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Abstract
We consider the Schrödinger operator −Δ+ V on Rn with potential in the Lorentz space Ln/2,1

and we find necessary and sufficient conditions for zero to be a resonance or an eigenvalue.
We consider functions with gradient in L2 and that verify the equation (−Δ + V)ψ = 0, namely
kerḢ1 (−Δ + V). We prove that a function in this set is either in a weak Lebesgue space, L

n
n−2 ,∞,

or in L2, in the latter case we have a zero eigenfunction. The set of eigenfunctions is the hyper-
plane of functions that are orthogonal to V , and furthermore we show that under some classic
orthogonality conditions a zero eigenfunction belongs to L1,∞ or L1. We study dimensions
n ≥ 3 and in dimension three we generalize a result proved by Beceanu.

1. Introduction

1. Introduction
We consider the Schrödinger operator −Δ+V onRn with n ≥ 3. The evolution of solutions

of the time-dependent Schrödinger equation is influenced by the the spectrum of the operator
−Δ+V , in particular by the bottom of it and the nature of the zero frequency: whether it is in
the spectrum and if it is an eigenvalue or a resonance. Roughly speaking, zero is a resonance
if there is a solution to the equation (−Δ + V)ψ = 0 which does not decay fast enough to be
in L2 and is usually assumed to belong in some kind of weighted space. This solution is a
resonant state.

Local energy decay for solutions of dispersive equations, for example, is tightly linked
to the spectral properties of the Schrödinger operator. First results in this direction were
proved in three dimensional weighted L2 spaces in [22], [16], in higher dimension in [15],
[14] and for more general elliptic operators in [20]. For an extensive overview on the subject
the reader may refer to the survey article [24]. A way to approach these estimates is through
expansions of the resolvent around zero energy from which one can obtain an expansion of
the evolution operator via Fourier transform. This is the strategy followed in [16], where the
authors compute resolvent expansions in dimension three distinguishing the cases whether
there are eigenvalues or resonance obstructions at zero. A unified approach for resolvent
expansions applicable to all dimensions was found later in [17].

In this brief note we recover properties of zero resonances and eigenfunctions described
in the seminal paper [16] under weaker assumptions on V and with optimal behavior of
such states as |x| tends to infinity. On top of this, we obtain results of the same flavor in
dimension four, covering all cases where zero resonances exist and showing that for n ≥ 5
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our solutions always belong to L2. We do not exhibit any exotic or new behavior but rather
give what we consider to be a fairly simple proof of classical results for a more general
class of potentials (essentially the optimal one). Our result in dimension three also has the
advantage of generalizing a characterization found by Beceanu in [3] as we will see more in
detail later on.

In much of the literature, resonances are usually found to belong to weighted Sobolev
or Lebesgue spaces where there is no scaling invariance. For example, in [16] the authors
define a resonance as a solution to (−Δ + V)ψ = 0 where the operator −Δ + V is meant to
be extended to the weighted Sobolev space H1,−s with weight 〈x〉−s and a suitable s > 1/2.
A similar definition can also be found in the leading paper on dispersive L1 to L∞ estimates
by Journé, Soffer and Sogge ([18]). Therein a zero resonant state is taken in a weighted
L2 space, which is the same definition used in [27] in which the author studies Lp to Lq

dispersive estimates. Similarly, in [23], [8], [9] and [11] the authors define resonances as
functions that belong to the intersection of weighted L2 spaces given by ∩s>1/2L2,−s with
weight 〈x〉−s. Even in more recent papers ([1], [25]) with much stricter assumptions on the
potentials than the one considered herein, the framework used to define resonances is the
one of weighted L2 spaces. Along the same line, one can consider the definition in [19].
For a generic time dependent second order elliptic operator a zero resonant state (Definition
1.8) is taken in a rather complicated local smoothing space that for the case of dimension
three and higher is contained in the weighted L2 space with weight 〈x〉−1. As an example
for the non euclidean case, in [26] on a conical manifold we have a perturbation of a model
operator both by a potential and a metric and resonances are defined as functions in weighted
Sobolev spaces. In such work the author, as in [16], is mainly interested in the influence of
zero resonant states on the singularities of the resolvent.

The fact that we can consider a zero resonant state as a function in a weak Lebesgue space
is a very useful feature and it comes at a fairly small cost. Indeed, in various applications
(like [16], [11], [7], [1] or [25]) the potentials must have a prescribed decay at infinity, that is
|V(x)| � 〈x〉−β for some β > 2. Our assumption will be much less strict than requiring a spe-
cific pointwise decay and the results presented here only consider scaling invariant classes
for the potentials. This can be a useful feature when working with nonlinear problems and
we aim to further investigate properties on the bottom of the spectrum for Schrödinger op-
erators with potentials that satisfy only scaling invariant assumptions.

More precisely, let Lp,q(Rn) be the Lorentz space defined on Rn. It is defined as the space
of functions such that the quasinorm denoted by ‖ · ‖p,q is finite. We define the quasinorm
via the distribution function d f (t) = |{| f (x)| > t}| as

‖ f ‖p,q := p1/q
(∫ ∞

0
tq−1(d f (t))q/pdt

)1/q

for q < ∞ or

‖ f ‖p,∞ := sup
t≥0

td f (t)1/p

otherwise. As for the Lebesgue spaces, we identify two functions that are equal almost ev-
erywhere. (For some properties that we will use throughout the reader can refer to Appendix
A).
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As mentioned before, for a prescribed decay the most general assumption is V(x) decay-
ing like |x|−2−ε at infinity (notice that 〈x〉−2−ε ∈ Ln/2(Rn)). From now on, we will take V in a
slightly smaller space than Ln/2(Rn), that is we will assume

(1.1) V ∈ Ln/2,1(Rn) ⊂ Ln/2(Rn).

Assuming (1.1) is a little more restrictive than taking the potential in a Lebesgue space or
in a Kato class, like in [6] and [4]. However, it is still less strict than what is assumed
in [8], [9], or [10], where L3/2−ε ∩ L3/2+ε ⊂ L3/2,1 from Proposition A.1, and much more
general than imposing a power-like decay, which we have seen is the custom in several
cases. Moreover, our assumption is satisfied from the case V(x) = O(〈x〉−2−ε), which is a
common assumption in the low frequencies asymptotic. Nonetheless, it does not seem to
have been clearly observed that a larger class, such as Ln/2,1(Rn), gives the right framework
to describe zero resonances and eigenfunctions more simply and optimally than in the usual
approach [16]. Indeed, the results presented in Theorems 1.1 and 1.2 may already be known
to some experts, but we couldn’t find any reference in the literature.

We will be interested in Ḣ1(Rn) solutions of the equation

(1.2) (−Δ + V)ψ = 0

with V ∈ Ln/2,1(Rn) and Ḣ1(Rn) the homogeneous Sobolev space (see (2.1) for a definition).
We will state our result for a function in Ḣ1(Rn) which gives a simple and natural class of not
necessarily L2 functions where to look for solutions of (1.2). Moreover, −Δ is an isometry
from Ḣ1(Rn) to Ḣ−1(Rn), a feature that we shall extensively use in Section 2.

We also comment that by inverting −Δ, equation (1.2) is equivalent to solving

ψ + (−Δ)−1Vψ = 0.

In his paper [3] Beceanu solves this equation in L∞(R3). As we just said, here we will rather
solve it in Ḣ1(Rn), or actually in L

2n
n−2 ,∞(Rn), in particular without seeking a priori bounded

solutions.
The main results we will prove are the following.

Theorem 1.1. Let n ≥ 3, V ∈ Ln/2,1(Rn) and ψ ∈ Ḣ1(Rn) a solution of the equation
(−Δ + V)ψ = 0.

i) If n ≥ 5 then ψ ∈ L2 and hence all solutions are eigenfunctions.
ii) If n = 3, 4 then

lim
|x|→∞

|x|n−2ψ(x) = −cn

∫
V(y)ψ(y)dy < ∞,

with cn = n(n − 2)|B(0, 1)|. Hence for n = 3

ψ ∈ L3,∞(R3)

and for n = 4

ψ ∈ L2,∞(R4).

Remark 1. The conclusion in item i) can also be seen as a consequence of the decay
given by item ii). However, we can give a direct proof of the fact ψ ∈ L2 for n ≥ 5, without
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the need of computing the explicit limit of |x|n−2ψ(x). Moreover, item i) is true under the
weaker assumption V ∈ Ln/2.

Theorem 1.2. Let n ≥ 3, V ∈ Ln/2,1(Rn) and ψ ∈ Ḣ1(Rn) a solution of the equation
(−Δ + V)ψ = 0. The following properties hold:

i) If
∫

Vψ = 0 then ψ = O( 1
|x|n−1 ) near infinity and in particular ψ is in L2(Rn) and is a

zero eigenfunction. Moreover, for n = 3, 4, ψ ∈ L2(Rn) if and only if
∫

Vψ = 0.
ii) If

∫
Vψ =

∫
ykVψ = 0 for all k = 1, . . . , n then ψ = O( 1

|x|n ) near infinity. In
particular, ψ is a zero eigenfunction and ψ ∈ L1,∞(Rn).

iii) If
∫

Vψ =
∫
ykVψ =

∫
ykylVψ = 0 for all k, l = 1, . . . , n then ψ = O( 1

|x|n+1 ) near
infinity. In particular, ψ is a zero eigenfunction and ψ ∈ L1(Rn).

Let us give a few comments about these results:
• as we mentioned earlier, Ḣ1(Rn) is a pretty natural class of non L2 functions to

consider for this problem and in higher dimension n ≥ 5 we see from Theorem 1.1
that there are no solutions of (1.2) which do not belong to L2. This is due to the fact
that Sobolev embeddings imply that the operator I + (−Δ)−1V maps L2 into itself.
Therefore, with respect to the existence of resonances Ḣ1 represents an optimal class
of functions where to solve (1.2). However, from the point of view of regularity it is
actually enough to require ψ ∈ L

2n
n−2 ,∞(Rn) and indeed we will perform all proofs for

ψ in this larger class.
• In dimension three the simple assumption V ∈ L3/2,1(R3) generalizes the result stated

by Beceanu in [3] (Lemma 2.3) where the necessary and sufficient condition for ψ to
be an eigenfunction is recovered only for potentials in L3/2,1(R3)∩L1(R3). Regarding
the behavior at infinity, we give a more precise statement than just ψ ∈ 〈x〉−1L∞(R3)
since in Theorem 1.1 we give an explicit expression for the limit of |x|ψ for |x| →
+∞.
• The conditions of orthogonality between Vψ and various other polynomial functions

are not new ones. Indeed, they can also be found in [16], [15] or [3]. In particular
in [16],[15] it was already observed that the condition

∫
Vψ = 0 is the right one

to discriminate between zero resonance or eigenvalue. However, in these works the
authors consider conditions of pointwise decay on the potential that are more strict
than our assumption. We also remark that the orthogonality conditions in item i)
and ii) are actually necessary and sufficient for the decay of ψ, see Remark 6.

Notation. We will drop from the notations the dependence on the underlying space Rn

unless the situation requires it to make it explicit.
We define the function a

a(x) =
1
|x|n−2

which belongs to L
n

n−2 ,∞.

The main steps will be the following:
1. We will use the density of simple functions in Ln/2,1 to decompose the potential V in
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V = W + K

where W ∈ Ln/2,1 is such that ‖W‖n/2,1 is arbitrarily small and K is a simple function,
hence compactly supported and in any Lorentz space.

2. Thanks to the smallness of W in Ln/2,1 we will be able to define and estimate G, the
Green function of (−Δ +W).

3. We will then solve in Ḣ1 (or more in general L
2n

n−2 ,∞ is sufficient) the equation

(−Δ +W)ψ = −Kψ

where (−Δ + W) : Ḣ1 → Ḣ−1 is invertible and we will use the Green function
computed in the previous step to write

ψ(x) = −
∫

G(x, y)K(y)ψ(y)dy.

In the rest of the paper ψ will be an L
2n

n−2 ,∞ solution of (−Δ + V)ψ = 0.
4. We will show that |x|n−2ψ has a finite limit at infinity and that such limit is given

by −cn
∫

Vψ. Therefore, the value of such integral determines whether ψ is in L2 or
not. This is done in Section 3.

5. With additional orthogonality conditions on Vψ we can repeat the argument of the
previous step to prove that ψ has faster, but limited, decay until we can reach the L1

space. This is done in Section 3.

2. Green function for a small potential

2. Green function for a small potential
Let Ḣs for s ∈ R the homogeneous Sobolev space of order s, defined as

(2.1) Ḣs := {u ∈  ′ : û ∈ L1
loc, ‖u‖Ḣs := ‖| · |sû‖L2 < ∞}

where 
′ is the space of tempered distributions on Rn. The following Sobolev embedding

will be useful

(2.2) Ḣ1 ↪→ L
2n

n−2 ,

see Theorem 1.38 in [2] for a proof.

Remark 2. We remark that the more general embedding

(2.3) Ḣ1 ↪→ L
2n

n−2 ,2,

is also true. It can be obtained with the same reasoning as in the proof of Theorem 1.38 in
[2] and using Young’s inequality for Lorentz spaces in dimension n ≥ 3 ([5] Theorem 2.12):

‖| · |−α ∗ f ‖p,q ≤ C‖ f ‖r,q 1 +
1
p
=

1
r
+
α

n
,

where | · |−α ∈ Ln/α,∞.

We consider the operator

−Δ + V : Ḣ1 → Ḣ−1,
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its self-adjoint realization on Ḣ1 is obtained via the quadratic form

q(u, u) = 〈∇u,∇u〉 + 〈Vu, u〉 =
∫
|∇u|2 + V |u|2dx,

which is well defined on Ḣ1. Indeed, given V ∈ Ln/2,1 ⊂ Ln/2 and u ∈ Ḣ1 ↪→ L
2n

n−2 we have

(2.4) Vu ∈ Ln/2 · L 2n
n−2 ⊂ L

2n
n+2 ⊂ Ḣ−1,

thanks to the dual of inclusion (2.2). We have just found that V maps Ḣ1 to Ḣ−1, and hence
the scalar product 〈Vu, u〉 is well defined when u ∈ Ḣ1. From the continuous embeddings
we also have

‖V‖Ḣ1→Ḣ−1 ≤ ‖V‖n/2,1.
We recall the following property.

Lemma 2.1. Let V ∈ Ln/2,1 and δ � 1. Then there exist K,W ∈ Ln/2,1 such that V =
W + K, K is a simple function and ‖W‖n/2,1 ≤ δ.

We recall that simple functions are finite linear combinations of characteristic functions
of sets of finite measure.

Proof. The statement follows directly from the density of simple functions in Ln/2,1, see
Theorem 1.4.13 in [12]. �

From the previous lemma, we can decompose the potential V as

V = W + K ‖W‖n/2,1 � 1.

Instead of looking for the solution of (−Δ + V)ψ = 0, in this section we will study ψ ∈ Ḣ1

as solution of the equation

(−Δ +W)ψ = −Kψ.

We now consider the operator

(−Δ +W) : Ḣ1 → Ḣ−1

where −Δ : Ḣ1 → Ḣ−1 is an isometry and

‖W‖Ḣ1→Ḣ−1 ≤ ‖W‖n/2,1 � 1.

Remark 3. The operator −Δ + W maps Ḣ1 into Ḣ−1 even under the weaker assumption
W ∈ Ln/2,2, thanks to the embedding (2.3). However, the space Ln/2,1 has the interest of
being the dual of L

n
n−2 ,∞, and this will allow us to integrate W against the kernel of (−Δ)−1

and to state that
∫

Vψ, limit of |x|n−2ψ at infinity, is finite.

The smallness of W allows us to invert the operator via a Neumann series. Indeed, writing

(−Δ +W)−1 = (−Δ)−1(I +W(−Δ)−1)−1

we obtain a small perturbation of the identity and hence we can write, at least formally,
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(2.5) (−Δ +W)−1 =
∑
j≥0

(−1) j(−Δ)−1(W(−Δ)−1) j

where the series is convergent thanks to the smallness of W.
We then apply an idea from [21]: to construct the Green function we define the integral

kernels corresponding to the operators in the series (2.5). We do so by recurrence, setting

G0(x, y) = cn
1

|x − y|n−2 , G j(x, y) = cn

∫
1

|x − z|n−2 W(z)G j−1(z, y)dz

where cn = n(n− 2)|B(0, 1)| is a constant depending on the dimension. Here G0 is the kernel
of (−Δ)−1, G1 that is given by

G1(x, y) = cn

∫
1

|x − z|n−2 W(z)cn
1

|z − y|n−2 dz

is the kernel of (−Δ)−1W(−Δ)−1 and so on, G j will be the kernel of (−Δ)−1(W(−Δ)−1) j.
To bound the integrals defining G j we first remark a useful inequality.

Lemma 2.2. Let a(x) = 1
|x|n−2 . For x � y it holds

∫
1

|x − z|n−2 |W(z)| 1
|z − y|n−2 dz ≤ ‖a‖ n

n−2 ,∞‖W‖n/2,1
2n−1

|x − y|n−2 .

Proof. We split the integral into the regions {|z − y| ≤ |x−y|
2 } and {|z − y| > |x−y|

2 } so that
z ∈ B(y, |x−y|2 ) implies |x − z| ≥ |x−y|2 and we have∫

1
|x − z|n−2 |W(z)| 1

|z − y|n−2 dz ≤ 2n−2

|x − y|n−2

∫
|W(z)| 1

|z − y|n−2 dz

+
2n−2

|x − y|n−2

∫
1

|x − z|n−2 |W(z)|dz

≤ 2n−2

|x − y|n−2 ‖W‖n/2,1(‖| · −y|−(n−2)‖ n
n−2 ,∞

+ ‖| · −x|−(n−2)‖ n
n−2 ,∞)

≤‖a‖ n
n−2 ,∞‖W‖n/2,1

2n−1

|x − y|n−2 .

The last inequality follows from the fact that Lp,q quasinorms are invariant by translation.
�

Remark 4. In the previous lemma we stated some useful properties for the kernel of
(−Δ)−1 in Rn, n ≥ 3 when integrated against a function in Ln/2,1. The two dimensional case,
with its logarithmic behaviour in the kernel of (−Δ)−1 needs a dedicated approach.

Theorem 2.3. Let W ∈ Ln/2,1 with ‖W‖n/2,1 � 1 sufficiently small. Then

(2.6) G(x, y) :=
∑
j≥0

(−1) jG j(x, y)

is the Green function of −Δ +W and is such that |G(x, y)| � 1
|x−y|n−2 .
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Remark 5. The theorem gives us a pointwise bound on the integral kernel of (−Δ+W)−1

by the integral kernel of (−Δ)−1. We deduce that (−Δ + W)−1 inherits any Lp → Lq or
Lp,q → Lp′,q′ bound that (−Δ)−1 enjoys.

Proof of Theorem 2.3. By Lemma (2.2) it is straightforward to bound G1 by

|G1(x, y)| ≤ c2
n‖a‖ n

n−2 ,∞‖W‖n/2,1
2n−1

|x − y|n−2 = 2n−1cn‖a‖ n
n−2 ,∞‖W‖n/2,1G0(x, y)

and setting C = 2n−1cn‖a‖ n
n−2 ,∞‖W‖n/2,1 we obtain by induction

|G j(x, y)| ≤ C jG0(x, y).

Indeed, assuming |G j−1(x, y)| ≤ C j−1G0(x, y) and applying again Lemma 2.2 we directly
obtain

|G j(x, y)| ≤c2
n

∫
1

|x − z|n−2 |W(z)| C j−1

|z − y|n−2 dz

≤C j−1c2
n‖a‖ n

n−2 ,∞‖W‖n/2,1
2n−1

|x − y|n−2 = C jG0(x, y).

The constant C is less than one thanks to the smallness of W and hence the series (2.6) is
convergent. The bound on G follows directly from the one on G j.

Finally, we check that G is indeed the kernel of (−Δ + W)−1. Let ϕ, ψ ∈ C∞0 be two test
functions and 〈 , 〉 the scalar product of L2

〈ψ, (−Δ +W)−1ϕ〉 =〈ψ,
∑
j≥0

(−1) j(−Δ)−1(W(−Δ)−1) jϕ〉

=
∑
j≥0

(−1) j〈ψ, (−Δ)−1(W(−Δ)−1) jϕ〉(2.7)

=
∑
j≥0

(−1) j
∫

ψ(x)G j(x, y)ϕ(y) dxdy

=

∫
ψ(x)

∑
j≥0

(−1) jG j(x, y)ϕ(y) dxdy(2.8)

=

∫
ψ(x)G(x, y)ϕ(y) dxdy

where to obtain (2.7) we used the fact that the series (2.5) is convergent with respect to the
topology of (Ḣ−1, Ḣ1) and for (2.8) we used the absolute convergence of the series (2.6).

�

3. Properties of a zero resonant state

3. Properties of a zero resonant state
The aim of this section is to prove Theorems 1.1 and 1.2. Using the decomposition

V = W +K we can write the resonance ψ as solution of (−Δ+W)ψ = −Kψ and by the Green
function defined in Theorem 2.3 this solution is given by

(3.1) ψ(x) = −
∫

G(x, y)K(y)ψ(y)dy.



Zero Resonances for Schrödinger Operator 131

First of all we prove Theorem 1.1, therefore obtaining that a resonant state ψ is actually
an eigenfunction, when n ≥ 5, or is in a weak Lebesgue space, when n = 3, 4.

Proof of Theorem 1.1. • Case n ≥ 5. We consider ψ ∈ Ḣ1 solution of the eigenvalue
equation (−Δ + V)ψ = 0, or equivalently (−Δ +W)ψ = −Kψ. We want to prove that ψ is in
L2. We know that ψ is a solution of the equation

(3.2) (I + (−Δ)−1W)ψ = −(−Δ)−1Kψ.

Thanks to Hardy-Littlewood-Sobolev and Hölder inequalities we have

(−Δ)−1 : L
2n

n+4 ,2 → L2, W : L2 → L
2n

n+4 ,2

where ‖W‖
L2→L

2n
n+4 ,2
� ‖W‖n/2,1 � 1, and hence the operator (I + (−Δ)−1W) can be inverted

via a Neumann series and its inverse defines an operator from L2 to L2. Applying this
operator to (3.2) we find

ψ = −(I + (−Δ)−1W)−1(−Δ)−1Kψ

with

(I + (−Δ)−1W)−1 : L2 → L2.

So ψ is in L2 if (−Δ)−1Kψ is. Since n ≥ 5 we have the Sobolev embedding

Ḣ2 ↪→ L
2n

n−4 ,2

and its dual

L
2n

n+4 ,2 ↪→ Ḣ−2.

Now, K is a simple function, therefore it belongs to the space Ln/3,∞ and by Hölder inequality

‖(−Δ)−1Kψ‖2 = ‖Kψ‖Ḣ−2 � ‖Kψ‖ 2n
n+4 ,2
� ‖K‖n/3,∞‖ψ‖ 2n

n−2 ,2
< ∞

thanks to the inclusion Ḣ1 ↪→ L
2n

n−2 ,2. We have obtained (−Δ)−1Kψ ∈ L2 and hence ψ ∈ L2.
• Case n = 3, 4. We recall from Theorem 2.3 that |G(x, y)| � 1

|x−y|n−2 , then using (3.1) for
large enough |x|

|x|n−2|ψ(x)| � |x|n−2
∫

1
|x − y|n−2 |K(y)ψ(y)|dy �

∫
|K(y)ψ(y)|dy < ∞.

where the last integral is finite. Indeed, K is a simple function, so K ∈ Lp,q for any p and q.
In particular K ∈ L

2n
n+2 ,1 = (L

2n
n−2 ,∞)∗ and ψ ∈ L

2n
n−2 ,∞.

We can then obtain ψ ∈ L
n

n−2 ,∞. Let χ be a smooth cutoff which is equal to 1 on a large
enough compact set, for the compact part it holds ψχ ∈ L

n
n−2 ,∞ since χ, ψ ∈ L

2n
n−2 ,∞. For the

part at infinity we can bound ψ(1 − χ) by 1
|x|n−2 ∈ L

n
n−2 ,∞. So applying (A.1) we conclude

‖ψ‖ n
n−2 ,∞ � ‖χψ‖ n

n−2 ,∞ + ‖(1 − χ)ψ‖ n
n−2 ,∞ < ∞.

Now to determine the value of the limit we need to study the behavior of |x|n−2G(x, y) for
large |x| and y that ranges in a compact set (the support of K). Using the second resolvent
identity

(3.3) (−Δ +W)−1 = (−Δ)−1 − (−Δ)−1W(−Δ +W)−1
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we can write

(3.4) |x|n−2G(x, y) = cn
|x|n−2

|x − y|n−2 − cn

∫ |x|n−2

4π|x − z|n−2 W(z)G(z, y)dz.

The first term in |x|n−2G(x, y) converges to cn, and for the second term we split the integral in
the regions B(0, |x|/2) and its complementary. First, taking |x| large enough if z ∈ B(0, |x|/2)c

then we will have

|z − y| ≥ ||z| − |y|| = |z| − |y| ≥ |x|
2
− |y| > 0.

Using this bound we obtain∫
B(0,|x|/2)c

|x|n−2

4π|x − z|n−2 |W(z)G(z, y)|dz �
∫

B(0,|x|/2)c

1
|x − z|n−2 |W(z)| |x|n−2

( |x|2 − |y|)n−2
dz(3.5)

�
∫

B(0,|x|/2)c

1
|x − z|n−2 |W(z)|dz

�‖a‖ n
n−2 ,∞‖W1B(0,|x|/2)c‖n/2,1 |x|→+∞−−−−−→ 0.

The norm ‖W1B(0,|x|/2)c‖n/2,1 is defined by an integral of the distribution function. Then the
convergence to zero is due to the fact that the superlevel of W1B(0,|x|/2)c tends to the empty
set as |x| → +∞ and we can pass the limit in the integral thanks to the domination

dW1B(0,|x|/2)c (t)2/n ≤ dW(t)2/n ∈ L1(R+).

On the other hand, for |x| → +∞ we have the pointwise convergence of

1B(0,|x|/2)(z)cn
|x|n−2

|x − z|n−2 W(z)G(z, y)→ cnW(z)G(z, y)

and since the points z ∈ B(0, |x|2 ) satisfy |x − z| > |x|2 we have the domination

1B(0,|x|/2)(z)
|x|n−2

4π|x − z|n−2 |W(z)G(z, y)| � |W(z)| 1
|z − y|n−2 ∈ L1.

So again by dominated convergence

(3.6) cn

∫
B(0,|x|/2)

|x|n−2

4π|x − z|n−2 W(z)G(z, y)
|x|→+∞−−−−−→ cn

∫
W(z)G(z, y)dz.

Summing together (3.5) and (3.6) in (3.4) we obtain

lim
|x|→+∞

|x|n−2G(x, y) = cn − cn

∫
W(z)G(z, y)dz

and since |x|n−2G(x, y) � 1 and Kψ ∈ L1 we can pass the limit in the integral in (3.1). This
yields

lim
|x|→+∞

|x|n−2ψ(x) = − cn

∫
K(y)ψ(y)dy + cn

∫ (∫
W(z)G(z, y)dz

)
K(y)ψ(y)dy.

Now exchanging the order of integration in the second term and using relation (3.1) we have∫ (∫
W(z)G(z, y)dz

)
K(y)ψ(y)dy =

∫
W(z)

∫
G(z, y)K(y)ψ(y)dydz = −

∫
W(z)ψ(z)dz
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from which the statement follows since V = W + K. �

Thanks to the previous proof we can derive the behavior of ψ at infinity. We can prove
further decay for ψ, and therefore better integrability, under suitable orthogonality assump-
tions on ψ. To obtain decay for ψ we will prove that |x|αψ is bounded at infinity for a suitable
α.

We take R > 0 sufficiently large such that

supp K ⊂ B(0,R) and |x|n−2|ψ(x)| ∈ L∞(B(0,R)c).

We recall that such R exists thanks to the fact that K is a simple function together with the
fact that |x|n−2|ψ(x)| has a finite limit. We study the behavior of ψ in B(0,R)c. To do so we
define the spaces

(3.7) α = |x|−αL∞(B(0,R)c) = { f : |x|α f ∈ L∞(B(0,R)c) }
with the natural norm

‖ f ‖α
= ‖|x|α f 1B(0,R)c‖∞.

In Proposition 3.2 we prove that ψ belongs to such spaces α for suitable α.
We will use the following inequality. A proof can be found in Appendix B.

Lemma 3.1. Let N ∈ N and k = 0, . . . ,N l = 0, . . . , k. There exist ckl ∈ R such that
∣∣∣∣∣ 1
|x − y|n−2 −

1
|x|n−2

N∑
k=0

k∑
l=0

k+l≤N

ckl
|y|k+l

|x|k+l ·
(x · y)k−l

(|x||y|)k−l

∣∣∣∣∣ � 1
|x − y|n−2

( |y|N+1

|x|N+1 +
|y|N+n−2

|x|N+n−2

)

for all x, y ∈ Rn \ {0} and x � y.

Notation. For y ∈ Rn and α = (α1, . . . , αn) ∈ Nn we denote by yα =
∏n

k=1 y
αk
k .

Proposition 3.2. Let ψ ∈ Ḣ1 be a solution of the equation (−Δ+V)ψ = 0 and N = 0, 1, 2.
Then ψ ∈ N+n−1, i.e. it decays like |x|−(N+n−1) at infinity, if

∫
yαVψ = 0 for all multi-indices

α ∈ Nn, |α| ≤ N.

Proof. Using the integral kernel of Δ−1 on Rn we can write

(3.8) ψ(x) = −cn

∫
1

|x − y|n−2 V(y)ψ(y)dy.

By assumption for N ≤ 2 and k = 0, . . .N we have
∫ ( k∑

l=0
k+l≤N

ckl
|y|k+l

|x|k+l ·
(x · y)k−l

(|x||y|)k−l

)
V(y)ψ(y)dy = 0.

Indeed, the terms in the sum are given by

|y|k+l (x · y)k−l

|y|k−l = |y|2l(x · y)k−l

and are therefore polynomials in y of degree k + l, since k + l ≤ N they vanish when we
integrate them against Vψ.
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Thanks to these vanishing quantities, we then rewrite (3.8) as

ψ(x) =cn

∫ ( 1
|x|n−2

( N∑
k=0

k∑
l=0

k+l≤N

ckl
|y|k+l

|x|k+l ·
(x · y)k−l

(|x||y|)k−l

)
− 1
|x − y|n−2

)
V(y)ψ(y)dy(3.9)

= cn

∫
|y|≤R

( 1
|x|n−2

( N∑
k=0

k∑
l=0

k+l≤N

ckl
|y|k+l

|x|k+l ·
(x · y)k−l

(|x||y|)k−l

)
− 1
|x − y|n−2

)
V(y)ψ(y)dy

︸����������������������������������������������������������������������������������������︷︷����������������������������������������������������������������������������������������︸
=: f (x)

+ cn

∫
|y|≥R

( 1
|x|n−2

( N∑
k=0

k∑
l=0

k+l≤N

ckl
|y|k+l

|x|k+l ·
(x · y)k−l

(|x||y|)k−l

)
− 1
|x − y|n−2

)
W(y)ψ(y)dy

where we recall that R is a sufficiently large radius such that

supp K ⊂ B(0,R), |x|n−2|ψ(x)| ∈ L∞(B(0,R)c).

Defining the operator

(3.10)  : ϕ �→ cn

∫
|y|≥R

( 1
|x|n−2

( N∑
k=0

k∑
l=0

k+l≤N

ckl
|y|k+l

|x|k+l ·
(x · y)k−l

(|x||y|)k−l

)
− 1
|x − y|n−2

)
W(y)ϕ(y)dy

we can rewrite the previous identity as

(3.11) ψ = f + ψ.

We will prove that the operator  is a contraction in the spaces N+n−1,N+n−2 and that
f ∈ N+n−1 ⊂ N+n−2, and hence the equation

(3.12) ϕ = f + ϕ

has a unique solution in N+n−1 as well as a unique solution in N+n−2. This proves the
statement. Indeed, let N = 0. Then identity (3.11) together with item ii) in Theorem 1.1
tell us that ψ is the unique solution in n−2 of the fixed point problem (3.12). The problem
(3.12) has a unique solution in N+n−1 as well and since

N+n−1 ⊂ n−2 N = 0, 1, 2

then ψ must be in N+n−1.
To conclude we must prove f ∈ N+n−1 ⊂ N+n−2 and that  is a contraction on N+n−1

and N+n−2.
We use Lemma (3.1) to prove f ∈ N+n−1 ⊂ N+n−2. Let |x| ≥ 2R. From the definition of

f we first have

| f (x)| �
∫
|y|≤R

1
|x − y|n−2

( |y|N+1

|x|N+1 +
|y|N+n−2

|x|N+n−2

)
|V(y)ψ(y)|dy

�
1

(|x| − R)n−2

(
1
|x|N+1 +

1
|x|N+n−2

) ∫
|y|≤R
|V ||ψ|dy

hence |x|N+n−1| f (x)| is bounded for |x| ≥ 2R. For R ≤ |x| ≤ 2R we rewrite f as



Zero Resonances for Schrödinger Operator 135

f (x) =cn

∫
|y|≤R

1
|x|n−2

( N∑
k=0

k∑
l=0

k+l≤N

ckl
|y|k+l

|x|k+l ·
(x · y)k−l

(|x||y|)k−l

)
V(y)ψ(y)dy

+ ψ(x) +
∫
|y|≥R

1
|x − y|n−2 V(y)ψ(y)dy.

Then since |x|n−2ψ(x) ∈ L∞(B(0,R)c), the bound

| f (x)| �
∫
|V(y)ψ(y)|dy + |ψ(x)| +

∫
|y|≥R

|V(y)|
|x − y|n−2 |y|n−2|ψ(y)|dy

implies that |x|N+n−1| f (x)| is bounded for R ≤ |x| ≤ 2R .
We now prove that  is a contraction on N+n−2. Thanks to Lemma 3.1

|ϕ(x)| �
∫
|y|≥R

1
|x − y|n−2

( |y|N+1

|x|N+1 +
|y|N+n−2

|x|N+n−2

)
|W(y)ϕ(y)|dy

�
∫
|y|≥R

1
|x − y|n−2

|y|N+1

|x|N+1 |W(y)ϕ(y)|dy

+
1

|x|N+n−2 ‖ϕ‖N+n−2

∫ |W(y)|
|x − y|n−2 dy

�
∫
|y|≥R

1
|x − y|n−2

|y|N+1

|x|N+1 |W(y)ϕ(y)|dy(3.13)

+
1

|x|N+n−2 ‖ϕ‖N+n−2‖W‖n/2,1.

We split the domain of integration in the regions

{|y| ≥ R} =
{
|y| ≥ R and |y| < |x|

2

}
�

{
|y| ≥ R and

|x|
2
≤ |y| ≤ 2|x|

}
(3.14)

� {|y| ≥ R and |y| > 2|x|}
=: E< � E≈ � E>

and we remark the following properties

|y|−1 � |x|−1 on E> ∪ E≈ |x|−1 � |y|−1, |x − y|−1 � |x|−1 on E<.

We use the inequalities

|y|N+1

|x − y|n−2|x|N+1 |ϕ(y)| �

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

|y|N+n−2|ϕ(y)|
|x|N+n−2|x − y|n−2 on E> ∪ E≈
|y|N+n−2|ϕ(y)|

|x|N |y|n−2|x − y|n−2 on E<

�

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1

|x|N+n−2 ‖ϕ‖N+n−2

1
|x − y|n−2 on E> ∪ E≈

1
|x|N ‖ϕ‖N+n−2

1
|y|n−2|x − y|n−2 on E<

obtaining
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　∫
|y|≥R

1
|x − y|n−2

|y|N+1

|x|N+1 |W(y)ϕ(y)|dy �‖ϕ‖N+n−2

( 1
|x|N+n−2

∫
E>∪E≈

|W(y)|
|x − y|n−2 dy

+
1
|x|N

∫
E<

|W(y)|
|y|n−2|x − y|n−2 dy

)

�
1

|x|N+n−2 ‖ϕ‖N+n−2‖W‖n/2,1
where we used Lemma 2.2 in the last inequality.

Having estimated the integral in (3.13) we can go back to the inequality on |ϕ(x)| from
which we finally have

|ϕ(x)| � 1
|x|N+n−2 ‖ϕ‖N+n−2‖W‖n/2,1

and hence

‖ϕ‖N+n−2 � ‖W‖n/2,1‖ϕ‖N+n−2

which implies that  is a contraction on N+n−2 thanks to the smallness of ‖W‖n/2,1.
As a last step, we need to prove that  is a contraction on N+n−1 as well. We still use the

subdivision (3.14). As we found before, thanks to Lemma 3.1

|ϕ(x)| �
∫
|y|≥R

1
|x − y|n−2

( |y|N+1

|x|N+1 +
|y|N+n−2

|x|N+n−2

)
|W(y)ϕ(y)|dy.

We use the inequalities

|y|N+1

|x − y|n−2|x|N+1 |ϕ(y)| = |y|N+n−1

|x − y|n−2|x|N+1|y|n−2 |ϕ(y)|

�

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
‖ϕ‖N+n−1

|x|N+n−1 ·
1

|x − y|n−2 on E> ∪ E≈
‖ϕ‖N+n−1

|x|N+n−1 ·
1
|y|n−2 on E<

and

|y|N+n−2

|x − y|n−2|x|N+n−2 |ϕ(y)| = 1
|x − y|n−2 ·

|y|N+n−1

|x|N+n−2|y| |ϕ(y)|

�

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
‖ϕ‖N+n−1

|x|N+n−1 ·
1

|x − y|n−2 on E> ∪ E≈
‖ϕ‖N+n−1

|x|N+1 · 1
|y|n−2|x − y|n−2 on E<,

thanks to which we can bound |ϕ(x)| by

|ϕ(x)| �‖ϕ‖N+n−1

|x|N+n−1

(∫
E>∪E≈

|W(y)|
|x − y|n−2 dy +

∫
E<

|W(y)|
|y|n−2 dy

)

+
‖ϕ‖N+n−1

|x|N+1

∫
E<

|W(y)|
|y|n−2|x − y|n−2

�
‖ϕ‖N+n−1

|x|N+n−1 ‖W‖n/2,1
where we used again Lemma 2.2 to obtain the last inequality. The previous bound is equiv-
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alent to

‖ϕ‖N+n−1 � ‖W‖n/2,1‖ϕ‖N+n−1

which proves that  is a contraction on N+n−1 thanks to the smallness of ‖W‖n/2,1. �

Remark 6. In the previous proof we showed that
∫

Vψ = 0 implies ψ ∈ n−1. We remark
that also the opposite implication is true: if ψ ∈ n−1 then the integral of Vψ must be zero.
The same holds for the integral of Vψ with monomials of order one. Indeed we show below
that

∫
ykVψ = 0 for all k = 1, . . . , n if and only if ψ ∈ n.

Assume ψ ∈ n−1. Since ψ is also a solution of (−Δ + V)ψ = 0 we have∫
V(y)ψ(y) =

∫
Δψ(y) = lim

ε→0

∫
Δψ(y)χ(εy)

with χ a smooth cutoff on B(0, 1). After integration by parts we obtain∫
V(y)ψ(y) = lim

ε→0

∫
ε2ψ(y)Δχ(εy) = 0

where the limit is zero by dominated convergence, thanks to the domination

|ε2ψ(y)Δχ(εy)| = |εy|2|Δχ(εy)| 1
|y|2 |ψ(y)| � |ψ(y)|

|y|2
with |ψ(y)|

|y|2 �
1
|y|n+1 integrable on the support of Δχ (it would actually be sufficient that ψ

belongs to n−2+δ for some positive δ).
Similarly, if ψ ∈ n we have∫

ykV(y)ψ(y) = lim
ε→0

∫
ykΔψ(y)χ(εy) = lim

ε→0

∫
(ykε

2Δχ(εy) + 2ε∂ykχ(εy))ψ(y) = 0

again by dominated convergence since

|(ykε
2Δχ(εy) + 2ε∂ykχ(εy))ψ(y)| =|ε2yk|y|Δχ(εy) + 2|εy|∂ykχ(εy)| 1|y| |ψ(y)| � |ψ(y)|

|y|
with |ψ(y)|

|y| �
1
|y|n+1 integrable on the support of ∂ykχ (as before, ψ ∈ n−1+δ for δ > 0 would be

enough).
We also remark that we can not use the same reasoning to prove that under the assumption

ψ ∈ n+1 we have
∫
yαVψ = 0 for all |α| = 2. Indeed, for k � l∫

ykylV(y)ψ(y) = lim
ε→0

∫
ykylΔψ(y)χ(εy)

= lim
ε→0

∫
(ykylε

2Δχ(εy) + 2εyk∂ylχ(εy) + 2εyl∂ykχ(εy))ψ(y) = 0

where the domination in the dominated convergence theorem is given by ψ itself. On the
contrary, integrating against y2

k we can not conclude that the integral vanishes since∫
y2

kV(y)ψ(y) = lim
ε→0

∫
y2

kΔψ(y)χ(εy)

= lim
ε→0

∫
(y2

kε
2Δχ(εy) + 4ykε∂ykχ(εy) + 2χ(εy))ψ(y)
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=2
∫

ψ(y)dy.

However, we remark the following fact. If
∫
yαVψ = 0 for all α with |α| ≤ 2, the previous

computations shows us that
∫
ψ = 0. We also know that under this orthogonality assumption

ψ ∈ n+1, as stated in Theorem 1.2, and hence a sufficiently fast decaying eigenfunction
must be orthogonal to constants.

We are now able to prove Theorem 1.2.

Proof of Theorem 1.2. The proof is a direct consequence of the previous propositions.
We start by proving item i). If

∫
Vψ = 0, we can apply Proposition 3.2 for N = 0,

obtaining ψ ∈ n−1 and consequently ψ ∈ L2(B(0,R)c). Moreover, ψ ∈ Ḣ1 ⊂ L
2n

n−2 by

assumption and L
2n

n−2
loc ⊂ L2

loc since 2n
n−2 ≥ 2 for n ≥ 3. For n = 3, 4, if

∫
Vψ � 0 the limit of

|x|n−2ψ is finite and non zero thanks to Theorem 1.1. Hence, c
|x|n−2 ≤ ψ ≤ c′

|x|n−2 at infinity and
therefore ψ is not in L2. We conclude that for dimensions three and four

∫
Vψ = 0 is also a

necessary condition to have ψ ∈ L2.
Now assume

∫
ykV(y)ψ(y)dy = 0 for all k = 1, . . . , n. We can apply Proposition 3.2 with

N = 1 which implies ψ ∈ n and hence ψ ∈ L1,∞, since 1
|x|n ∈ L1,∞. Item ii) is then proved.

We conclude by proving item iii). Thanks to the assumptions on
∫
ykV(y)ψ(y)dy and∫

ykylV(y)ψ(y)dy for k, l = 1, . . . , n we can apply Proposition 3.2 with N = 2. Then ψ ∈ n+1

implies ψ ∈ L1(B(0,R)c) while ψ ∈ L2, that we already have from item i) since
∫

Vψ = 0,
implies ψ ∈ L1

loc. Alternatively, this last inclusion can be proved by interpolation. Since ψ is
in n+1 we have that |x|ψ is bounded by |x|−n at infinity and hence |x|ψ ∈ L1,∞. We can then
write

ψ(x) =
1
|x|b(x) with

1
|x| ∈ Ln,∞, b ∈ L1,∞,

which by Hölder inequality (A.3) implies ψ ∈ L
n

n+1 ,∞. Having

ψ ∈ L
n

n+1 ,∞ ∩ L
n

n−2 ,∞

we can conclude ψ ∈ L1 by interpolation (Proposition A.1). �

Appendix A Facts about Lorentz spaces

Appendix A. Facts about Lorentz spaces
We collect here a few properties of Lorentz spaces that we have used. The following

statements hold on Rn for any n.
First of all we recall the definition of the quasinorm

‖ f ‖p,q := p1/q
(∫ ∞

0
tq−1(d f (t))q/pdt

)1/q

for q < ∞ or

‖ f ‖p,∞ := sup
t≥0

t1/pd f (t) < ∞

otherwise. Observe that Lp,p = Lp and that Lp,∞ is the weak Lp space. The quantity we just
defined is only a quasinorm, since it holds
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(A.1) ‖ f + g‖p,q �p,q ‖ f ‖p,q + ‖g‖p,q
(see inequality (1.4.9) in [12]). Only for p > 1 and any q ∈ [1,∞] the space Lp,q is normable
([13]).

Remark 7. We recall that the quasinorm of the Lorentz space can also be defined via the
decreasing rearrangement f ∗(t) = inf{s > 0 | d f (s) < t} as

‖ f ‖p,q :=
(∫ ∞

0
tq/p−1 f ∗(t)qdt

)1/q

< ∞

for q < ∞ or

‖ f ‖p,∞ := sup
t≥0

t1/p f ∗(t) < ∞

otherwise.

Lorentz spaces are growing spaces with respect to the second index, in particular we have
the chain of inclusions

(A.2) Lp,q1 ⊂ Lp,q2 for any q1 < q2

(see Proposition 1.4.10 in [12]).
We also have a two indexed Hölder inequality

(A.3) ‖ fg‖Lp,q ≤ ‖ f ‖Lp1 ,q1 ‖g‖Lp2 ,q2

for any p1, q1, p2, q2 such that 1
p1
+ 1

p2
= 1

p and 1
q1
+ 1

q2
= 1

q . Inequality (A.3) can be
easily proved using the definitions given in Remark 7. For q = ∞ it follows directly from
the definition of ‖ · ‖p,∞, while for q ∈ (0,∞) it is obtained using inequality

∫
f αgβ dt

t ≤
(
∫

f dt
t )α(

∫
g dt

t )β for α and β which sum to 1. In particular taking α = q2
q1+q2

and β = q1
q1+q2

‖ fg‖qp,q =
∫

(t
1
p f ∗g∗)q dt

t
=

∫
[(t

1
p1 f ∗)q1 ]

q2
q1+q2 [(t

1
p2 g∗)q2 ]

q1
q1+q2

dt
t

≤(
∫

(t
1

p1 f ∗)q1
dt
t

)
q2

q1+q2 (
∫

(t
1

p2 g∗)q2
dt
t

)
q1

q1+q2

from which (A.3) follows taking the power 1
q =

q1+q2
q1q2

The following property is a sort of interpolation over the first index of the space.

Proposition A.1. Let f ∈ Lp0,∞ ∩ Lp1,∞. Then f ∈ Lp,q for any p ∈ (p0, p1) and any
q ∈ (0,∞].

Proof. We first consider q = ∞. Then

(A.4) ‖ f ‖p,∞ = max{ sup
d f (t)≥1

td f (t)1/p, sup
0≤d f (t)≤1

td f (t)1/p}.

For the case d f (t) ≤ 1 since p < p1 we have

d f (t)1/p−1/p1 ≤ 1,

conversely when d f (t) ≥ 1

d f (t)1/p−1/p0 ≤ 1.
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We can therefore bound both suprema in (A.4) as

sup
0≤d f (t)≤1

td f (t)1/p−1/p1+1/p1 ≤ sup
0≤d f (t)≤1

td f (t)1/p1 = ‖ f ‖p1,∞ < ∞

and

sup
d f (t)≥1

td f (t)1/p−1/p0+1/p0 ≤ sup
t≥0

td f (t)1/p0 = ‖ f ‖p0,∞ < ∞.

Now let q < ∞. We have the quantity td f (t)1/p1 which is bounded at infinity, hence there
exists a t > 0 such that

d f (t) �
1

tp1
for any t ≥ t

so for large enough t we have

td f (t)1/p0 � t1−p1/p0 with 1 − p1

p0
< 0.

On the other hand td f (t)1/p0 is bounded around 0 so there exists t̃ > 0 such that

d f (t) �
1

tp0
for any 0 < t ≤ t̃

from which for small t it holds

td f (t)1/p1 � t1−p0/p1 with 1 − p0

p1
> 0.

Now we can proceed to estimate the Lp,q norm. For λ ∈ (0, 1) we write 1
p = (1 − λ) 1

p1
+ λ 1

p0

‖ f ‖p,q =
∫ t

0
(t1−λ+λd f (t)

(1−λ) 1
p1
+λ 1

p0 )q dt
t
=

∫ t̃

0
. . . dt +

∫ t

t̃
. . . dt +

∫ ∞

t
. . . dt

≤ sup
t

(td f (t)1/p0 )λq
∫ t̃

0
(td f (t)1/p1 )(1−λ)q dt

t
+

∫ t

t̃
. . . dt

+ sup
t

(td f (t)1/p1 )(1−λ)q
∫ ∞

t
(td f (t)1/p0 )λq dt

t

�‖ f ‖λq
p0,∞

∫ t̃

0
t(1−p0/p1)(1−λ)q−1dt +

∫ t

t̃
. . . dt

+ ‖ f ‖(1−λ)q
p1,∞

∫ ∞

t
t(1−p1/p0)λq−1dt

�‖ f ‖λq
p0,∞ t(1−p0/p1)(1−λ)q|t̃0 +

∫ t

t̃
. . . dt + ‖ f ‖(1−λ)q

p1,∞ t(1−p1/p0)λq|∞t
where all the terms are finite since (1 − p0/p1)(1 − λ)q > 0 and (1 − p1/p0)λq < 0. �

Appendix B Proof of Lemma 3.1.

Appendix B. Proof of Lemma 3.1.
In this appendix we give a proof of Lemma 3.1.
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Lemma B.1. Let N ∈ N and k = 0, . . . ,N l = 0, . . . , k. There exist ckl ∈ R such that
∣∣∣∣∣ 1
|x − y|n−2 −

1
|x|n−2

N∑
k=0

k∑
l=0

k+l≤N

ckl
|y|k+l

|x|k+l ·
(x · y)k−l

(|x||y|)k−l

∣∣∣∣∣ � 1
|x − y|n−2

( |y|N+1

|x|N+1 +
|y|N+n−2

|x|N+n−2

)

for all x, y ∈ Rn \ {0} and x � y.

Proof. We divide the proof according to the size of |y| with respect to |x|.
We first consider the case |y| � |x| and use the trivial bound

∣∣∣∣ (x·y)
|x||y|

∣∣∣∣ ≤ 1. Then∣∣∣∣∣∣∣∣∣∣
1

|x − y|n−2 −
1
|x|n−2

N∑
k=0

k∑
l=0

k+l≤N

ckl
|y|k+l

|x|k+l ·
(x · y)k−l

(|x||y|)k−l

∣∣∣∣∣∣∣∣∣∣
�

1
|x − y|n−2 +

1
|x|n−2

N∑
k=0

k∑
l=0

k+l≤N

|y|k+l

|x|k+l �
1

|x − y|n−2 +
|y|N

|x|n−2|x|N

=
1

|x − y|n−2 +
|y|N+n−2

|x|N+n−2 ·
1
|y|n−2 �

1
|x − y|n−2

(
1 +
|y|N+n−2

|x|N+n−2

)

�
1

|x − y|n−2 ·
|y|N+n−2

|x|N+n−2

where we used the bounds |x − y| � |y| and 1 � |y||x| .

Now we consider the region |y| � |x|. Again,
∣∣∣∣ (x·y)
|x||y|

∣∣∣∣ ≤ 1, and moreover |y||x| � 1 and
|x − y| � |x|. Therefore, we bound trivially by∣∣∣∣∣∣∣∣∣∣

1
|x − y|n−2 −

1
|x|n−2

N∑
k=0

k∑
l=0

k+l≤N

ckl
|y|k+l

|x|k+l ·
(x · y)k−l

(|x||y|)k−l

∣∣∣∣∣∣∣∣∣∣
�

1
|x − y|n−2 +

1
|x|n−2 �

1
|x − y|n−2 �

1
|x − y|n−2 ·

|y|N+1

|x|N+1 .

To conclude, we look at the case |y| � |x|. We have

|x − y|n−2 =(|x|2 + |y|2 − 2x · y)
n−2

2 = |x|n−2(1 +
|y|2
|x|2 − 2

x · y
|x|2 )

n−2
2

=|x|n−2(1 +
|y|2
|x|2 − 2

|y|
|x|

(x · y)
|x||y| )

n−2
2 ,

which yields

1
|x − y|n−2 =

1
|x|n−2 ·

1

(1 + |y|
2

|x|2 − 2 |y||x|
(x·y)
|x||y| )

n−2
2

(B.1)

with |y||x| � 1. We use the Taylor expansion around zero for the function 1

(1+s)
n−2

2
given by

1

(1 + s)
n−2

2

=

N∑
k=0

dk sk + O(|s|N+1) dk :=
1
k!

d
dk

(
1

(1 + s)
n−2

2

)
|s=0.
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We apply this expansion with s = |y|
2

|x|2 − 2 |y||x|
(x·y)
|x||y| which satisfies the bound |s| � 1, given that

we are in the region |y| � |x|. From (B.1) we have

1
|x − y|n−2 =

1
|x|n−2 ·

⎛⎜⎜⎜⎜⎜⎝
N∑

k=0

dk sk + O(|s|N+1)

⎞⎟⎟⎟⎟⎟⎠
and given the choice of s∣∣∣∣∣∣∣

1
|x − y|n−2 −

1
|x|n−2 ·

N∑
k=0

dk

( |y|2
|x|2 − 2

|y|
|x|

(x · y)
|x||y|

)k
∣∣∣∣∣∣∣ �
|s|N+1

|x|n−2(B.2)

�
1
|x|n−2

( |y|2
|x|2 +

|y|
|x|

)N+1

�
1
|x|n−2 ·

|y|N+1

|x|N+1

where in the last inequality we used the fact that |y|
2

|x|2 � |y|
|x| .

Finally, we remark that we can reorganize the sum in the previous inequality as

N∑
k=0

dk

( |y|2
|x|2 − 2

|y|
|x|

(x · y)
|x||y|

)k

=

N∑
k=0

dk
|y|k
|x|k

k∑
l=0

ckl
|y|l
|x|l ·

(x · y)k−l

(|x||y|)k−l(B.3)

=

N∑
k=0

k∑
l=0

k+l≤N

ckl
|y|k+l

|x|k+l ·
(x · y)k−l

(|x||y|)k−l + O
( |y|N+1

|x|N+1

)
.

We obtain the term in (B.3) thanks to the following remark:

{(k, l) ∈ N2 : (k, l) ∈ [0,N]×[0, k] and k + l ≤ N}
={(k, l) ∈ N2 : (k, l) ∈ [0,N/2] × [0, k]}
∪ {(k, l) ∈ N2 : (k, l) ∈ [N/2,N] × [0,N − k]}

and for k = N/2, . . . ,N and l = N − k, . . . , k we have l + k ≥ N + 1, so∣∣∣∣∣∣ |y|
k+l

|x|k+l ·
(x · y)k−l

(|x||y|)k−l

∣∣∣∣∣∣ � |y|
N+1

|x|N+1

since |y| � |x|. Thanks to (B.2) and (B.3) we obtain the statement, since |x − y| � |x|. �
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