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Abstract
On a contact Riemannian manifold which is compact and not assumed to be integrable, we
intend to construct a parametrix for the Kohn-Rossi Laplacian. In particular, we will explicitly
express the inverse of its principal part. Beals-Greiner constructed it in the case where the
manifold is integrable. Our study depends heavily on theirs. We have some tools useful for the
study in the non-integrable case, by means of which their results are extended to the general
case and furthermore the inverse can be revealed more clearly.

0. Introduction

In this paper, on a contact Riemannian manifold M which is compact and not assumed to
be integrable, we intend to construct a parametrix Q for the Kohn-Rossi Laplacian Oy (cf.
(1.6), (1.7)): that is, the operators QOy — I, Oy Q — I have C*-kernels. In particular, we
will explicitly express the inverse operator of the principal part Oy (cf. (1.9)). The operator
Oy is not elliptic and consequently the standard elliptic theoryE)es not work well for the
study. We wish to investigate its parametrix as a stepping-stone to a close study of such a
troublesome but important operator.

Beals-Greiner ([2, Chap.4]) constructed it in the case where M is integrable. Our study
depends heavily on theirs. Fortunately we have some tools useful for the study in the non-
integrable case, by means of which their results are extended to the general case and fur-
thermore the inverse (Oy)~' can be revealed more clearly. In addition, the terms of the
symbol o(Q), which is written as an expansion ), 0—x(Q), can be expressed explicitly up
to an arbitrarily low degree, though the quantity of (elementary) calculation increases rather
rapidly.

We will prove the main theorems in §3 and §4, which propose the explicit formulas for
the symbol and the kernel of (0y)~! and mention some properties of Oy derived from the
existence of a global parametri;§1 and §2 are devoted to the explanation of our tools. In
§1 a general contact Riemannian manifold and the hermitian Tanno connection ﬁV, etc., on
it ([4]) will be reviewed. The connection %V coincides with the well-known Tanaka-Webster
connection (e.g. [3]) in the integrable case, and the author thinks that, as the Tanaka-Webster
one fits for the study in the integrable case, so must the connection *V in the general case.
In fact, he applied it to several problems in the general contact Riemannain case ([5], [6],
[71, [8], [9], etc.), and the study in this paper is one of such considerations. The formulas
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78 M. NAGASE

in the main theorems are described by means of geodesics, normal coordinates, parallel
transportations, etc., with respect to V. In §2, referring to [2, §11] we will review the
concept of y-coordinates x? associated to the #V-normal coordinates x. The new coordinates
x¥ play an important role in investigating the inverse (D_H)‘l. It is our idea to consider
only the case where the coordinates x are *V-normal ones. With no consideration to the
use of connection Beals-Greiner ([2]) adopted the coordinates x unrestrictedly, so that their
formulas have some vague parts even though restricted to the integrable case.

Last, we want to mention briefly another approach to the Laplacian Og: In [4], the author
studied the heat kernel e ™. We proved its unique existence and showed that its pointwise
trace can be expanded into tre ™7 (P°, P%) ~ 3, ot "D+ g, (P%) when t — 0, and all the
coefficients are described as certain universal polynomials built from the curvature and the
torsion of the hermitian Tanno connection. Further, by using only a basic knowledge of
calculus, one can describe the polynomials explicitly up to an arbitrarily high order. We
may incidentally remark that the results in §4 of the paper can be deduced also from those
in [4].

Together with [4], this paper thus deepens our understanding of the Kohn-Rossi Lapla-
cian.

1. Contact Riemannian manifold and the Kohn-Rossi Laplacian

Let M = (M; ¢, ey, J,g) be a (2n + 1)-dimensional contact Riemannian manifold. Here
¢ is a contact 1-form and e is the unique vector field satisfying eg]e® = €(ep) = 1,
eolde® = de®(ey, ) = 0, and (J, g) is a pair of (1, 1)-tensor field and Riemannian metric
satisfying g(eq, X) = €*(X), (X, JY) = —de®(X, Y) := =X(e°(Y)) — Y(°(X)) + ([ X, Y']) and
J2X = =X +"(X)ep.

Referring to [4] and [9], first we will review briefly some basic properties of the hermitian
Tanno connection denoted by *V ([4]), which is a tool crucial for our study. We set H =
kere’, H, = {X € CH | JX = +iX} (CH := H ® C). Without the assumption that J is
integrable (i.e., [['(H,),['(H})] c I'(H,)), we will equip M with the connection, which is
characterized by the following conditions:

Wl =0, *vg=0, *VJ=0, nT¢VYZW)=0 (ZeH,, WeCTM),

where T(ﬁV) is the torsion tensor and 7w, : CTM = Ceo® H, ® H_. — H, is the natural
projection (cf. [4, Lemma 1.1], [6, §2]). We notice that it coincides with the Tanaka-Webster
connection ([3, §1.2]) provided that J is integrable. On a small neighborhood U = Up of a
given point P, we always consider a unitary frame e? = (eg, e?, e eS, ec, ..., eg) of CTU

(eg = ep, €& = E e H_, g(eg, eg) = 0op, 1 < @, < n) whichis ﬂV-parallel along all the v

c=
geodesics from P. Its dual frame is denoted by e = (e%, eé, o€, eé:, .. efé) (hence, e% =

b
). We take the associated orthonormal frames e, = (eg, e, ,ea,), €* = (%, ¢!, -+, e?")

with respect to the underlying Riemannian metric g, i.e.,
c, ,C c_,C @ 4, @ _ a
. a — ’ n+a — - -

V2 V=2’ V2 V=2
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g=el®el + Z (h@el +el®el) = Z el

1<a<n 0<j<2n
Further, let x, = "(xg, X1 . . ., X2,) be the #V-normal coordinates centered at P with 9 [0xj = e
at 0 = P, and x? = ’(xi)c, x? ... ,xf, x(? ... ,x}‘f) be the complexified one. Also the frames

(0/0x3) = (9/0x5,0/0xT, -+ ,0/0xT,--+), (dxT) = (dxg,dx(, - ,dxT,---) are similarly
defined, that is,

o+ 1 Xptq 0 0 0 1,0 . 0
(12 af = xp = T e o m (o -,
V2 dxg  Oxo Oxg  2'0xy  OXpwa
etc. Hereafter the Greek indices a, 3, ... will vary from 1 to n, and so will do the block

Latin indices A, B, ...in {0,1,...,n,1,...,72}. We notice tVeC = 0, tiVl“(Hi) c I'(H.) and
we have the following.

Proposition 1.1. The connection forms a)(ﬁV)/g with
ﬁVeg = Z e - w(ﬁV)g, ﬁVe,%j = Z es V)2, w(ﬁV)g = —w(*V)’
and the transition functions V,(x%), V*(x°) defined by
€5 =(0/0x5) Va, €l =(dx5)-V*, hence, Vo = (V)" (ie, €5 =Y Vpa 0/0x5, etc.)

are expanded as

(1.3)
x© AVF(V)2(9/0x5,0/0x5 )
fvye CyCy — _ c . ..C B Ay
W(V)5(@/0x5)(x) = ;(“1)!2% e O
(1.4)

© (—17 iv7)\A C
VBA(XC) — 6BA + Z t Z XC » -)CC ) T( V)Al(a/axB)
i (L+1)! MR xS 0

[ee]

/-1 AF2F(VYA (91025, 0/0x%)
+Z K axf 4 4 52 0).
€+ 1)! ! ¢ Oxg -+ Oxy

(=2
(FOVEX.Y) = g(FV)(X, V)G, €5).  TEVYAY) = g(T("V)(eF Y), €]))
where we put F(V)(X,Y) = [*Vx, *Vy] = ¥V xy), TCVYX, Y) = #VxY = FVyX — [X, Y]. The
transition functions ve(x), v°(x) defined by
e = (0/0x4) - Ve, €° = (dx.)-v°, hence, ve = (v*)!
are also expanded as

(1.5)

[ee]

; . ¢ 0T (V) (0/0x))
UJ(_x):dJ +Z(€+1)!inl..-_xi( ax&”.ax!‘[ 0)

=1

SR 02 F (V). (8/0xi,,0/0x;)
+;(5+1)!2xi1"'x"‘ dxy, - Ox;, ©
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(FEW)X. Y) = g(F(V)(X. YV)ej e, TEVYAY) := g(T(V)(e;, Y), )

Proof. The expansions (1.3), (1.4) were shown in [4, Proposition 2.4] (cf. [1, Appendix
II]). As for (1.5): The equalities

R p p
xa®ﬁ+x@®—czxa®—+xn+a®

-~ 9
Xq ox; 0xq 0Xpia

etc., and (1.4) yield

>y 0 g(T (V) (er,, 0/0xF), €5)
VBA:6BA+ZWZ X, 0)

Oxj, -+ 0x;,
Z 0" 2g(F(*V)(8/0xiy, 0] Oxp)es,, ¢ C)( 0
e x. ,
€+ 1>' dxi, O,
and we have
0 0
(0,B)-entry (0, B)-entry
c_e.| O E E |_ .. E
€c = (@0yeniry /2 \2 =1e" -k,
0 iE —iE
(@, 0)-entry \/E \/E
=EV'E™!
VY08 —iV%4iyP
Yoo V2 V2
(0, B)-entry (0, n + B)-entry
ya0 4 a0 . _ _ _ - _
_| v VPV (VP VE)  —i(VEVE)+i(VE-VF)
(a, 0)-entry 2 2
V20 _jy/a0 o _ _ o _ _
5 WEVEVEVE)  (VELVIE)(VFE+VH)
(n + @, 0)-entry 2 2
Hence, by straightforward computation, we obtain the expansion (1.5). |

Now, we put
APT*M ={w e NCT*M | X|w=0(X e Reg UH.)}, Q%M =T(AYT*M)

and set dy = Tg.s1y 0 d : Q™M — Q1 M, where d is the usual exterior differentiation
and T1(..+1) denotes the natural projection Q**'M := [(A**!CT*M) — Q°**! M. Its formal
adjoint is denoted by 5;{ and the formally self-adjoint operator

(1.6) Op = Opg := 030y + 0pdyy : Q™M — Q™M

is called the Kohn-Reossi Laplacian. It is known (cf. [4, Proposition 1.3]) that, on U, they

can be expressed as follows:
1.7

51.1 = Zeg /\ﬁveg, (7);1 = —Zeg\/’iveg,
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O == ) (VihVes = Vi ) = VTPV = ) FOVY(eGef) - ebn L vern et v,

where e% A is the exterior production of e and e v := ¢7 | is the interior one of 5. (We
notice that, even if 5, etc., are just unitary, the formulas hold.) Here we want to state that
hereafter our study will specialize solely in the case

(1.8) O<g<n
for reasons that will become apparent.
Next, referring to [2, §10], let us introduce the symbol spaces. We put
FIU) = {f € CO(y o ENdANT U)) | F(@Q-T) = A" F(@, T)),

where A - T is the Heisenberg dilation of 7' = (T, T") e T*U = Re' ® H* by 4 > 0, 1ie.,
A-T := (2T° AT™). By using the #V-parallel transportation along the ¥V-geodesics to P,
we trivialize the bundles on U as

T'U = UXTpU = UXR™! e (x) -0 (x,e°(0)- 0) & (x,0),
ATy = U AMTIU = U xcl)
and put
FiU) = {f € C¥(ay. End(AT*U)) |
there exist f; € F//(U) (k < m) such that f ~ Z fih

k<m

where “f ~ >, fi” means that, for each multi-indices A, B and each N > 0, there exists a
locally bounded function c4px(x) > 0 such that

aﬁaﬁ(f - ka)(X, 0')| < capn@) ol PN (ol > 1).

k>m—N
1/4
(I == {lorol® + > ler*)"*, Bl := 2By + > B; = By +BI)
i1 j=1

Now, we consider another trivialization
TU = UxTiU = UXR™!, (dxo), & © (dxa)y - € © (x,&)

and regard the elements of C “(n*T*UEnd(/\%qT* U)) as the cross-sections of the bundle over
U x R¥™! (3 (x,&)), which are, hence, denoted by q(x, £). We set

(dxe)g - &a = €°(x) - 0o(x,E), hence, 0o(x, &) = vo(x) - &
and put
SHWU) = {q € C¥ (T} yy o End(AR T V) |
there exists f € P,Z’ (U) such that q(x, &) = f(x, 0(x,£))},
SpU) = {q € C™ (T, End(AY T U)) |
there exists f € F/;(U) such that q(x, &) = f(x, o(x, &)}

(Refer to [2, Proposition (10.46)] which remarks on the choice of the frames e®.) As usual
we put SF(U) = U, SHWU), S;°WU) = N, S;;(U), etc. A pseudodifferential operator P
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acting on C°°(/\%"T *U) whose usual symbol o(P) belongs to S};(U) is then called an H-
pseudodifferential operator (on U) of degree m. Those of H-pseudodifferential operators
acting on C*(U) will be denoted also by Sp;(U), etc., if no confusion occurs. The symbol
spaces S}j(M), etc., and H-pseudodifferential operators on M of degree m are then defined
in an ordinary manner.

The Laplacian Oy is obviously an H-differential operator of degree 2 and the principal
part Oy, i.e., o(Opy) € Sf’(M), is expressed on U as

1

(1.9) u_H%%-m: EWZ_;]%-DJ(J‘J)
= %Z%- { —ZZeSeS - \/—_12qe§}(fﬂ)

T=q

IS T = D el + e T A (= ~n=20)
=g

2n
= I D) - VT deo)h,
j=1

Ul=q

where we set J = ((1 <) j; < --- < j,(£ n)) and efc = eé NERRWA eg. Our main interest
centers around the operator.

2. On the y-coordinates and the y-group structure

Let us regard the small #V-normal coordinate neighborhood (Up, x) (given in §1) naturally
as a small neighborhood of 0 in (R**! x). Then, [4, §3] says that R2*! has a contact
Riemannian structure and the associated hermitian Tanno connection #V which satisfy the
following: their restrictions to Up coincide with the given ones, and the coordinates x of
(R¥*!, x) is the global #V-normal ones on R¥"*!. In §2 and §3, our study will be advanced
on the contact Riemannian manifold U = R?'*!. For example, ¢ is, hence, a globally
defined frame of CTU = CTR?*"*! which is #V-parallel along all the *V-geodesics from 0.

Referring to [2, §11], given a point y € R*"*! (= U), we start with reviewing the y-
coordinates, the y-group structure, etc., of R?*! The new coordinates centered at y defined
by

(2.1 =) =0y (- y)

are called the y-coordinates with respect to the frame e,, which are uniquely determined
by the conditions:

W =Cyx—y),  edy) =(9/0x)

xI=0

with some matrix C(y). We have
(0/0x0)x = (B]0x)w - va(y) ™", ea(x) = (0/0xd)w - va(y; ¥),  0a(y; 67) 1= 0a(y) ™ va(X)

0
and, if we denote the symbols of the operators i_lﬂ
X

J

and i"ej| by f? and

X Y+uve(y)x¥

o (y; X7, &%), respectively, then have
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E="0s) Lo Ty X, E) = T0a(y: XY) - £L.
Next, let us set
Ovo(y; x7)

(2.2) be(y) = (ki) 1<k j<ons  bijy) = 0
Xk

0=l vgkw)—(y)v’()(y)

it

Then, by Proposition 1.1, we have
1 1
bupp(©) = 5+ bpasp(®) = =5, bii(0) = 0 (otherwise),

and the Euclidean space (R?**!, x¥) with the group structure

(2.3) a2 =1 o, (L),

n
(X2 1= Xy + 29 + Z bkj(y)szz, x-2)j = x? + Z? (=1
k=1
is called the y-group.
We say that an operator Q acting on C*(R*"*!, x¥) is y-invariant if Ly,oQ=QoLj
for every x¥, where L,y is the left translation by x¥. For each j the unique y-invariant vector
field e? which agrees with 4/ ax? at y is given by

d J
(2.4) (E?f)(x”) = %f(x” -10,...,0,5,0... -,0)”)| i (f € C¥R¥™! 1))
The y-invariant frame e; = (¢j,ef,...,€,) with ¢{(0) = (9/dx])|,_, thus obtained is

expressed as

D b, benspy)x,
k>1 k>1
y y y y (0, B)-entry (0,n + B)-entry
€e(x) = (0/0x,) - vo(x?),  va(x”) := 0 ,
(a, 0)-entry E 0
0
(n + @, 0)-entry 0 E
9 2n
: y _ 9 _ .
Le., ;= axg, j kZ:ka(y)xk(9 ; (U= 1),

and, if we denote the symbol of the operator i~! ej by (T? (x¥,&Y), then we have

2n
o, &) ="va() &0 e, og(E) =& o () =€+ Z bij(y)x; &,
k=1
Its dual frame €”° is, hence, expressed as
(2.5) (X)) = (dxd) - (1Y), (V) =)

2n
ie, e =dx - Z bixldy!, e =dx (j = 1).
kj=1

Here, let us investigate the matrix b, (cf. (2.2)) closely.
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Lemma 2.1. If we set

bo:m(y) = (bkj:m(y))]<k Lj<2n (0 <m< 2”)5

bmw=%%ﬁﬂogmw—@mw
then we have
2n
(2.6) lewsel = " {bijm = bjemlen (ks j = 1),
m=0
Further, if we set
@.7) &hmw)=%k@me)—bmﬁmwmw»—iwmﬂmmw>+amﬂmxwﬁ,

1
Bﬂr‘r:m(y) = E{(bﬁam(y) + bn+ﬁ,n+(t:m(y)) - i(bn+ﬁ,a/:m(y) - bﬁ,n+a/:m(y))}>

Bﬁ@:m(!/) = Bﬁa:m(.’/)7 Bﬁa:m(y) = Bﬁ&:m(y),

then we have

2n 2n
(2.8) [eg’ ES] = Z{B,Ba/:m - Baﬁ:m}em’ [ega eg] = Z{Bﬁ(x:m - B(lﬁ:m}em~
m=0 m=0

Proof. Since

e =L Y e, Yt = 3 fon e - 2 e
k> k™ — U
/ ”ax, 6[ jBXg "

(2.6) is valid. (2.8) follows from (2.6) easily.

O

Proposition 2.2. We have bg, = bg,.o, etc., and accordingly let us put Bg, = Bgq.o, etc.

Then we have
(29) B,Ba/ = BQIB, BBQ = BQB + i5/ga,
(2.10) bﬂa = baﬁ, bn+,8,n+a = bn+a,n+ﬂ’ bn+,3,a = boz,n+ﬁ + 6,8(1-

REMARK. [2, (21.7)] says bg, = bop because of the integrability of J. But, in fact, (2.10)

holds even if J is not integrable.

Proof. [4, (1.8)] implies that (even if J is not integrable) the coefficients of ey in the
expansions of [eg, €S, [e5, e] are equal to 0, —idg,, respectively. That is, we obtain (2.9).

(2.10) follows from (2.9) and (2.7).

Even more, we have the following: In the same way as the definitions of x
(dx%) (cf. (1.2)) and €%, eg. (cf. (1.1)) , we define x. ,(0/0x% ) (dx"(c) and 7'

Lemma 2.3. We have

25 =0/0xl) E0), el = @) T 0), =T

O

, (0/0x0),

9 C .
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D By > By

s A#0.0,p)-entry A#0 0, py-entry
R P U E 0
(6.00eny 0 E
Now, (2.5) and (2.10) yield
de* = d(dxy— > bijy)xldxl) = Y (bix(y) - bi))dxi A dx!
k=1 kj=1

= Z dxl, ndx!,, = Z N
so that
0N (de?0) = n! (=12 00 A QLA B2 A A e
that is, ¢ is a contact form. Let us set
HY := kere?? = (e],....€5), hence, TR = (ep) @ HY,
JY TR — TR, J”(e(y)) =0, JY%e)) =€, JU(,,) = —¢),

C C C C .
CHY =H{ e H' :=(e]",...,e, )EB(eq e, €00) hence,]-"Hl = +i,
gy—e +Z(ew®ew+ew®e’a)— Z e e,
0<j<2n

85

Then MY := (R**1;x), e¥* €),JY,4") is, hence, a contact Riemannian manifold. We de-
note the hermitian Tanno connection and the pseudo-Hermitian torsion by #V¥ and 7 (i.e.,

(X) := TEVY)(X, eg)). Since Lemma 2.3 and (2.9) imply
2", ey 1 =0, [et.eh"] = —idupey”,  [ef". "1 =0,
we have the following.
Proposition 2.4. The contact Riemannian manifold MY is integrable and we have
wlfVg =0, =0.

The Kohn-Rossi Laplacian acting on Q%IMY (cf. (1.7), (1.9)) is, hence, expressed as

L
0 et =5 ) e ol

Hl=q Ul=q
1 —_—
=3 Z eéﬁj . { - ZZ e(yl(ceg(C \/—_12qeg’c}(fj)
Ul=q

2n
1 Z e 2(65)2 _ x/__ueg}(fﬂ) A = —(n-2q)).
j=1

IJI =q
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3. The model operator DZ and its inverse

The operator D?{ on MY will approximate Oy near y, and is called the model operator.
Its element D? acting on C®(R?"*!, x¥), called the model operator too, is expressed also as

2n
yo_ N2 _ - y0r yC  yC : y0r yC  yC Yy
oy = —Z(ej) —Z(Zlec (Groyea ])—Z}le(c lea " e ]))eo.
J=1

a€l agl
Since 0 < g < n (cf. (1.8)), we have

. 4,0 ,C ,C .40, yC yC
D iet((eh el = ) i€l (el ekt

agl a€l
That is, the Levi form LY defined by

<

. 40, yC 4 C
Zl@é lec el DI

[

LUZ,W) = —ide"*(Z,W) = iel ([Z,W]) (Z,W € HY)

satisfies the condition Y(q) (cf. [2, Definition (21.34)]). Hence, we know (cf. [2, Theorem
(21.35)]) that the model operators 0, 0% have the inverse operators (07)~', (0%)'. In
this section we will investigate the inverse operators closely and express their symbols and
kernels explicitly.

Let us change the coordinates x¥ into the new ones x”/, which we call the normal y-
coordinates, by the transformation (cf. [2, (1.18), (1.19)])

(31) w : (RQVH-]’ xy) N (R2n+l, x/y)’
2n

1
oty Y.y y
X = (o - 3 E Qi) X, .,x),
Jok=1

1
qrji(y) = qiy) = E(bkj(y) + bji(y)).

It will simplify our investigation. In fact, the y-group structure (2.3) of (R*"*!, x¥) induces
the new one of (R¥**!, x')

(3.2) XYY =X )e, (XY D)),

2n
/7, 7 / ’ 4 4 .
(X = 7 + Z ckjx/Z], (=X (2D,
Jk=1

1
ckj(y) = —cjy) = z(bkj(y) —bj(y)) (hence, byj = qij + ci))

with

0- a O 1
(33) mw:wmw=@(ﬁ,a=(0aaj,@=?

which is fairly simpler than the original one. In [2] the coordinates x'¥ were called the skew-
symmetric ones and, by another transformation, x¥ were changed into the normal ones ([2,
(1.26)-(1.29)]). But obviously x" are already such normal ones in our case.

On (R?>*! x), we consider the y-invariant frame e, with ¢)’(0) = (9/0x7)
(2.4)), which is expressed as

(cf.

xY=0
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3.4) el (x") = (0/0x)) - vl (x"Y),
> aswx! D cenp)xy!
k>1 k>1
y (0, p)-entry (0,n + B)-entry
0, (x") = 0
(a, 0)-entry E 0
0
(n + @, 0)-entry 0 E

Further, if we denote the symbols of ;™! 7 _le;.” by &Y and a}”(x’y ,&Y) respectively,
X"
j
then we have
(3.5) ol ,EY) ="l () - &)
Now, let us set
2n
(3.6) 0 =y = - ) (V) - V-1a¢]
J=1

and, first, introduce an explicit expression of the symbol of the inverse operator (D}” )7L

Theorem 3.1 (On the symbol of (T*)™"). If €% # 0, then
(3.7) (@) H,EY) = ¢ (y; £, €7)

=q (y; (XY, EY)) = f ¢G0T, 7). 5) ds
0

with
1 tanh(|&s)
(———=—)e EVy - ———) &) #0,
h Z 'y 0
3.8) G, s) = cos (If |s) €0 |

exp( - Z(f}”)zs) 1€ =0,
=

where the integrand %SG (o (1Y, &), 5) is C° on R¥"™! x [0, 00), C* on (Rz’”l {0} x

[0, ) and is rapidly decreasing with respect to s. Notice that o"y (XY, &) = &7, and if it
vanishes, then o y(x’” &) = fH, where we set §H ’(f .. §2n) etc.
Since

(@) ') = (@ @) Hw ) = (@) )W),
we have the following.
Corollary 3.2 (On the symbol of (0})™"). We set
q=y'q, ie qx".&) =q (¥, &) = q'(y; X7, ).
If&" #0 (ice., €Y # 0), then we have
a(@)™H, &) = qly; 7, ).
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The expression of (I:l?l)_l in terms of the symbol is, hence,

(3.9) @' e e =2 ) - @) ()
Jl=q 1Tl=¢
1 i{x? &Y . YN\ Fo( &Y
ﬂée?m)'(zn)w f gy, ) (e de.

In fact, q(y; x¥,&Y) € sz in the last line must be changed into an element of 51}2 which is
equal to the original one apart from a neighborhood of & = 0.

Next, we will introduce an explicit expression of the kernel of the inverse operator (D}y )7L

Proposition 3.3 (cf. [2, Theorem (5.9)], (3.2.1)-(3.2.2)). There exists a unique tempered
distribution K'(y;) on (R**!,xY), i.e., K'(y;) € S'(R¥™*!, x'Y), such that it is locally inte-
grable, of C* except at 0, and satisfies

K(y;)od, =1t2K(y;) (>0, 6" :="Cx), ex?,....1x)))

and, last,

G10) (@) HEY) = f Ky @7 ) f@)de” (f € CE®R™,x)).

R2n+1

The kernel K’(y; ) is expressed as follows.
Theorem 3.4 (On the kernel of (EIJ'Iy)‘l). Assume x"Y # 0 and consider the integral path
inC
Iy = (-00,00)  xf="(x,...,x))#0,
B { I, = (-0 +ig-sgnxy, co+ic-sgnxy) :x) #0,

where we fix € with 0 < &€ < /2. Then, we have

(3.11) K (y:2) = @m)~'T () f A(s) e (vl 5) = ixs) " ds.
1
- —n(_ S V! Wy L
A(s) := (4n) (m) y(xY, ) = Z|xH| scoth s.

The integrand is integrable. In the case x(')"’ # 0 the integral on the path I, does not depend
on the choice of €, and, in the case x}f # 0 and xz)y # 0, the integral on Iy coincides with that
on I..

Remark. As for the integral (3.11) with I = I, (and x}; # 0): If we set x; = 0 forcibly,
the integrand is not integrable because y(x}/, s) — ix;)”s = —ix(')"’s. To regularize the integral
in the case x}? = 0 (and, hence, xz)y # 0) we deform the integral path [ to get the integral
(3.11) with I = I, (and x/ # 0).

Corollary 3.5 (On the kernel of (0)™"). Set
k(y;) =K (y;), e, k(y; X)) =K ;¢ (x") = K (y; x"),

then we have
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@) H) = f k(y; @) - x) f() de?

R2n+1

) f K@D X @) .
R2n+
The expression of (|:|?1)‘1 in terms of the kernel is, hence,

(3.12) @ Ol e ) =2 e ) - @) ()

Jl=q Ul=q

=2 ) et () fR k(y; ()" ) fi(2) d.

Ul=q

3.1. On the proof of Theorem 3.1. Let us prove Theorem 3.1. The smooth function
G, s)| £140 €N be extended uniquely to the smooth one (3.8) (on &% # 0), which is cer-
0
tainly C° on R¥"*! x [0, c0) and C* on (R¥"*! — {0}) x [0, o). In the case f(')” = (it is obvious
that the integrand of (3.7) is rapidly decreasing, but, in the case é-‘(')y # 0 it will not so obvious.
For example, we will show

(.11 G, )| < Cexp(—nlls) : &' #0.
Since 0 < g < n, we have
—2gY —nlg) < 0.

Hence, if (3.1.1) holds, then, also in the case f(')y # 0, the integrand is exponentially decreas-
ing when s — oo. In this way, for the proof it will suffice to focus only on the case 58” # 0.
In the following, thus we assume f(')” # 0.

The merit to adopt the transformation (3.1) is that e}/ and o) = o/(x"%, £"?) are expressed
simply as

ey = 9 el = 0 + lx/y 0 el = o _ lx'y 0
0 - Y Jj 1y n+j q. 1y’ n+j 1y J y
0x, Ox ; 2 0x, ox’. i 27 ox,
1 1
o ey oy Loy ey o ey L ey
oy =&, 07 =E; 3 %ne600 Tnej T nvj T 3% %0

(cf. (3.2), (3.3), (3.4), (3.5)). Referring to (3.6) the symbol of D}y is expressed as

2n
T@)W.EY) = P (g x" £ = B (L) 1= Y L E Ao (a7, £
J=1

and the operator DJ}” is, hence, y-invariant, so that its inverse operator is also y-invariant and
its symbol can be expressed as

(@) HO,EY) = ¢ (567, €)= Ty 0 (7, 7)),

To investigate q’, we have only to follow the argument in [2, §4]. Let us put q(¢) = q'(y; &),
p(&) =P (y;&). Notice that if we set & = 07(x"?, ") then & = o7/ (x"%, &) = & Therefore,
the assumption &) # 0 induces & # 0, and we have
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Ty~ — ’ 1
L= (@), = 3 (o) Ditpots ),

={p© - Z fo(—) la) = Zf +A§Q—Z §0<—) la).

That is, under the assumption &, # 0, q(£) satisfies the equation

2n

Z (& - —fo( %, ) Ja@® + a6 q@ = 1,

]_

which is formally solved in [2, (4.17), (4.23)] to give
(3.1.2) q) = f e UG£, 5)ds,
0

where G(&, s) is the function (3.8) in the case f(')” # 0 but with & replaced by £&. And we
have the estimate (cf. (3.1.1))

IG(&, )| < 2"exp( - 5 Z €ols) = 2" exp ( - nigols),
etc. That is, in the case 0 < g < n the integrand of (3.1.2), or (3.7) is rapidly decreasing. In

this way, Theorem 3.1 can be justified (cf. [2, (4.26)-(4.28)]).

3.2. On the proof of Theorem 3.4. We refer to the argument in [2, §5]. By formal
computation we have

B2.) (@) 'HEY) = f K (y; x¥, x"% = ") f(2)dz"”

R2n+1

= [ et [ e g enag ) ez
R2n+1 R2n+1

(@)™ HY) = (Lo (@D H)O0) = (@) (L £))(0)
=f K (0, %) (L)) d2" = f K (40, —2) (V) d2”
RZ)H-I

RZ:H—I
= f K (40, (%)) f(x72") d2”.
R2n+l

As for the last equality, notice that —z”/ = (z’/)~! because the matrix c,(y) at (3.3) is skew-
symmetric. Setting

(32.2) K’ (y; ¥ := K (; 0, x%) = 2m) """ f EN G (30, €") de

R2n+l1
S B (TP

thus formally we obtain the formula (3.10).
Next, the integrand of (3.11) has the following property.

Lemma 3.2.1. The function A(s)(y(xg, s) — ixay s)™" of s (e C) is meromorphic and has
no poles in
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(3.2.3) {s | |Im 5| < g} CXE0& X =0,
{s|0§ImS-sgnx(’)y< g} . x;fi()&xay;to,
{s|s¢ ikﬂ(k:(),l,z’m)} . x;g =0&x6” 40,

and is analytic on the integral path I. Further, there are C > 0, ¢ > 0 such that, on I,

(3.2.4) |A(s)e™| < Cexp (11 - (n - %)) Re sf) < Cexp ( - Re s]),
(3.2.5) Re(y(xy, s) —ixys) > ¢ > 0.

Proof. We put x = x", & = &Y, etc., for short. As for (3.2.4) © The second inequality

follows from 0 < g < n. Let us show the first one. On I = Iy, for |s| large, we have
s || 2s| 2ls]

_ _l¢ —(1-L
- = — = — - < — — = 4sle™ < 8nell?ne7l = 8p (720,
sinhs sinh|s| eBl —e sl = elsl —elsl/2

so that, on I = I,

|A(s)e™| < Ceexp (jasl - (1 - %)nlsl) = Cexp (Al - (n - %))Isl).

On [ = I, for |s| large, we have

' s |_| u+iv _| u+iv |
~ Isinh(u + iv)! ~ Isinhu - cosv +icoshu - sinv
|t + v | + v

sinh s

B (sinh? u - cos? v + cosh? u - sin® v)1/2 ~ (sinh® u - cos? v + sinh? u - sin” v)!/2
_u+iv]  |Res+igl - [Re s| + & - 2|Re s|
~ sinh|u|  sinh(Res|) ~ sinh([Res|) ~ sinh(|Res|)’
Thus, on I = I, we obtain the above estimate with s replaced by Re s. As for (3.2.5): The
function s coth s is meromorphic and has no poles at s # +iknm (k € N) and we know

(3.2.6) Re(scoth s) > 0 (—g <Ims < g)

and
2n x2

(3.2.7) Re(y(xy, s) — ixgs) = Z ZjRe(s coth s) + xoIm s.
=1

Now, by (3.2.6), on I = Iy (& xy # 0) we have Re(scoths) > ¢ > 0 with some ¢ > 0, and
on I = I. (& xo # 0) we have Re(s coth s) > 0 and

xoIm s = xo Im(z + ie - sgn xg) = xp & - sgn xp = &lxg| > 0.

Thus we obtain the estimation (3.2.5). As for (3.2.3): (3.2.6), (3.2.7) say that Re(y(xy, s) —
ixps) > 0 as long as

(xolm s, x7) # (0,0,....0), xIms >0, [ims] <.

Hence, (y(xy, §) — ixos)™" has no poles in
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{s||Ims| < g} cxp#0&x) =0,
{s|O§Ims-sgnxg’< g} cxy#0&xy #0,
[s[s#0} :xy=0&x =0,
Since A(s) has no polesin {s | s # tkr (k = 1,2,...)}, certainly the function A(s)(y(xy, s) —
ixps)™" has no poles in (3.2.3). m|
Let us prove Theorem 3.4.

Proof of Theorem 3.4.. Again, we put x = x"¥, & = £, etc., for short. First, let us prove
the formula (3.11) with “I = Iy and xgy # 0. Theorem 3.1 implies that, in the case & # 0,
we have

Tw0 = fo G, 5) ds = fo ol e HGE 1ol 5) ds,

G lol™s) = (5 Shs Zlf—oltanhs

where we set u = A4 - sgné. In the following, we want to compute

K (y; %) = f {@m=! f O e G, ol 5) dElds
0 (R\{0})xR2"

- [Heo [ emiarten(on [ e s deadeas
0 R\{0} R2n

First, we have

x> f G, ol 5) dén

2n
(L o i
= (coshs) - (2m) fﬂ; exp jZ tanhs de

ol 1,
= (4n)” ( S) p(—ZZI&)Ixjcoths).
j=1

Hence, referring to the formula [2, (5.22)(5.23)], we have

o I T (e f G, ol 5) dén )déo
R2n

R\{0}
1 S 1 2n
_(4 ) ( ) (271-) f ezxofo |§O|n—1 exp (_/l.S“ Sgnfo - |§O|Z Z X? coth S) df()
— o0 j—l

=(4m)” ( nl )(27r) "T(n)| —“( Zx coth s—ixg)™ +e’”( Zx coth s+ix0) ™"}

2n
=(4r)” ( Sinh )(27r) 1F(n) _’ly(lzsx coth s—ixgs)”~ +e’“( st coth s+ixgps)” }

J=1 /1



PARAMETRIX AND THE KOHN-ROSSI LAPLACIAN 93

and
2n

n 1
$ ) e"”(z JZ:; sx? coth s —ixps)™"ds

k(i) = Cny T [ cm(

sinh s

sinh s

2n
(o] n ]
+ f (477)_”( i ) e’”(z Z sx? coth s + ixos)_"ds}
0 .
J=1

o0 2n
= 27)"'T(n) j_‘m(47r)_"($)ne_“(}1 ]Z:‘ sx? coth s — ixos)_nds.
Here the integrability is guaranteed by (3.2.4), (3.2.5). Thus the formula (3.11) with “7 = I
and xy # 0 was obtained.

As was indicated in Remark of the theorem the above formula cannot cover the case
xo # 0 and xy = 0, and we want to draw the formula (3.11) with “/ = I, and xy # 0. If
X # 0 and xy # 0, then the integrand A(s) e~ (y(xp. 5) - ixos)_n of the integral (3.11) is
analytic on {s ’ 0<Ims-sgnxy < 7_2r} (cf. (3.2.3)). Hence, by the ordinary theory of analytic
function, we know that, in the case xo # 0 and xy # 0, the integral (3.11) on the integral
path I = I, coincides with that on I = I,.. The latter one (with “I = I, xo # 0 and xg # 0”)
can be extended naturally to the desired one (with “/ = I, and xy # 07). It will be obvious
now that the formula (3.11) thus obtained fulfils the requirement stated in the theorem. O

4. Parametrix and some global properties of Oy

Returning to the setting in §1, let us construct a global parametrix of Oy = Op,. First,
we will construct a parametrix of the principal part Oy on U.
Given a symbol q(x, §) € S;;(U), in the y-coordinates (x*, £”) it is written as

q(; X7, &%) = qly + ve()X’, 0 ()E).

Conversely, a symbol q(y; x¥, &) in the y-ones can be written in the usual ones (x, &) as

q(x, &) = q(x; 0, 0(x, £)).

Indeed, let ¢ be the transformation of R**! defined by ¢(x¥) = y + v.(y)x? (cf. (2.1)), then
we have

q(e(x"); 0, o(e(x”), v* (1)E")) = q(x"), v*(Y)E”)
= Q™ W E) = s . v (y) 0 @)E)
=qy; 2%, &).

Now, together with Corollaries 3.2 and 3.5, it implies the following.

Theorem 4.1 (On a parametrix of Oy on U). Let (y; x¥,&Y) be the symbol given in
Corollary 3.2, and let k(y; x?) be the kernel given in Corollary 3.5. Then the inverse operator
(@p)~! is expressed as

1
(277)2n+l

@D @Ol el =2 ey

Ul=q Ul=q

fR OG0, 0y, ) (&) de.
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42 @) Q el =2 e fR et k(@) @) dz
=g =g "

with 0'((D_H)’1) € Slf(U;End(/\%’qT*U)), and Oy on U has a two-sided parametrix Qu
given by

Ou :(D_H)—1(1+Rf/’+..._,_(RZ)k_'_”_)
with DH(D_H)_l = I—Rg, O'(Rg) c Sgll(U;End(/\%qT*U))-

As for the expansion 0(Qu) = Yis=r 0-k(Qu), 0_1(Qu) € SZ{(U; End(/\(l)fT*U)), the terms
can be expressed explicitly up to an arbitrarily low degree by using Proposition 1.1.

Proof. As for (4.1) © Since the inverse operator (|:|J?)‘1 has the symbol q(y; x7, &%) (cf.
Corollary 3.2), the above argument and [2, Theorem (18.4)] imply that the inverse (@y)!
has the symbol q(y; 0, o(y, £)). Thus we obtain the formula (4.1). As for (4.2) : First we
have

@3 @' =@ O IO = fily + o)),
Jl=q Ul=q
Indeed, by (2.1) and (3.9), we have
;L/(é:y) - fe_i<zy’§y>]}y(zy)dzy - fe—i<’v'(y)(z—y),’v.(y)f-)ﬁ](z) det'v*(y) dz

= 699 det'*(y) f D f(2)dz = €99 det'v" (y) Fi©),

@y Yl o =23 )

Ul=q Ul=q

1 . —_
= 22 e y) - Qo f q(y; 0, 0°(y, )’ det'v*(y) fi(€) det'va(y) dé

[T=q

- 1 . — —
~2Y 0 e [ €0:0.00.0 T dE = @) (Y - ).

V=g Ul=q

1 . _
G f (0.8 f1(&) dg?

Thus we obtain (4.3). Hence, referring to (3.12), we have

@Ol e o =2 ) f k(g @)7) () d2?

Ul=q Ul=q

=2Z@-fk(y; (@™ fix) det"v*(y) - dz.

Hl=q

The remaining part will be obvious by the standard argument. O

A two-sided global parametrix Q of Oy is constructed as follows: According to
Theorem 4.1, on a small open set U we construct a parametrix Qup with o(Qy) €
Sl‘{z(U ; End(/\%qT* U)) which is properly supported (cf. [2, (9.21)]). We take a finite number
of such pairs {(U, Qy)}, where {U} is an open covering of M. Let {¢y/} be a C*-partition of
unity subordinate to {U}. Then the operator Q defined by
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of = > Qu¢uf)
U

is a two-sided global parametrix with o(Q) € S;IZ(M ; End(/\?fT*M)).
By the standard Fredholm theory (cf. [2, Theorem (19.16)]), now we know that the L*-
extension

O : L2(M; AYIT* M) — LX(M; AT M)
has the following properties:
dimker Oy < 0o, ker Oy € C®(M; /\%"T*M),
and range Oy is closed and
codim range Oy < oo.

Further, the associated projections

I, : L2(M; /\(I)l’,qT*M) = ker Oy @ (ker Ogy)* — (ker Oy)™*,

I, : LX(M; /\%,qT*M) = range Oy @ (range Oy)" — range Oy
and the continuous operator Ny : L2(M; /\?fT*M ) = L*(M; /\gl’qT*M ) satisfying

Oy Ny =11, (on L*(M; /\?{’qT*M)), Nyoy =11, (on domOpy),

which is called the partial inverse of Oy and is unique modulo smoothing operators, are all
H-pseudodifferential operators. We know that the operator N, which is of degree —2, is in
fact a parametrix of Oy.
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