased and denote the resulting path as w′.
Let Q̂Kw = QKw

′, that is, the coarse path before restoring fine structures.
We apply the loop-erasure to the fixed-ends random walk ZN . The operator L then induces

a measure P̂N = PN ◦ L−1 on ΓN(ν).
For w∗1, · · · , w∗5 shown in Fig.6, let

pi = P̂1(ν)[w∗i ] if ν1 = 2, qi = P̂1(ν)[w∗i ] if ν1 = 3.

A direct calculation gives

(4.2) p1 = 2/3, p2 = 1/3, p3 = p4 = p5 = 0,

(4.3) q1 = 1/2, q2 = q3 = 3/16, q4 = q5 = 1/16.

5. Generating functions

5. Generating functions
We define the generating functions for T 0

1 , the arrival time at the other end a, by:

ΦN(ν)(x) =
∑
w∈ΓN

P̂N(ν)(w)xT 0
1 (w), x � 0, N ∈ N,

where ΓN means ΓN(ν).
A crucial observation is that in the process of erasing loops from ZN+1, if we stop at the

stage where we have obtained Q̂NZN+1, that is, before restoring the 3−(N+1)-structures, then
it is nothing but the procedure for obtaining LZN from ZN . This fact is expressed as

(5.1) PN+1[{v : Q̂Nv = u}] = P̂N[u].

For M < N, the similarity of a 3−M–block of FN(ν) to FN−M(σMν) plays an essential
role in proving the recursion formula for the generating functions. Decompose w ∈ WN

into (w̃;w1, . . . , w�(w̃)) with w̃ = QMw as in (4.1). The 3−M–block of FN(ν) with endpoints
w(T M

i−1) and w(T M
i ) is similar to FN−M(σMν). Let Δi denote this 3−M–block of FN(ν). We

see that wi consists of the main part going from w(T M
i−1) to w(T M

i ) on Δi, and some loops, if
any, leaking into adjoining 3−M–blocks. Folding these leaking loops onto Δi by applying an
appropriate rotation and reflexion gives a path similar to some path w′i in WN−M(σMν). Recall
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the transition probability P(N)
xy defined in (3.1) and look closely at the factor

T M
i −1∏

j=T M
i−1

P(N)
w( j)w( j+1).

Since the multiplicity of folded loops is absorbed by 1/deg w(T M
i−1), we have

(5.2)
T M

i −1∏
j=T M

i−1

P(N)
w( j)w( j+1) = PN−M(σMν)[w′i].

Fig.10 shows w′1, . . . , w
′
4 for w1, . . . , w4 in Fig.9.

Fig.10. w′1, w
′
2, w

′
3 and w′4.

Thus, ELLF being the repetition of loop erasure of W1 leads to the following recursion
relations for the generating functions:

Proposition 6.

Φ1(ν)(x) =
1
3

(2x3 + x4) =: Φ(2)(x), if ν1 = 2,

Φ1(ν)(x) =
1
8

(4x3 + 3x4 + x5) =: Φ(3)(x), if ν1 = 3.

(5.3) ΦN+1(ν)(x) = ΦN(ν)(Φ(νN+1)(x)).

(5.4) ΦN(ν)(x) = Φ(ν1) ◦ Φ(ν2) ◦ · · ·Φ(νN )(x).

Proof. The first two equalities are obtained from (4.2) and (4.3).
For the recursion formula (5.3), let (w̃;w1, . . . w�(w̃)), w̃ = QNw and (ṽ; v1, . . . , v�(ṽ)), ṽ =

QNv be the decompositions of w ∈ ΓN+1(ν) and v ∈ WN+1(ν), respectively. From (5.1) and
(5.2), it follows that
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P̂N+1[w] = PN+1[v : Lv = w]

=
∑
u∈ΓN

PN+1[v : Lv = w, Q̂Nv = u] (classification by Q̂Nv)

=
∑

u

PN+1[v : Lv = w | Q̂Nv = u]PN+1[v : Q̂Nv = u]

=
∑

u

PN+1[v : Lv = w | Q̂Nv = u]P̂N[u]

=
∑

u

PN+1[v : Lvi = wi, i = 1, . . . �(u) | Q̂Nv = u]P̂N[u]

=
∑

u

⎛⎜⎜⎜⎜⎜⎜⎝
�(u)∏
i=1

P1(σNν)[v : Lv = w′i]

⎞⎟⎟⎟⎟⎟⎟⎠ P̂N[u].

Hence, keeping in mind the similarity of wi and w′i , we have

ΦN+1(ν)(x) =
∑
w∈ΓN+1

P̂N+1[w]x�(w)

=
∑
u∈ΓN

∑
w1∈Γ1

· · ·
∑
w�(u)∈Γ1

⎛⎜⎜⎜⎜⎜⎜⎝
�(u)∏
i=1

P̂1(σNν)[w′i]]

⎞⎟⎟⎟⎟⎟⎟⎠ P̂N[u] x�(w1)+···+�(w�(u))

=
∑
u∈ΓN

P̂N[u]
�(u)∏
i=1

⎛⎜⎜⎜⎜⎜⎜⎝
∑
wi∈Γ1

P̂1(σNν)[w′i]x�(w
′
i )

⎞⎟⎟⎟⎟⎟⎟⎠
=

∑
u∈ΓN

P̂N[u]
(
Φ(νN+1)(x)

)�(u)

= ΦN(ν)(Φ(νN+1)(x)).

Equation (5.4) comes from the repeated use of (5.3). �

Remark. By verifying that the generating functions are the same, we can prove that the
loop-erased random walk on FN(ν) constructed here is the same as that obtained by chrono-
logical loop-erasing.

6. The scaling limit

6. The scaling limit
In this section, we investigate the limit of the loop-erased walks constructed in Section 4,

as the edge length tends to 0.
Let

C = {w ∈ C([0,∞)→ F(ν)) : w(0) = O, lim
t→∞w(t) = a} .

The space C is a complete separable metric space with the metric

d(u, v) = sup
t∈[0,∞)

|u(t) − v(t)| , u, v ∈ C,

where |x − y|, x, y ∈ R3, denotes the Euclidean distance. Hereinafter, for w ∈ ⋃∞
N=1 WN , we

set
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w(t) = a, for t � T 0
1 (ω)

and interpolate the path linearly,

w(t) = (i + 1 − t)w(i) + (t − i)w(i + 1), i � t < i + 1, i ∈ Z+,
so that we can regard w as a continuous function on [0,∞). We will also regard ΓN as subsets
of C. The hitting times {T M

i (w)}mi=1 are defined for w ∈ C as in the previous sections, although
the infimum is taken over continuous time:

T M
0 (w) = 0, T M

i (w) = inf{t > T M
i−1(w) : w(t) ∈ GM \ {w(T M

i−1(w))}}.
Notice that the condition limt→∞ w(t) = a makes {T M

i (w)}mi=0 a finite sequence.
For N ∈ Z+, we define a coarse-graining map QN : C → C by (QNw)(i) = w(T N

i (w)) for
i = 0, 1, 2, . . . ,m, and by using linear interpolation

(QNw)(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(i + 1 − t) (QNw)(i) + (t − i) (QNw)(i + 1), i � t < i + 1,

i = 0, 1, 2, . . . ,m − 1,
a, t � m.

The loop-erasing operator is regarded as L :
⋃∞

N=1 WN → ⋃∞
N=1 ΓN . Q̂N is as in Section 4

with resulting paths in ΓN .
To define an almost sure limit, we couple walks on different FN-graphs. Let

(6.1) Ω = {ω = (ω0, ω1, ω2, · · · ) : ω0 = (O, a), ωN ∈ ΓN , ωN−1 = QN−1ωN , N ∈ N}.
Define the projection onto the first N + 1 elements by

πNω = (ω0, ω1, . . . , ωN),

and define a probability measure on πNΩ by

P̃N[(ω0, ω1, . . . , ωN)] = P̂N[ωN],

where P̂N is defined in Section 4.
The following consistency condition is a direct consequence of the loop-erasing proce-

dure:

(6.2) P̃N[(ω0, ω1, . . . , ωN)] =
∑
ω′

P̃N+1[(ω0, ω1, . . . , ωN , ω
′)],

where the sum is taken over all possible ω′ ∈ ΓN+1 such that QNω
′ = ωN .

By virtue of (6.2) and Kolmogorov’s extension theorem, there is a probability measure
P = P(ν) on Ω0 = CN = C ×C × · · · such that

P[ Ω ] = 1

and

P ◦ π−1
N = P̃N , N ∈ Z+.

Let YN : Ω0 → ΓN ⊂ C be the projection to the (N + 1)-st component. We regard YN as
an F(ν)-valued process YN(ω, t) on (Ω0,, P), where  is the Borel algebra on Ω0 generated
by the cylinder sets. Then we have P ◦ Y−1

N = P̂N .
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Let λ2 =
d
dx
Φ(2)(1) = 10/3, λ3 =

d
dx
Φ(3)(1) = 29/8, and BN = BN(ν) :=

∏N
i=1 λνi . Then

from (5.4), we see that

(6.3) ÊN[T 0
1 (YN)] =

d
dx
ΦN(ν)(1) = BN ,

where ÊN denotes expectation with respect to P̂N . Define the traverse times of 3−N blocks:

(6.4) SN
i (w) = T N

i (w) − T N
i−1(w),

for i = 1, 2, . . . ,m, where m is the smallest number such that T N
m+1(w) = ∞.

The following proposition is proved exactly in the same way as the case of a simple
random walk on the random homogeneous pre-Sierpiński gasket (see [5]).

Proposition 7. Fix arbitrarily v ∈ ΓM. For each i, 1 � i � T 0
1 (v), under the conditional

probability P[ · |YM = v], SM
i (YM+N), N ∈ Z+, is a random supercritical branching process

whose N-th generation offspring distribution equals the distribution of T 0
1 under the envi-

ronment σM+Nν. Here the N-th generation offspring means the number of 3−(M+N+1)-sized
steps born from one step of YM+N. Furthermore,

E[SM
i (YM+N)| YM = v ] =

BN+M

BM
,

where E denotes expectation with respect to P. The right-hand side is independent of v. In
particular,

E[S0
1(YN)] = E[T 0

1 (YN)] = BN .

Proposition 7 suggests that we consider the time-scaled processes:

XN( · ) := YN(BN · ), N ∈ Z+
so that E[T 0

1 (XN)] = 1.

Proposition 8. For any N � M,

(6.5) XN(T M
i (XN)) = XM(T M

i (XM)) = YM(T M
i (YM)), a.s.

This is a direct consequence of the definitions.
By similarity of the graphs, we see that SM

i (YM+N)(ν) has the same distribution as
S0

1(YN)(σMν), which further implies that SM
i (XM+N)(ν)(= SM

i (YM+N)(ν)/BM+N) has the same
distribution as S0

1(XN)(σMν)/BM.
Note that for N > M

S0
1(YN)(ν) =

S0
1(YM)(ν)∑

i=1

SM
i (YN)(ν),

and

E[S0
1(YN)(ν)] = E[S0

1(YM)(ν)]E[SM
1 (YN)(ν)].

Since E[S0
1(YN)(ν)] = BN and E[S0

1(YM)(ν)] = BM, we have E[SM
i (YN)(ν)] = BN/BM, and

hence E[SM
i (XN)(ν)] = 1/BM.
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Recall that the environment ν introduced at the beginning of Section 2.2 is a sequence of
i.i.d. random variables. From the law of large numbers, it follows that

(6.6) lim
n→∞(

n∏
i=1

λνi)
1/n = λ

(1−p)
2 λ

p
3

for almost every ν. In what follows, we arbitrarily choose and fix a ν for which (6.6) holds.
Thus, ‘almost surely’ below means ‘P-almost surely’.

Proposition 9. Take arbitrarily v ∈ ΓM. For each i, 1 � i � T 0
1 (v), under the conditional

probability P[ · |YM = v], we have the following:

(1) {SM
i (XM+N), N ∈ Z+} is an L2 bounded supermartingale and converges almost

surely and in L2 to some non-negative random variable S∗Mi as N → ∞.
(2) S∗Mi , i = 1, · · · , T 0

1 (v), are independent and have an identical distribution; S∗M1 (ν)
has the same distribution as that of S∗01 (σMν)/BM. Each S∗Mi (ν) is independent of v.

(3) The Laplace transform of S∗M1 (ν)

φM(u) = E[exp(−uS∗M1 )], u � 0

satisfies

φM(u) = Φ(νM)(φM+1(u/λνM )).

(4) For every ε > 0, there exists constants c3.1 and c3.2 independent of ν, and
c3.3(σMν, ε) and c3.4 = c3.4(σMν, ε) such that

c3.3 exp(−c3.2uγ+ε) � φM(u) � c3.4 exp(−c3.1uγ−ε), for all u � 0,

where γ =
log 3

(1 − p) log λ2 + p log λ3
.

(5) S∗Mi > 0 a.s.
(6) There exists a positive constant A independent of ν such that

E[(S∗M1 )2] �
A

B2
M

.

Proof. (1), (2) [4] Theorem 2.2.
(3) [4] Lemma 2.3.
(4) [4] Corollary 3.8.
(5) P[S∗Mi = 0] = lim

u→∞ φ
M(u) = 0.

(6) Matching the notation of [4] to our notation gives a paraphrase of Theorem 2.2 (b):

Var[S0
1(XM)] =

M∑
i=1

Var[S(i)]
λ2
νi

Bi
,

where S(2) and S(3) are random variables with distribution of S0
1(X1) when ν1 = 2 and ν1 = 3,

respectively. Let c = max
i=2,3

Var[S(i)]
λ2

i

, which is a constant independent of ν.

E[S0
1(XN)2] = Var[S0

1(XN)] + E[S0
1(XN)]2 � c

N∑
i=1

1
Bi
+ 1
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= c
N∑

i=1

1∏i
k=1 λνk

+ 1 � c
∞∑

i=1

1
λi

2

+ 1.

Writing A for the rightmost constant, we have E[S0
1(XN)2] � A for any N ∈ Z+ (and any ν).

This immediately gives

E[SM
1 (XN)2] �

A
B2

M

,

for M < N. The L2 convergence established in (1) completes the proof. �

By virtue of Propositions 8 and 9, we are now in a position to prove the almost sure
uniform convergence for XN .

Theorem 10. XN converges almost surely uniformly in t ∈ [0,∞) to a continuous process
X as N → ∞.

Proof. Choose ω ∈ Ω such that the following holds for all M: lim
N→∞T M

i (XN) = T ∗Mi exists

and S∗Mi = T ∗Mi − T ∗Mi−1 > 0 for all 1 � i � k, where k = kM = T 0
1 (YM).

Let R = T ∗01 + 1. Then it suffices to prove that XN(ω, t) converges uniformly in t ∈ [0,R].
In fact, if t > R, there is a positive integer N0 = N0(ω) such that XN(t) = a for all N � N0.

Take M arbitrarily. By expressing the arrival time at a as the sum of the traversing times of
3−M–blocks, we have T M

k (XN) = T 0
1 (XN) with k = kM. Letting N → ∞, we have T ∗Mk = T ∗01 .

Our choice of ω implies that there is an N1 = N1(ω) ∈ N such that for all N � N1,

(6.7) max
1�i�k
|T M

i (XN) − T ∗Mi | � min
1�i�k

(T ∗Mi − T ∗Mi−1 ), |T M
k (XN) − T ∗Mk | < 1.

For 0 � t � T ∗Mk , choose j ∈ {1, 2, . . . , k} such that T ∗Mj−1 � t < T ∗Mj . Then it follows from
(6.7) that for all N � N1, T M

j−2(XN) � t � T M
j+1(XN) if 2 � j � k − 1, and 0 � t � T M

2 (XN) for
j = 1. Since Proposition 8 states that

(6.8) XN(T M
j (XN)) = XM(T M

j (XM)),

for all N with N � M, we have

(6.9) |XN(T M
j (XN)) − XN(t)| � 2 · 3−M.

For T ∗Mk � t � T ∗Mk + 1 = R, since T M
k−1(XN) � t,

(6.10) |XN(T M
k (XN)) − XN(t)| � 3−M.

By combining (6.8) – (6.10), it follows that if N,N′ � max{N0,N1}, then for any t ∈ [0,R],

|XN(t) − XN′(t)| � |XN(T M
j (XN)) − XN(t)| + |XN′(T M

j (XN′)) − XN′(t)|
+ |XN(T M

j (XN)) − XN′(T M
j (XN′))|

� 4 · 3−M.

Since M is arbitrary, we see that {XN} is a Cauchy sequence in C, which implies the uniform
convergence. �

Cao introduced a new method of loop-erasing from random walk paths, called partial
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loop-erasing (PLE), so that resulting path has the same distribution as that of chronologi-
cally loop-erased path. He showed the existence of scaling limit of the path in the space of
compact sets equipped with the Hausdorff distance. Time is not considered there. However,
it will be of interest to investigate the relation between ELLF and PLE.

7. Limit path properties

7. Limit path propertiesTheorem 11. The sample path of the limit process X is almost surely self-avoiding. To
be precise, for any 0 � t1 < t2 � T ∗01 , X(t1) � X(t2). In particular, T M

i (X) = T ∗Mi for all
M ∈ Z+ and for all i a.s.

Proof. The uniform converegence of the walks that are self-avoiding and the structure
of the branched-Koch-based random fractal ensure that the trajectory of X has no ‘self-
intersection’, that is, there are no t1 < t2 < t3 such that X(t1) = X(t3) � X(t2).

So all we need to show is that X does not stay at any point of F(ν) \ {a} for a positive
interval of time.

The uniform convergence also leads to X(T ∗Mi ) = X(T M
i (X)). Notice that T M

i (X) � T ∗Mi
from the definition of the hitting time.

Let A be the event that X does stay at some point of F(ν) \ {a} for a positive interval
of time, and for m ∈ N, let Am be the event that there exists t1 with t1 < T 0

1 (X) such that
X(t) = X(t1) for all t in [t1, t1 + 1/m]. Then

P[A] = P[
∞⋃

m=1

Am] �
∞∑

m=1

P[Am].

The event Am implies that for all M > 0 the process X stays in some adjoining 3−M- blocks
of F(ν) longer than 1/m. For each M > 0 let CM denote this event. Thus

P[Am] = P[
∞⋂

M=1

CM].

We further classify CM by YM to obtain

P[CM] =
∑
v∈ΓM

P[CM | YM = v]P[YM = v]

�
∑
v∈ΓM

P[
�(v)−1⋃

i=1

{S∗Mi + S∗Mi+1 �
1
m
} | YM = v]P[YM = v],

where �(v) denotes the length of v. From Proposition 9 (2),

P[
�(v)−1⋃

i=1

{S∗Mi + S∗Mi+1 �
1
m
} | YM = v] �

�(v)−1∑
i=1

P[S∗Mi + S∗Mi+1 �
1
m
| YM = v]

�
�(v)−1∑

i=1

(P[S∗Mi �
1

2m
] + P[S∗Mi+1 �

1
2m

])

� 2�(v)P[S∗M1 �
1

2m
].

Hence



LERW on Random Fractals 69

P[CM] � P[S∗M1 �
1

2m
]
∑
v∈ΓM

2�(v)P[YM = v] = 2P[S∗M1 �
1

2m
] BM

� E[(S∗M1 )2]8m2BM �
8m2A
BM
,

where we used Proposition 7, Chebyshev’s inequality and Proposition 9 (6). Since {CM} is
a decreasing sequence of events and BM � λM

2 , we have

P[Am] � lim
M→∞ P[CM] = 0,

which implies that P[A] = 0.
From Proposition 8 and the uniform convergence of the walks, we have X(T ∗Mi ) =

XM(T M
i ) = X(T M

i (X)), which, when combined with the self-avoiding property established
above, gives T M

i (X) = T ∗Mi for all M a.s. �

From above results, we obtain the speed of convergence.

Proposition 12. There is an integer N0 = N0(ω) such that for all N � N0

max
t�0
|XN(t) − X(t)| � 2 · 3−N , a.s.

Proof. We start with choosing ω ∈ Ω and defining R, kN and N0 as in the proof of
Theorem 10. The choice of N0 implies that if t � R then XN(t) = X(t) = a for all N � N0.

For each t ∈ [0,R] and N � N0, there exists j = j(N, t) ∈ {1, 2, . . . , kN} such that

(7.1) T ∗Nj−1 � t < T ∗Nj ,

where T ∗N0 = 0.
Combining Proposition 9 (1), the uniform convergence of XN to X and Proposition 8 gives

(7.2) X(T ∗Ni ) = XN(T N
i (XN)).

On the other hand, it has been shown in the proof of Theorem 10 that for any integer N,

X(T ∗Ni ) = X(T N
i (X)).

Hence

(7.3) X(T N
i (X)) = XN(T N

i (XN)).

(7.2) and (7.3), together with the self-avoiding property of XN and X, mean that both XN(t)
and X(t) belong to the tetrahedron or triangle two of whose vertices are XN(T N

j−1(XN)) and
XN(T N

j (XN)). Thus,

|XN(T N
j (XN)) − XN(t)| � 3−N ,

and

|XN(T N
j (XN)) − X(t)| � 3−N ,

which leads to

|XN(t) − X(t)| � |XN(T N
j (XN)) − XN(t)| + |XN(T N

j (XN)) − X(t)| � 2 · 3−N ,
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for all N � N0. �

Proof of Theorem 3.
Fix an environment ν for which (6.6) holds.
Let X̃ = X̃(ω) and ỸN = ỸN(ω), N ∈ Z+ denote the random sets {X(t) ∈ R3 : t � 0}

and {YN(t) ∈ R3 : t � 0}, respectively. Let V and V the open set and its closure defined in
Appendix, respectively. For each δ > 0 define δ to be the collection of closed sets similar
to V and of diameter δ, and for B ⊂ R3, define Nδ(B) to be the smallest number of elements
of δ that cover B.

From the structure of the random branched Koch curve, (6.1), Theorem 10 and (6.4), we
see that

(7.4) N3−N (X̃) = N3−N (ỸN) = S0
1(YN).

From the choise of ν in (6.6), we have

(7.5) S0
1(XN) =

1
BN

S0
1(YN)→ S∗01

as N → ∞ for almost all ω. Now note that

log N3−N (X̃)
− log 3−N =

log S0
1(YN)/BN + log BN

N log 3
.

Since S∗01 is almost surely finite, it follows that

lim
N→∞

log S0
1(YN)/BN

N log 3
= 0

for almost all ω, and (6.6) yields

lim
N→∞

log BN

N log 3
= lim

N→∞
1

log 3
1
N

N∑
i=1

log λνi =
log λ1−p

2 λ
p
3

log 3
.

Thus the following limit exists, which by definition ([3]) gives the path box-counting dimen-
sion.

lim
δ↓0

log Nδ(X̃)
− log δ

= lim
N→∞

log N3−N (X̃)
− log 3−N =

log λ1−p
2 λ

p
3

log 3
. �

Concerning the path Hausdorff dimension dH , we know that dH � dB is always true ([3]),
but the lower bound of dH is still an open problem.

Appendix A Construction of the open set V

Appendix A. Construction of the open set VConstruction of the open set

Let a = (1, 0, 0), d = ( 1
2 ,
√

3
6 , 0), e = ( 1

2 ,
√

3
18 ,

√
6

9 ), C1 = ( 7
18 ,−

√
3
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2
√

6
27 ), C2 = ( 11

18 ,−
√

3
54 ,

2
√

6
27 ),

C3 = ( 1
2 ,−

√
3

18 , 0), D3 = ( 1
2 ,−

√
3

54 ,−
√

6
27 ), D4 = ( 11

18 ,
5
√

3
54 ,−

√
6

27 ), D5 = ( 7
18 ,

5
√

3
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√
6

27 ), G1 =

( 1
3 , 0,

√
6

12 ), G2 = ( 2
3 , 0,

√
6

12 ), G3 = ( 1
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6
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3
9 ,−
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6

36 ), G5 = ( 1
3 ,
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3
9 ,−

√
6

36 ), and

G6 = ( 1
2 ,
√

3
6 ,
√

6
12 ).
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Define V to be the (closed) convex polyhedron whose vertices are O, a, d, e, C1,C2,C3,
D3, D4,D5, G1,G2,G3,G4,G5, and G6, and V to be its interior (See Fig.A.1 and Fig.A.2).

Fig. A.1.

Fig. A.2.

The points a, b, c, d and e are as introduced in Fig.4 of Section 2.1, and also shown in
Fig.A.1. The points C1,C2,C3, D3, D4, and D5 are defined as C1 = f6(e), C2 = f7(e),
C3 = f3(d), D3 = f3(e), D4 = f4(e) and D5 = f5(e), respectively.

The vertex G1 is determined in the following manner: Focus on the middle part of the
edge be. In constructing F3 by iteration, as N in F3

N increases, on this middle part of be
grows an infinite series of tetrahedra, piling one upon another and contracting by a factor of
1/3. Fig.A.3 shows the series of tetrahedra viewed in the direction of

−→
be. Let E and F be

the midpoints of the edges cd and be, respectively. The straight line � that goes through E
and F pierces the midpoints of two edges in skew position of each tetrahedron in the series.
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Fig. A.3.

The series converges to the point G1 that lies on the line � satisfying |FG1|/|EF| = 1/2.
The points G2,G3,G4,G5, and G6 are determined just in the same way, except that the

edge be is replaced by ce, bc, cd, bd and ed, respectively.
Proof of

⋃8
i=1 fi(V) ⊆ V .

The polyhedron V is symmetric with respect to two planes, that is, x = 1/2 and the plane
containing the parallel lines Oa and f8(d) f8(e). The latter plane is shown in Fig.A.4.

Fig. A.4.

Thus, it suffices to show that f1(V), f3(V), f6(V), f8(V) ⊆ V (see Fig.A.5). Since f1 is the
similitude with center O and of factor 1/3, we immediately have f1(V) ⊆ V . Note that from
the convexity of V , it is sufficient to show that the images of all the vertices of V belong to
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V . Clearly, fi(O), fi(a) ∈ V for i = 3, 6, 8.

Fig. A.5(a). f3(V).

Fig. A.5(b). f6(V).

Fig. A.5(c). f8(V).

Concerning f3(V), since both V and f3(V) are symmetric with respect to the two planes de-
scribed above, it is sufficient to show that f3(x) ⊆ V for x ∈ {d, e,C1,C3,D3,D4,G1,G3,G6}.
We see that f3(d) = C3, f3(e) = D3 and f3(G6) = G3. For the rest of the vertices, we have
checked by direct calculation that their images are contained in V , as is seen from Fig.A.5.
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Concerning f6(V) and f8(V), we see that
f6(e) = C1, f6(G6) = G1, f6(G2) ∈ G1G2, and f6(G4), f6(d) ∈ 	OG1G6.
f8(G6) = G6, f8(d), f8(G5) ∈ OG6. As for the images of the other vertices by f6 and f8,

we have checked that they belong to V . �

Proof of fi(V) ∩ f j(V) = ∅ and fi(V) ∩ f j(V) ⊂ G3
1 for i � j..

It is sufficient to show that there is a plane that separates adjoining pairs of images of V ,
say, f3(V) and f6(V). Here we only show that f3(V) ∩ f6(V) = ∅, because proofs for other
pair can be done exactly in the same way. Let S be the plane that is perpendicular to −→ce and
contains b. Note that f3(V) and f6(V) are symmetric with respect to S (See Fig.A.6).

Fig. A.6.

Thus, if it is shown that f6(V) lies above S, then it automatically holds that f3(V) lies
below S. We show that the line segments b f6(C3) and b f6(G3) lie above S except the end
point b. To this end, we calculate inner products

−−−−−−→
b f6(C3) · −→ce =

⎛⎜⎜⎜⎜⎝1
9
,

2
√

3
81
,

4
√

6
81

⎞⎟⎟⎟⎟⎠ ·
⎛⎜⎜⎜⎜⎝−1

6
,

√
3

18
,

√
6

9

⎞⎟⎟⎟⎟⎠ = 1
54
> 0,

and

−−−−−−→
b f6(G3) · −→ce =

⎛⎜⎜⎜⎜⎝1
9
,

√
3

27
,

5
√

6
108

⎞⎟⎟⎟⎟⎠ ·
⎛⎜⎜⎜⎜⎝−1

6
,

√
3

18
,

√
6

9

⎞⎟⎟⎟⎟⎠ = 1
54
> 0.

This result shows that these two vectors have positive components in the direction of −→ce, and
so the line segments b f6(C3) and b f6(G3) lie above the plane S. In exactly the same manner,
we can show that the other vertices of f6(V) are above S. �

Proof of F3 ⊆ V . Recall that F3
2 is the set shown in Fig.3 of Section 2.1. The fact

that F3
2 ⊆ V leads to fi(F3

2) ⊆ fi(V) for i = 1, . . . , 8, which further gives F3
3 = f (3)(F3

2) =
8⋃

i=1

fi(F3
2) ⊆ f (3)(V) ⊆ V . It follows inductively that F3

N ⊆ V for all N ∈ N, that is,

⋃∞
N=1 F3

N ⊆ V . Taking closure, we have F3 ⊆ V . �
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