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Abstract
On a contact Riemannian manifold which is compact and not assumed to be integrable, we

intend to construct a parametrix for the Kohn-Rossi Laplacian. In particular, we will explicitly
express the inverse of its principal part. Beals-Greiner constructed it in the case where the
manifold is integrable. Our study depends heavily on theirs. We have some tools useful for the
study in the non-integrable case, by means of which their results are extended to the general
case and furthermore the inverse can be revealed more clearly.

0. Introduction

0. Introduction
In this paper, on a contact Riemannian manifold M which is compact and not assumed to

be integrable, we intend to construct a parametrix Q for the Kohn-Rossi Laplacian �H (cf.
(1.6), (1.7)): that is, the operators Q�H − I, �HQ − I have C∞-kernels. In particular, we
will explicitly express the inverse operator of the principal part �H (cf. (1.9)). The operator
�H is not elliptic and consequently the standard elliptic theory does not work well for the
study. We wish to investigate its parametrix as a stepping-stone to a close study of such a
troublesome but important operator.

Beals-Greiner ([2, Chap.4]) constructed it in the case where M is integrable. Our study
depends heavily on theirs. Fortunately we have some tools useful for the study in the non-
integrable case, by means of which their results are extended to the general case and fur-
thermore the inverse (�H)−1 can be revealed more clearly. In addition, the terms of the
symbol σ(Q), which is written as an expansion

∑
k≥2 σ−k(Q), can be expressed explicitly up

to an arbitrarily low degree, though the quantity of (elementary) calculation increases rather
rapidly.

We will prove the main theorems in §3 and §4, which propose the explicit formulas for
the symbol and the kernel of (�H)−1 and mention some properties of �H derived from the
existence of a global parametrix. §1 and §2 are devoted to the explanation of our tools. In
§1 a general contact Riemannian manifold and the hermitian Tanno connection �∇, etc., on
it ([4]) will be reviewed. The connection �∇ coincides with the well-known Tanaka-Webster
connection (e.g. [3]) in the integrable case, and the author thinks that, as the Tanaka-Webster
one fits for the study in the integrable case, so must the connection �∇ in the general case.
In fact, he applied it to several problems in the general contact Riemannain case ([5], [6],
[7], [8], [9], etc.), and the study in this paper is one of such considerations. The formulas
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78 M. Nagase

in the main theorems are described by means of geodesics, normal coordinates, parallel
transportations, etc., with respect to �∇. In §2, referring to [2, §11] we will review the
concept of y-coordinates xy associated to the �∇-normal coordinates x. The new coordinates
xy play an important role in investigating the inverse (�H)−1. It is our idea to consider
only the case where the coordinates x are �∇-normal ones. With no consideration to the
use of connection Beals-Greiner ([2]) adopted the coordinates x unrestrictedly, so that their
formulas have some vague parts even though restricted to the integrable case.

Last, we want to mention briefly another approach to the Laplacian �H: In [4], the author
studied the heat kernel e−t�H . We proved its unique existence and showed that its pointwise
trace can be expanded into tr e−t�H (P0, P0) ∼ ∑

k≥0 t−(n+1)+kak(P0) when t → 0, and all the
coefficients are described as certain universal polynomials built from the curvature and the
torsion of the hermitian Tanno connection. Further, by using only a basic knowledge of
calculus, one can describe the polynomials explicitly up to an arbitrarily high order. We
may incidentally remark that the results in §4 of the paper can be deduced also from those
in [4].

Together with [4], this paper thus deepens our understanding of the Kohn-Rossi Lapla-
cian.

1. Contact Riemannian manifold and the Kohn-Rossi Laplacian

1. Contact Riemannian manifold and the Kohn-Rossi Laplacian
Let M = (M; e0, e0, J, g) be a (2n + 1)-dimensional contact Riemannian manifold. Here

e0 is a contact 1-form and e0 is the unique vector field satisfying e0� e0 := e0(e0) = 1,
e0� de0 := de0(e0, ) = 0, and (J, g) is a pair of (1, 1)-tensor field and Riemannian metric
satisfying g(e0, X) = e0(X), g(X, JY) = −de0(X, Y) := −X(e0(Y))− Y(e0(X))+ e0([X, Y]) and
J2X = −X + e0(X)e0.

Referring to [4] and [9], first we will review briefly some basic properties of the hermitian
Tanno connection denoted by �∇ ([4]), which is a tool crucial for our study. We set H =
ker e0, H± = {X ∈ CH | JX = ±i X} (CH := H ⊗ C). Without the assumption that J is
integrable (i.e., [Γ(H+), Γ(H+)] ⊂ Γ(H+)), we will equip M with the connection, which is
characterized by the following conditions:

�∇e0 = 0, �∇g = 0, �∇J = 0, π+T (�∇)(Z,W) = 0 (Z ∈ H+, W ∈ CT M),

where T (�∇) is the torsion tensor and π+ : CT M = Ce0 ⊕ H+ ⊕ H− → H+ is the natural
projection (cf. [4, Lemma 1.1], [6, §2]). We notice that it coincides with the Tanaka-Webster
connection ([3, §1.2]) provided that J is integrable. On a small neighborhood U = UP of a
given point P, we always consider a unitary frame eC• = (eC0 , e

C
1 , . . . , e

C
n , e
C

1̄
, . . . , eCn̄ ) of CTU

(eC0 := e0, eCᾱ = eCα ∈ H−, g(eCα, e
C

β̄
) = δαβ, 1 ≤ α, β ≤ n) which is �∇-parallel along all the �∇-

geodesics from P. Its dual frame is denoted by e•
C
= (e0

C
, e1
C
, . . . , en

C
, e1̄
C
, . . . , en̄

C
) (hence, e0

C
=

e0). We take the associated orthonormal frames e• = (e0, e1, · · · , e2n), e• = (e0, e1, · · · , e2n)
with respect to the underlying Riemannian metric g, i.e.,

eα =
eCα + eCᾱ√

2
, en+α =

eCᾱ − eCα√−2
, eα =

eα
C
+ eᾱ
C√

2
, en+α =

eα
C
− eᾱ
C√−2
,(1.1)
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g = e0
C ⊗ e0

C +
∑

1≤α≤n

(
eαC ⊗ eᾱC + eᾱC ⊗ eαC

)
=

∑
0≤ j≤2n

e j ⊗ e j.

Further, let x• = t(x0, x1 . . . , x2n) be the �∇-normal coordinates centered at P with ∂/∂x j = e j

at 0 = P, and xC• = t(xC0 , xC1 . . . , xCn , xC
1̄
. . . , xCn̄ ) be the complexified one. Also the frames

(∂/∂xC• ) = (∂/∂xC0 , ∂/∂xC1 , · · · , ∂/∂xC
1̄
, · · · ), (dxC• ) = (dxC0 , dxC1 , · · · , dxC

1̄
, · · · ) are similarly

defined, that is,

xC0 = x0, xCα =
xα + ixn+α√

2
,

∂

∂xC0
=

∂

∂x0
,

∂

∂xCα
=

1√
2

( ∂

∂xα
− i

∂

∂xn+α

)
,(1.2)

etc. Hereafter the Greek indices α, β, . . . will vary from 1 to n, and so will do the block
Latin indices A, B, . . . in {0, 1, . . . , n, 1̄, . . . , n̄}. We notice �∇eC = 0, �∇Γ(H±) ⊂ Γ(H±) and
we have the following.

Proposition 1.1. The connection forms ω(�∇)A
B with

�∇eCβ =
∑

eCα · ω(�∇)αβ ,
�∇eC

β̄
=

∑
eCᾱ · ω(�∇)ᾱ

β̄
, ω(�∇)ᾱ

β̄
= −ω(�∇)βα

and the transition functions V•(xC), V•(xC) defined by

eC• = (∂/∂xC• ) · V•, e•C = (dxC• ) · V•, hence, V• = (tV•)−1 (i.e., eCA =
∑

VBA ∂/∂xCB, etc.)

are expanded as

ω(�∇)αβ (∂/∂xCA)(xC) = −
∞∑

=1




(
 + 1)!

∑
xCA1
· · · xCA


∂
−1F(�∇)αβ (∂/∂xCA, ∂/∂xCA1
)

∂xCA2
· · · ∂xCA


(0),

(1.3)

VBA(xC) = δBA +

∞∑

=1




(
 + 1)!

∑
xCA1
· · · xCA


∂
−1T (�∇)A
A1

(∂/∂xCB)

∂xCA2
· · · ∂xCA


(0)

(1.4)

+

∞∑

=2


 − 1
(
 + 1)!

∑
xCA1
· · · xCA


∂
−2F(�∇)A
A1

(∂/∂xCA2
, ∂/∂xCB)

∂xCA3
· · · ∂xCA


(0).

(
F(�∇)A

B(X, Y) := g(F(�∇)(X, Y)eCB, e
C

Ā), T (�∇)A
B(Y) := g(T (�∇)(eCB, Y), eCĀ)

)
where we put F(�∇)(X, Y) = [�∇X ,

�∇Y] − �∇[X,Y], T (�∇)(X, Y) = �∇XY − �∇Y X − [X, Y]. The
transition functions v•(x), v•(x) defined by

e• = (∂/∂x•) · v•, e• = (dx•) · v•, hence, v• = (tv•)−1

are also expanded as

v ji(x) = δ ji +

∞∑

=1




(
 + 1)!

∑
xi1 · · · xi


∂
−1T (�∇)i
i1

(∂/∂x j)

∂xi2 · · · ∂xi

(0)

(1.5)

+

∞∑

=2


 − 1
(
 + 1)!

∑
xi1 · · · xi


∂
−2F(�∇)i
i1

(∂/∂xi2 , ∂/∂x j)

∂xi3 · · · ∂xi

(0).
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F(�∇)i

j(X, Y) := g(F(�∇)(X, Y)e j, ei), T (�∇)i
j(Y) := g(T (�∇)(e j, Y), ei)

)
Proof. The expansions (1.3), (1.4) were shown in [4, Proposition 2.4] (cf. [1, Appendix

II]). As for (1.5): The equalities

xCα ⊗
∂

∂xCα
+ xCᾱ ⊗

∂

∂xCᾱ
= xα ⊗ ∂

∂xα
+ xn+α ⊗ ∂

∂xn+α
,

etc., and (1.4) yield

VBA = δBA +

∞∑

=1




(
 + 1)!

∑
xi1 · · · xi


∂
−1g(T (�∇)(ei1 , ∂/∂xCB), eC
Ā
)

∂xi2 · · · ∂xi

(0)

+

∞∑

=2


 − 1
(
 + 1)!

∑
xi1 · · · xi


∂
−2g(F(�∇)(∂/∂xi2 , ∂/∂xCB)ei1 , e
C

Ā
)

∂xi3 · · · ∂xi

(0),

and we have

e•C = e• ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
(0, β)-entry

0
(0, β̄)-entry

0
(α, 0)-entry

E√
2

E√
2

0
(ᾱ, 0)-entry

iE√
2

−iE√
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=: e• · Ẽ,

v• = Ẽ V•Ẽ−1

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

V00
V0β+V0β̄√

2
(0, β)-entry

−iV0β+iV0β̄√
2

(0, n + β)-entry

Vα0+V ᾱ0√
2

(α, 0)-entry

(Vαβ+V ᾱβ̄)+(Vαβ̄+V ᾱβ)
2

−i(Vαβ−V ᾱβ̄)+i(Vαβ̄−V ᾱβ)
2

iVα0−iV ᾱ0√
2

(n + α, 0)-entry

i(Vαβ−V ᾱβ̄)+i(Vαβ̄−V ᾱβ)
2

(Vαβ+V ᾱβ̄)−(Vαβ̄+V ᾱβ)
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Hence, by straightforward computation, we obtain the expansion (1.5). �

Now, we put

∧0,∗
H T ∗M = {ω ∈ ∧∗CT ∗M | X�ω = 0 (X ∈ Re0 ∪ H+)}, Ω0,∗M = Γ(∧0,∗

H T ∗M)

and set ∂̄H = Π(0,∗+1) ◦ d : Ω0,∗M → Ω0,∗+1M, where d is the usual exterior differentiation
and Π(0,∗+1) denotes the natural projection Ω∗+1M := Γ(∧∗+1CT ∗M) → Ω0,∗+1M. Its formal
adjoint is denoted by ∂̄∗H and the formally self-adjoint operator

�H = �H,q := ∂̄∗H ∂̄H + ∂̄H∂̄
∗
H : Ω0,qM → Ω0,qM(1.6)

is called the Kohn-Rossi Laplacian. It is known (cf. [4, Proposition 1.3]) that, on U, they
can be expressed as follows:

∂̄H =
∑

eᾱC ∧ �∇eCᾱ
, ∂̄∗H = −

∑
eᾱC ∨ �∇eCα ,

(1.7)
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�H = −
∑(

�∇eCα
�∇eCᾱ
− �∇�∇eCα

eCᾱ

)
− √−1 q �∇eC0

−
∑

F(�∇)γδ(e
C
ᾱ , e
C
β ) · eᾱC∧ eβ̄

C
∨ eγ̄
C
∧ eδ̄C ∨ ,

where eᾱ
C
∧ is the exterior production of eᾱ

C
and eᾱ

C
∨ := eCᾱ � is the interior one of eCᾱ . (We

notice that, even if eC• , etc., are just unitary, the formulas hold.) Here we want to state that
hereafter our study will specialize solely in the case

0 < q < n(1.8)

for reasons that will become apparent.
Next, referring to [2, §10], let us introduce the symbol spaces. We put

H
m (U) = { f ∈ C∞(π∗T ∗U\{0}End(∧0,q

H T ∗U)) | f (Q, λ · T ) = λm f (Q, T )},
where λ · T is the Heisenberg dilation of T = (T 0, T H) ∈ T ∗U = Re0 ⊕ H∗ by λ > 0, i.e.,
λ · T := (λ2T 0, λT H). By using the �∇-parallel transportation along the �∇-geodesics to P,
we trivialize the bundles on U as

T ∗U � U × T ∗PU � U × R2n+1, e•(x) · σ↔ (x, e•(0) · σ)↔ (x, σ),

∧0,q
H T ∗U � U × ∧0,q

H T ∗PU � U × C(n
q)

and put

m
H (U) =

{
f ∈ C∞(π∗T ∗UEnd(∧0,q

H T ∗U)) |
there exist fk ∈ H

k (U) (k ≤ m) such that f ∼
∑
k≤m

fk
}
,

where “ f ∼ ∑
k≤m fk” means that, for each multi-indices A, B and each N > 0, there exists a

locally bounded function cABN(x) > 0 such that∣∣∣∣∂A
x∂

B
σ

(
f −

∑
k>m−N

fk
)
(x, σ)

∣∣∣∣ ≤ cABN(x) |σ|m−|B|H−N
H (|σ|H ≥ 1).

(
|σ|H :=

{|σ0|2 +
∑
j≥1

|σ j|4}1/4
, |B|H := 2B0 +

∑
j≥1

Bj = B0 + |B|
)

Now, we consider another trivialization

T ∗U � U × T ∗PU � U × R2n+1, (dx•)x · ξ ↔ (dx•)0 · ξ ↔ (x, ξ)

and regard the elements of C∞(π∗T ∗UEnd(∧0,q
H T ∗U)) as the cross-sections of the bundle over

U × R2n+1 (� (x, ξ)), which are, hence, denoted by q(x, ξ). We set

(dx•)x · ξ• = e•(x) · σ•(x, ξ), hence, σ•(x, ξ) = tv•(x) · ξ•
and put

H
m (U) = {q ∈ C∞(π∗T ∗U\{0}End(∧0,q

H T ∗U)) |
there exists f ∈ H

m (U) such that q(x, ξ) = f (x, σ(x, ξ))},
m

H (U) = {q ∈ C∞(π∗T ∗UEnd(∧0,q
H T ∗U)) |

there exists f ∈ m
H (U) such that q(x, ξ) = f (x, σ(x, ξ))}.

(Refer to [2, Proposition (10.46)] which remarks on the choice of the frames e•.) As usual
we put ∞H (U) =

⋃
m m

H (U), −∞H (U) =
⋂

m m
H (U), etc. A pseudodifferential operator P
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acting on C∞(∧0,q
H T ∗U) whose usual symbol σ(P) belongs to m

H (U) is then called an H-
pseudodifferential operator (on U) of degree m. Those of H-pseudodifferential operators
acting on C∞(U) will be denoted also by m

H (U), etc., if no confusion occurs. The symbol
spaces m

H (M), etc., and H-pseudodifferential operators on M of degree m are then defined
in an ordinary manner.

The Laplacian �H is obviously an H-differential operator of degree 2 and the principal
part �H , i.e., σ(�H) ∈ H

2 (M), is expressed on U as

�H(
∑
|J|=q

eJ
C
· fJ) =

1
2

∑
|J|=q

eJ
C
· �J( fJ)(1.9)

:=
1
2

∑
|J|=q

eJ
C
·
{
− 2

∑
eCαeCᾱ −

√−1 2q eC0
}
( fJ)

=
1
2

∑
|J|=q

eJ
C
·
{
−

∑(
eCαeCα + eCαeCα

) − √−1 λ eC0
}
( fJ) (λ := −(n − 2q))

=
1
2

∑
|J|=q

eJ
C
·
{
−

2n∑
j=1

(
e j

)2 − √−1 λ e0

}
( fJ),

where we set J = ((1 ≤) j1 < · · · < jq (≤ n)) and eJ
C
= e j1

C
∧ · · · ∧ e jq

C
. Our main interest

centers around the operator.

2. On the y-coordinates and the y-group structure

2. On the y-coordinates and the y-group structure
Let us regard the small �∇-normal coordinate neighborhood (UP, x) (given in §1) naturally

as a small neighborhood of 0 in (R2n+1, x). Then, [4, §3] says that R2n+1 has a contact
Riemannian structure and the associated hermitian Tanno connection �∇ which satisfy the
following: their restrictions to UP coincide with the given ones, and the coordinates x of
(R2n+1, x) is the global �∇-normal ones on R2n+1. In §2 and §3, our study will be advanced
on the contact Riemannian manifold U = R2n+1. For example, eC• is, hence, a globally
defined frame of CTU = CTR2n+1 which is �∇-parallel along all the �∇-geodesics from 0.

Referring to [2, §11], given a point y ∈ R2n+1 (= U), we start with reviewing the y-
coordinates, the y-group structure, etc., of R2n+1. The new coordinates centered at y defined
by

xy = t(xy0, . . . , xy2n) = v•(y)−1(x − y)(2.1)

are called the y-coordinates with respect to the frame e•, which are uniquely determined
by the conditions:

xy = C(y)(x − y), e•(y) = (∂/∂xy•)
∣∣∣∣
xy•=0

with some matrix C(y). We have

(∂/∂x•)x = (∂/∂xy•)xy · v•(y)−1, e•(x) = (∂/∂xy•)xy · v•(y; xy), v•(y; xy) := v•(y)−1v•(x)

and, if we denote the symbols of the operators i−1 ∂

∂xyj

∣∣∣∣
xy

and i−1e j

∣∣∣
y+v•(y)xy by ξ

y
j and

σ j(y; xy, ξy), respectively, then have
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ξ
y
• = tv•(y) · ξ•, σ•(y; xy, ξy) = tv•(y; xy) · ξy•.

Next, let us set

b•(y) =
(
bk j(y)

)
1≤k, j≤2n, bk j(y) :=

∂v0 j(y; xy)
∂xyk

∣∣∣∣
xy=0
=

∑
i,


v
k(y)
∂vi j

∂x

(y)vi0(y).(2.2)

Then, by Proposition 1.1, we have

bn+β,β(0) =
1
2
, bβ,n+β(0) = −1

2
, bk j(0) = 0 (otherwise),

and the Euclidean space (R2n+1, xy) with the group structure

xy · zy = t((xy · zy)0, (xy · zy)1, . . .),(2.3)

(xy · zy)0 := xy0 + zy0 +
2n∑

j,k=1

bk j(y)xykzyj , (xy · zy) j := xyj + zyj ( j ≥ 1)

is called the y-group.
We say that an operator Q acting on C∞(R2n+1, xy) is y-invariant if L∗xy ◦ Q = Q ◦ L∗xy

for every xy, where Lxy is the left translation by xy. For each j the unique y-invariant vector
field eyj which agrees with ∂/∂xyj at y is given by

(eyj f )(xy) =
d
ds

f (xy · t(0, . . . , 0,
j
s̆, 0. . . . , 0)y)

∣∣∣∣
s=0

( f ∈ C∞(R2n+1, xy)).(2.4)

The y-invariant frame ey• = (ey0, e
y
1, . . . , e

y
2n) with ey•(0) = (∂/∂xy•)

∣∣∣
xy=0 thus obtained is

expressed as

ey•(xy) = (∂/∂xy•) · vy•(xy), v
y
•(xy) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

∑
k≥1

bkβ(y)xyk

(0, β)-entry

∑
k≥1

bk,n+β(y)xyk

(0, n + β)-entry

0
(α, 0)-entry E O

0
(n + α, 0)-entry O E

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

i.e., ey0 =
∂

∂xy0
, eyj =

∂

∂xyj
+

2n∑
k=1

bk j(y)xyk
∂

∂xy0
( j ≥ 1),

and, if we denote the symbol of the operator i−1eyj by σyj(xy, ξy), then we have

σ
y
•(xy, ξy) = tv

y
•(xy) · ξy• i.e., σy0(xy, ξy) = ξy0, σ

y
j(xy, ξy) = ξyj +

2n∑
k=1

bk j(y)xyk ξ
y
0.

Its dual frame ey,• is, hence, expressed as

ey,•(xy) = (dxy•) · vy,•(xy), vy,•(xy) := tv
y
•(xy)−1,(2.5)

i.e., ey,0 = dxy0 −
2n∑

k, j=1

bk j(y)xykdxyj , ey, j = dxyj ( j ≥ 1).

Here, let us investigate the matrix b• (cf. (2.2)) closely.
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Lemma 2.1. If we set

b•:m(y) =
(
bk j:m(y)

)
1≤k, j≤2n (0 ≤ m ≤ 2n),

bk j:m(y) :=
∂vm j(y; xy)

∂xyk

∣∣∣∣
xy=0
=

∑
i,


v
k(y)
∂vi j

∂x

(y)vim(y),

then we have

[ek, e j] =
2n∑

m=0

{
bk j:m − b jk:m

}
em (k, j ≥ 1).(2.6)

Further, if we set

Bβα:m(y) =
1
2

{
(bβα:m(y) − bn+β,n+α:m(y)) − i(bn+β,α:m(y) + bβ,n+α:m(y))

}
,(2.7)

Bβᾱ:m(y) =
1
2

{
(bβα:m(y) + bn+β,n+α:m(y)) − i(bn+β,α:m(y) − bβ,n+α:m(y))

}
,

Bβ̄ᾱ:m(y) = Bβα:m(y), Bβ̄α:m(y) = Bβᾱ:m(y),

then we have

[eCβ , e
C
α] =

2n∑
m=0

{Bβα:m − Bαβ:m}em, [eCβ , e
C
ᾱ] =

2n∑
m=0

{Bβᾱ:m − Bᾱβ:m}em.(2.8)

Proof. Since

[ek, e j] = [
∑

v
k
∂

∂x

,
∑

vi j
∂

∂xi
] =

∑{
v
k
∂vi j

∂x

− v
 j

∂vik

∂x


}
vimem,

(2.6) is valid. (2.8) follows from (2.6) easily. �

Proposition 2.2. We have bβα = bβα:0, etc., and accordingly let us put Bβα = Bβα:0, etc.
Then we have

Bβα = Bαβ, Bβ̄α = Bαβ̄ + iδβα,(2.9)

bβα = bαβ, bn+β,n+α = bn+α,n+β, bn+β,α = bα,n+β + δβα.(2.10)

Remark. [2, (21.7)] says bβα = bαβ because of the integrability of J. But, in fact, (2.10)
holds even if J is not integrable.

Proof. [4, (1.8)] implies that (even if J is not integrable) the coefficients of e0 in the
expansions of [eCβ , e

C
α], [eCβ , e

C
ᾱ] are equal to 0, −iδβα, respectively. That is, we obtain (2.9).

(2.10) follows from (2.9) and (2.7). �

Even more, we have the following: In the same way as the definitions of xC• , (∂/∂xC• ),
(dxC• ) (cf. (1.2)) and eC• , e•

C
(cf. (1.1)) , we define xy,C• , (∂/∂xy,C• ), (dxy,C• ) and ey,C• , ey,•

C
.

Lemma 2.3. We have

ey,C• = (∂/∂xy,C• ) · vy,C• (xy,C), ey,•
C
= (dxy,C• ) · vy,•

C
(xy,C), v

y,•
C
= t(vy,C• )−1,
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v
y,C
• :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1

∑
A�0

BAβ(y)xy,CA

(0, β)-entry

∑
A�0

BAβ̄(y)xy,CA

(0, β̄)-entry

0
(α, 0)-entry E O

0
(ᾱ, 0)-entry O E

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Now, (2.5) and (2.10) yield

dey,0 = d
(
dxy0 −

∑
k, j≥1

bk j(y)xykdxyj
)
=

∑
k, j≥1

(
b jk(y) − bk j(y)

)
dxyk ∧ dxyj

=
∑

dxyα ∧ dxyn+α =
∑

ey,α ∧ ey,n+α,

so that

ey,0 ∧ (dey,0)n = n! (−1)n(n−1)/2 ey,0 ∧ ey,1 ∧ ey,2 ∧ · · · ∧ ey,2n,

that is, ey,0 is a contact form. Let us set

Hy := ker ey,0 = 〈ey1, . . . , ey2n〉, hence, TR2n+1 = 〈ey0〉 ⊕ Hy,

Jy : TR2n+1 → TR2n+1, Jy(ey0) = 0, Jy(eyα) = eyn+α, Jy(eyn+α) = −eyα,

CHy = Hy
+ ⊕ Hy

− := 〈ey,C1 , . . . , ey,Cn 〉 ⊕ 〈ey,C1̄
, . . . , ey,Cn̄ 〉 hence, Jy

∣∣∣∣
Hy
±
= ±i,

gy = ey,0
C
⊗ ey,0
C
+

∑(
ey,α
C
⊗ ey,ᾱ
C
+ ey,ᾱ
C
⊗ ey,α
C

)
=

∑
0≤ j≤2n

ey, j ⊗ ey, j.

Then My := (R2n+1; xy•, ey,•, e
y
•, Jy, gy) is, hence, a contact Riemannian manifold. We de-

note the hermitian Tanno connection and the pseudo-Hermitian torsion by �∇y and τy (i.e.,
τy(X) := T (�∇y)(X, ey0)). Since Lemma 2.3 and (2.9) imply

[ey,Cα , ey,Cβ ] = 0, [ey,Cα , ey,C
β̄

] = −iδαβ ey,C0 , [ey,C0 , ey,Cβ ] = 0,

we have the following.

Proposition 2.4. The contact Riemannian manifold My is integrable and we have

ω(�∇y)αβ = 0, τy = 0.

The Kohn-Rossi Laplacian acting on Ω0,qMy (cf. (1.7), (1.9)) is, hence, expressed as

�yH(
∑
|J|=q

ey,J
C
· fJ) =

1
2

∑
|J|=q

ey,J
C
· �y
J
( fJ)

=
1
2

∑
|J|=q

ey,J
C
·
{
− 2

∑
ey,Cα ey,Cᾱ −

√−1 2q ey,C0

}
( fJ)

=
1
2

∑
|J|=q

ey,J
C
·
{
−

2n∑
j=1

(
eyj

)2 − √−1 λ ey0
}
( fJ) (λ = −(n − 2q)).
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3. The model operator �y
H

and its inverse

3. The model operator �y
H

and its inverse
The operator �yH on My will approximate �H near y, and is called the model operator.

Its element �y
J

acting on C∞(R2n+1, xy), called the model operator too, is expressed also as

�y
J
= −

2n∑
j=1

(
eyj

)2 − i
(∑
α∈J

iey,0
C

([ey,Cα , ey,C
α

]) −
∑
α�J

iey,0
C

([ey,Cα , ey,C
α

])
)
ey0.

Since 0 < q < n (cf. (1.8)), we have∣∣∣∣∣∣∣
∑
α�J

iey,0
C

([ey,Cα , ey,C
α

]) −
∑
α∈J

iey,0
C

([ey,Cα , ey,C
α

])

∣∣∣∣∣∣∣ <
∣∣∣∣∣∣∣
∑
α

iey,0
C

([ey,Cα , ey,C
α

])

∣∣∣∣∣∣∣ .
That is, the Levi form y defined by

y(Z,W) = −idey,0(Z,W) = iey,0
C

([Z,W]) (Z,W ∈ Hy
+)

satisfies the condition Y(q) (cf. [2, Definition (21.34)]). Hence, we know (cf. [2, Theorem
(21.35)]) that the model operators �y

J
, �yH have the inverse operators (�y

J
)−1, (�yH)−1. In

this section we will investigate the inverse operators closely and express their symbols and
kernels explicitly.

Let us change the coordinates xy into the new ones x′y, which we call the normal y-
coordinates, by the transformation (cf. [2, (1.18), (1.19)])

ψ : (R2n+1, xy)→ (R2n+1, x′y),(3.1)

xy �→ x′y = t(xy0 −
1
2

2n∑
j,k=1

qk j(y)xyk xyj , xy1, . . . , xy2n),

qk j(y) = q jk(y) :=
1
2

(bk j(y) + b jk(y)).

It will simplify our investigation. In fact, the y-group structure (2.3) of (R2n+1, xy) induces
the new one of (R2n+1, x′y)

x′y · z′y = t((x′y · z′y)0, (x′y · z′y)1, . . .),(3.2)

(x′y · z′y)0 := x′y0 + z′y0 +
2n∑

j,k=1

ck j(y)x′yk z′yj , (x′y · z′y) j := x′yj + z′yj ( j ≥ 1),

ck j(y) = −c jk(y) :=
1
2

(bk j(y) − b jk(y)) (hence, bk j = qk j + ck j)

with

c•(y) := (ck j(y)) =
(
O −a
a O

)
, a =

⎛⎜⎜⎜⎜⎜⎜⎝ a1 O
. . .

O an

⎞⎟⎟⎟⎟⎟⎟⎠ , a j =
1
2
,(3.3)

which is fairly simpler than the original one. In [2] the coordinates x′y were called the skew-
symmetric ones and, by another transformation, x′y were changed into the normal ones ([2,
(1.26)-(1.29)]). But obviously x′y are already such normal ones in our case.

On (R2n+1, x′y), we consider the y-invariant frame e′y• with e′y• (0) = (∂/∂x′y• )
∣∣∣
xy=0 (cf.

(2.4)), which is expressed as
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e′y• (x′y) = (∂/∂x′y• ) · v′y• (x′y),(3.4)

v
′y
• (x′y) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

∑
k≥1

ckβ(y)x′yk

(0, β)-entry

∑
k≥1

ck,n+β(y)x′yk

(0, n + β)-entry

0
(α, 0)-entry E O

0
(n + α, 0)-entry O E

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Further, if we denote the symbols of i−1 ∂

∂x′yj
and i−1e′yj by ξ′y and σ′yj (x′y, ξ′y) respectively,

then we have

σ
′y
• (x′y, ξ′y) = tv

′y
• (x′y) · ξ′y• .(3.5)

Now, let us set

�′y
J

:= ψ∗�
y
J
= −

2n∑
j=1

(
e′yj

)2 − √−1 λ e′y0(3.6)

and, first, introduce an explicit expression of the symbol of the inverse operator (�′y
J

)−1.

Theorem 3.1 (On the symbol of (�′y
J

)−1). If ξ′y � 0, then

σ((�′y
J

)−1)(x′y, ξ′y) = q′(y; x′y, ξ′y)(3.7)

= q̃′(y;σ′y(x′y, ξ′y)) :=
∫ ∞

0
e−λξ

′y
0 sG(σ′y(x′y, ξ′y), s) ds

with

G(ξ′y, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( 1
cosh(|ξ′y0 |s)

)n
exp

(
−

2n∑
j=1

(ξ′yj )2 · tanh(|ξ′y0 |s)

|ξ′y0 |
)

: ξ′y0 � 0,

exp
(
−

2n∑
j=1

(ξ′yj )2s
)

: ξ′y0 = 0,

(3.8)

where the integrand e−λξ
′y
0 sG(σ′y(x′y, ξ′y), s) is C0 on R2n+1 × [0,∞), C∞ on (R2n+1 − {0}) ×

[0,∞) and is rapidly decreasing with respect to s. Notice that σ′y0 (x′y, ξ′y) = ξ
′y
0 , and if it

vanishes, then σ′yH(x′y, ξ′y) = ξ′yH , where we set ξ′yH =
t(ξ′y1 , . . . , ξ

′y
2n), etc.

Since

((�y
J
)−1u)(xy) = ((ψ∗(�′y

J
)−1)u)(xy) = ((�′y

J
)−1ψ∗u)(ψ(xy)),

we have the following.

Corollary 3.2 (On the symbol of (�y
J
)−1). We set

q = ψ∗q′, i.e., q(y; xy, ξy) = q′
(
y;ψ(xy, ξy)

)
= q′(y; x′y, ξ′y).

If ξy � 0 (i.e., ξ′y � 0), then we have

σ((�y
J
)−1)(xy, ξy) = q(y; xy, ξy).
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The expression of (�yH)−1 in terms of the symbol is, hence,

(�yH)−1(
∑
|J|=q

ey,J
C
· fJ)(xy) = 2

∑
|J|=q

ey,J
C

(xy) · (�y
J
)−1( fJ)(xy)(3.9)

= 2
∑
|J|=q

ey,J
C

(xy) · 1
(2π)2n+1

∫
ei〈xy,ξy〉q(y; xy, ξy) f̂J(ξy) dξy.

In fact, q(y; xy, ξy) ∈ H
−2 in the last line must be changed into an element of −2

H which is
equal to the original one apart from a neighborhood of ξy = 0.

Next, we will introduce an explicit expression of the kernel of the inverse operator (�′y
J

)−1.

Proposition 3.3 (cf. [2, Theorem (5.9)], (3.2.1)-(3.2.2)). There exists a unique tempered
distribution k′(y; ) on (R2n+1, x′y), i.e., k′(y; ) ∈  ′(R2n+1, x′y), such that it is locally inte-
grable, of C∞ except at 0, and satisfies

k′(y; ) ◦ δt = t−2nk′(y; )
(
t > 0, δt x′y := t(t2x′y0 , tx

′y
1 , . . . , tx

′y
2n)

)
and, last,

((�′y
J

)−1 f )(x′y) =
∫
R2n+1

k′(y; (z′y)−1 · x′y) f (z′y) dz′y ( f ∈ C∞c (R2n+1, x′y)).(3.10)

The kernel k′(y; ) is expressed as follows.

Theorem 3.4 (On the kernel of (�′y
J

)−1). Assume x′y � 0 and consider the integral path
in C

I =

⎧⎪⎪⎨⎪⎪⎩ I0 = (−∞,∞) : x′yH := t(x′y1 , . . . , x′y2n) � 0,

Iε = (−∞ + iε · sgn x′y0 , ∞ + iε · sgn x′y0 ) : x′y0 � 0,

where we fix ε with 0 < ε < π/2. Then, we have

k′(y; x′y) = (2π)−1Γ(n)
∫

I
A(s) e−λs

(
γ(x′yH , s) − ix′y0 s

)−n
ds,(3.11)

A(s) := (4π)−n
( s
sinh s

)n
, γ(x′yH , s) :=

1
4

∣∣∣x′yH ∣∣∣2s coth s.

The integrand is integrable. In the case x′y0 � 0 the integral on the path Iε does not depend
on the choice of ε, and, in the case x′yH � 0 and x′y0 � 0, the integral on I0 coincides with that
on Iε.

Remark. As for the integral (3.11) with I = I0 (and x′yH � 0): If we set x′yH = 0 forcibly,
the integrand is not integrable because γ(x′yH , s) − ix′y0 s = −ix′y0 s. To regularize the integral
in the case x′yH = 0 (and, hence, x′y0 � 0) we deform the integral path I0 to get the integral
(3.11) with I = Iε (and x′y0 � 0).

Corollary 3.5 (On the kernel of (�y
J
)−1). Set

k(y; ) = ψ∗k′(y; ), i.e., k(y; xy) = k′(y;ψ(xy)) = k′(y; x′y),

then we have
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((�y
J
)−1 f )(xy) =

∫
R2n+1

k(y; (zy)−1 · xy) f (zy) dzy

=

∫
R2n+1

k′(y; (z′y)−1 · x′y) (ψ∗ f )(z′y) dz′y.

The expression of (�yH)−1 in terms of the kernel is, hence,

(�yH)−1(
∑
|J|=q

ey,J
C
· fJ)(xy) = 2

∑
|J|=q

ey,J
C

(xy) · (�y
J
)−1( fJ)(xy)(3.12)

= 2
∑
|J|=q

ey,J
C

(xy) ·
∫
R2n+1

k(y; (zy)−1 · xy) fJ(zy) dzy.

3.1. On the proof of Theorem 3.1.
3.1. On the proof of Theorem 3.1. Let us prove Theorem 3.1. The smooth function

G(ξ′y, s)
∣∣∣
ξ
′y
0 �0 can be extended uniquely to the smooth one (3.8) (on ξ′y � 0), which is cer-

tainly C0 on R2n+1 × [0,∞) and C∞ on (R2n+1 − {0})× [0,∞). In the case ξ′y0 = 0 it is obvious
that the integrand of (3.7) is rapidly decreasing, but, in the case ξ′y0 � 0 it will not so obvious.
For example, we will show ∣∣∣G(ξ′y, s)

∣∣∣ ≤ C exp
(
− n|ξ′y0 |s

)
: ξ′y0 � 0.(3.1.1)

Since 0 < q < n, we have

−λξ′y0 − n|ξ′y0 | < 0.

Hence, if (3.1.1) holds, then, also in the case ξ′y0 � 0, the integrand is exponentially decreas-
ing when s → ∞. In this way, for the proof it will suffice to focus only on the case ξ′y0 � 0.
In the following, thus we assume ξ′y0 � 0.

The merit to adopt the transformation (3.1) is that e′y• and σ′y• = σ
′y
• (x′y, ξ′y) are expressed

simply as

e′y0 =
∂

∂x′y0
, e′yj =

∂

∂x′yj
+

1
2

x′yn+ j
∂

∂x′y0
, e′yn+ j =

∂

∂x′yn+ j

− 1
2

x′yj
∂

∂x′y0
,

σ
′y
0 = ξ

′y
0 , σ

′y
j = ξ

′y
j +

1
2

x′yn+ jξ
′y
0 , σ

′y
n+ j = ξ

′y
n+ j −

1
2

x′yj ξ
′y
0

(cf. (3.2), (3.3), (3.4), (3.5)). Referring to (3.6) the symbol of �′y
J

is expressed as

σ(�′y
J

)(x′y, ξ′y) = p′(y; x′y, ξ′y) = p̃′(y;σ′y(x′y, ξ′y)) :=
2n∑
j=1

σ
′y
j (x′y, ξ′y)2 + λσ

′y
0 (x′y, ξ′y)

and the operator �′y
J

is, hence, y-invariant, so that its inverse operator is also y-invariant and
its symbol can be expressed as

σ((�′y
J

)−1)(x′y, ξ′y) = q′(y; x′y, ξ′y) = q̃′(y;σ′y(x′y, ξ′y)).

To investigate q̃′, we have only to follow the argument in [2, §4]. Let us put q(ξ) = q̃′(y; ξ),
p(ξ) = p̃′(y; ξ). Notice that if we set ξ = σ′y(x′y, ξ′y) then ξ0 = σ

′y
0 (x′y, ξ′y) = ξ′y0 . Therefore,

the assumption ξ′y0 � 0 induces ξ0 � 0, and we have
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1 = σ((�′y
J

)−1�′y
J

)(x, ξ)
∣∣∣∣
x=0
=

∑
α

1
α!

(
∂αξ

(
q(σ(x, ξ))

)·Dα
x
(
p(σ(x, ξ))

))∣∣∣∣
x=0

=
{
p(ξ) −

2n∑
j=1

1
4
ξ2

0(
∂

∂ξ j
)2
}
q(ξ) =

{ 2n∑
j=1

ξ2
j + λξ0 −

2n∑
j=1

1
4
ξ2

0(
∂

∂ξ j
)2
}
q(ξ).

That is, under the assumption ξ0 � 0, q(ξ) satisfies the equation

2n∑
j=1

{
ξ2

j −
1
4
ξ2

0

( ∂
∂ξ j

)2}
q(ξ) + λξ0 q(ξ) = 1,

which is formally solved in [2, (4.17), (4.23)] to give

q(ξ) =
∫ ∞

0
e−λξ0 sG(ξ, s) ds,(3.1.2)

where G(ξ, s) is the function (3.8) in the case ξ′y0 � 0 but with ξ′y replaced by ξ. And we
have the estimate (cf. (3.1.1))

|G(ξ, s)| ≤ 2n exp
(
− 1

2

2n∑
j=1

|ξ0|s
)
= 2n exp

(
− n|ξ0|s

)
,

etc. That is, in the case 0 < q < n the integrand of (3.1.2), or (3.7) is rapidly decreasing. In
this way, Theorem 3.1 can be justified (cf. [2, (4.26)-(4.28)]).

3.2. On the proof of Theorem 3.4.
3.2. On the proof of Theorem 3.4. We refer to the argument in [2, §5]. By formal

computation we have

((�′y
J

)−1 f )(x′y) =
∫
R2n+1

k′(y; x′y, x′y − z′y) f (z′y)dz′y(3.2.1)

:=
∫
R2n+1

{
(2π)−2n−1

∫
R2n+1

ei〈x′y−z′y,ξ′y〉q′(y; x′y, ξ′y)dξ′y
}
f (z′y)dz′y,

((�′y
J

)−1 f )(x′y) = (L∗x′y((�
′y
J

)−1 f ))(0) = ((�′y
J

)−1(L∗x′y f ))(0)

=

∫
R2n+1

k′(y; 0,−z′y) (L∗x′y f )(z′y) dz′y =
∫
R2n+1

k′(y; 0,−z′y) f (x′yz′y) dz′y

=

∫
R2n+1

k′(y; 0, (z′y)−1) f (x′yz′y) dz′y.

As for the last equality, notice that −z′y = (z′y)−1 because the matrix c•(y) at (3.3) is skew-
symmetric. Setting

k′(y; x′y) := k′(y; 0, x′y) = (2π)−2n−1
∫
R2n+1

ei〈x′y,ξ′y〉q′(y; 0, ξ′y) dξ′y(3.2.2)

= (2π)−2n−1
∫
R2n+1

ei〈x′y,ξ′y〉 q̃′(y; ξ′y) dξ′y,

thus formally we obtain the formula (3.10).
Next, the integrand of (3.11) has the following property.

Lemma 3.2.1. The function A(s)(γ(x′yH , s) − ix′y0 s)−n of s (∈ C) is meromorphic and has
no poles in
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s
∣∣∣∣ ∣∣∣Im s

∣∣∣ < π

2

}
: x′yH � 0 & x′y0 = 0,(3.2.3) {

s
∣∣∣∣ 0 ≤ Im s · sgn x′y0 <

π

2

}
: x′yH � 0 & x′y0 � 0,{

s
∣∣∣∣ s � ±kπ (k = 0, 1, 2, . . .)

}
: x′yH = 0 & x′y0 � 0,

and is analytic on the integral path I. Further, there are C > 0, c > 0 such that, on I,∣∣∣A(s) e−λs
∣∣∣ ≤ C exp

((|λ| − (n − 1
2

)
) |Re s|

)
≤ C exp

(
− |Re s|

)
,(3.2.4)

Re
(
γ(x′yH , s) − ix′y0 s

)
> c > 0.(3.2.5)

Proof. We put x = x′y, ξ = ξ′y, etc., for short. As for (3.2.4)： The second inequality
follows from 0 < q < n. Let us show the first one. On I = I0, for |s| large, we have

s
sinh s

=
|s|

sinh |s| =
2|s|

e|s| − e−|s|
≤ 2|s|

e|s| − e|s|/2
= 4|s|e−|s| ≤ 8n e|s|/2ne−|s| = 8n e−(1− 1

2n )|s|,

so that, on I = I0,∣∣∣A(s) e−λs
∣∣∣ ≤ C exp

(
|λs| − (1 − 1

2n
)n|s|

)
= C exp

(
(|λ| − (n − 1

2
))|s|

)
.

On I = Iε, for |s| large, we have∣∣∣∣ s
sinh s

∣∣∣∣ = ∣∣∣∣ u + iv
sinh(u + iv)

∣∣∣∣ = ∣∣∣∣ u + iv
sinh u · cos v + i cosh u · sin v

∣∣∣∣
=

|u + iv|
(sinh2 u · cos2 v + cosh2 u · sin2 v)1/2

≤ |u + iv|
(sinh2 u · cos2 v + sinh2 u · sin2 v)1/2

=
|u + iv|
sinh |u| =

|Re s + iε|
sinh(|Re s|) ≤

|Re s| + ε
sinh(|Re s|) ≤

2|Re s|
sinh(|Re s|) .

Thus, on I = Iε, we obtain the above estimate with s replaced by Re s. As for (3.2.5): The
function s coth s is meromorphic and has no poles at s � ±ikπ (k ∈ N) and we know

Re(s coth s) > 0 (−π
2
< Im s <

π

2
)(3.2.6)

and

Re(γ(xH , s) − ix0s) =
2n∑
j=1

x2
j

4
Re(s coth s) + x0Im s.(3.2.7)

Now, by (3.2.6), on I = I0 (& xH � 0) we have Re(s coth s) > c > 0 with some c > 0, and
on I = Iε (& x0 � 0) we have Re(s coth s) > 0 and

x0 Im s = x0 Im(t + iε · sgn x0) = x0 ε · sgn x0 = ε|x0| > 0.

Thus we obtain the estimation (3.2.5). As for (3.2.3): (3.2.6), (3.2.7) say that Re(γ(xH , s) −
ix0s) > 0 as long as

(x0Im s, xH) � (0, 0, . . . , 0), x0 Im s ≥ 0,
∣∣∣Im s

∣∣∣ < π

2
.

Hence, (γ(xH , s) − ix0s)−n has no poles in



92 M. Nagase{
s
∣∣∣∣ ∣∣∣Im s

∣∣∣ < π

2

}
: x′yH � 0 & x′y0 = 0,{

s
∣∣∣∣ 0 ≤ Im s · sgn x′y0 <

π

2

}
: x′yH � 0 & x′y0 � 0,{

s
∣∣∣∣ s � 0

}
: x′yH = 0 & x′y0 � 0.

Since A(s) has no poles in {s | s � ±kπ (k = 1, 2, . . .)}, certainly the function A(s)(γ(xH , s) −
ix0s)−n has no poles in (3.2.3). �

Let us prove Theorem 3.4.

Proof of Theorem 3.4.. Again, we put x = x′y, ξ = ξ′y, etc., for short. First, let us prove
the formula (3.11) with “ I = I0 and xH � 0 ”. Theorem 3.1 implies that, in the case ξ0 � 0,
we have

q̃′(y; ξ) =
∫ ∞

0
e−λξ0 sG(ξ, s) ds =

∫ ∞

0
|ξ0|−1e−μsG(ξ, |ξ0|−1s) ds,

G(ξ, |ξ0|−1s) =
( 1
cosh s

)n
exp

(
−

2n∑
j=1

ξ2
j

|ξ0| tanh s
)
,

where we set μ = λ · sgn ξ0. In the following, we want to compute

k′(y; x) =
∫ ∞

0

{
(2π)−2n−1

∫
(R\{0})×R2n

ei〈x,ξ〉|ξ0|−1e−μsG(ξ, |ξ0|−1s) dξ
}
ds

=

∫ ∞

0

{
(2π)−1

∫
R\{0}

eix0ξ0 |ξ0|−1e−μs
(
(2π)−2n

∫
R2n

ei〈xH ,ξH〉G(ξ, |ξ0|−1s) dξH

)
dξ0

}
ds.

First, we have

(2π)−2n
∫
R2n

ei〈xH ,ξH〉G(ξ, |ξ0|−1s) dξH

=
( 1
cosh s

)n · (2π)−2n
∫
R2n

ei〈xH ,ξH〉 exp
(
−

2n∑
j=1

ξ2
j

|ξ0| tanh s
)

dξH

= (4π)−n
( |ξ0|
sinh s

)n
exp

(
− 1

4

2n∑
j=1

|ξ0|x2
j coth s

)
.

Hence, referring to the formula [2, (5.22)(5.23)], we have

(2π)−1
∫
R\{0}

eix0ξ0 |ξ0|−1e−μs
(
(2π)−2n

∫
R2n
ei〈xH ,ξH〉G(ξ, |ξ0|−1s) dξH

)
dξ0

=(4π)−n
( 1
sinh s

)n
(2π)−1

∫ ∞

−∞
eix0ξ0 |ξ0|n−1 exp

(
−λs·sgnξ0−|ξ0|14

2n∑
j=1

x2
j coth s

)
dξ0

=(4π)−n
( 1
sinh s

)n
(2π)−1Γ(n)

{
e−λs(

1
4

2n∑
j=1

x2
j coth s−ix0)−n+eλs(

1
4

2n∑
j=1

x2
j coth s+ix0)−n

}

=(4π)−n
( s
sinh s

)n
(2π)−1Γ(n)

{
e−λs(

1
4

2n∑
j=1

sx2
j coth s−ix0s)−n+eλs(

1
4

2n∑
j=1

sx2
j coth s+ix0s)−n

}
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and

k′(y; x) = (2π)−1Γ(n)
{ ∫ ∞

0
(4π)−n

( s
sinh s

)n
e−λs(

1
4

2n∑
j=1

sx2
j coth s − ix0s)−nds

+

∫ ∞

0
(4π)−n

( s
sinh s

)n
eλs(

1
4

2n∑
j=1

sx2
j coth s + ix0s)−nds

}

= (2π)−1Γ(n)
∫ ∞

−∞
(4π)−n

( s
sinh s

)n
e−λs

(1
4

2n∑
j=1

sx2
j coth s − ix0s

)−n
ds.

Here the integrability is guaranteed by (3.2.4), (3.2.5). Thus the formula (3.11) with “ I = I0

and xH � 0 ” was obtained.
As was indicated in Remark of the theorem the above formula cannot cover the case

x0 � 0 and xH = 0, and we want to draw the formula (3.11) with “ I = Iε and x0 � 0 ”. If
x0 � 0 and xH � 0, then the integrand A(s) e−λs

(
γ(xH , s) − ix0s

)−n
of the integral (3.11) is

analytic on
{
s
∣∣∣∣ 0 ≤ Im s · sgn x0 <

π
2

}
(cf. (3.2.3)). Hence, by the ordinary theory of analytic

function, we know that, in the case x0 � 0 and xH � 0, the integral (3.11) on the integral
path I = I0 coincides with that on I = Iε. The latter one (with “ I = Iε, x0 � 0 and xH � 0 ”)
can be extended naturally to the desired one (with “ I = Iε and x0 � 0 ”). It will be obvious
now that the formula (3.11) thus obtained fulfils the requirement stated in the theorem. �

4. Parametrix and some global properties of �H

4. Parametrix and some global properties of �H
Returning to the setting in §1, let us construct a global parametrix of �H = �H,q. First,

we will construct a parametrix of the principal part �H on U.
Given a symbol q(x, ξ) ∈ ∞H (U), in the y-coordinates (xy, ξy) it is written as

q(y; xy, ξy) := q(y + v•(y)xy, v•(y)ξy).

Conversely, a symbol q(y; xy, ξy) in the y-ones can be written in the usual ones (x, ξ) as

q(x, ξ) := q(x; 0, σ(x, ξ)).

Indeed, let ϕ be the transformation of R2n+1 defined by ϕ(xy) = y + v•(y)xy (cf. (2.1)), then
we have

q(ϕ(xy); 0, σ(ϕ(xy), v•(y)ξy)) = q(ψ(xy), v•(y)ξy)

= q(y;ψ−1ψ(xy), ψ∗v•(y)ξy) = q(y; xy, tv•(y) v•(y)ξy)

= q(y; xy, ξy).

Now, together with Corollaries 3.2 and 3.5, it implies the following.

Theorem 4.1 (On a parametrix of �H on U). Let q(y; xy, ξy) be the symbol given in
Corollary 3.2, and let k(y; xy) be the kernel given in Corollary 3.5. Then the inverse operator
(�H)−1 is expressed as

(�H)−1(
∑
|J|=q

eJ
C
· fJ)(y) = 2

∑
|J|=q

eJ
C

(y) · 1
(2π)2n+1

∫
R2n+1

ei〈y,ξ〉q(y; 0, σ(y, ξ)) f̂J(ξ) dξ,(4.1)
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(�H)−1(
∑
|J|=q

eJ
C
· fJ)(y) = 2

∑
|J|=q

eJ
C

(y) ·
∫
R2n+1

det v•(y) k(y; (zy)−1) fJ(z) dz(4.2)

with σ((�H)−1) ∈ −2
H (U; End(∧0,q

H T ∗U)), and �H on U has a two-sided parametrix QU

given by

QU = (�H)−1(I + RH
U + · · · + (RH

U)k + · · · )
with �H(�H)−1 := I − RH

U , σ(RH
U) ∈ −1

H (U; End(∧0,q
H T ∗U)).

As for the expansion σ(QU) =
∑

k≥2 σ−k(QU), σ−k(QU) ∈ H
−k(U; End(∧0,q

H T ∗U)), the terms
can be expressed explicitly up to an arbitrarily low degree by using Proposition 1.1.

Proof. As for (4.1)： Since the inverse operator (�y
J
)−1 has the symbol q(y; xy, ξy) (cf.

Corollary 3.2), the above argument and [2, Theorem (18.4)] imply that the inverse (�J)−1

has the symbol q(y; 0, σ(y, ξ)). Thus we obtain the formula (4.1). As for (4.2)： First we
have

(�H)−1(
∑
|J|=q

eJ
C
· fJ)(y) = (�yH)−1(

∑
|J|=q

ey,J
C
· f y
J

)(0)
(
f y
J

(zy) := fJ(y + v•(y)zy)
)
.(4.3)

Indeed, by (2.1) and (3.9), we have

f̂ y
J

(ξy) =
∫

e−i〈zy,ξy〉 f y
J

(zy)dzy =
∫

e−i〈tv•(y)(z−y),tv•(y) ξ•〉 fJ(z) det tv•(y) dz

= ei〈y,ξ〉 det tv•(y)
∫

e−i〈z,ξ〉 fJ(z) dz = ei〈y,ξ〉 det tv•(y) f̂J(ξ),

(�yH)−1(
∑
|J|=q

ey,J
C
· f y
J

)(0) = 2
∑
|J|=q

ey,J
C

(0) · 1
(2π)2n+1

∫
ei〈0,ξy〉q(y; 0, ξy) f̂ y

J
(ξy) dξy

= 2
∑
|J|=q

eJ
C

(y) · 1
(2π)2n+1

∫
q(y; 0, σ(y, ξ))ei〈y,ξ〉 det tv•(y) f̂J(ξ) det tv•(y) dξ

= 2
∑
|J|=q

eJ
C

(y) · 1
(2π)2n+1

∫
ei〈y,ξ〉q(y; 0, σ(y, ξ)) f̂J(ξ) dξ = (�H)−1(

∑
|J|=q

eJ
C
· fJ)(y).

Thus we obtain (4.3). Hence, referring to (3.12), we have

(�yH)−1(
∑
|J|=q

ey,J
C
· f y
J

)(0) = 2
∑
|J|=q

eJ
C

(y) ·
∫

k(y; (zy)−1) f y
J

(zy) dzy

= 2
∑
|J|=q

eJ
C

(y) ·
∫

k(y; (zy)−1) fJ(z) det tv•(y) · dz.

The remaining part will be obvious by the standard argument. �

A two-sided global parametrix Q of �H is constructed as follows: According to
Theorem 4.1, on a small open set U we construct a parametrix QU with σ(QU) ∈
−2

H (U; End(∧0,q
H T ∗U)) which is properly supported (cf. [2, (9.21)]). We take a finite number

of such pairs {(U,QU)}, where {U} is an open covering of M. Let {φU} be a C∞-partition of
unity subordinate to {U}. Then the operator Q defined by
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Q f =
∑

U

QU(φU f )

is a two-sided global parametrix with σ(Q) ∈ −2
H (M; End(∧0,q

H T ∗M)).
By the standard Fredholm theory (cf. [2, Theorem (19.16)]), now we know that the L2-

extension

�H : L2(M;∧0,q
H T ∗M)→ L2(M;∧0,q

H T ∗M)

has the following properties:

dim ker �H < ∞, ker �H ⊂ C∞(M;∧0,q
H T ∗M),

and range�H is closed and

codim range�H < ∞.
Further, the associated projections

Π1 : L2(M;∧0,q
H T ∗M) = ker �H ⊕ (ker �H)⊥ → (ker �H)⊥,

Π2 : L2(M;∧0,q
H T ∗M) = range�H ⊕ (range�H)⊥ → range�H

and the continuous operator H : L2(M;∧0,q
H T ∗M)→ L2(M;∧0,q

H T ∗M) satisfying

�HH = Π2 (on L2(M;∧0,q
H T ∗M)), H�H = Π1 (on dom�H),

which is called the partial inverse of �H and is unique modulo smoothing operators, are all
H-pseudodifferential operators. We know that the operator H , which is of degree −2, is in
fact a parametrix of �H .
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