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Abstract
We present a combinatorial isomorphism between Stasheff associahedra and an inductive cone

construction of those complexes given by Loday. We give an alternate description of certain
polytopes, known as multiplihedra, which arise in the study of A∞ maps. We also provide
new combinatorial isomorphisms between Stasheff associahedra, collapsed multiplihedra, and
graph cubeahedra for path graphs.
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1. Introduction

1. Introduction
Dov Tamari, in his 1951 thesis [30], first described associahedra (with notation Mn−1)

as the realization of his poset lattice of bracketings (parenthesizations) of a word with n
letters. He had also pictured the 1, 2 and 3 dimensional cases (cf. figure 1a). Later these
were rediscovered by Jim Stasheff [29] in his 1960 thesis on homotopy associativity and
based loop spaces. Stasheff had defined these (with notation Kn) as a convex, curvilinear
subset of the (n − 2) dimensional unit cube (cf. figure 1b) such that it is homeomorphic to
the cube. Convex polytope realizations of associahedra were subsequently done by many
people [16, 15, 19, 20]. These polytopes are commonly known as associahedra or Stasheff
complexes.
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Ever since Stasheff’s work, associahedra (and their face complexes) have continued to
appear in various mathematical fields apart from its crucial role in homotopy associative
algebras and its important role in discrete geometry. Indeed, the associahedron Kn−1 appears
as a fundamental tile of 0,n(R), the compactification of the real moduli space of punctured
Riemann sphere [7]. It also appears in the analysis of the compactified moduli space of
nodal disks with markings, as described by Fukaya and Oh [14]. An important connection
between associahedra (and its generalizations) and finite root systems was established in
2003 by the work of Fomin and Zelevinsky [10]. In 2006 Carr and Devadoss [5] generalized
associahedra to graph associahedra G for a given graph G. These appear as the tiling of
minimal blow-ups of certain Coxeter complexes [5]. In particular, if G is a path graph, then
G is an associahedron. Bowlin and Brin [4], in 2013, gave a precise conjecture about ex-
istence of coloured paths in associahedra. They showed that this conjecture is equivalent to
the four colour theorem (4CT). Earlier, in 1988, there was a celebrated work [27] of Sleator,
Tarjan and Thurston on the diameter of associahedra. While working on dynamic optimality
conjecture, they had used hyperbolic geometry techniques to show that the diameter of Kd is
at most 2d − 8 when d ≥ 11, and this bound is sharp when d is large enough. Pournin [25],
almost twenty five years later, showed that this bound is sharp for d ≥ 11. Moreover, his
proof was combinatorial. Even in theoretical physics, recent works [24, 2, 9] indicate that
associahedron plays a key role in the theory of scattering amplitudes.

Fig.1. Earliest realizations of associahedra

Let us briefly recall the construction in [29]. Stasheff, respecting Tamari’s description,
had sub-divided the boundary of Kn in such a way that the number of faces of codimension
1 and the adjacencies in his model matched with that in [30]. The boundary of Kn, denoted
by Ln, is the union of homeomorphic images of Kp×r Kq (p+q = n+1, r = 1, 2, ..., p), where
Kp ×r Kq corresponds to the bracketing x1 . . . (xr . . . xr+q−1) . . . xn. Stasheff started with K2

as a point and defined Kn, inductively, as a cone over Ln. This definition of Kn involves K2

through Kn−1 all together.
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As associahedra are contractible, these are of less interest as spaces in isolation. However,
as combinatorial objects, the key properties of it are inherent in its description as a convex
polytope. Much later, in 2005, J. L. Loday [21] gave a different inductive construction of
Kn starting from Kn−1, leaving it to the reader to verify the details. Being a predominantly
topological construction, it is not apparent why the cone construction of Loday gives rise to
the known combinatorial structure on the associahedra. It is, therefore, natural to search for
an explicit combinatorial isomorphism between these two constructions, leading to our first
result (Theorem 3.2).

Theorem A. Stasheff complexes are combinatorially isomorphic to Loday’s cone con-
struction of associahedra.

There is another set of complexes  (n), known as multiplihedra, which were first intro-
duced and pictured by Stasheff [28] in order to define A∞ maps between A∞ spaces, for
n ≤ 4. Mau and Woodward [22] have shown  (n)’s to be compactification of the moduli
space of quilted disks. Boardman and Vogt [3] provided a definition of  (n) in terms of
painted trees (refer to Definition 2.6). The first detailed definition of  (n) and its combina-
torial properties were described by Iwase and Mimura [17], while its realization as convex
polytopes was achieved by Forcey [11], combining the description of Boardman-Vogt and
Iwase-Mimura. Later, Devadoss and Forcey [6] generalized multiplihedra to graph multipli-
hedra G for a given graph G.

In the study of A∞ maps from an A∞ space to a strictly associative H space (i.e., a topo-
logical monoid), multiplihedra degenerate to what we call collapsed multiplihedra. Stasheff
[28] had pointed out that these complexes resemble associahedra. It has been observed
that collapsed multiplihedra can be viewed as degeneration of graph multiplihedra for path
graphs. It was long assumed that for A∞ maps from a strictly associative H space to a A∞
space, multiplihedra would likewise degenerate to yield associahedra. But it was Forcey
[12] who realized that new polytopes were needed. These were constructed by him and
named composihedra.

In this paper, we will give an equivalent definition (Definition 2.10) of multiplihedra,
which induces a definition for collapsed multiplihedra (Definition 2.12). Using this defini-
tion, we will give a proof of the following (Proposition 3.4) by providing a new bijection of
underlying posets.

Observation a. Stasheff complexes and collapsed multiplihedra are combinatorially iso-
morphic.

There is a well-known bijection bi j3 (cf. Forcey’s paper [13, p. 195]; prior to Remark 2.6
and Figure 7) which is different from ours.

In 2010, Devadoss, Heath, and Vipismakul [8] defined a polytope called graph cubeahe-
dron (denoted by G) associated to a graph G. These are obtained by truncating certain faces
of a cube. They gave a convex realization of these polytopes as simple convex polytopes
whose face poset is isomorphic to the poset of design tubings for graphs. Graph cubeahedra
for cycle graphs G (called halohedra) appear as the moduli space of annulus with marked
points on one boundary circle. In this paper, we are mainly interested in G for path graphs
G and will prove the following (Proposition 3.5) by providing a new bijection of underlying
posets.
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Observation b. The collapsed multiplihedra and graph cubeahedra for path graphs are
combinatorially isomorphic.

It turns out that bijection obtained between the posets governing Stasheff complexes and
graph cubeahedra (for path graphs), by combining our bijections from Observations a and b,
is the bijection of posets defined in [8, Proposition 14]. From our perspective, the bijection
in Observation b is natural. Combining Theorem A, Observations a and b, we obtain the
following result (Theorem 3.1).

Theorem B. The four models of associahedra - Stasheff complexes, complexes obtained
by Loday’s cone construction, collapsed multiplihedra, graph cubeahedra for path graphs -
are all combinatorially isomorphic.

Organization of the paper. The paper is organized as follows. In §2.1, we will review some
of the definitions and results related to Stasheff’s description of associahedra. In §2.2, the
description of Loday’s cone construction and some related theorems are presented while
in §2.3 an equivalent definition of multiplihedra and collapsed multiplihedra is given. In
§2.4 the definition of tubings, design tubings, graph cubeahedra, and related results are
presented. The next section §3 contains the proof of the main result (Theorem B), which is a
combination of three results. In §3.1 we prove Theorem A while §3.2 and §3.3 are devoted
to the proofs of Observations a and b respectively.

2. Description of Four Models of Associahedra

2. Description of Four Models of Associahedra
An H-space is a topological space X equipped with a binary operation m : X2 → X

having a unit e. It is a natural generalization of the notion of topological groups. We can
rewrite m as a map m2 : K2 × X2 → X, where K2 is a point. If m is not associative but
homotopy associative (called weakly associative), then we have a map m3 : K3 × X3 → X
defined through the homotopy between m ◦ (m × 1) and m ◦ (1 ×m), where K3 is an interval.
Similarly, we can define five different maps from X4 → X using m, and between any two
such maps, there are two different homotopies (using the chosen homotopy associativity). If
those two homotopies are homotopic, this defines a map m4 : K4 × X4 → X, where K4 is a
filled pentagon. If we continue this process, we obtain a map mn : Kn × Xn → X for n ≥ 2.
These complexes Kn, called associahedra, are our main objects of interest.

We will briefly describe the four models of associahedra, one in each subsection, we are
concerned with: Stasheff complexes, Loday’s cone construction, collapsed multiplihedra,
and graph cubeahedra for path graphs.

2.1. Stasheff complexes.
2.1. Stasheff complexes. Stasheff defined for each i ≥ 2, a special cell complex Ki as a

subset of Ii−2. It is a simplicial complex and has i degeneracy operators s1, ..., si. Moreover,
Ki has

(
i
2

)
− 1 faces of codimension 1. The complexes Ki, as combinatorial objects, are

more complicated than the standard simplices Δi−2. According to Stasheff [29], it is defined
through following intuitive content:

Consider a word with i letters, say x1x2 . . . xi, and all meaningful ways of inserting one
pair of parentheses. To each such insertion except for (x1x2...xi), there corresponds a cell of
Li, the boundary of Ki. If the parentheses enclose xk through xk+s−1, we regard this cell as
Kr ×k Ks, the homeomorphic image of Kr × Ks under a map which we call ∂k(r, s), where
r + s = i + 1. Two such cells intersect only on their boundaries and the ‘edges’ so formed
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correspond to inserting two pairs of parentheses in the word. Specifically, the intersection
of two cells, namely Kr ×k Ks and Kr′ ×k′ Ks′ , occurs if and only if one of the following
conditions is satisfied: (k ≤ k′ < k′+ s′ −1 ≤ k+ s−1), or (k′ ≤ k < k+ s−1 ≤ k′+ s′ −1), or
(k+ s− 1 < k′), or (k′ + s′ − 1 < k). Furthermore, if these two cells intersect, the intersection
takes place along an (i−4)-dimensional sub-cell, which is either of the form Ka× j (Kb×l Kc)
appears as a cell of Ka × j ∂Kb+c−1, or of the form (Ka × j Kb) ×l Kc appears as a cell of
∂Ka+b−1 ×l Kc for a + b + c = i + 2. Now the adjacency criterion is given by the following
relations:

(a) ∂ j(r, s + t − 1) (1 × ∂k(s, t)) = ∂ j+k−1(r + s − 1, t)
(
∂ j(r, s) × 1

)
(b) ∂ j+s−1(r + s − 1, t) (∂k(r, s) × 1) = ∂k(r + t − 1, s)

(
∂ j(r, t) × 1

)
(1 × T )

where T : Ks × Kt → Kt × Ks permutes the factors. In terms of homeomorphic images of
Kr × Ks × Kt, the above two relations are equivalent respectively to the identifications

Kr × j (Ks ×k Kt) = (Kr × j Ks) × j+k−1 Kt(1)

(Kr ×k Ks) × j+s−1 Kt = (Kr × j Kt) ×k Ks(2)

One can easily track these relations once they are identified with 2-bracketing of the word
x1x2 . . . xi. The cell Ka × j (Kb ×l Kc) corresponds to the nested 2-bracketing

x1 . . . (x j . . . (x j+l−1 . . . x j+l+c−2) . . . x j+b+c−2) . . . xi,

for a + b + c = i + 2. The cell (Ka × j Kb) ×l Kc corresponds to y1 . . . (y j . . . y j+b−1) . . . ya+b−1

with

yu =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
xu if u < l

(xl . . . xl+c−1) if u = l

xu+c−1 if u > l

Now if j ≤ l ≤ j + b, then (Ka × j Kb) ×l Kc represents a nested 2-bracketing and thus
corresponds to a cell of first type; this case is reflected in the identification (1) above. If
l + c < j or j + b < l, then (Ka × j Kb) ×l Kc represents a disjoint 2-bracketing and that
corresponds to two possible cells of the second type; this case is reflected in (2).

This is enough to obtain Ki by induction. Start with K2 = {∗} as a point. Given K2 through
Ki−1, construct Li by fitting together copies of Kr ×k Ks as indicated by the above conditions,
and take Ki to be the cone on Li. Stasheff proved that these complexes are homeomorphic to
cubes.

Proposition 2.1 ([29, Proposition 3]). Ki is homeomorphic to Ii−2 and degeneracy maps
s j : Ki → Ki−1 for 1 ≤ j ≤ i can be defined so that the following relations hold:

(1) s jsk = sk s j+1 for k ≤ j.
(2) s j∂k(r, s) = ∂k−1(r − 1, s)

(
s j × 1

)
for j < k and r > 2.

(3) s j∂k(r, s) = ∂k(r, s − 1)
(
1 × s j−k+1

)
for s > 2, k ≤ j < k + s,

s j∂k(i − 1, 2) = π1 for 1 < j = k < i and 1 < j = k + 1 ≤ i,
s1∂2(2, i − 1) = π2 and si∂1(2, i − 1) = π2,
where πm for m = 1, 2 is projection onto the m-th factor.

(4) s j∂k(r, s) = ∂k(r − 1, s)
(
s j−s+1 × 1

)
for k + s ≤ j.



102 S. Basu and S. Samanta

Using boundary maps ∂k(r, s) and degeneracy maps s j, Stasheff defined the following.

Definition 2.2 (An form and An space). An An form on a space X consists of a family of
maps mi : Ki × Xi → X for 2 ≤ i ≤ n such that

(1) there exists e ∈ X with m2(∗, e, x) = m2(∗, x, e) = x for x ∈ X, ∗ = K2.
(2) For ρ ∈ Kr, σ ∈ Ks, r + s = i + 1, we have

mi (∂k(r, s)(ρ, σ), x1, · · · , xi) = mr (ρ, x1, · · · , xk−1,ms (σ, xk, · · · , xk+s−1) , xk+s, · · · , xi) .

(3) For τ ∈ Ki and i > 2, we have

mi

(
τ, x1, · · · , x j−1, e, x j+1, · · · , xi

)
= mi−1

(
s j(τ), x1, · · · , x j−1, x j+1, · · · , xi

)
.

The pair (X, {mi}2≤i≤n) is called an An space.
If the maps mi exist for all i, then it is called an A∞ form, and the corresponding pair is called
an A∞ space.

Homotopy associative algebras (or A∞ algebras), A∞ spaces, and operads have been ex-
tensively studied. The interested reader is directed to the excellent books [23, 3, 1] and
introductory notes [18].

The correspondence between the faces of Stasheff complexes (associahedra) and the
bracketings indicate that these complexes can also be defined as follows.

Definition 2.3 (Associahedron). Let P(n) be the poset of bracketings of a word with n
letters, ordered such that p < p′ if p is obtained from p′ by adding new brackets. The
associahedron Kn is a convex polytope of dimension n − 2 whose face poset is isomorphic
to P(n).

This construction of the polytope Kn was first given in 1984 by Haiman in his (unpublished)
manuscript [15]. In 1989, C. Lee [19, Theorem 1] proved this by considering the collection
of all sets of mutually non-crossing diagonals of a polygon. Observe that the sets of mutually
non-crossing diagonals of an (n+1)-gon are in bijective correspondence with the bracketings
of a word with n letters. We will use this description later in §3.2.

2.2. Loday’s Cone Construction.
2.2. Loday’s Cone Construction. From the combinatorial description given by Stasheff,

the associahedron Kn is a complex of dimension n − 2 whose vertices are in bijective corre-
spondence with the (n − 2)-bracketing of the word x1x2 . . . xn. But each (n − 2)-bracketing
of the word x1x2 . . . xn corresponds to a rooted planar binary tree with n + 1 leaves, one of
them being the root. For example, the planar rooted trees associated with x1(x2(x3x4)) and
(x1x2)(x3x4) are depicted below (cf. figure 2a, 2b), the root being represented by the vertical
leaf in each case.

Fig.2. Correspondence between bracketing and rooted binary tree
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Thus Kn can also be thought of as a complex of dimension n − 2 whose vertices are in
bijective correspondence with planar rooted binary trees with n leaves and 1 root. Let Yn be
the set of such trees. The trees are depicted below for 2 ≤ n ≤ 4.

Any t ∈ Yn is defined to have degree n. We label the leaves (not the root) of t from left to
right by 0, 1, · · · , n−1. Then we label the internal vertices by 1, 2, · · · , n−1. The i-th internal
vertex is the one that falls in between the leaves i− 1 and i. We denote by ai, respectively bi,
the number of leaves on the left side, respectively right side, of the i-th vertex. The product
aibi is called the weight of the i-th internal vertex. To each tree t ∈ Yn, we associate the point
M(t) ∈ Rn−1, whose i-th coordinate is the weight of the i-th vertex:

M(t) = (a1b1, · · · , aibi, · · · , an−1bn−1) ∈ Rn−1

For instance,

Observe that the weight of a vertex depends only on the sub-tree that it determines. Using
these integral coordinates, Loday [20] gave a convex realization of Kn+1 in Rn.

Lemma 2.4 ([20, Lemma 2.5]). For any tree t ∈ Yn+1 the coordinates of the point M(t) =
(x1, · · · , xn) ∈ Rn satisfy the relation

n∑
k=1

xk =
1
2 n(n + 1).

Thus, it follows that

M(t) ∈ Hn =
{
(x1, ..., xn) ∈ Rn : x1 + x2 + ... + xn =

n(n+1)
2

}
.

Theorem 2.5 ([20, Theorem 1.1]). The convex hull of the points M(t) ∈ Rn, for t ∈ Yn+1,
is a realization of the Stasheff complex Kn+1 of dimension n − 1.

For example, the complex K5 lies in the hyperplane H4 in R4. Under an isometric transfor-
mation of H4 to R3 (i.e., x4 = 0 hyperplane), the embedded picture of K5 is shown in figure
3.

Now starting with K2 as a point, Loday [21, §2.4] gave a different inductive construction
of the complexes Kn+1. The steps are as follows:

(1) Start with the associahedron Kn, which is a topological ball with the cellular sphere
as the boundary. The cells of the boundary are of the form Kp ×r Kq where p + q =
n + 1 and r = 1, 2, ..., p.

(2) Enlarge each cell Kp ×r Kq of the the boundary of Kn into a cell of dimension n by
replacing it with Kp+1 ×r Kq keeping the adjacency of the cells intact. Explicitly,
suppose two cells Kp ×r Kq and Kp′ ×r′ Kq′ are adjacent with a common boundary



104 S. Basu and S. Samanta

Fig.3. Loday’s embedded K5 in R3

sub-cell Ka × j (Kb ×l Kc) or (Ka × j Kb) ×l Kc) (that are the only possibilities, check
identification (1), (2) in §2.1) on the boundary of Kn. Then the cells Kp ×r Kq

and Kp′ ×r′ Kq′ are enlarged to Kp+1 ×r Kq and Kp′+1 ×r′ Kq′ so that they share the
common enlarged boundary sub-cell Ka+1 × j (Kb ×l Kc) or (Ka+1 × j Kb) ×l Kc. We
denote the total enlarged complex by K̂n. Topologically, one may think this process
of enlargement as a quotient space as follows.

K̂n =
(
Kn

⊔
(p,q,r)∈Vn

(Kp+1 ×r Kq)
)/
∼, where

Vn = {(p, q, r) ∈ N3 : p, q ≥ 2; p + q = n + 1; 1 ≤ r ≤ p} and

∂(Kn) � Kp ×r Kq ∼ (K2 ×1 Kp) ×r Kq ∈ ∂(Kp+1 ×r Kq) with identification (1), (2) on

∂(Kp+1 ×r Kq) and ∂(Kp′+1 ×r′ Kq′) for all (p, q, r), (p′, q′, r′) ∈ Vn.

(3) Take the topological cone over the above enlargement K̂n and declare that to be Kn+1,
i.e. Kn+1 := C(K̂n) = K̂n×[0,1]

K̂n×{1} . By regarding
[
K̂n × {1}] as the abstract cone point x0

(say), one may think [(x, t)] in C(K̂n) as the point tx0+(1−t)x on the segment joining
x to x0 for t ∈ [0, 1].

Note that the above construction of Kn+1 from Kn does not give any convex structure to it.
But embedding the enlarged complex K̂n in Rn−1 and choosing an appropriate cone point
there, it is possible to realize Kn+1 = C(K̂n) as a convex polytope in Rn. This is illustrated in
the following examples in low dimensions. However, for the general cases, we shall restrict
ourselves to the topological part only.

(i) To construct K3 from K2, form the enlarged complex K̂2, which is a point (as K2 has
no boundary). Then K3 is a cone over the point K̂2, i.e., an interval.

Fig.4. K3 from K2

(ii) To construct K4 from K3, note that K3 has two boundary points namely K2×1 K2 and
K2 ×2 K2. Thus K̂3 consists of the original K3 together with K3 ×1 K2 and K3 ×2 K2,
which looks like an angular ‘C’ shape. Finally, K4 is the cone over K̂3, resulting in
a filled pentagon.

(iii) To construct K5 from K4, see that K4 has five boundary edges namely K2 ×1 K3,
K3 ×1 K2, K3 ×3 K2, K2 ×2 K3 and K3 ×2 K2. Each one of these shares its two
boundary endpoints with the other two. See in the below picture that K3 ×1 K2 and
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Fig.5. K4 from K3

K3 ×3 K2 have the common boundary point (K2 ×2 K2) ×1 K2 = (K2 ×1 K2) ×3 K2

(by (2)). Similarly, others are obtained via identification (1). Thus in K̂4, each of the
enlarged five cells K3 ×1 K3, K4 ×1 K2, K4 ×3 K2, K3 ×2 K3 and K4 ×2 K2 shares two
boundary edges (obtained as an enlargement of the common boundary points) with
other two. Finally, K5 is the cone over K̂4.

Fig.6. K5 from K4

2.3. Collapsed Multiplihedra.
2.3. Collapsed Multiplihedra. Suppose (X{mi}), (Y, {m′i}) are two A∞ spaces and f :

X → Y is a weak homomorphism i.e., there is a homotopy between the maps f ◦ m2 and
m′2 ◦ ( f × f ). Such maps are called H-maps. In general, there is a notion of An maps in
Stasheff [29, II, Def. 4.1], which satisfy f ◦ mi = m′i ◦ (1 × f i) for i ≤ n. Thus we have
a map f2 :  (2) × X2 → Y , where  (2) is an interval. To match things up, rewrite f as
f1 :  (1)×X → Y , where  (1) is a single point. Now using m2,m′2, f , there are six different
ways (cf. figure 9) to define a map from X3 to Y , namely f ◦ (m2 ◦ (m2×1)), f ◦ (m2 ◦ (1×m2)),
m′2 ◦ ( f × m2), m′2 ◦ (m2 × f ), m′2 ◦ (1 × m′2) ◦ ( f × f × f ), m′2 ◦ (m′2 × 1) ◦ ( f × f × f ). Using
the weak homomorphism of f and weak associativity in X, Y (due to the existence of m3,
m′3), one realizes that there are two different homotopies between any two of the six maps. If
those two homotopies are homotopic themselves, then we have a map f3 :  (3) × X3 → Y ,
where  (3) is a filled hexagon.

If we continue this process, we will get a map fn :  (n) × Xn → Y for each n ≥ 1. These
complexes  (n) are called multiplihedra. In the figure 7b below, the dark edges collapse to
a point so that the rectangular faces degenerate to edges and the pentagonal face degenerates
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to a single point, giving rise to Loday’s realization of K5. There is a different degeneration
from  (n) to Kn+1, as shown in [26, §5]; figure 7c exhibits this for  (4).

Fig.7.  (4) and its degeneration to K5

Multiplihedra first appeared in the work of Stasheff [28]. However, in 1986, Norio Iwase
and Mamoru Mimura [17, Section 2] gave the first detailed construction of  (n) with face
operators, and described their combinatorial properties. It was also shown that  (n) is home-
omorphic to the unit cube of dimension n−1. Using this description of  (n), they defined An

maps. But even before them, Boardman and Vogt [3] (around 1973) had developed several
homotopy equivalent versions of a space of painted binary trees with interior edges of length
in [0, 1] to define maps between A∞ spaces which preserve the multiplicative structure up to
homotopy. In 2008, Forcey [11, Theorem 4.1] proved that the space of painted trees with n
leaves, as convex polytopes, are combinatorially equivalent to the CW-complexes described
by Iwase and Mimura. Indeed, Forcey associated a coordinate to each painted binary tree,
which generalized the Loday’s integer coordinates associated with binary trees correspond-
ing to the vertices of associahedra. Figure 7a of  (4) is drawn with such coordinates for the
vertices. We shall use the definition of  (n), as defined in [11], in terms of painted trees.

Definition 2.6. A painted tree is painted beginning at the root edge (the leaf edges are
unpainted), and always painted in such a way that there are only following three types of
nodes:

Fig.8. Admissible nodes

This limitation on nodes implies that painted regions must be connected, and that painting
must proceed up every branch of a node.

Let J(n) consist of all painted trees with n leaves. There is a refinement ordering defined
as follows.

Definition 2.7 ([11, Definition 1]). For t, t′ ∈ J(n), we say t refines t′ and denote by t � t′

if t′ obtained from t by collapsing some of its internal edges.
We say t minimally refines t′ if t refines t′ and there is no s ∈ J(n) such that both t refines s
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and s refines t′.

Now (J(n),�) is a poset with painted binary trees as smallest elements (in the sense that
nothing refines them) and the painted corolla as the greatest element (in the sense that ev-
erything refines it). The n-th multiplihedra is defined as follows.

Definition 2.8. The n-th multiplihedra  (n) is a convex polytope whose face poset is
isomorphic to the poset (J(n),�) of painted trees with n leaves.

The explicit inductive construction of these polytopes and the correspondence between
the facets of  (n) and the painted trees follows from [11, Definition 4]. For instance, the
vertices of  (n) are in bijection with the painted binary trees with n leaves; the edges are in
bijection with those painted trees with n leaves which are obtained by the minimal refine-
ment of painted binary trees with n leaves and they are glued together along the endpoints
with matching associated to painted binary trees. In this way, the (n − 2)-dimensional cells
of  (n) are in bijection with those painted trees which refine to corolla with n leaves. They
are glued together along (n − 3)-dimensional cells with matching to associated painted trees
to form the complex ∂ (n). Finally the (n − 1) dimensional complex  (n) is defined as the
cone over ∂ (n) and it corresponds to the painted corolla with n leaves in the poset J(n).

Fig.9.  (3) labelled by painted trees

We shall give an equivalent description of  (n) which reflects the promised representation
of it stated at the beginning of this subsection. It is given as follows. Let f : A → B be a
weak homomorphism (i.e., respects the multiplication in A and B up to homotopy) from an
A∞ space to another A∞ space. For a given ordered collection a1, a2, ..., an ∈ A, there are
three types of elements.

I. The f -image of the elements, which are obtained using different associations of the
elements a1, a2, ..., an in A. For example, f (X), where X is some rule of association
of the elements a1, a2, ..., an.

II. The elements obtained using f being homomorphism up to homotopy on the el-
ements of type I and following the same association rule in B. For example, if
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X = (X1)((X2)(X3)) is some rule of association of a1, a2, ..., an, then elements of
the form f ((X1) · ((X2)(X3))) is of this type. Here f ((X1) · ((X2)(X3))) denotes the
homotopy equivalence between f ((X1)((X2)(X3))) and f (X1) f ((X2)(X3)). Similarly,
f ((X1)·((X2)·(X3))), representing the homotopy equivalence between f ((X1)(X2 ·X3))
and f (X1) f ((X2) · (X3)), is also of this type.

III. The elements that are obtained using different associations of the elements of type
II in B. For example, if X = (X1)((X2)((X3)(X4))) is some rule of association of
a1, a2, ..., an, then the elements obtained using the different association of f (X1),
f (X2), f (X3), f (X4) in B, namely

( f (X1) f (X2))( f (X3) f (X4)), f (X1) f (X2)( f (X3) f (X4)), f (X1)( f (X2) f (X3)) f (X4),

( f (X1)( f (X2) f (X3))) f (X4), f (X1) f (X2) f (X3) f (X4)

are of this type.

Definition 2.9. Let Jn be the poset of all of the above three types of elements in B,
ordered such that P ≺ P′ if P is obtained from P′ by at least one of the following operations:

(1) adding brackets in domain or co-domain elements.
(2) replacing ‘·’ by ) f ( without changing the association rule in P′.
(3) removing one or more consecutive ‘·’ by adding a pair of brackets that encloses all

the adjacent elements to all those ‘·’ which are removed. In this process, ignore
redundant bracketing (if obtained). The requirement of consecutive ‘·’ is to ensure
allowable bracketing.

The above operations are to be understood in the following ways:
• For two type I (or III) elements P, P′, we say P ≺ P′ if P, P′ follow above opera-

tion (1) in domain (or co-domain). For example, f (a1(a2(a3a4))) ≺ f (a1(a2a3a4)),
f (a1)( f (a2) f (a3a4)) ≺ f (a1) f (a2) f (a3a4).

• For two type II elements Q,Q′, we say Q ≺ Q′ if Q,Q′ follow above operation (2)
or (3). For example, f (a1) f (a2 · (a3a4)) ≺ f (a1 · a2 · (a3a4)), f (a1 · (a2(a3a4))) ≺
f (a1 · (a2 · (a3a4))).

• For type I element P and type II element Q, we say P ≺ Q if P,Q follow above
operation (3).

For example, f ((a1a2)(a3a4)) ≺ f ((a1a2) ·(a3a4)), f (a1a2a3a4) ≺ f (a1 ·a2 ·a3 ·a4).
• For type II element Q and type III element P, we say P ≺ Q if P,Q follow above

operation (2) or (3). For example, ( f (a1) f (a2a3)) f (a4) ≺ f (a1 · (a2a3)) f (a4),
f (a1)( f (a2a3) f (a4)) ≺ f (a1)( f (a2 · a3) f (a4)).

Now, depending on the poset (Jn,≺), we define another set of complexes Jn for n ≥ 1.

Definition 2.10. Define Jn to be the convex polytope of dimension n − 1, whose face
poset is isomorphic to (Jn,≺) for n ≥ 1.

The existence and the equivalence of these complexes with the multiplihedra follows from
the following lemma.

Lemma 2.11. Jn is isomorphic to the multiplihedron  (n) for any n ≥ 1.
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Proof. It follows from the definitions of  (n) and Jn that to exhibit an isomorphism
between the mentioned complexes, it is enough to provide an isomorphism at the poset
level. Define a map Φ : J(n)→ Jn as follows.

i) Put a1 through an from left to right above the leaves of a painted tree.
ii) If the leaves corresponding to ak through al for 1 ≤ k < l ≤ n are joined to a node of

type 8a or of type 8c, then associate (akak+1 . . . al) (cf. figure 10a) or f (ak ·ak+1·. . .·al)
(cf. figure 10c) respectively to that node. In case 1 ≤ k = l ≤ n, then associate f (ak)
to the corresponding node.

iii) Then proceed to the nodes just below the above ones. If a node is of type 8a or 8c
joining X1 through Xm as associated nodes just above, then associate (X1X2 . . . Xm)
or f (X1 · X2 · . . . · Xm) respectively to that node. If a node is of type 8b joining f (Y1)
through f (Ym) as associated nodes just above, then associate ( f (Y1) f (Y2) . . . f (Ym))
to that node (cf. figure 10b).

iv) Continue the above step iii) till the root node of a painted tree.

Fig. 10. Bijection between the nodes of painted tree and the elements of
defined poset

The element (ignoring redundant brackets, if exist) associated to the root node of a painted
tree t ∈ J(n), is defined to be Φ(t) ∈ Jn. For example, the Φ-image of the painted tree
t ∈ J(5) in figure 11 is f (a1a2)( f (a3) f (a4 · a5)) ∈ J5.
Note that each painted tree is uniquely determined by its nodes and each position of those
nodes associates a unique element. Also, the image of t ∈ J(n) under Φ is determined by
the associated elements to the nodes of t. Thus Φ maps each element of J(n) to a unique
element of Jn and hence Φ is a bijection.

Fig.11. Elements associated to the nodes

It remains to check that Φ preserves the partial order. By the definition of �, it is enough
to show that Φ(t) ≺ Φ(t′) when t � t′ minimally. If t � t′ minimally, then t′ is obtained
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from t by collapsing an unpainted internal edge or a painted internal edge or a bunch of
painted edges. Note that collapsing an unpainted internal edge results in either the removal
of brackets in the domain (operation (1) in Jn) or the addition of one or more · by removing
brackets (operation (3) in Jn). Collapsing a painted internal edge results in the removal of
brackets in the co-domain (operation (1) in Jn) while collapsing a bunch of painted edges
results in replacing ) f ( by · (operation (2) in Jn). In all the cases Φ(t) ≺ Φ(t′), completing
the proof. �

Using this lemma, we consider Jn (Definition 2.10) as the n-th multiplihedron. The pictures
of J1, J2, J3 are depicted later in figure 12, with labelling of the faces in terms of elements
of J(1), J(2), J(3) respectively.

Fig.12. Multiplihedra

Now suppose B is an associative space. Due to the associativity in B, there will be only
one element of type III (as defined before) for each association rule of a1, a2, ..., an. For
example, if X = ((X1X2)(X3X4)) is some association rule of a1, a2, ..., an, then there is only
one element f (X1) f (X2) f (X3) f (X4) in B using the fact that f is a homomorphism up to
homotopy. We will call them degenerate type III elements.

Definition 2.12. Let J′n be the poset of all type I, type II, and degenerate type III elements
in B with the ordering induced from (J′n,≺). We define the collapsed multiplihedron J′n to
be a cellular complex of dimension n − 1, whose face poset is isomorphic to J′n.

As the posets J′n are obtained by the degeneracy of certain elements in Jn, the complexes
J′n are obtained by collapsing certain faces of Jn. Thus the existence of the complexes J′n is
guaranteed by the existence of multiplihedron Jn. We will use this definition to show that J′n
is combinatorially isomorphic to the associahedron Kn+1 in §3.2.

2.4. Graph Cubeahedra and Design Tubings.
2.4. Graph Cubeahedra and Design Tubings. Devadoss [8] gave an alternate definition

of Kn with respect to tubings on a path graph.

Definition 2.13 (Tube). Let Γ be a graph. A tube is a proper nonempty set of nodes of Γ
whose induced graph is a proper, connected subgraph of Γ.
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There are three ways that two tubes t1 and t2 may interact on the graph.
• t1 and t2 are nested if t1 ⊂ t2 or t2 ⊂ t1.

Fig.13. Nested tubes

• t1 and t2 intersect if t1 ∩ t2 � φ and t1 � t2 and t2 � t1.

Fig.14. Intersection of tubes

• t1 and t2 are adjacent if t1 ∩ t2 = φ and t1 ∪ t2 is a tube.

Fig.15. Adjacent tubes

Two tubes are compatible if they are neither adjacent nor intersect i.e., t1 and t2 are com-
patible if they are nested or t1 ∩ t2 = φ with t1 ∪ t2 are not tubes.

Definition 2.14. A tubing T of Γ is a set of tubes of Γ such that every pair of tubes in T
is compatible. A k-tubing is a tubing with k tubes.

A few examples of tubings are given below.

Fig.16. Tubings

If we think of the n − 1 nodes of a path graph Γ as dividers between the n letters of
a word and the tube as a pair of parentheses enclosing the letters, then the compatibility
condition of the tubes corresponds to the permissible bracketing of the word. Now using the
combinatorial description (cf. Definition 2.3) of Kn, one has the following result.

Lemma 2.15 ([5, Lemma 2.3]). Let Γ be a path graph with n − 1 nodes. The face poset
of Kn is isomorphic to the poset of all valid tubings of Γ, ordered such that tubings T ≺ T ′ if
T is obtained from T ′ by adding tubes.

On a graph, Devadoss [8] defines another set of tubes called design tubes.

Definition 2.16 (Design Tube). Let G be a connected graph. A round tube is a set of
nodes of G whose induced graph is a connected (and not necessarily proper) subgraph of
G. A square tube is a single node of G. Then round tubes and square tubes together called
design tubes of G.
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Two design tubes are compatible if
(1) they are both round, they are not adjacent and do not intersect;
(2) otherwise, they are not nested.

Definition 2.17 (Design Tubing). A design tubing U of G is a collection of design tubes
of G such that every pair of tubes in U is compatible.

Fig.17. Design tubings

Note that, unlike ordinary tubes, round tubes do not have to be proper subgraphs of G.
Based on design tubings, Devadoss [8] constructed a set of polytopes called graph cubea-

hedra. For a graph G with n nodes, define �G to be the n-cube where each pair of opposite
facets corresponds to a particular node of G. Specifically, one facet in the pair represents
that node as a round tube and the other represents it as a square tube. Each subset of nodes
of G, chosen to be either round or square, corresponds to a unique face of �G defined by the
intersection of the faces associated with those nodes. The empty set corresponds to the face
which is the entire polytope �G.

Definition 2.18 (Graph Cubeahedron). For a graph G, truncate faces of �G which cor-
respond to round tubes in increasing order of dimension. The resulting polytope G is the
graph cubeahedron.

The graph cubeahedron G can also be described as a convex polytope whose face poset
formed through the design tubings.

Theorem 2.19 ([8, Theorem 12]). For a graph G with n nodes, the graph cubeahedron
G is a simple convex polytope of dimension n whose face poset is isomorphic to the set of
design tubings of G, ordered such that U ≺ U′ if U is obtained from U′ by adding tubes.

In this article, we are interested in the case when G is a path graph. We will make use of the
above theorem to show a combinatorial isomorphism between G for G is a path graph with
n nodes and multiplihedra Jn+1 in §3.3.

3. Isomorphisms Between The Four Models

3. Isomorphisms Between The Four Models
We prove the main result of this paper in this section.

Theorem 3.1. The four models of associahedra: Stasheff complexes, cellular complexes
obtained by Loday’s cone construction, collapsed multiplihedra, and graph cubeahedra for
path graphs are all combinatorially isomorphic.

Proof. We prove the isomorphisms in the next three subsections. In §3.1 we prove that
the complexes obtained via the cone construction of Loday are combinatorially isomorphic
to the Stasheff complexes (Theorem 3.2). In §3.2 we prove that the Stasheff complexes and
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collapsed multiplihedra are isomorphic (Proposition 3.4). Finally, in §3.3, the isomorphism
between the collapsed multiplihedra and graph cubeahedra is shown (Proposition 3.5). Com-
bining all three, we have our required result. �

3.1. Loday’s construction vs Stasheff complexes.
3.1. Loday’s construction vs Stasheff complexes. By Stasheff’s description, Kn+1 is the

cone over its boundary elements Kp×r Kq for p+q = n+2, 2 ≤ p ≤ n and r = 1, 2, . . . , p.On
the other hand, consider C(K̂n), where K̂n consists of the initial Kn together with Kp+1 ×r Kq

such that p + q = n + 1, 2 ≤ p ≤ n − 1 and r = 1, 2, . . . , p. This enlargement K̂n can be
described in terms of bracketing as follows.

• Kn corresponds to 0-bracketing of the word x1x2 . . . xn i.e., the word itself or the
trivial bracketing (x1x2 . . . xn). The immediate faces i.e., the boundary consists of
Kp ×r Kq with p + q = n + 1, 2 ≤ p ≤ n − 1 and r = 1, 2, . . . , p. Now Kp ×r Kq

corresponds to the 1-bracketing x1 . . . xr−1(xr . . . xr+q−1)xr+q . . . xn.
• The enlargement K̂n corresponds to the adding of a letter xn+1 to the right of the

bracketing corresponding to Kn. Then the bracketing x1 . . . xr−1(xr . . . xr+q−1)xr+q . . .

xn extends to x1 . . . xr−1(xr . . . xr+q−1)xr+q . . . xnxn+1 for each p, q, r such that p+ q =
n+1, 2 ≤ p ≤ n−1, and r = 1, 2, . . . , p. Also the initial Kn i.e., (x1x2 . . . xn) extends
to (x1x2 . . . xn)xn+1, which corresponds to K2 ×1 Kn in Kn+1.
• Finally one takes cone over the enlarged complex to obtain Kn+1.

From the above description, K̂n can be thought of as union of Kp×r Kq with p+q = (n+1)+1
for 2 ≤ p ≤ n and r = 1, 2, . . . , p − 1. Thus K̂n is a part of the boundary of Kn+1 (following
Stasheff’s description).

Theorem 3.2. Stasheff complexes are combinatorially isomorphic to Loday’s cone con-
struction of associahedra.

To prove combinatorial isomorphism between the two mentioned models, we must show
bijective correspondence between vertices, edges, and faces of each codimension for both
models respecting the adjacencies. But the faces of codimension more than 1 are contained
in the faces of codimension 1. Thus if we have an appropriate bijection between the faces
of codimension 1 respecting the adjacencies for both models, then the resulting models
being cone over combinatorially isomorphic codimension 1 faces, they are combinatorially
isomorphic.

Proof of Theorem 3.2. It is enough to show that the boundary of Kn+1 in Loday’s
construction can be subdivided to match them with the boundary elements Kp ×r Kq of Kn+1

in Stasheff model for p + q = n + 2, 2 ≤ p ≤ n and r = 1, . . . , p. As observed in the
initial discussion, the only missing boundary part of Kn+1 in Loday’s construction is the
union of Kp ×p Kq for p + q = n + 2 with 2 ≤ p ≤ n. Note that all these missing faces
are adjacent to a common vertex, which corresponds to the right to left (n − 1)-bracketing
x1(x2(. . . (xn−1(xnxn+1))...)). As there are

(
n−1
n−2

)
= n − 1 many choices for removing (n − 2)

brackets from a (n − 1)-bracketing (that corresponds to the vertices of Kn+1), each vertex of
Kn+1 is adjacent to exactly n − 1 faces of codimension 1 of Kn+1 (by poset description of
Stasheff’s Kn+1). So the vertex corresponding to x1(x2(. . . (xn−1(xnxn+1))...)) is not obtained
in K̂n. Now if we consider any other (n − 1)-bracketing, then there can be at most n − 2
parentheses after xn+1. So removing those parentheses along with some others, we can get a
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1-bracketing that does not enclose xn+1 i.e., those vertices are adjacent to some Kp ×r Kq for
p + q = n + 2 and r = 1, 2, . . . , p − 1. Thus any vertex of Kn+1 except that corresponding to
x1(x2(. . . (xn−1(xnxn+1))...)) is present in K̂n. We identify this missing vertex with the coning
vertex of Loday’s construction.

We shall prove that the missing faces of Kn+1 in C(K̂n) can be realized as a cone over
some portion of the boundary of K̂n. Then we will divide the part C(∂K̂n) accordingly to
identify those with the missing faces. We will prove this together with the final result by
induction on the following statements:

I. Qn−3 : Kp ×r Kq = C
(
(K̂p−1 ×r Kq) ∪ (Kp ×r K̂q−1)

)
if p + q = n + 1 and p, q ≥ 3.

II. Pn−2 : Kn = C
(
K̂n−1

)
, n ≥ 3.

Here the equalities in the statements represent a combinatorial isomorphism. Note that Qn−3

is a collection of statements and the index r is superfluous. We will use the convention that
K̂1 = ∅, C(∅) = {∗} and allow p, q ≥ 2. Then Qn−3 contains the statement for Kn−1 ×r K2 as
well as K2 ×r Kn−1. Moreover, these are equivalent to the statement Pn−3 since K2 is a point
and Kn−1 × K2 is Kn−1.

The steps of induction are as follows.

Step 0: Show that P1 holds.
Note that K2 is a point that parametrizes the binary operation. As a point has no boundary,
so K̂2 is also a point, and C(K̂2) is an interval. Now K3 parametrizes the family of 3-
ary operations that relate the two ways of forming a 3-ary operation via a given binary
operation. Thus, K3 also represents an interval. Here the boundary of K3 consists of two
points K2 ×1 K2 and K2 ×2 K2. Let us map K2 ×1 K2 and K2 ×2 K2 to K̂2 and the coning point
in C(K̂2) respectively. Then we can map the other points of K3 linearly to C(K̂2). Thus we
get K3 and C(K̂2) are combinatorially isomorphic. So P1 is true.

Step 1: Assuming that P1 through Pn−4 hold, show that Qn−3 holds.
To prove it we will use the following lemma, the proof of which is given at the end of this
subsection.

Lemma 3.3. There is a natural homeomorphism

C(X) ×C(Y) ≡ C ((X ×C(Y)) ∪ (C(X) × Y)) ,

where x0, y0 are cone points for C(X),C(Y) respectively and (x0, y0) is the cone point for
C(Z), where Z = (C(X) × Y) ∪ (X ×C(Y)).

Now assuming P1 through Pn−4, we have Kl = C(K̂l−1) for l = 3, 4, ..., n − 2. Take any
p, q ≥ 3 with p + q = n + 1 i.e., p, q both ranges through 3 to n − 2. So

Kp ×r Kq = C(K̂p−1) ×r C(K̂q−1) (by the assumption)

= C
(
(K̂p−1 ×r C(K̂q−1)) ∪ (C(K̂p−1) ×r K̂q−1)

)
(by the Lemma 3.3)

= C((K̂p−1 ×r Kq) ∪ (Kp ×r K̂q−1)) (by the assumption)

This shows that Qn−3 is true.
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Step 2: Assuming P1 through Pn−3, show that Pn−2 hold.

As discussed earlier, to prove that Pn−2 is true, it is enough to show Ks ×s Kt with s + t =
n + 1 for s, t ≥ 2 can be obtained from C(K̂n−1). Consider s, t ≥ 2 with s + t = n + 1. Then
using the conventions K̂1 = ∅ and C(∅) = {∗}, we can write

Ks ×s Kt

= C(K̂s−1) ×s C(K̂t−1) (by P1 through Pn−3)

= C
(
(K̂s−1 ×s Kt) ∪ (Ks ×s K̂t−1)

)
(by the Lemma 3.3)

= C

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎧⎪⎪⎪⎨⎪⎪⎪⎩
⋃

(p,q,r)∈Vs

(
(Kp ×r Kq) ×s Kt

)⎫⎪⎪⎪⎬⎪⎪⎪⎭
⋃⎧⎪⎪⎪⎨⎪⎪⎪⎩

⋃
(p,q,r)∈Vt

(
Ks ×s (Kp ×r Kq)

)⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎞⎟⎟⎟⎟⎟⎟⎟⎠ (by definition of K̂i−1),

where Vi = {(a, b, c) ∈ N3 : 2 ≤ a ≤ i − 1, a + b = i + 1, 1 ≤ c ≤ a − 1}, i = s, t.

Now using equation (2) (in §2.1), we can write

(Kp ×r Kq) ×s Kt = (Kp ×s−q+1 Kt) ×r Kq

(obtained by substituting r = p, s = q, t = t, k = r, j = s − q + 1) for the terms in the first set
of unions. As Kp×s−q+1 Kt is a face of Kp+t−1, so (Kp×s−q+1 Kt)×r Kq is a face of Kp+t−1×r Kq,
which is again a face of Kn because for (p, q, r) ∈ Vs,

(p + t − 1) + q = p + q + t − 1 = s + 1 + t − 1 = s + t = n + 1.

Thus (Kp ×r Kq) ×s Kt is a face of Kp+t−1 ×r Kq of codimension 1. But as t ≥ 2 and
1 ≤ r ≤ p − 1, so r < p + t − 1, which implies that the face Kp+t−1 ×r Kq is already present
in the enlargement K̂n−1. Thus each term in the first set of unions is already present in K̂n−1.

Similarly, using equation (1), we have the identification

Ks ×s (Kp ×r Kq) = (Ks ×s Kp) ×s+r−1 Kq

(obtained by substituting r = s, s = p, t = q, k = r, j = s) for the terms in the second set
of unions. Here (Ks ×s Kp) ×s+r−1 Kq is a face of Ks+p−1 ×s+r−1 Kq, which is a face of Kn

because for (p, q, r) ∈ Vt,

(s + p − 1) + q = s − 1 + (p + q) = s − 1 + t + 1 = s + t = n + 1.

Thus (Ks×s Kp)×s+r−1 Kq is a face of Ks+p−1×s+r−1 Kq of codimension 1. But r ≤ p−1 < p
implies s + r − 1 < s + p − 1, which further implies that the face Ks+p−1 ×s+r−1 Kq is already
present in the enlargement K̂n−1. Thus each term in the second set of unions is also present
in K̂n−1.

It follows that all the parts in the unions are present as a part of the boundary of K̂n−1. Thus
the cone over that particular part of the boundary of K̂n−1, we will get Ks×s Kt for all s, t ≥ 2
(with s + t = n + 1). Also, these are present as a part of boundary of C(K̂n−1). Therefore we
get a bijection between the faces (of codimension 1) of Kn and K̂n−1. Consequently, they are
combinatorially isomorphic. So Pn−2 is true. This completes the induction step as well as
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the proof of the theorem. �

Remark 3.1. In the above isomorphism, we mapped the starting Kn to K2 ×1 Kn and the
extension of the boundary element Kp ×r Kq to Kp+1 ×r Kq. Similarly we could map the
starting Kn to K2 ×2 Kn and the extension of the boundary Kp ×r Kq to Kp+1 ×r+1 Kq. But if
we want to map the starting Kn to Kn ×r K2 (r = 1, 2, ..., n), the corresponding extension of
boundary Kp ×t Kq should map to

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Kp ×t Kq+1 if t ≤ r ≤ t + q − 1

Kp+1 ×t Kq if r > t + q − 1

Kp+1 ×t+1 Kq if r < t.

With a slight modification in the above proof, one can similarly prove that this produces
an isomorphism. This, in turn, implies that the faces Kn ×r K2 or K2 ×r Kn of Kn+1 are all
equivalent from the point of view of Loday’s construction.

We end this subsection with the proof of Lemma 3.3.

Proof of Lemma 3.3. We will prove the equality by showing both inclusions. First
suppose (x, y) = t(x0, y0) + (1 − t)(x1, y1) ∈ C(Z), where t ∈ [0, 1] and (x1, y1) ∈ Z. Without
loss of generality suppose (x1, y1) ∈ C(X) × Y i.e., x1 = t′x0 + (1 − t′)x′1 for some t′ ∈ [0, 1]
and x′1 ∈ X. So

(x, y) = (tx0 + (1 − t)x1, ty0 + (1 − t)y1)

= (tx0 + (1 − t)t′x0 + (1 − t)(1 − t′)x′1, ty0 + (1 − t)y1)

= ((1 − (1 − t)(1 − t′))x0 + (1 − t)(1 − t′)x′1, ty0 + (1 − t)y1)

= (t1x0 + (1 − t1)x′1, ty0 + (1 − t)y1) ∈ C(X) ×C(Y)

and t1 = 1 − (1 − t)(1 − t′). This implies that C(Z) ⊆ C(X) ×C(Y).

Fig.18. Visual proof when X = Y = point

Conversely let (x, y) = (t1x0 + (1− t1)x1, t2y0 + (1− t2)y1) ∈ C(X)×C(Y) for some x1 ∈ X,
y1 ∈ Y and t1, t2 ∈ [0, 1]. Now consider the following cases
Case I: t1 = t2 = t.

(x, y) = t(x0, y0) + (1 − t)(x1, y1) ∈ C(Z).

Case II: t1 > t2.

(x, y) = t2(x0, y0) + (1 − t2)
(

t1−t2
1−t2

x0 +
1−t1
1−t2

x1, y1

)
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= t2(x0, y0) + (1 − t2)(t′x0 + (1 − t′)x1, y1) ∈ C(Z), where t′ = t1−t2
1−t2
.

Case III: t1 < t2.

(x, y) = t1(x0, y0) + (1 − t1)
(
x1,

t2−t1
1−t1
y0 +

1−t2
1−t1
y1

)
= t1(x0, y0) + (1 − t1)(x1, t′y0 + (1 − t′)y1) ∈ C(Z), where t′ = t2−t1

1−t1
.

Combining all three cases, we conclude that (x, y) ∈ C(Z) and consequently C(X) × C(Y) ⊆
C(Z). �

3.2. Stasheff complexes vs Collapsed Multiplihedra.
3.2. Stasheff complexes vs Collapsed Multiplihedra. We shall use the Definition 2.3

for Stasheff complexes. Similarly, due to Lemma 2.11, we will use Definition 2.12 for
collapsed multiplihedra.

Proposition 3.4. Stasheff complexes Kn+1 and collapsed multiplihedra J′n are combina-
torially isomorphic.

Proof. Both Kn+1 and J′n are cellular complexes whose face posets are isomorphic to
P(n + 1) and J′n respectively. Therefore, in order to exhibit an isomorphism between J′n and
Kn+1, it suffices to find a bijection between P(n + 1) and J′n as posets.

Define φ : J′n → P(n + 1) as follows

f (X1) �→ f (X1)an+1 := (X1)an+1

f ((X1) · . . . · (Xk−1) · (Xk)) �→ ((X1) · . . . · (Xk−1) · (Xk))an+1 := (X1) . . . (Xk−1)(Xk)an+1

φ ( f (X1) . . . f (Xk−1) f (Xk)) = f (X1) . . . f (Xk−1) f (Xk)an+1

= f (X1) . . . f (Xk−1)((Xk)an+1)

= f (X1) . . . f (Xk−2)((Xk−1)((Xk)an+1))

= · · ·
= (X1)(. . . ((Xk−1)((Xk)an+1)) . . .),

φ ( f ((X1) · (X2)) f ((X3) · (X4) · (X5))) = f ((X1) · (X2))(((X3) · (X4) · (X5))an+1)

= ((X1) · (X2))((X3)(X4)(X5)an+1)

= (X1)(X2)((X3)(X4)(X5)an+1).

Here Xi’s are some rule of association of the elements a1, a2, ..., an in A of some length such
that the total length of all Xi’s is n and an+1 is some different element in A. In the above
correspondence, note that the bracketing in Xi’s are not changed. We only include some
pair of brackets removing f ’s or remove · and keep it as it is with an extra letter an+1 on the
right to get a bracketing of the word a1a2 . . . an+1. Also, note that each parenthesis right to
the letter an+1 determines the number of f and their position as well, where no parentheses
mean only single f with the ·’s in between the associated words. Thus, the position of each f
and · gives a unique bracketing of the word a1a2 . . . an+1 and the process can also be reversed.
So φ is bijective. Now in order to check φ preserves the poset relation, we need to show
φ(P ≺ P′) =⇒ φ(P) < φ(P′). There are three possible ways (cf. operation (1), (2), (3)) by
which P can be related to P′.

(1) P is obtained from P′ by adding brackets in domain. Since φ do not interact with
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the brackets in domain, φ(P) is also obtained from φ(P′) by adding brackets i.e.,
φ(P) < φ(P′).

(2) P is obtained from P′ by replacing · by ‘) f (’. Thus P contains more f than P′. But
from the correspondence, we know each f corresponds to a pair of brackets, so φ(P)
must be obtained from φ(P′) by adding brackets i.e., φ(P) < φ(P′).

(3) P is obtained from P′ by removing one or more consecutive · by adding a pair of
brackets that encloses all the adjacent elements to those ·. To obtain P, this process
adds brackets to P′ and φ does not change the parent bracketing. So so φ(P) must
be obtained from φ(P′) by adding brackets i.e., φ(P) < φ(P′).

Thus φ defines a bijection of the posets J′n and P(n + 1). Hence J′n and Kn+1 are combinato-
rially isomorphic. �

3.3. Collapsed Multiplihedra vs Graph Cubeahedra.
3.3. Collapsed Multiplihedra vs Graph Cubeahedra.

Proposition 3.5. Collapsed multiplihedra J′n+1 and graph cubeahedra Pn for path graph
Pn with n nodes are combinatorially isomorphic.

Proof. Recall from Theorem 2.19 that the graph cubeahedron Pn is a convex polytope
of dimension n whose face poset is isomorphic to the set of design tubings of Pn. Recall
that the collapsed multiplihedra J′n+1 is a cellular complex of dimension n whose face poset
is isomorphic to J′n+1. Thus, to describe an isomorphism, it is enough to prove a bijection at
the poset level.

A bijection between the design tubings and the elements of J′n+1 is defined through the
following correspondences:

• Put a1 through an+1 starting from the left of the left-most node to the right of the
right-most node of the graph:

Fig.19. Initial step

• Each round tube corresponds to a pair of parentheses. If the round tube includes k-th
and (k + r − 1)-th node of the graph, then the corresponding parentheses include ak

through ak+r.

Fig.20. Correspondence of round tube

• Each square tube corresponds to the inclusion of ‘) f (’ in the string f (a1a2 . . . an+1).
If the square tube include k-th node of the graph, then ‘) f (’ will be included in
between ak and ak+1.
• An empty node in a tubing corresponds to ‘·’ i.e. if k-th node of the graph is not

included by any tube of the given tubing, then put a ‘·’ between ak and ak+1.
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Fig.21. Correspondence of square tube

Fig.22. Correspondence of empty node

Finally, as the position of each tube and its appearance give a unique element of J′n+1, we
get a bijective correspondence between design tubings and elements of J′n+1. An example,
assuming n = 6, is given below.

Fig.23. Bijection between design tubings and multiplihedra

It follows from the correspondence that the removal of a round tube corresponds to the
removal of a pair of parentheses or adding ‘·’ and the removal of a square tube corresponds
to replacing ‘) f (’ by ‘·’. This shows that the poset relation between design tubings matches
with the poset relation in J′n+1. As the two posets are isomorphic, this finishes the proof.

�
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