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Abstract
We introduce random pre-branched Koch curves and construct loop-erased random walks on
these graphs. We prove the existence of the scaling limit and show that the sample path of the
limit process is almost surely self-avoiding, while it has box-counting dimension strictly greater
than 1.

1. Introduction

A loop-erased random walk (LERW) is a process wherein loops are erased from a sim-
ple random walk in chronological order. It is a non-Markov walk whose path has no self-
intersection. Since its introduction on Z¢ by Lawler ([11]), this process has been extensively
studied. These studies have demonstrated the existence of the scaling limit on Z¢ for all d.
See, for example, [15] and [16] for d = 2, [10], [17], [18] and [22] for d = 3, and [12]
and [13] for d = 4. Also the growth exponents for LERW have been obtained. The growth
exponent for a random walk is the exponent for the number of steps needed to travel distance
N as N tends to infinity. See for example, [9], [19] and [14] for d = 2, [21] for d = 3, and
[12] and [13] for d = 4.

Studies such as [20], [8] and [7] have investigated LERWs on a fractal space, namely,
the Sierpifiski gasket. Cao ([2]) studied loop-erased random paths on more general graphs
including some fractals.

A next step in investigating LERWS is to consider thier behavior within a random envi-
ronment. Brownian motion, which is the scaling limit of a simple random walk, has been
studied on random fractals, including random Sierpinski gaskets. See, for example, [5], [6],
and [1]. Whilest these papers studied Markov processes on random fractals, in this paper,
we deal with a non-Markov process on a random fractal. As far as the authors know, this
paper will be the first attempt in this direction. We work on a random branched Koch curve
so that we can make use of some results in [5] and to see how far we can go. In the process
we found that the 3-dimensional version of the branched Koch curve is of interest in itself;
it is not clear at first sight that the fractal satisfies the open set condition; in fact, it requires
a somewhat lengthy proof.

We prove the following theorems:

Theorem 1. For almost every environment v, the loop-erased random walk on the random
pre-branched Koch curve converges almost surely to a continuous process X as the edge
length tends to 0.
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Theorem 2. For almost every environment v, the sample path of the limit process is
almost surely self-avoiding. Specifically, for any 0 < t) < t, = T, X(t1) # X(t), where T is
the time when the process reaches the end point of the random Koch curve.

Theorem 3. For almost every environment v, the sample path regarded as a closed set
almost surely has box-counting dimension

log A} 74
B = —-—

’

log 3

where 0 < p < 1 is a constant that determines our random environment, 1, = 10/3, and
A3 =29/8. In particular, dg is strictly greater than 1.

Our main tool for proving the above results is the ‘erasing-larger-loops-first’ (ELLF)
method, which was introduced to study LERW on the Sierpiriski gasket [8]. In contrast
to the ‘standard” LERW obtained by erasing loops in chronological order, our LERW is
constructed by erasing loops in descending order of the size of the loops; the resulting LERW
is proved to have the same distribution as the ‘standard” LERW.

The structure of this paper is as follows. In Section 2, we define the random branched
Koch curve, which is the space we work on, and in Section 3 we construct random walks on
the random pre-branched Koch curves. In Section 4, we recall the ELLF method of loop-
erasing. Section 5 focuses on the generating functions of hitting times, which are crucial
for all of the proofs concerning the existence of the scaling limit in Section 6. Section 7 is
devoted to the proof for the self-avoiding property and the derivation of the box-counting
dimension of the limit process.

2. Construction of the random branched Koch curve

2.1. Branched Koch curve and its 3-dimensional version. In this subsection, we define
the (non-random) branched Koch curve and its three-dimensional version.

To construct our fractals we begin with the definition of similitudes f; : R? — R3, i =
1,2,...,8:

1
fl((x’ Y, Z)) = g(x’ Y, Z),

1 2
fZ((x’ Y, Z)) = g(x’ Y, Z) + (§9 0, O) s

1 2
f3((-x’ Y, Z)) = g(_-x’ -Y, _Z) + (g, Oa O) 5

Ay =[-Ler Byy2 B ]
4 xvysz - 6x 6 .’/ 3’ 6 X 6y’ ap

1
fS((X,y,Z)) = (__x_ _y+ E’ ——X+ Ey + — ,—gz
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We define two transformations @ and f© on the class of non-empty compact subsets of
R3: for a non-empty compact set A € R3, let

5
o = rw,

i=1

8
O = s
i=1

The branched Koch curve F? and the 3-dimensional branched Koch curve F? are fractals
uniquely defined as the compact sets satisfying

F? = fO(FY),
and
F* = fOF),

respectively.
Since we study random walks, let us define pre-branched Koch curves, which are discrete

versions of the fractals.

Let F(z) = F, be a unit line segment placed on the x-axis, namely, Fy = {(5,0,0) €
R3 : 0 £ s £ 1}. We define recursively a sequence of closed sets {F ]zv} starting from Fg:
Fy., = fP(F}) for N € Z, ={0,1,2,...}. We call the sets Fy, N € Z,, the pre-branched
Koch curves (Fig.1 and Fig.2). We obtain the branched Koch curve F? by taking the

closure of U F 12\,, which is a well-known fractal with Hausdorftf dimension log 5/1og 3 [3].
N=0

f5(Fo) fa(Fo)
f1(Fo) fo(Fo)

F2=F F?

Fig.1. Similitudes f;—fs with their orientations.
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F? F? Fy
Fig.2. First three steps of the construction of F2.

To consider random walks on the pre-branched Koch curves, we regard F%, N € Z, =
{0,1,2,...}, also as graphs consisting of the set of vertices GJZ\, and the set of edges E12v
defined as

0 =(0,0,0), a=(1,0,0),

G2 =10,a}, G3,, = f2G2), NeZ,
and
E2={{0.a}}, E%,, = fP(E3), NeZ,.

The same notation F }2\, will be used to represent both the closed set and the graph (G3, Elz\,),
for it will be clear in context what it means. In particular, Fy can mean a unit line segment
or a graph consisting of two vertices and an edge connecting them.

Next, we introduce the 3-dimensional pre-branched Koch curve.

Let F3 = Fo = {(5,0,0) € R? : 0 < s £ 1}. We define recursively a sequence of closed
sets {Fy}using F3 | = fO(F3) for N € Z,. We call the sets F, N € Z,, the 3-dimensional
pre-branched Koch curves (Fig.3). We obtain the 3-dimensional branched Koch curve

/v N 7Y
&7

F3 F3 F3

F3 by taking the closure of U F 7\,
N=0

Fig.3. First three steps of the construction of F>.

We regard 3-dimensional pre-branched Koch curves also as graphs with the set of vertices
G]3\, and the set of edges E3,, defined as

Gy =10.a}, Gy, = fPG}) NeZ,
and
E} = {0,a)}, Ey,, = fP(EY) NeZ,.

Here again the same notation F 13\, will be used to represent both the closed set and the
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graph (G3, E]3\,).
Proposition 4. There exists a nonempty open set V such that
(i) FPcV;
8
i) (v v
i=1
i) SV N[V =2, if i# J;
(v) fi(V)n fi(V) c G?. if i#j.

Here V denotes the closure of V. Conditions (ii) and (iii) constitute the open set condition
([31), which leads to

log 8

dy(F%) = log3"

The explicit form of V and the proof of Proposition 4 are given in Appendix.
The 3-dimensional branched Koch curve may not be so well-known as its 2-dimensional
couterpart, so let us give some geometrical explanations.

1 2 1 V3
Let0=(0,0,0>,a=(1,0,0>,b=(5’0,0), c:("o,O), d:( s 0),

3 2’6’
1
(L) (1
218 9 2 2

Note that Oaf forms an equilateral triangle AOaf with side length 1, and bcde forms a
tetrahedron with side length 1/3 (Fig.4).

f
Fig.4. AOaf and the tetrahedron bcde.

The similitude f3 maps AOaf onto the triangle Acbd, preserving the order of the vertices,
which means that f3(0) = ¢, f3(a) = b, and f3(f) =d. fi, f5, fs, f and fg map AOaf onto
Acdb, Adbe, Abec, Aech, and Aedc, respectively, each preserving the order of the vertices.
If one maps the whole figure shown in Fig.4, then the image of e comes in the direction of

fi(O_J)C X @z) relative to f;(AOaf).

2.2. Random branched Koch curve. We define a random fractal, using the definition of
branched Koch curves given above. Let v = (v1,1,,...) be an environment, where {v;}* is a
sequence of i.i.d. random variables that take the value 2 with probability 1 — p and the value
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3 with probability p, respectively, where 0 < p < 1.
Let o be the shift operator, o(v, v2,v3,...) = (V2,V3,...).
Recall that

5
2w = s,
i=1
and
8
Ol = £,
i=1

Starting from F = {(5,0,0) € R? : 0 < 5 < 1}, define

Fx@) = f™ o f* 0w 0 f(Fy).
We call Fy(v), N € N, the random pre-branched Koch curves and the closure of

U Fy(v), denoted by F(v), the random branched Koch curve. In this paper, we will

N=0
work on these random pre-fractals and the limiting random fractal. Some examples of F;(v)

are shown in Fig.5.
We regard Fy(v), N € Z, also as graphs; starting from Go(v) = {O,a} and Ez(v) =
{{0, a}}, we define

Gy = fV o f 0o 0 fOM(Gy(P)),
and
Ex®) = "0 f 00 fO(EN)).

Proposition 5. The random fractal F(v) has Hausdorff dimension dy and Box dimension
dB-'
_(I=p)log5+ plog8

dy = di = log 3 ’

for almost every v.

Since the proof is the same as that for the random Sierpifiski gasket in [5] with equilateral
triangles replaced by similitudes of the closure of V, we omit the proof here.

3. Random walk on the pre-RBK

3.1. Paths on the pre-RBK. In the following, we fix v and write Fy, Gy, and Ey for
Fy(v),Gy(v) and Ey(v), respectively, whenever no confusion occurs.
For each N € Z,, define a set of finite paths W}, = W} (v) on the graph Fy = (Gy, Ey) by

Wy = {w = w(0),w(l), - ,wn)) : w(i) e Gy, {wi—-1),w@)}e€Ey, 1 £i<n, neN}.

This gives the natural definition for the length (total number of steps) ¢ of a path w =
(w(0), w(l), --- ,w(n)) € Wy,; namely, £(w) = n.
For a path w € W}, and A C Gy with M < N, we define the hitting time of A by
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/\y//%/\a

1/123,1/2:2

/N

v =2,1n=3
Fig.5. Some examples of Fg.

Ta(w) =inf{j 2 0: w(j) € A},

where we set inf @ = co. In particular, we define a recursive sequence {Tl.M (w)},, of hitting
times of G, as follows: Starting from Té"’ (w) =Tg,,, fori =1, let

TY(w) = inf{j > TY,(w) : w(j) € Gy \ {w(TY, (W)}

1

Here we take m to be the smallest integer such that T%l(w) = oo. The hitting time TI.M (w)

then can be interpreted as being the time (steps) taken for the path w to hit vertices in G, for
the (i + 1)-st time, under the condition that if w hits the same vertex in G,; more than once
in a row, then we only count it once.

For each M € Z,, we define the coarse-graining map Q,, : U Wy — W, by
N=M

(OQuw)(i) = w(T W), fori=0,1,2,....m,
where m is the smallest integer such that Tnﬁirl(w) = 0. Thus,
Oyw = Ty ), w(THW)),...,w(T, (w)))

is a path on the coarser graph F);. Note that for K < M, Qg o Oy = QO holds.
In the following, we will write w(T}¥) for w(T'™(w)) whenever no confusion occurs.
Define the set of finite fixed-ends paths from O to a as

Wy = Wy@) = {w = @(0),w(1), -+ ,w(m) € Wy : w(0) = 0, w(T{w)) = a, n=T{w)}
On each Fy, define a simple random walk Zy starting at O:

P[Zy(0)=0] = 1.
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1
deg x

5 {X, y} € EN’
3.1) PU =PZy(i+ 1) =y | Zy() = x] =

O, {X,!/}iEN,

where deg x denotes the degree of the vertex x in (Gy, Ey).

We focus on the fixed-ends random walk on Fy that starts at O and is stopped at the
first hitting time of a, which is alomost surely finite. As a result, the random walk path
belongs to Wy. This correspondence induces a natural measure on Wy; that is, for each
w = (w(0),w(l),...,wn)) € Wy,

n

Py[w] := P(Zy(0), Zy(1) ..., Zy(m) = @(0), w(D), ..., wm) 1= [ [ P00
i=1
where we used Plw : T, < o] = 1.
Note that a coarse-grained fixed-ends random walk is again a fixed-ends random walk on
a coarser graph; that is, if M < N, then the distribution of QyZy is equal to Py,.

4. Loop erasure by the erasing-larger-loops-first rule

For (w(0),w(1),--- ,w(n)) € Wy, if there are c € Gy, andiand j, 0 £ i < j < n
such that w(i) = w(j) = ¢ and w(k) # c for any k with i < k < j, then we call the
part [w(@), w(i + 1),...,w()j)] of the path a loop formed at ¢ and define its diameter to be
d = max;<y, <i,<;j lw(ki) — w(ky)|, where | - | denotes the Euclidean distance. Note that a loop
can be a part of another larger loop formed at some other vertex. By definition, the paths in
Wy have no loops with d = 1.

Foreach N € Z,, letI'y = I'y(v) be the set of loopless paths from O to a:

I'y ={ ), w(), - ,wn) € Wy: wi@) #w(j), 0Si<j<n neN}

We describe the loop-erasing procedure, starting with erasing loops from paths in W,
and going down to smaller loops. A great advantage of this method is that it involves the
repetition of the same operation, namely, the loop-erasure on W;, which enables us to apply
the theory of branching processes when considering the scaling limit.

Loop erasure for W,

(1) Erase all the loops formed at the starting point (in this case, O).
(ii) Progress one step forward along the path, and erase all the loops at the new position.
(iii) Iterate this process, taking another step forward along the path and erasing the loops
there, until the end point is reached (in this case, a).

Let Lw denote the resulting path, where we write L : W; — I'; for the loop-erasing
operator. Fig.6 shows all the possible loopless paths from O to a on F;(v) when v; = 3.

So far, our loop-erasing procedure is the same as that of the chronological method defined
for paths on Z4in [11].

For a general N, we erase loops from the largest-scale loops down, repeatedly applying
the loop-erasing procedure for W;. To describe this procedure, we introduce a path decom-
position based on the ‘statistical self-similarity’ and symmetry of the random pre-branched
Koch curves.
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—

*
(0] wi a

2

0] wi a
O w"’ a 0 w* a

4

5

: 3
Fig.6. Loopless paths on F7.

Forw € Wy(v) and M < N, we decompose w as

4.1) (@5 wr, -+, Wey)s

where & = Qyw and w; = (W(TY, (W), w(TY, (W) + 1), ,WTH(W))),i=1,--- , (@)
Erasure of the largest-scale loops
(1) Decompose a path w € Wy (V) into (0; wy, - - - , Wew)), Where @ = Qiw € Wi(v), as
in (4.1) with M = 1.
(2) Erase all of the loops from @ by following the loop-erasing procedure for W;(v) to
obtain L € T';(). Let O w denote this coarse, loopless path on F(¥). To be more
precise, Qlw can be expressed as

Q1w = (w(Ty), w(T), -, w(T})),
or equivalently
O1w(0) = 0, Qyw(i) =w(Ty), i=1,...,n,
where
si=sup(j : w(T})=w )}

(3) Restore the original fine structures to the remaining parts to obtain a path v’ €
Wn(v). Specifically, for each step i of O\w, between w(Tsll_) and w(T;M), insert the
path segment wy,,| = (w(Tsll,), w(Tsli +1),--- ,w(Tsll_H)) chosen from the original
decomposition in Step (1). Note that Q;u’ = Qw. The resulting path w’ has no
loops with d > 37!,

We repeat these three steps within each 3~'—scale part to obtain a path that has no loops
with d = 372. We then move on to each 3" 2—scale part, and so on, until no loops remain. We
illustrate this procedure by way of the following inductive steps.

Induction steps for loop erasure

Before we list the steps, we need to elaborate on the notion of 3~™-blocks. Note that if
M < N, then each part of Fy(v) that lies between two vertices x,y € Gy with {x,y} € Ey
is similar to Fy_p(c¥), where o is the shift operator defined in Section 2.2. We call such
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a subgraph a 3 M_block of Fx(v). Also for F(v), 3"M-block is defined in the same manner,
which is similar to F(c™v).

Let 1 £ M < N. Suppose that we have w € Wx(v) such that Qpyw € I'y(v) and w has no
loops withd = 3™,

1) Decompose w to obtain (@; wy, - - - wy), with @ = Qpw, as in (4.1) (Fig.7, Fig.8 and
Fig.9).

2) From each w; = (w(TY,(w)), w(TY, (w) + 1), -+ ,w(TM(w))), erase the largest-scale
loops, that is, the loops in Qy+1w, according to the base step procedure (1)—(3)
above starting from w(Tf‘fl(w)) (instead of O) until reaching w(Tl.M (w)) (instead of
a) to obtain @;. Note that in Step (2), loops formed at the starting point may belong
to at most three adjacent 37 -blocks. Erase all of those loops. Otherwise, step (2)
is the same as above.

3) Assemble (; @y, - , W) to obtain w’ € Wy, which is uniquely determined. Then
Oy’ € Tpr1(¥) and w’ has no loops with d > 3-M+D, ]

/\ /\

Fig.7. we Wy(v); N =2,M = 1.

/\ /\
» / a

w

Fig.8. @ = Qyw, {(@) = 4.

We repeat these steps until no loops remain. Let Lw € I'y denote the resulting loopless
path. In this way, the loop erasing operator L, first defined for W;(v), has been extended to
L: Uy Wa( = Uy- ITv(v) with L(Wy) = I'y. Note that the operation described above
is essentially a repetition of loop-erasing for W;(v).
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7N

wy

Wy a
F1g9 wi, W, W3 and Wy4.

For w € Wy(¥), we defined O w in Step (2) for the erasure of the largest-scale loops. For
later use we define Qgw on Fg(v) for all K < N as follows. Repeat the induction steps 1)-3)
K times until all loops with d = 37X have been erased and denote the resulting path as w’.
Let Oxw = Qguw', that is, the coarse path before restoring fine structures.

We apply the loop-erasure to the fixed-ends random walk Zy. The operator L then induces
a measure PN =PyoL YonTy®).

For wy, -+ ,wg shown in Fig.6, let

pi = P}l ifvi =2, g; = P(»[w]] ifv; = 3.

A direct calculation gives

4.2) p1=2/3, p»=1/3, p3=ps=ps=0,

4.3) q1=1/2, qga=q3=3/16, q4 = g5 =1/16.

5. Generating functions

We define the generating functions for 7, the arrival time at the other end a, by:

OyP)(X) = Y. Py@@i"I®, x20, NeN,
wel'y
where I'y means I'y(v).
A crucial observation is that in the process of erasing loops from Zy., |, if we stop at the
stage where we have obtained QNZN+1, that is, before restoring the 3~ W+D_gtructures, then
it is nothing but the procedure for obtaining LZy from Zy. This fact is expressed as

(5.1) Pysil{v: Onv = u}] = Pylul.

For M < N, the similarity of a 3 —block of Fy(V) to Fy_y(c™v) plays an essential
role in proving the recursion formula for the generating functions. Decompose w € Wy
into (W; wy, ..., wys) With @ = Qyw as in (4.1). The 3~M_block of Fy(v) with endpoints
w(TM,) and w(T}) is similar to Fy_y(c™v). Let A; denote this 37"—block of Fy(v). We
see that w; consists of the main part going from w(Tl.Af ) to w(TiM ) on A;, and some loops, if
any, leaking into adjoining 3~"—blocks. Folding these leaking loops onto A; by applying an
appropriate rotation and reflexion gives a path similar to some path w/ in Wy_y(c"v). Recall
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TM-1
.. . (N) . (N)
the transition probability Py,” defined in (3.1) and look closely at the factor ]_[ Pw(j)w(j 1)
j:TiA:I]

Since the multiplicity of folded loops is absorbed by 1/deg w(Tl.j‘fl ), we have

TV -1
(N) _ M=y, 7
(5.2) ]_[ PO ety = Pruon(@9)[w].
joiAZI]
Fig.10 shows w, ..., w) for wy,...,ws in Fig.9.
o a o < a
w"l w&
a @) . a
0
wh w)

M 4 ’ / ’
Fig.10. w},w}, w} and w).

Thus, ELLF being the repetition of loop erasure of W; leads to the following recursion
relations for the generating functions:

Proposition 6.

®mmm=§@f+fr:®%m,#w=z

O, (v)(x) = %(4x3 +3x* +x°) = P (x), if v; = 3.

(5.3) D41 (M)(x) = ONF)(@¥(x)).

(5.4 Dy(W)(x) = OV 0 @ o OOV ().

Proof. The first two equalities are obtained from (4.2) and (4.3).

For the recursion formula (5.3), let (W; wy, ... weg), @ = Oyw and (@; vy, ..., V@), U =
Onv be the decompositions of w € 'y, (V) and v € Wy, 1(v), respectively. From (5.1) and
(5.2), it follows that
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Pyalw] = Pyulv: Lv=w]
= Z Pyiilv: Lo =w, QNU = u] (classification by QNU)
uel’y

A

= > Pyalv:Lo=w|Qyv = ulPy.lv: Oy = ul
- Z Pysilv: Lo = w]| Qv = ulPylul
= Z Pyalv: Loy =wii=1,...€) | Oyv = ulPylu]
= Z (ﬁ Py (™) : Lv = wﬁ]] Pylul.
A

Hence, keeping in mind the similarity of w; and w, we have

Oy M) = > Pya[wl®
wel' 1
)
PIDINED) [l_[ P1<0NV>[w;]J]PN[u] i)
MEFN wlerl LU[(H)Erl i=1
()
= > Palul ]‘[[Z Pl(oWV)[w;]x“wf>]
uel’y i=1 \w;el
R )
= D Palul (@)
uel'y
= Oy@@" ().
Equation (5.4) comes from the repeated use of (5.3). ]

Remark. By verifying that the generating functions are the same, we can prove that the
loop-erased random walk on F (V) constructed here is the same as that obtained by chrono-
logical loop-erasing.

6. The scaling limit

In this section, we investigate the limit of the loop-erased walks constructed in Section 4,
as the edge length tends to 0.
Let

C={we C(0,0) > F¥) : w0) =0, tlim w(t) = a}.
The space C is a complete separable metric space with the metric

d(u,v) = sup |u(t) —v(®)|, u,v e C,
t€[0,00)

where |x —y|, x,y € R3, denotes the Euclidean distance. Hereinafter, for w € Un=; W, we
set
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w(®) = a, fort = TV (w)
and interpolate the path linearly,
w@=>G+1-Dw@+(-Dwi+1), ist<i+l, i€Z,,

so that we can regard w as a continuous function on [0, c0). We will also regard I'y as subsets
of C. The hitting times {TiM (w)}, are defined for w € C as in the previous sections, although
the infimum is taken over continuous time:

T (w) =0, TMw) = inf{r > TY,(w) : w(®) € Gy \ {w(TY,(w))}}.

Notice that the condition lim,_,., w(f) = a makes {TiM (W)L, a finite sequence.
For N € Z,, we define a coarse-graining map Qy : C — C by (Qyw)(i) = w(TiN(w)) for

i=0,1,2,...,m, and by using linear interpolation
(+1-0(@Qvw)) + (- (Qvw)(i+ 1), ist<i+],
(Ovw)(?) = i=0,1,2,....m-1,
a, t = m.

The loop-erasing operator is regarded as L : |Jy_; Wy — Uy I'n- Qy is as in Section 4
with resulting paths in I'y.
To define an almost sure limit, we couple walks on different Fy-graphs. Let

6.1) Q={w=(wy,wi,ws, ) : wo=1(0,a), wy €'y, wy—1 = Oy-1wyN, N € N}.
Define the projection onto the first N + 1 elements by
Nw = (wo, W1, ..., Wy),
and define a probability measure on my < by
PN[(wo,wl, < wN)] = PN[‘UN]a

where Py is defined in Section 4.
The following consistency condition is a direct consequence of the loop-erasing proce-
dure:

(6.2) Pul(wo, @1,.... o] = D Pral(@o, w1, wy, )],

where the sum is taken over all possible w’ € I'y, such that Qyw’ = wy.
By virtue of (6.2) and Kolmogorov’s extension theorem, there is a probability measure
P=PW@) onQy=C"=CxC x--- such that

PlQ]=1
and
Pony =Py, N€Z,.

Let Yy : Qp — I'y € C be the projection to the (N + 1)-st component. We regard Yy as
an F(v)-valued process Yy(w, 1) on (Qg, BB, P), where 13 is the Borel algebra on ) generated
by the cylinder sets. Then we have P o Y;,l = Py.
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d d
Let A, = d—q><2>(1) =10/3, A3 = d—cb<3>(1) =29/8, and By = By(¥) := [, A,,. Then
X X
from (5.4), we see that

(63) ENT{(0)] = - 0n@)(1) = By,

where Ey denotes expectation with respect to Py. Define the traverse times of 3~V blocks:
(6.4) SYw) = T (w) = T (w),

fori=1,2,...,m, where m is the smallest number such that Tr’;’ (W) = oo

The following proposition is proved exactly in the same way as the case of a simple
random walk on the random homogeneous pre-Sierpiniski gasket (see [5]).

Proposition 7. Fix arbitrarily v € I'y;. For eachi, 1 £i < T?(v), under the conditional
probability P[ - |Yy =v], SIM(YM+N), N € Z., is a random supercritical branching process
whose N-th generation offspring distribution equals the distribution of T? under the envi-
ronment cM*Ny. Here the N-th generation offspring means the number of 3~ M*N+D_gized

steps born from one step of Yyr.n. Furthermore,

Bnim
By
where E denotes expectation with respect to P. The right-hand side is independent of v. In

E[S" Yy Yy =v]=

particular,
E[S}(Yw)] = E[T}(Y)] = By.
Proposition 7 suggests that we consider the time-scaled processes:
Xy(-):=Yy(By-), NeZ,
so that E[T)(Xy)] = 1.

Proposition 8. Forany N =2 M,

(6.5) Xp(THM(Xy)) = X (TY (Xp0) = Yu(TY (Ynr)),  as.

This is a direct consequence of the definitions.

By similarity of the graphs, we see that Sf"’ (Yy+n)(v) has the same distribution as
SU(Yn)(ov), which further implies that ¥ (X n)P)(= SM (Yar.n)(V)/ Bur+n) has the same
distribution as SY(Xy)(cv)/By.

Note that for N > M

SI))
S = > SMw),
i=1

and
E[SV(YN))] = E[SY(Ya ) PDIELSY (Yn)P)].

Since E[SY(Yy)(")] = By and E[S9(Y))()] = By, we have E[SY(Yy)(")] = By/By, and
hence E[SY(Xy)(V)] = 1/By.
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Recall that the environment v introduced at the beginning of Section 2.2 is a sequence of
i.i.d. random variables. From the law of large numbers, it follows that

n

(6.6) lim (| |4, =22

n—oo0 -
i=1

for almost every v. In what follows, we arbitrarily choose and fix a v for which (6.6) holds.
Thus, ‘almost surely’ below means ‘P-almost surely’.

Proposition 9. Take arbitrarily v € Ty Foreachi, 1 £i < T?(U), under the conditional
probability P[ - |Yy = v], we have the following:
(1) {Sf"’ (Xum+n)s N € Z.} is an L* bounded supermartingale and converges almost
surely and in L* to some non-negative random variable S:.‘M as N — oo.
2) S;.“M ,i=1,---, T?(v), are independent and have an identical distribution; STM )
has the same distribution as that of S’IO(O'M v)/By. Each S;“M (v) is independent of v.
(3) The Laplace transform of S*{M )
¢" () = Elexp(-uS;")], u20

satisfies

¢" () = OV (@M () Ay,)).
(4) For every € > 0, there exists constants csz) and c3, independent of v, and
c33(0My, €) and ¢34 = c3.4(0MV, &) such that
c3zexp(—c3au’®) £ ¢M(u) < c34exp(—c3u’ ™),  forallu 20,
log3

. (1-p)logd, + plogA3°
S M >0as.

(6) There exists a positive constant A independent of v such that

where y =

BT S o
M

Proof. (1), (2) [4] Theorem 2.2.

(3) [4] Lemma 2.3.

(4) [4] Corollary 3.8.

(5) PLS;™ = 0] = lim ¢ (u) = 0.

(6) Matching the rL;otation of [4] to our notation gives a paraphrase of Theorem 2.2 (b):

M

VarlS{(Xu)l = )

i=1

Var[S9]
2B’

where S and S are random variables with distribution of S?(X 1) when v| =2 and v| = 3,
Var[S?]
A2

1

respectively. Let ¢ = max , which is a constant independent of v.
=2,

1
—+1

EISiXw] = VarlSiXwnl+ EIS§K0F ¢ )+

iM-
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N

1 1
= CZm-l-léCZ/l—lz-l-l

i=1 i=1

[se]

Writing A for the rightmost constant, we have E[S(Xy)*] £ A for any N € Z, (and any 7).
This immediately gives

A
E[SY(Xn)] £ —
BM

’

for M < N. The L? convergence established in (1) completes the proof. |

By virtue of Propositions 8 and 9, we are now in a position to prove the almost sure
uniform convergence for Xy.

Theorem 10. Xy converges almost surely uniformly in t € [0, ) to a continuous process
X as N — oo.

Proof. Choose w € Q such that the following holds for all M: Al}im Y (Xy) = T;M exists

and SSM = TM — T > O forall 1 £i £ k, where k = ky = T)(Yy).
LetR = Ti*o + 1. Then it suffices to prove that Xy(w, t) converges uniformly in ¢ € [0, R].
In fact, if > R, there is a positive integer Ny = Ny(w) such that Xy(#) = a for all N = Nj.
Take M arbitrarily. By expressing the arrival time at a as the sum of the traversing times of
3 M_blocks, we have T,?”(XN) = T?(XN) with k = ky,. Letting N — oo, we have T;:M = TTO.
Our choice of w implies that there is an N} = Ni(w) € N such that for all N = Ny,

(6.7) max |[TM(Xy) —= T:Y < min(T;™ = 7)), [TV (XNn) - TM| < 1.
I<isk ! ! lsisk ! !
For 0 <t < T/™, choose j € {1,2,...,k} such that T}"f”l <t< TJ’TM. Then it follows from

(6.7) that for all N = Nj, T%Z(XN) <t< Tj"jfl(XN) if2<j<k—1,and 0 £ ¢ < TY(Xy) for
j = 1. Since Proposition 8 states that

(6.8) Xn(TY (Xn)) = Xu(TY (Xa)),
for all N with N 2 M, we have
(6.9) IXn (T} (Xy) = Xy £ 2-37.

For T;:M <t< Tk*M + 1 = R, since TKI(XN) <t
(6.10) IXn (T (Xn) = Xn(0] < 37

By combining (6.8) — (6.10), it follows that if N, N’ = max{Ny, N1}, then for any ¢ € [0, R],

Xn(1) = Xn (0] £ X (T (Xn)) = X)) + Xn (TH (X)) = Xpo (1)
+ Xy (T (XN)) = Xp (T (X))
<4.37M

Since M is arbitrary, we see that {Xy} is a Cauchy sequence in C, which implies the uniform

convergence. O

Cao introduced a new method of loop-erasing from random walk paths, called partial



68 K. Harrori, T. Kurosawa AND S. NISHIIIMA

loop-erasing (PLE), so that resulting path has the same distribution as that of chronologi-
cally loop-erased path. He showed the existence of scaling limit of the path in the space of
compact sets equipped with the Hausdorff distance. Time is not considered there. However,
it will be of interest to investigate the relation between ELLF and PLE.

7. Limit path properties

Theorem 11. The sample path of the limit process X is almost surely self-avoiding. To
be precise, forany 0 £ t; < t, < Tfo, X(t1) # X(t2). In particular, TI.M(X) = T;"M for all
M € Z, and for all i a.s.

Proof. The uniform converegence of the walks that are self-avoiding and the structure
of the branched-Koch-based random fractal ensure that the trajectory of X has no ‘self-
intersection’, that is, there are no t; < t, < t3 such that X(z;) = X(t3) # X().

So all we need to show is that X does not stay at any point of F(v) \ {a} for a positive
interval of time.

The uniform convergence also leads to X(T7) = X(TY(X)). Notice that T"(X) < T;"
from the definition of the hitting time.

Let A be the event that X does stay at some point of F(v) \ {a} for a positive interval
of time, and for m € N, let A,, be the event that there exists #; with #; < T?(X) such that
X(t) = X(1y) for all tin [t;,1; + 1/m]. Then

PIA] = P[O Apl € i PlAn].
m=1

m=1

The event A,, implies that for all M > 0 the process X stays in some adjoining 37"~ blocks
of F(v) longer than 1/m. For each M > 0 let Cy, denote this event. Thus

P[An] = PI[ ) Cul.
M=1

We further classify Cy by Yy, to obtain

P[Cu] = Z P[Cy | Yy = v]P[Yy = 0]
vel'y

(v)—-1
P s st 2

vely  i=1

I

1
n—1} | Y = v]P[Yy = 0],
where £(v) denotes the length of v. From Proposition 9 (2),
{(v)-1 | {()-1 |
PUSM 48tz —y v =0l = ) PISY 48 2 — | Vi = 0]
i=1 i=1
w)-1 | |
P[SM > —1+PSM> —
;< [ 2 -1+ PIS; 2 7-1)

IA

IA

1
20)PISM 2 71

Hence
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L

P[Cu] o

1 By

PSM > Zi] Z 26W)P[Yy = v] = 2P[STM >
m vel'y
8m’A
By’
where we used Proposition 7, Chebyshev’s inequality and Proposition 9 (6). Since {Cy,} is
a decreasing sequence of events and By, = /112” , we have

I\

E[(S7M)’18m* By <

PlAn] = lim P[Cy] =0,

which implies that P[A] = O.

From Proposition 8 and the uniform convergence of the walks, we have X(Ti*M ) =
Xu(TY) = X(TY (X)), which, when combined with the self-avoiding property established
above, gives TM(X) = T:™ for all M a.s. ]

From above results, we obtain the speed of convergence.

Proposition 12. There is an integer Ny = No(w) such that for all N =2 Ny

m>%x Xy - X0 £2-37V, a.s.
2
Proof. We start with choosing w € Q and defining R, ky and Ny as in the proof of

Theorem 10. The choice of Ny implies that if # = R then Xy(7) = X(t) = afor all N = Nj.
For each t € [0,R] and N = Ny, there exists j = j(N,t) € {1,2,...,ky} such that
*N *N
(7.1) o =t<T;7,

where T;V = 0.
Combining Proposition 9 (1), the uniform convergence of X to X and Proposition 8 gives

(7.2) X(T7Y) = Xn(T] (X))

On the other hand, it has been shown in the proof of Theorem 10 that for any integer N,
X(TN) = X(T (X)).

Hence

(7.3) X(T (X)) = Xn(T}" (Xn).

(7.2) and (7.3), together with the self-avoiding property of Xy and X, mean that both Xy(¢)
and X(¢) belong to the tetrahedron or triangle two of whose vertices are XN(Tj]\i ,(Xn)) and
XN(Tj.V (Xy)). Thus,

IXn(TY (X)) = Xyl £ 377,
and

IXn (T (Xn)) = X(0)] £ 377,
which leads to

Xy () = X0 £ Xy (T} (Xn) = Xy (Ol + IXn(T} (Xn)) = X(0)] £2- 37,
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for all N = Nj. O

Proof of Theorem 3.

Fix an environment v for which (6.6) holds.

Let X = X(w) and Yy = Yy(w), N € Z, denote the random sets {X(7) € R3 : t > 0}
and {Yy(r) € R3 : 1 > 0}, respectively. Let V and V the open set and its closure defined in
Appendix, respectively. For each ¢ > 0 define Vs to be the collection of closed sets similar
to V and of diameter &, and for B ¢ R3, define N;(B) to be the smallest number of elements
of Vs that cover B.

From the structure of the random branched Koch curve, (6.1), Theorem 10 and (6.4), we
see that

(74) N3-v(X) = Ny-n(Ty) = S)(Yy).
From the choise of v in (6.6), we have
1
(7.5) Si(Xy) = z=Si(¥y) - 7’
N

as N — oo for almost all w. Now note that

log Ny-v(X) _ logS{(Yy)/By + log By
—log3N Nlog3 ’

Since S*I‘O is almost surely finite, it follows that

log S)(Yy)/Bw
im — =
N—o  Nlog3
for almost all w, and (6.6) yields
1-p /117

N
log By . 1 1 log 4,

=1 — > loga, = —=2
Nl—r>lgoNlog3 N log 3 N; 08 M log 3

Thus the following limit exists, which by definition ([3]) gives the path box-counting dimen-
sion.
logNs(X) .. logN;vn(X) log P
im——— = = lim — )
sl0 —logo N-oo —log3~N log 3

Concerning the path Hausdorff dimension dy, we know that dy < dp is always true ([3]),
but the lower bound of dj is still an open problem.

Appendix A Construction of the open set V

Construction of the open set

Leta - (1 O 0) d_ (2’ ’?/)_96 T/—(%’ %’ g)a Clj_(g_g9_g’ 2_\46)9 C2 =\/£%’_5_‘/§’ %)a
_ (1 3 6 _ 1 5V3 6 _ 7 5V3 6
G = 5,—]8,0) D; = (3.-%.-3). Dy = (3. 32, -39). Ds = (£.32.-3). G =

(1,0 ,12> Gz = (2,0,%), Gy = (1,-8,-%), G, = 3, L,-%), G5 = (4,
Go = (L, 8,35
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Define V to be the (closed) convex polyhedron whose vertices are O, a,d, e, Cy,C,, Cs,
Ds, Dy, Ds, G, G2,G3,Gy, Gs, and Gg, and V to be its interior (See Fig.A.1 and Fig.A.2).

Fig. A.2.

The points a, b, c,d and e are as introduced in Fig.4 of Section 2.1, and also shown in
Fig.A.1. The points Cy,C,,C3, D3, D4, and Ds are defined as C; = fs(e), Co = fi(e),
Cs = f3(d), D3 = f3(e), Dy = fu(e) and Ds = f5(e), respectively.

The vertex G is determined in the following manner: Focus on the middle part of the
edge be. In constructing F> by iteration, as N in F13\, increases, on this middle part of be
grows an infinite series of tetrahedra, piling one upon another and contracting by a factor of
1/3. Fig.A.3 shows the series of tetrahedra viewed in the direction of be. Let E and F be
the midpoints of the edges cd and be, respectively. The straight line ¢ that goes through E
and F pierces the midpoints of two edges in skew position of each tetrahedron in the series.
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Gy

1
¢ E

Fig. A.3.

The series converges to the point G that lies on the line ¢ satisfying |[FG,|/|EF| = 1)2.

The points G,, G3, G4, G5, and G¢ are determined just in the same way, except that the
edge be is replaced by ¢e, bc, cd, bd and ed, respectively.

Proof of US| (V) C V.

The polyhedron V is symmetric with respect to two planes, that is, x = 1/2 and the plane

containing the parallel lines Oa and f3(d) fg(e). The latter plane is shown in Fig.A.4.

Fig. A.4.

Thus, it suffices to show that f1(V), f3(V), fe(V), fs(V) C V (see Fig.A.5). Since f is the
similitude with center O and of factor 1/3, we immediately have f1(V) C V. Note that from
the convexity of V, it is sufficient to show that the images of all the vertices of V belong to
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V. Clearly, £(0), fi(a) € V fori = 3,6,8.

Fig. A.5(). fs(V).

Concerning f3(V), since both V and f3(V) are symmetric with respect to the two planes de-
scribed above, it is sufficient to show that f3(x) C Vforxe {d,e,Cy,C3,D3,D4,G1,G3,Gg}.
We see that f3(d) = Cs, f3(e) = D3 and f3(Gg) = G3. For the rest of the vertices, we have
checked by direct calculation that their images are contained in V, as is seen from Fig.A.5.
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Concerning fs(V) and f3(V), we see that

Je(e) = Cy, f6(Ge) = Gy, f6(G2) € G1G2, and f5(G4), fo(d) € AOGG.

13(Ge) = G, f3(d), f3(Gs) € OGg. As for the images of the other vertices by fy and fg,
we have checked that they belong to V. |

Proof of £(V) N f(V) = @ and fi(V) N f(V) € G3 fori # j..

It is sufficient to show that there is a plane that separates adjoining pairs of images of V,
say, f3(V) and fs(V). Here we only show that f3(V) N f4(V) = @, because proofs for other
pair can be done exactly in the same way. Let S be the plane that is perpendicular to cé and
contains b. Note that f3(V) and fs(V) are symmetric with respect to S (See Fig.A.6).

Fig. A.6.

Thus, if it is shown that fz(V) lies above S, then it automatically holds that f3(V) lies
below S. We show that the line segments bfs(C3) and b fs(G3) lie above S except the end
point b. To this end, we calculate inner products

bﬁ(@).&?;(l & ﬁ)(_l ﬁ \/6)_ 1 >0,

9’ 81 ° 81 6°18° 9 | 54

and

m.c—é:(l V3 5%)_( 1 V3 \/g) |

N A 1no Ty o A =_>0
9" 27 108 6 18 9 54

This result shows that these two vectors have positive components in the direction of ¢, and
so the line segments b fs(C3) and bfs(G3) lie above the plane S. In exactly the same manner,
we can show that the other vertices of fs(V) are above S. ]

Proof of F> C V. Recall that Fj is the set shown in Fig.3 of Section 2.1. The fact
that F; C V leads to ﬁ(Fg) c f,(V) for i = 1,...,8, which further gives F3 = f(3)(F§) =
8

U f,-(F;) c V) c V. It follows inductively that F13v C V for all N € N, that is,
i=1
Un-1 Fx € V. Taking closure, we have F3 C V. O
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