|

) <

The University of Osaka
Institutional Knowledge Archive

Title EQUIVALENCE BETWEEN FOUR MODELS OF ASSOCIAHEDRA

Author(s) |[Basu, Somnath; Samanta, Sandip

Osaka Journal of Mathematics. 2025, 62(1), bp.

Citation 97-121

Version Type|VoR

URL https://doi.org/10.18910/100446

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



Basu, S. and Samanta, S.
Osaka J. Math.
62 (2025), 97-121

EQUIVALENCE BETWEEN FOUR MODELS
OF ASSOCIAHEDRA

SomnatH BASU and Sanore SAMANTA

(Received March 22, 2023, revised November 21, 2023)

Abstract
We present a combinatorial isomorphism between Stasheff associahedra and an inductive cone
construction of those complexes given by Loday. We give an alternate description of certain
polytopes, known as multiplihedra, which arise in the study of A, maps. We also provide
new combinatorial isomorphisms between Stasheff associahedra, collapsed multiplihedra, and
graph cubeahedra for path graphs.
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1. Introduction

Dov Tamari, in his 1951 thesis [30], first described associahedra (with notation M,,_;)
as the realization of his poset lattice of bracketings (parenthesizations) of a word with n
letters. He had also pictured the 1, 2 and 3 dimensional cases (cf. figure 1a). Later these
were rediscovered by Jim Stasheff [29] in his 1960 thesis on homotopy associativity and
based loop spaces. Stasheff had defined these (with notation K,) as a convex, curvilinear
subset of the (n — 2) dimensional unit cube (cf. figure 1b) such that it is homeomorphic to
the cube. Convex polytope realizations of associahedra were subsequently done by many
people [16, 15, 19, 20]. These polytopes are commonly known as associahedra or Stasheff
complexes.
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Ever since Stasheff’s work, associahedra (and their face complexes) have continued to
appear in various mathematical fields apart from its crucial role in homotopy associative
algebras and its important role in discrete geometry. Indeed, the associahedron K,,_; appears
as a fundamental tile of Mj_,(R), the compactification of the real moduli space of punctured
Riemann sphere [7]. It also appears in the analysis of the compactified moduli space of
nodal disks with markings, as described by Fukaya and Oh [14]. An important connection
between associahedra (and its generalizations) and finite root systems was established in
2003 by the work of Fomin and Zelevinsky [10]. In 2006 Carr and Devadoss [5] generalized
associahedra to graph associahedra G for a given graph G. These appear as the tiling of
minimal blow-ups of certain Coxeter complexes [5]. In particular, if G is a path graph, then
KG is an associahedron. Bowlin and Brin [4], in 2013, gave a precise conjecture about ex-
istence of coloured paths in associahedra. They showed that this conjecture is equivalent to
the four colour theorem (4CT). Earlier, in 1988, there was a celebrated work [27] of Sleator,
Tarjan and Thurston on the diameter of associahedra. While working on dynamic optimality
conjecture, they had used hyperbolic geometry techniques to show that the diameter of K, is
at most 2d — 8 when d > 11, and this bound is sharp when d is large enough. Pournin [25],
almost twenty five years later, showed that this bound is sharp for d > 11. Moreover, his
proof was combinatorial. Even in theoretical physics, recent works [24, 2, 9] indicate that
associahedron plays a key role in the theory of scattering amplitudes.

1

° KS K4
° r1/2
Ko 0 1/2 1 1/4
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1 2 3 0 1
My
(a) Tamari’s associahedra (b) Stasheff’s associahedra

Fig.1. Earliest realizations of associahedra

Let us briefly recall the construction in [29]. Stasheff, respecting Tamari’s description,
had sub-divided the boundary of K, in such a way that the number of faces of codimension
1 and the adjacencies in his model matched with that in [30]. The boundary of K,,, denoted
by L,, is the union of homeomorphic images of K, X, K, (p+g =n+1,r = 1,2, ..., p), where
K, X, K, corresponds to the bracketing xi ... (X,...Xy14-1)...X,. Stasheff started with K,
as a point and defined K,,, inductively, as a cone over L,. This definition of K, involves K,
through K, all together.
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As associahedra are contractible, these are of less interest as spaces in isolation. However,
as combinatorial objects, the key properties of it are inherent in its description as a convex
polytope. Much later, in 2005, J. L. Loday [21] gave a different inductive construction of
K, starting from K,_;, leaving it to the reader to verify the details. Being a predominantly
topological construction, it is not apparent why the cone construction of Loday gives rise to
the known combinatorial structure on the associahedra. It is, therefore, natural to search for
an explicit combinatorial isomorphism between these two constructions, leading to our first
result (Theorem 3.2).

Theorem A. Stasheff complexes are combinatorially isomorphic to Loday’s cone con-
struction of associahedra.

There is another set of complexes .J (n), known as multiplihedra, which were first intro-
duced and pictured by Stasheff [28] in order to define A, maps between A., spaces, for
n < 4. Mau and Woodward [22] have shown .J (n)’s to be compactification of the moduli
space of quilted disks. Boardman and Vogt [3] provided a definition of J(n) in terms of
painted trees (refer to Definition 2.6). The first detailed definition of J(n) and its combina-
torial properties were described by Iwase and Mimura [17], while its realization as convex
polytopes was achieved by Forcey [11], combining the description of Boardman-Vogt and
Iwase-Mimura. Later, Devadoss and Forcey [6] generalized multiplihedra to graph multipli-
hedra J G for a given graph G.

In the study of A, maps from an A, space to a strictly associative H space (i.e., a topo-
logical monoid), multiplihedra degenerate to what we call collapsed multiplihedra. Stasheff
[28] had pointed out that these complexes resemble associahedra. It has been observed
that collapsed multiplihedra can be viewed as degeneration of graph multiplihedra for path
graphs. It was long assumed that for A, maps from a strictly associative H space to a A
space, multiplihedra would likewise degenerate to yield associahedra. But it was Forcey
[12] who realized that new polytopes were needed. These were constructed by him and
named composihedra.

In this paper, we will give an equivalent definition (Definition 2.10) of multiplihedra,
which induces a definition for collapsed multiplihedra (Definition 2.12). Using this defini-
tion, we will give a proof of the following (Proposition 3.4) by providing a new bijection of
underlying posets.

Observation a. Stasheff complexes and collapsed multiplihedra are combinatorially iso-
morphic.

There is a well-known bijection bij; (cf. Forcey’s paper [13, p. 195]; prior to Remark 2.6
and Figure 7) which is different from ours.

In 2010, Devadoss, Heath, and Vipismakul [8] defined a polytope called graph cubeahe-
dron (denoted by CG) associated to a graph G. These are obtained by truncating certain faces
of a cube. They gave a convex realization of these polytopes as simple convex polytopes
whose face poset is isomorphic to the poset of design tubings for graphs. Graph cubeahedra
for cycle graphs G (called halohedra) appear as the moduli space of annulus with marked
points on one boundary circle. In this paper, we are mainly interested in CG for path graphs
G and will prove the following (Proposition 3.5) by providing a new bijection of underlying
posets.
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Observation b. The collapsed multiplihedra and graph cubeahedra for path graphs are
combinatorially isomorphic.

It turns out that bijection obtained between the posets governing Stasheff complexes and
graph cubeahedra (for path graphs), by combining our bijections from Observations a and b,
is the bijection of posets defined in [8, Proposition 14]. From our perspective, the bijection
in Observation b is natural. Combining Theorem A, Observations a and b, we obtain the
following result (Theorem 3.1).

Theorem B. The four models of associahedra - Stasheff complexes, complexes obtained
by Loday’s cone construction, collapsed multiplihedra, graph cubeahedra for path graphs -
are all combinatorially isomorphic.

ORGANIZATION OF THE PAPER. The paper is organized as follows. In §2.1, we will review some
of the definitions and results related to Stasheff’s description of associahedra. In §2.2, the
description of Loday’s cone construction and some related theorems are presented while
in §2.3 an equivalent definition of multiplihedra and collapsed multiplihedra is given. In
§2.4 the definition of tubings, design tubings, graph cubeahedra, and related results are
presented. The next section §3 contains the proof of the main result (Theorem B), which is a
combination of three results. In §3.1 we prove Theorem A while §3.2 and §3.3 are devoted
to the proofs of Observations a and b respectively.

2. Description of Four Models of Associahedra

An H-space is a topological space X equipped with a binary operation m : X> — X
having a unit e. It is a natural generalization of the notion of topological groups. We can
rewrite m as a map m, : K> X X> — X, where K> is a point. If m is not associative but
homotopy associative (called weakly associative), then we have a map m3 : K3 x X° — X
defined through the homotopy between m o (m X 1) and m o (1 X m), where K3 is an interval.
Similarly, we can define five different maps from X* — X using m, and between any two
such maps, there are two different homotopies (using the chosen homotopy associativity). If
those two homotopies are homotopic, this defines a map my : K4 X X* — X, where K; is a
filled pentagon. If we continue this process, we obtain a map m,, : K, X X" — X forn > 2.
These complexes K,,, called associahedra, are our main objects of interest.

We will briefly describe the four models of associahedra, one in each subsection, we are
concerned with: Stasheff complexes, Loday’s cone construction, collapsed multiplihedra,
and graph cubeahedra for path graphs.

2.1. Stasheff complexes. Stasheff defined for each i > 2, a special cell complex K; as a
subset of 72, It is a simplicial complex and has i degeneracy operators sy, ..., s;. Moreover,
K; has (;) — 1 faces of codimension 1. The complexes K;, as combinatorial objects, are
more complicated than the standard simplices A", According to Stasheff [29], it is defined
through following intuitive content:

Consider a word with i letters, say x;x;...x; and all meaningful ways of inserting one
pair of parentheses. To each such insertion except for (x;x;...x;), there corresponds a cell of
L;, the boundary of K;. If the parentheses enclose x; through x;, 1, we regard this cell as
K, X K, the homeomorphic image of K, X K; under a map which we call 9(r, s), where
r+ s =i+ 1. Two such cells intersect only on their boundaries and the ‘edges’ so formed
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correspond to inserting two pairs of parentheses in the word. Specifically, the intersection
of two cells, namely K, X; K, and K, X;» Ky, occurs if and only if one of the following
conditions is satisfied: (k <k’ <k’+s —1 <k+s—-1),or (k' <k <k+s-1<k'+s —1),0r
(k+s—1<k'),or (k" +5s —1 < k). Furthermore, if these two cells intersect, the intersection
takes place along an (i —4)-dimensional sub-cell, which is either of the form K, X ; (K}, X; K.)
appears as a cell of K, X; 0Kj.._1, or of the form (K, X; K;) X; K. appears as a cell of
0K44p-1 X1 K. for a + b + ¢ = i + 2. Now the adjacency criterion is given by the following
relations:

@) 0j(r, s+ 1= 1) (I X O(5,1) = Djpa(r + 5= 1, (0(r, 9) x 1)

(0) Gjest (r+ 5= 1,0 (Oi(r, 5) X 1) = Op(r + 1= 1,5) (8;(r.1) x 1) (1 X T)
where T : K; X K; = K; X K, permutes the factors. In terms of homeomorphic images of
K, X K, X K;, the above two relations are equivalent respectively to the identifications

(D K, X (Ks X Kp) = (K, X Ky) X -1 K;
() (K Xk Ky) Xjys—1 K: = (K, X Ky Xi K

One can easily track these relations once they are identified with 2-bracketing of the word
x1x2...x;. The cell K, X; (K} X; K.) corresponds to the nested 2-bracketing

X1 ...(Xj...(x]'+l_1 ---xj+l+c—2)---xj+b+c—2)---xia

fora+b+c=i+2. Thecell (K, X; Kj,) X; K. corresponds t0 y1 ... (Y ... Yj+p-1) - - - Yarb—1
with

Xu ifu<l
Yo = (X1 Xpgem)  ifu=1

Xu+c_1 if u > l

Now if j < [ < j+ b, then (K, X; K}) X; K. represents a nested 2-bracketing and thus
corresponds to a cell of first type; this case is reflected in the identification (1) above. If
I[+c < jorj+b < then (K, X; Kp,) X; K. represents a disjoint 2-bracketing and that
corresponds to two possible cells of the second type; this case is reflected in (2).

This is enough to obtain K; by induction. Start with K, = {x} as a point. Given K, through
K;_1, construct L; by fitting together copies of K, X; K as indicated by the above conditions,
and take K; to be the cone on L;. Stasheff proved that these complexes are homeomorphic to
cubes.

Proposition 2.1 ([29, Proposition 3]). K; is homeomorphic to I'* and degeneracy maps
sj: Ki — Ki_y for 1 < j <ican be defined so that the following relations hold:
(1) sjsp = sgsjs1 fork < j.
(2) 5;0k(r.s) = Opr(r = 1,5) (s;x 1) for j < kand r > 2.
(3) 5j0k(r, 8) = Bi(r, s = 1) (1 X sjpat) for s > 2,k < j<k+3s,
sioi—1,2)=mforl <j=k<iandl <j=k+1<i,
510,(2,i— 1) = m and 5;01(2,i — 1) = mp,
where n,, for m = 1,2 is projection onto the m-th factor.
(4) 5;0k(r.5) = Op(r = 1,) (sj-01 X 1) fork + s < j.
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Using boundary maps dx(r, s) and degeneracy maps s, Stasheff defined the following.

DeriNtTION 2.2 (A, FORM AND A,, SPACE). An A, form on a space X consists of a family of
maps m; : K; x X' — X for 2 < i < n such that
(1) there exists e € X with my(x, e, x) = my(*, x,e) = xfor x € X, *« = K,.
(2) Forpe K,,0 € K;,r+s=1i+ 1, we have

mi(ak(n S)(P’O—)axl"" 5xi) = mr(P’xl,"' ,Xk_l,mS(O—,Xk,"' 9xk+s—l)7xk+s"" ’xi)'
(3) Fort € K; and i > 2, we have
mi(T,xl,"' s Xj1, €, Xjyl, " ,xi) =mi_ (sj(T),xl,--- S Xj1s Xjal, o ,xi).

The pair (X, {m;}»<i<,) is called an A,, space.
If the maps m; exist for all i, then it is called an A, form, and the corresponding pair is called
an A, space.

Homotopy associative algebras (or A, algebras), A, spaces, and operads have been ex-
tensively studied. The interested reader is directed to the excellent books [23, 3, 1] and
introductory notes [18].

The correspondence between the faces of Stasheff complexes (associahedra) and the
bracketings indicate that these complexes can also be defined as follows.

DeriniTioN 2.3 (AssociAHEDRON). Let B(n) be the poset of bracketings of a word with n
letters, ordered such that p < p’ if p is obtained from p’ by adding new brackets. The
associahedron K,, is a convex polytope of dimension n — 2 whose face poset is isomorphic

to B(n).

This construction of the polytope K, was first given in 1984 by Haiman in his (unpublished)
manuscript [15]. In 1989, C. Lee [19, Theorem 1] proved this by considering the collection
of all sets of mutually non-crossing diagonals of a polygon. Observe that the sets of mutually
non-crossing diagonals of an (n+1)-gon are in bijective correspondence with the bracketings
of a word with n letters. We will use this description later in §3.2.

2.2. Loday’s Cone Construction. From the combinatorial description given by Stasheff,
the associahedron K, is a complex of dimension n — 2 whose vertices are in bijective corre-
spondence with the (n — 2)-bracketing of the word x;x; ... x,. But each (n — 2)-bracketing
of the word x;x; ... x, corresponds to a rooted planar binary tree with n + 1 leaves, one of
them being the root. For example, the planar rooted trees associated with x;(x(x3x4)) and
(x1x2)(x3x4) are depicted below (cf. figure 2a, 2b), the root being represented by the vertical
leaf in each case.

N N

(a) z1(w2(z324)) (b) (z122)(T324)

Fig.2. Correspondence between bracketing and rooted binary tree
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Thus K, can also be thought of as a complex of dimension n — 2 whose vertices are in
bijective correspondence with planar rooted binary trees with n leaves and 1 root. Let Y, be
the set of such trees. The trees are depicted below for 2 < n < 4.

e (b= (Vo= [0 )

Any t € Y, is defined to have degree n. We label the leaves (not the root) of 7 from left to
rightby 0, 1,-- - ,n—1. Then we label the internal vertices by 1,2, --- ,n—1. The i-th internal
vertex is the one that falls in between the leaves i — 1 and i. We denote by «;, respectively b;,
the number of leaves on the left side, respectively right side, of the i-th vertex. The product
a;b; is called the weight of the i-th internal vertex. To each tree ¢ € Y,,, we associate the point
M(t) € R""!, whose i-th coordinate is the weight of the i-th vertex:

M(t) = (Cl]bl, e ,Clibi, T 9an—1bn—1) € Rﬂ—l

For instance,

M(Y) =@ M (V) =@ M(Y) =02
M (W) —(1,2,3), M (V) —(1,4,1)

Observe that the weight of a vertex depends only on the sub-tree that it determines. Using
these integral coordinates, Loday [20] gave a convex realization of K, in R".

Lemma 2.4 ([20, Lemma 2.5]). For any tree t € Y, the coordinates of the point M(t) =
(x1,- -+, x,) € R" satisfy the relation
Zxk = %n(n +1).
k=1
Thus, it follows that

M) e H, = {(xl,...,xn) eER":x1+x+..+x, = @}

Theorem 2.5 ([20, Theorem 1.1]). The convex hull of the points M(t) € R", fort € Y1,
is a realization of the Stasheff complex K, of dimension n — 1.

For example, the complex K lies in the hyperplane H, in R*. Under an isometric transfor-
mation of Hy to R3 (i.e., x4 = 0 hyperplane), the embedded picture of K5 is shown in figure
3.

Now starting with K5 as a point, Loday [21, §2.4] gave a different inductive construction
of the complexes K,,.;. The steps are as follows:

(1) Start with the associahedron K,,, which is a topological ball with the cellular sphere
as the boundary. The cells of the boundary are of the form K, X, K, where p + g =
n+landr=1,2,..,p.

(2) Enlarge each cell K, X, K, of the the boundary of K, into a cell of dimension n by
replacing it with K,,; X, K, keeping the adjacency of the cells intact. Explicitly,
suppose two cells K, X, K, and K, X,» K, are adjacent with a common boundary
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Fig.3. Loday’s embedded K5 in R?

sub-cell K, X; (K, X; K.) or (K, X; Kj) X; K.) (that are the only possibilities, check
identification (1), (2) in §2.1) on the boundary of K,. Then the cells K, X, K,
and K, x,» K, are enlarged to K| X, K; and K,/,| X, K, so that they share the
common enlarged boundary sub-cell K, X; (K, X; K.) or (Ku41 X; Kp) X; K. We
denote the total enlarged complex by K,. Topologically, one may think this process
of enlargement as a quotient space as follows.

K, = ([(n u (Kpi1 X, Kq))/ ~, where
(p.q:1)EV
Vi={(p.g.r) eN’:p,g>2:p+qg=n+1;1<r<p}and
J(K,) 3 K, X, K, ~ (K> X1 K),) X, K; € 0(K),11 X, K,;) with identification (1), (2) on
a(KpH X Kq) and a(I<p’+1 Xy Kq’) for all (p, g, r), (P’, q,, r')evV,.

(3) Take the topological cone over the above enlargement En and declare that to be K,,.1,

ie. Ky = C(K,) = %{&1}]' By regarding [En x {1}] as the abstract cone point x

(say), one may think [(x, #)] in C (En) as the point txy + (1 —7)x on the segment joining
x to xo forz € [0, 1].
Note that the above construction of K, from K, does not give any convex structure to it.
But embedding the enlarged complex K, in R and choosing an appropriate cone point
there, it is possible to realize K,,4; = C (En) as a convex polytope in R". This is illustrated in
the following examples in low dimensions. However, for the general cases, we shall restrict
ourselves to the topological part only.

(1) To construct K3 from K, form the enlarged complex Ez, which is a point (as K has
no boundary). Then K3 is a cone over the point K>, i.e., an interval.

o Ky ----» e Kr ----» o o C(K)=Ks
Fig.4. K3 from K,

(i1) To construct K4 from K3, note that K3 has two boundary points namely K; X; K, and
K> X5 K,. Thus E3 consists of the original K3 together with K3 X; K, and K3 X; K3,
which looks like an angular ‘C’ shape. Finally, K4 is the cone over K, resulting in
a filled pentagon.

(iii) To construct K5 from K4, see that K, has five boundary edges namely K, X; K3,
Ks X1 K>, K5 X3 K>, K> X K3z and K5 X, K>. Each one of these shares its two
boundary endpoints with the other two. See in the below picture that K3 x; K, and
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Ky %1 Ks K3 x1 K2
Ky % K,  ----w C (Ks) = Ki

Ko X2 Ko Ko o K

3 2 2

Fig.5. K4 from K3

K3 X3 K, have the common boundary point (K> X, K») X; Ky = (K> X; K») X3 K>
(by (2)). Similarly, others are obtained via identification (1). Thus in f(:;, each of the
enlarged five cells K3 x| K3, K4 X| K>, K4 X3 K>, K3 X5 K3 and Ky X5 K; shares two
boundary edges (obtained as an enlargement of the common boundary points) with
other two. Finally, K5 is the cone over E,.

Ko %1 (K2 X1 Ka) (K2 %1 Ka) x3 K» K5 %1 (K2 x1 Ko) (K x2 Ka) x5 K
K3 X1 K2

K. K.
2 K3 x1 (K3 x5 K>)

Ky x1 (Ky x5 K») K3 x3 Ky ——=-® Ky x3 K,
K3 xo Ko
K3 x5 (K x1 Ky) K3 x5 (K3 X Ky)

Ky xo (K3 x1 Ky) K %o (K3 X3 Ka)

K3 %o K3

[_— Cone point

Fig.6. K5 from K4

2.3. Collapsed Multiplihedra. Suppose (X{m;}), (Y, {m;}) are two A spaces and f :
X — Y is a weak homomorphism i.e., there is a homotopy between the maps f o m, and
m), o (f X f). Such maps are called H-maps. In general, there is a notion of A, maps in
Stasheff [29, II, Def. 4.1], which satisfy f om; = m] o (1 X f for i < n. Thus we have
amap f» : J(2) x X> — Y, where J(2) is an interval. To match things up, rewrite f as
Si: J()xX — Y, where J (1) is a single point. Now using my, m), f, there are six different
ways (cf. figure 9) to define a map from X3toY, namely fo(mye(my X 1)), fo(myeo(1Xmy)),
iy o (f X ), mhy o (my X f), mhy o (1 m5) (f X f X f). myo (my X 1) e (f X f X f). Using
the weak homomorphism of f and weak associativity in X, Y (due to the existence of mj,
my), one realizes that there are two different homotopies between any two of the six maps. If
those two homotopies are homotopic themselves, then we have amap f; : J(3) x X°> — Y,
where J(3) is a filled hexagon.

If we continue this process, we will get a map f, : J(n) X X" — Y for each n > 1. These
complexes J (n) are called multiplihedra. In the figure 7b below, the dark edges collapse to
a point so that the rectangular faces degenerate to edges and the pentagonal face degenerates
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to a single point, giving rise to Loday’s realization of Ks. There is a different degeneration
from J (n) to K1, as shown in [26, §5]; figure 7c exhibits this for J (4).

(b) Shaded faces collapsed
(a) Embedded J(4) in R?  to get K5 (¢) Another degeneration

Fig.7. J(4) and its degeneration to Ks

Multiplihedra first appeared in the work of Stasheff [28]. However, in 1986, Norio Iwase
and Mamoru Mimura [17, Section 2] gave the first detailed construction of J (n) with face
operators, and described their combinatorial properties. It was also shown that J () is home-
omorphic to the unit cube of dimension n—1. Using this description of J (n), they defined A,
maps. But even before them, Boardman and Vogt [3] (around 1973) had developed several
homotopy equivalent versions of a space of painted binary trees with interior edges of length
in [0, 1] to define maps between A, spaces which preserve the multiplicative structure up to
homotopy. In 2008, Forcey [11, Theorem 4.1] proved that the space of painted trees with n
leaves, as convex polytopes, are combinatorially equivalent to the CW-complexes described
by Iwase and Mimura. Indeed, Forcey associated a coordinate to each painted binary tree,
which generalized the Loday’s integer coordinates associated with binary trees correspond-
ing to the vertices of associahedra. Figure 7a of .7 (4) is drawn with such coordinates for the
vertices. We shall use the definition of [J(n), as defined in [11], in terms of painted trees.

DeriNiTION 2.6. A painted tree is painted beginning at the root edge (the leaf edges are
unpainted), and always painted in such a way that there are only following three types of
nodes:

(a) (b) ()
Fig.8. Admissible nodes

This limitation on nodes implies that painted regions must be connected, and that painting
must proceed up every branch of a node.

Let J(n) consist of all painted trees with n leaves. There is a refinement ordering defined
as follows.

Derinttion 2.7 ([11, Definition 1]). Fort,t" € J(n), we say f refines t’ and denote by < ¢/
if ' obtained from ¢ by collapsing some of its internal edges.
We say t minimally refines t’ if t refines ¢’ and there is no s € J(n) such that both ¢ refines s
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and s refines 7.

Now (J(n), <) is a poset with painted binary trees as smallest elements (in the sense that
nothing refines them) and the painted corolla as the greatest element (in the sense that ev-
erything refines it). The n-th multiplihedra is defined as follows.

DerintTion 2.8. The n-th multiplihedra [J(n) is a convex polytope whose face poset is
isomorphic to the poset (J(n), <) of painted trees with n leaves.

The explicit inductive construction of these polytopes and the correspondence between
the facets of J(n) and the painted trees follows from [11, Definition 4]. For instance, the
vertices of J (n) are in bijection with the painted binary trees with n leaves; the edges are in
bijection with those painted trees with n leaves which are obtained by the minimal refine-
ment of painted binary trees with n leaves and they are glued together along the endpoints
with matching associated to painted binary trees. In this way, the (n — 2)-dimensional cells
of J(n) are in bijection with those painted trees which refine to corolla with n leaves. They
are glued together along (n — 3)-dimensional cells with matching to associated painted trees
to form the complex 0.7 (n). Finally the (n — 1) dimensional complex .7 (n) is defined as the
cone over 0.7 (n) and it corresponds to the painted corolla with n leaves in the poset J (7).

Fig.9. J(3) labelled by painted trees

We shall give an equivalent description of J (n) which reflects the promised representation
of it stated at the beginning of this subsection. It is given as follows. Let f : A — Bbea
weak homomorphism (i.e., respects the multiplication in A and B up to homotopy) from an
A space to another A, space. For a given ordered collection ay, ay, ...,a, € A, there are
three types of elements.

I. The f-image of the elements, which are obtained using different associations of the
elements ay, ay, ...,a, in A. For example, f(X), where X is some rule of association
of the elements ay, as, ..., a,.

II. The elements obtained using f being homomorphism up to homotopy on the el-
ements of type I and following the same association rule in B. For example, if
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X = (X1)((X»)(X3)) is some rule of association of a;,as, ..., a,, then elements of
the form f((X;) - (X2)(X3))) is of this type. Here f((X;) - ((X2)(X3))) denotes the
homotopy equivalence between f((X;)((X2)(X3))) and f(X1)f((X2)(X3)). Similarly,
F((X1)-((X2)-(X3))), representing the homotopy equivalence between f((X;)(X>-X3))
and f(X1)f((X2) - (X3)), is also of this type.

III. The elements that are obtained using different associations of the elements of type
IT in B. For example, if X = (X)((X2)((X3)(X4))) is some rule of association of
ai,a, ..., a,, then the elements obtained using the different association of f(X}),

f(X2), f(X3), f(X4) in B, namely

(FXDFXN(f(X3) f(Xa)), fFXD)fX)(f(X3)f(Xa)), f(XD(f(X2)f(X3))f(Xa),
(fXDU X f XN f(Xa), fXDf(X2) [(X3)f(Xa)

are of this type.

DermniTion 2.9. Let J, be the poset of all of the above three types of elements in B,
ordered such that P < P’ if P is obtained from P’ by at least one of the following operations:

(1) adding brackets in domain or co-domain elements.

(2) replacing *-” by ) f( without changing the association rule in P’.

(3) removing one or more consecutive ‘-* by adding a pair of brackets that encloses all
the adjacent elements to all those ‘-’ which are removed. In this process, ignore
redundant bracketing (if obtained). The requirement of consecutive ‘-’ is to ensure
allowable bracketing.

[3E]

The above operations are to be understood in the following ways:

e For two type I (or III) elements P, P’, we say P < P’ if P, P’ follow above opera-
tion (1) in domain (or co-domain). For example, f(a;(ax(asas))) < f(ai(arazas)),
fla(f(az)f(azas)) < fla)f(az)f(azas).

e For two type Il elements Q, Q’, we say Q < Q" if Q, Q' follow above operation (2)
or (3). For example, f(a1)f(az - (azas)) < f(ai - az - (azas)), f(ar - (ax(azas))) <
f(ai - (az - (azas))).

e For type I element P and type II element Q, we say P < Q if P, Q follow above
operation (3).

For example, f((a1az)(azas)) < f((a1a2)-(azas)), f(aiarazas) < f(ai-az-asz-as).

e For type Il element Q and type III element P, we say P < Q if P, O follow above
operation (2) or (3). For example, (f(a1)f(aza3))f(as) < f(ar - (a2a3))f(as),
flan(f(aza3)f(as)) < fla)(f(az - asz)f(as)).

Now, depending on the poset (J,,, <), we define another set of complexes J,, for n > 1.

Dermnttion 2.10. Define J, to be the convex polytope of dimension n — 1, whose face
poset is isomorphic to (J,, <) forn > 1.

The existence and the equivalence of these complexes with the multiplihedra follows from
the following lemma.

Lemma 2.11. J, is isomorphic to the multiplihedron [J (n) for any n > 1.
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Proof. It follows from the definitions of [J(n) and J, that to exhibit an isomorphism
between the mentioned complexes, it is enough to provide an isomorphism at the poset
level. Define a map @ : J(n) — J, as follows.

i) Put a; through a, from left to right above the leaves of a painted tree.

i) If the leaves corresponding to a; through a; for 1 < k < [ < n are joined to a node of
type 8a or of type 8c, then associate (arai+1 - - . a;) (cf. figure 10a) or f(ar-ars1-. - .-a;)
(cf. figure 10c) respectively to that node. In case 1 < k = [ < n, then associate f(ay)
to the corresponding node.

iii) Then proceed to the nodes just below the above ones. If a node is of type 8a or 8c
joining X, through X,, as associated nodes just above, then associate (XX ... X;,)
or f(X;-Xy-...-X,) respectively to that node. If a node is of type 8b joining f(Y;)
through f(Y,,) as associated nodes just above, then associate (f(Y1)f(Y2)... f(¥Yn))
to that node (cf. figure 10b).

iv) Continue the above step iii) till the root node of a painted tree.

ap Gkl a flar) flargr)  fla) ag (k41 aj

(apapyr ... ar) (f (ar) f (ars1) .- f (ar)) flag - apir ... - ap)

(a) (b) ()

Fig. 10. Bijection between the nodes of painted tree and the elements of
defined poset

The element (ignoring redundant brackets, if exist) associated to the root node of a painted
tree t € J(n), is defined to be ®(r) € J,. For example, the ®-image of the painted tree
t € J(5)in figure 11 is f(aja2)(f(a3)f(as - as)) € Js.

Note that each painted tree is uniquely determined by its nodes and each position of those
nodes associates a unique element. Also, the image of ¢ € J(n) under @ is determined by
the associated elements to the nodes of . Thus @ maps each element of J(n) to a unique
element of J,, and hence @ is a bijection.

aq a2 a3 Qa4 as

(Cl1¢12) flaq-as)
(f(as)f(as - as))

flaraz)(f(as)f(as - as))
Fig.11. Elements associated to the nodes

It remains to check that @ preserves the partial order. By the definition of <, it is enough
to show that ®(r) < ®(¢#') when ¢t < ¢ minimally. If # < # minimally, then ¢ is obtained
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from ¢ by collapsing an unpainted internal edge or a painted internal edge or a bunch of
painted edges. Note that collapsing an unpainted internal edge results in either the removal
of brackets in the domain (operation (1) in J,,) or the addition of one or more - by removing
brackets (operation (3) in J,). Collapsing a painted internal edge results in the removal of
brackets in the co-domain (operation (1) in J,)) while collapsing a bunch of painted edges
results in replacing ) f( by - (operation (2) in J,). In all the cases ®(r) < ®(¢'), completing
the proof. O

Using this lemma, we consider J,, (Definition 2.10) as the n-th multiplihedron. The pictures
of Jy, J», J3 are depicted later in figure 12, with labelling of the faces in terms of elements
of J(1), J(2), J(3) respectively.

f(araz) f(a3)

[((araz) - a3) flay-as)f(as)

faraz) f((@az)as) (f(a1)f(az))f(as)
®
flarazas) Flar) f(az) f(as)
f((ll . az)
flai(azaz)) Flar)(f(az)f(az))
[ ]
$ f(ar - (azaz)) flar)f(as - as3)
f(aq) fla1)f(az) flay)f(azas)
(a) J1 (b) J2 (c) J3

Fig.12. Multiplihedra

Now suppose B is an associative space. Due to the associativity in B, there will be only
one element of type III (as defined before) for each association rule of a;,ay, ..., a,. For
example, if X = ((X;X>)(X3X4)) is some association rule of ay, ay, ..., a,, then there is only
one element f(X;)f(X2) f(X3)f(Xy) in B using the fact that f is a homomorphism up to
homotopy. We will call them degenerate type III elements.

DeriniTion 2.12. Let J), be the poset of all type I, type II, and degenerate type I1I elements
in B with the ordering induced from (3, <). We define the collapsed multiplihedron J;, to
be a cellular complex of dimension n — 1, whose face poset is isomorphic to J,.

As the posets J,, are obtained by the degeneracy of certain elements in J,, the complexes
J, are obtained by collapsing certain faces of J,. Thus the existence of the complexes J;, is
guaranteed by the existence of multiplihedron J,. We will use this definition to show that J;,
is combinatorially isomorphic to the associahedron K, in §3.2.

2.4. Graph Cubeahedra and Design Tubings. Devadoss [8] gave an alternate definition
of K, with respect to tubings on a path graph.

Dermnirion 2.13 (TuBe). Let I' be a graph. A fube is a proper nonempty set of nodes of I'
whose induced graph is a proper, connected subgraph of I'.
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There are three ways that two tubes #; and 7, may interact on the graph.

e fyand 1, are nested if 1; C r, ort, C 1.

E====r) &= EE&Do-

Fig.13. Nested tubes

e 1 and 1, intersectif ry Nt #pandty £ 1, and 1, € 4.

(eFpoo (oD

Fig.14. Intersection of tubes

e 11 and 1, are adjacent if 1, N1, = ¢ and 1; U £ is a tube.

(0=0=0X6-0"0)  O(O—OXO—O©

Fig.15. Adjacent tubes

Two tubes are compatible if they are neither adjacent nor intersect i.e., ¢; and f, are com-
patible if they are nested or #; N #, = ¢ with #; U t, are not tubes.

DeriniTioN 2.14. A tubing T of T is a set of tubes of I such that every pair of tubes in T
is compatible. A k-tubing is a tubing with & tubes.

A few examples of tubings are given below.

(0—o0(0—90 (=00 GO

2-tubing 3-tubing 4-tubing

Fig.16. Tubings

If we think of the n — 1 nodes of a path graph I as dividers between the n letters of
a word and the tube as a pair of parentheses enclosing the letters, then the compatibility
condition of the tubes corresponds to the permissible bracketing of the word. Now using the
combinatorial description (cf. Definition 2.3) of K,,, one has the following result.

Lemma 2.15 ([5, Lemma 2.3]). Let I" be a path graph with n — 1 nodes. The face poset
of K, is isomorphic to the poset of all valid tubings of T, ordered such that tubings T < T’ if
T is obtained from T’ by adding tubes.

On a graph, Devadoss [8] defines another set of tubes called design tubes.

DeriniTion 2.16 (DEsioy TuBg). Let G be a connected graph. A round tube is a set of
nodes of G whose induced graph is a connected (and not necessarily proper) subgraph of
G. A square tube is a single node of G. Then round tubes and square tubes together called
design tubes of G.
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Two design tubes are compatible if

(1) they are both round, they are not adjacent and do not intersect;
(2) otherwise, they are not nested.

DeriniTioN 2.17 (DEsiGN TuBING). A design tubing U of G is a collection of design tubes
of G such that every pair of tubes in U is compatible.

oo OoFoo@E CEoBEocB

4-design tubing 5-design tubing 6-design tubing

Fig.17. Design tubings

Note that, unlike ordinary tubes, round tubes do not have to be proper subgraphs of G.

Based on design tubings, Devadoss [8] constructed a set of polytopes called graph cubea-
hedra. For a graph G with n nodes, define Eg to be the n-cube where each pair of opposite
facets corresponds to a particular node of G. Specifically, one facet in the pair represents
that node as a round tube and the other represents it as a square tube. Each subset of nodes
of G, chosen to be either round or square, corresponds to a unique face of B defined by the
intersection of the faces associated with those nodes. The empty set corresponds to the face
which is the entire polytope Hg.

DerniTioN 2.18 (GrRAPH CUBEAHEDRON). For a graph G, truncate faces of &g which cor-
respond to round tubes in increasing order of dimension. The resulting polytope CG is the
graph cubeahedron.

The graph cubeahedron CG can also be described as a convex polytope whose face poset
formed through the design tubings.

Theorem 2.19 ([8, Theorem 12]). For a graph G with n nodes, the graph cubeahedron
CG is a simple convex polytope of dimension n whose face poset is isomorphic to the set of
design tubings of G, ordered such that U < U’ if U is obtained from U’ by adding tubes.

In this article, we are interested in the case when G is a path graph. We will make use of the
above theorem to show a combinatorial isomorphism between CG for G is a path graph with
n nodes and multiplihedra J,,,; in §3.3.

3. Isomorphisms Between The Four Models

We prove the main result of this paper in this section.

Theorem 3.1. The four models of associahedra: Stasheff complexes, cellular complexes
obtained by Loday’s cone construction, collapsed multiplihedra, and graph cubeahedra for
path graphs are all combinatorially isomorphic.

Proof. We prove the isomorphisms in the next three subsections. In §3.1 we prove that
the complexes obtained via the cone construction of Loday are combinatorially isomorphic
to the Stasheff complexes (Theorem 3.2). In §3.2 we prove that the Stasheff complexes and



EQUIVALENCE BETWEEN FOUR MODELS OF ASSOCIAHEDRA 113

collapsed multiplihedra are isomorphic (Proposition 3.4). Finally, in §3.3, the isomorphism
between the collapsed multiplihedra and graph cubeahedra is shown (Proposition 3.5). Com-
bining all three, we have our required result. O

3.1. Loday’s construction vs Stasheff complexes. By Stasheft’s description, K, is the
cone over its boundary elements K, X, K, for p+q=n+2,2<p<nandr=1,2,...,p.On
the other hand, consider C(K ), where K consists of the initial K, together with K Cpr1 Xr K,
suchthat p+g=n+1,2<p<n-1landr = 1,2,...,p. This enlargement K,, can be
described in terms of bracketing as follows.

e K, corresponds to O-bracketing of the word x;x;...x, i.e., the word itself or the
trivial bracketing (x;x;...x,). The immediate faces i.e., the boundary consists of
K, K,withp+g=n+1,2<p<n-landr=12,...,p. Now K, X, K,
corresponds to the 1-bracketing x; ... x—1 (X, ... Xpgo1)Xpsg - - - Xn.

e The enlargement I’(\n corresponds to the adding of a letter x,.; to the right of the
bracketing corresponding to K,,. Then the bracketing x; ... x_1 (X, ... Xr4g-1)Xrsg - - -
X, extends to Xy ... Xr—1(Xy ... Xp4g—1)Xr4q - . - XuXn41 fOr each p, g, r such that p+q =
n+l1,2<p<n-1l,andr=1,2,...,p. Also the initial K, i.e., (x| X7 ... x,) extends
to (x1x3 ... X,)Xu11, Which corresponds to K, X K, in K.

e Finally one takes cone over the enlarged complex to obtain K. .

From the above description, En can be thought of as union of K, X, K, with p+g = (n+1)+1
for2<p<mnandr=1,2,...,p— 1. Thus K, is a part of the boundary of K,,,; (following
Stasheff’s description).

Theorem 3.2. Stasheff complexes are combinatorially isomorphic to Loday’s cone con-
struction of associahedra.

To prove combinatorial isomorphism between the two mentioned models, we must show
bijective correspondence between vertices, edges, and faces of each codimension for both
models respecting the adjacencies. But the faces of codimension more than 1 are contained
in the faces of codimension 1. Thus if we have an appropriate bijection between the faces
of codimension 1 respecting the adjacencies for both models, then the resulting models
being cone over combinatorially isomorphic codimension 1 faces, they are combinatorially
isomorphic.

Proof of Theorem 3.2. It is enough to show that the boundary of K,,; in Loday’s
construction can be subdivided to match them with the boundary elements K, X, K, of K,
in Stasheff model for p + ¢ = n+2,2 < p <mandr = 1,...,p. As observed in the
initial discussion, the only missing boundary part of K,,; in Loday’s construction is the
union of K, X, K, for p + g = n+2 with 2 < p < n. Note that all these missing faces
are adjacent to a common vertex, which corresponds to the right to left (n — 1)-bracketing
x1(0(. .. (x—1 (X X041))...)). As there are (” é) = n — 1 many choices for removing (n — 2)
brackets from a (n — 1)-bracketing (that corresponds to the vertices of K1), each vertex of
K.+ is adjacent to exactly n — 1 faces of codimension 1 of K, (by poset description of
Stasheff’s K,,;1). So the vertex corresponding to x;(xz(. .. (x,-1(XpXp+1))-..)) is not obtained
in K,. Now if we consider any other (n — 1)-bracketing, then there can be at most n — 2
parentheses after x,,;. So removing those parentheses along with some others, we can get a
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1-bracketing that does not enclose x4 i.e., those vertices are adjacent to some K, X, K, for
p+qg=n+2andr=1,2,...,p— 1. Thus any vertex of K,,; except that corresponding to
x1(x2(. . . (xp=1(X4X441))...)) is present in En. We identify this missing vertex with the coning
vertex of Loday’s construction.

We shall prove that the missing faces of K| in C(E,,) can be realized as a cone over
some portion of the boundary of K,. Then we will divide the part C (0K, accordingly to
identify those with the missing faces. We will prove this together with the final result by
induction on the following statements:

L Qus: Kpx, Ky =C((Kp1 X K) U (Kp X, Kg)) if p+g=n+1and p,q 2 3.

L. Pyy:Ky=C(Kypy).n23.
Here the equalities in the statements represent a combinatorial isomorphism. Note that Q,_3
is a collection of statements and the index r is superfluous. We will use the convention that
El =@, C(2) = {*} and allow p,q > 2. Then Q,_3 contains the statement for K,,_; X, K; as
well as K; X, K,,—1. Moreover, these are equivalent to the statement P,_3 since K> is a point
and K,_1 X K> is K,,_1.

The steps of induction are as follows.

Step 0: Show that Py holds.

Note that K, is a point that parametrlzes the binary operation. As a point has no boundary,
s0 K, is also a point, and C(Kz) is an interval. Now K3 parametrizes the family of 3-
ary operations that relate the two ways of forming a 3-ary operation via a given binary
operation. Thus, K3 also represents an interval. Here the boundary of K3 consists of two
points K; X1 K, and K; X, K;. Let us map K, X; K; and K, X; K to Eg and the coning point
in C (Ez) respectively. Then we can map the other points of K3 linearly to C (Ez). Thus we
get K3 and C (1?2) are combinatorially isomorphic. So P is true.

Step 1: Assuming that Py through P,_4 hold, show that Q,_3 holds.
To prove it we will use the following lemma, the proof of which is given at the end of this
subsection.

Lemma 3.3. There is a natural homeomorphism
CX)XC)=C((XxC)HuCX)yxY),

where xy,yo are cone points for C(X), C(Y) respectively and (xy, yo) is the cone point for
C(Z), where Z = (C(X) X Y)U (X x C(Y)).

Now assuming P; through P,_4, we have K; = C(I?l_l) for [ = 3,4,...,n — 2. Take any
p,q >3 with p+¢g=n+11i.e., p,qboth ranges through 3 to n — 2. So

K, % K, = C(f(\ 1) X, C(ff —1) (by the assumption)
= C((Kp-1 X, C(K4-1)) U (C(Kp-1) X, K;-1)) (by the Lemma 3.3)
= C((Kp_l X, K4) U (K, X, Kq_l)) (by the assumption)

This shows that Q,_3 is true.
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Step 2: Assuming P\ through P,_3, show that P,_, hold.

As discussed earlier, to prove that P,_, is true, it is enough to show K X, K, with s + ¢ =
n+ 1 for s, > 2 can be obtained from C(K,_;). Consider s, > 2 with s + t = n + 1. Then
using the conventions K; = @ and C(@) = {x}, we can write

K, X K,
= C(K,-1) X; C(K,1) (by P; through P,_3)
= C((Ky-1 %, K) U (K, X; K;-1)) (by the Lemma 3.3)

=C (K, %, K,) X, K, K, X, (K, %, K,))} | (by definition of K;_,),
P q p q

(pq.r)EVs (p.g.1)€Vs
where V; = {(a,b,c) eN*:2<a<i-l,a+b=i+1,1<c<a-1},i=st
Now using equation (2) (in §2.1), we can write
(K, X, Ky) X5 K = (K, Xs_g+1 Ky) X, K,
(obtained by substituting r = p,s = g,t =t,k =r, j = s — g + 1) for the terms in the first set

of unions. As K, X441 K; is a face of Kj,1,—1, 50 (K, X_g+1 K;) X, K, is aface of K 4,1 X, K,
which is again a face of K, because for (p,¢q,r) € Vi,

p+t—-D+g=p+g+t—1=s+1+t—-1=s+t=n+1.

Thus (K, X, K;) X, K; is a face of K,,,_1 X, K, of codimension 1. But as r > 2 and
I1<r<p-1,sor<p+t-1, which implies that the face K,,,_1 X, K, is already present
in the enlargement K),_;. Thus each term in the first set of unions is already present in K,,_;.

Similarly, using equation (1), we have the identification
K X (Kp Xy Kq) = (Ks Xs Kp) Xs+r-1 Kc]

(obtained by substituting r = 5,5 = p,t = g,k = r,j = s) for the terms in the second set
of unions. Here (K X, K),) Xs,,—1 K, is a face of K ,—1 Xsr—1 K, which is a face of K,
because for (p,q,r) € V;,

(s+p-D+g=s-1+(p+g=s—-1+t+1=s+t=n+1.

Thus (KX, K},) X -1 Ky is a face of Ky, 1 X4,—1 K, 0of codimension 1. Butr < p—1 < p
implies s+ — 1 < s + p — 1, which further implies that the face K, ,_1 Xy ,_1 K} is already
present in the enlargement K,,_;. Thus each term in the second set of unions is also present
in anl .

It follows that all the parts in the unions are present as a part of the boundary of K,_1. Thus
the cone over that particular part of the boundary of En_l, we will get K X K, for all s, > 2
(with s +t = n + 1). Also, these are present as a part of boundary of C(En_l). Therefore we
get a bijection between the faces (of codimension 1) of K, and K1 Consequently, they are
combinatorially isomorphic. So P,_; is true. This completes the induction step as well as
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the proof of the theorem. m|

Remark 3.1. In the above isomorphism, we mapped the starting K,, to K, X; K,, and the
extension of the boundary element K, X, K, to K, X, K,. Similarly we could map the
starting K, to K> X, K, and the extension of the boundary K, X, K, to K11 X,+1 K. But if
we want to map the starting K, to K,, X, K> (r = 1,2, ..., n), the corresponding extension of
boundary K, X; K, should map to

K, X; Ky ift<r<t+qg-1
K, X K, ifr>t+qg-—1
Kp+l X+l Kq ifr<t.
With a slight modification in the above proof, one can similarly prove that this produces

an isomorphism. This, in turn, implies that the faces K, X, K; or K, X, K, of K, are all
equivalent from the point of view of Loday’s construction.

We end this subsection with the proof of Lemma 3.3.

Proof of Lemma 3.3. We will prove the equality by showing both inclusions. First
suppose (x, y) = t(xo, yo) + (1 — H)(x1,y1) € C(Z), where ¢ € [0, 1] and (x;,y;) € Z. Without
loss of generality suppose (x1,y1) € C(X) X Y i.e., x; = t'xo + (1 — ')x]| for some ¢’ € [0, 1]
and x] € X. So

(x,y) = (txo + (1 = D)xy, tyo + (1 = Dyy)
=(txo+ (1 =0)'xo+ (1 = )(1 —1)x, tyo + (1 = Dyy)
=((1 =1 =1 =)xo + (1 =)(1 = )x}, tyo + (1 = yy)
= (t1xo + (1 = 1)x], tyo + (1 = )yy) € C(X) x C(Y)
andt; = 1 = (1 = 1)(1 = ¢'). This implies that C(Z) C C(X) x C(Y).

Yo (w0, 90)

(z,y) XxCY)|—

C(X) x C(Y) C(X)xY "

Fig.18. Visual proof when X = Y = point

Conversely let (x,y) = (t1x0+ (1 —t))x1, ayo + (1 —)yy) € C(X) X C(Y) for some x; € X,
y1 € Yand 11,1, € [0, 1]. Now consider the following cases
Casel.t; =t =1.

(x, y) = 1(x0, yo) + (1 = N(x1,y1) € C(2).

Casell: t; > t5.

—1 1-1
-, Y0t —Hle,m)

(x,y) = ta(x0, yo) + (1 — 12) (’1‘
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= 1(x0, yo) + (1 = )(x0 + (1 = )x1,41) € C(Z), where 7/ = 12

Caselll: t; < t,.

1 1-1,

(%) = 11 (x0,90) + (1 = 1) (1, B0 + 1=21)
= t1(x0,yo) + (1 = 1))(x1,'yo + (1 = )yy) € C(Z), wheret’ =

h-l
1-1 °

Combining all three cases, we conclude that (x, y) € C(Z) and consequently C(X) X C(Y) C
C2). O

3.2. Stasheff complexes vs Collapsed Multiplihedra. We shall use the Definition 2.3
for Stasheff complexes. Similarly, due to Lemma 2.11, we will use Definition 2.12 for
collapsed multiplihedra.

Proposition 3.4. Stasheff complexes K, and collapsed multiplihedra J,, are combina-
torially isomorphic.

Proof. Both K., and J), are cellular complexes whose face posets are isomorphic to
P(n + 1) and J), respectively. Therefore, in order to exhibit an isomorphism between J; and
K,+1, it suffices to find a bijection between P(n + 1) and J;, as posets.

Define ¢ : 3, — B(n + 1) as follows

fXD) = f(XDaps1 = (XDan
FXD) - X)) - (X)) = (XD - (K1) - (X)) angr = (X)) - (X)) (X a1

S (fX1) ... f[Xp-)) (X)) = fF(X1) ... fXm1) f(Xi)ns
= f(X) ... fX-)((XW)ans1)
SXD) o X ) (XD (X @ns1))

= (XD( . (Xe-D)(Xi)ans1) - - ),

¢ (f((X1) - (X)) f((X3) - (Xy) - (X5))) = f((X1) - (X2 ))(((X3) - (X4) - (X5))ans1)
= ((X1) - X)) ((X3)(X4)(X5)aAn11)
= (XDX)((X3)(X4)(X5)an41).

Here X;’s are some rule of association of the elements ay, as, ..., a, in A of some length such
that the total length of all X;’s is n and a,,; is some different element in A. In the above
correspondence, note that the bracketing in X;’s are not changed. We only include some
pair of brackets removing f’s or remove - and keep it as it is with an extra letter a,,; on the
right to get a bracketing of the word aa; . ..a,.1. Also, note that each parenthesis right to
the letter a,,; determines the number of f and their position as well, where no parentheses
mean only single f with the -’s in between the associated words. Thus, the position of each f
and - gives a unique bracketing of the word a,a; . . . a,+| and the process can also be reversed.
So ¢ is bijective. Now in order to check ¢ preserves the poset relation, we need to show
¢(P < P') = ¢(P) < ¢(P’). There are three possible ways (cf. operation (1), (2), (3)) by
which P can be related to P’.

(1) P is obtained from P’ by adding brackets in domain. Since ¢ do not interact with
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the brackets in domain, ¢(P) is also obtained from ¢(P’) by adding brackets i.e.,
P(P) < ¢(P").

(2) P is obtained from P’ by replacing - by )f(’. Thus P contains more f than P’. But
from the correspondence, we know each f corresponds to a pair of brackets, so ¢(P)
must be obtained from ¢(P’) by adding brackets i.e., ¢(P) < ¢(P’).

(3) P is obtained from P’ by removing one or more consecutive - by adding a pair of
brackets that encloses all the adjacent elements to those -. To obtain P, this process
adds brackets to P’ and ¢ does not change the parent bracketing. So so ¢(P) must
be obtained from ¢(P’) by adding brackets i.e., ¢(P) < #(P’).

Thus ¢ defines a bijection of the posets J;, and (n + 1). Hence J;, and K,,;| are combinato-
rially isomorphic. m|

3.3. Collapsed Multiplihedra vs Graph Cubeahedra.

Proposition 3.5. Collapsed multiplihedra J),, and graph cubeahedra CP, for path graph
P, with n nodes are combinatorially isomorphic.

Proof. Recall from Theorem 2.19 that the graph cubeahedron CP, is a convex polytope
of dimension n whose face poset is isomorphic to the set of design tubings of P,. Recall
that the collapsed multiplihedra J; | is a cellular complex of dimension n whose face poset
is isomorphic to J ;. Thus, to describe an isomorphism, it is enough to prove a bijection at
the poset level.

A bijection between the design tubings and the elements of 3/, is defined through the
following correspondences:

e Put g; through a,,; starting from the left of the left-most node to the right of the
right-most node of the graph:

aiq a9 as Ayg ... Qp Ap41

Fig.19. Initial step

e Each round tube corresponds to a pair of parentheses. If the round tube includes k-th
and (k + r — 1)-th node of the graph, then the corresponding parentheses include ay
through ay.,.

o—+0—0----050—

akg—1 (@ Qk+1 e Qftr)  Qkgrt1

Fig.20. Correspondence of round tube

e Each square tube corresponds to the inclusion of ) f(’ in the string f(ajas ... dn.1).
If the square tube include k-th node of the graph, then °)f(’ will be included in
between a; and a;, .

e An empty node in a tubing corresponds to ‘-’ i.e. if k-th node of the graph is not
included by any tube of the given tubing, then put a ‘-’ between a; and gy .
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flars az Vf(...ap+ apg1..)f( an  aGng1)
Fig.22. Correspondence of empty node

Finally, as the position of each tube and its appearance give a unique element of J’ |, we
get a bijective correspondence between design tubings and elements of J/ . ,. An example,
assuming n = 6, is given below.

@0 o E=o o0

f(@ az) as )f((as as) - as )f(ar)  f(la a2 a3) (as a5) (a6  a7))

Fig.23. Bijection between design tubings and multiplihedra

It follows from the correspondence that the removal of a round tube corresponds to the
removal of a pair of parentheses or adding *-” and the removal of a square tube corresponds
to replacing ) f(’ by ‘-’. This shows that the poset relation between design tubings matches
with the poset relation in J/ _,. As the two posets are isomorphic, this finishes the proof.

O
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