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Abstract
The first author explicitly describes the set of Fourier–Mukai partners of elliptic ruled sur-

faces over the complex number field in [30]. In this article, we generalize it over arbitrary
characteristic fields. We also obtain a partial evidence of the Popa–Schnell conjecture in the
proof.

1. Introduction

1. Introduction
Let us consider the derived category of coherent sheaves Db(X) for a smooth projective

variety X over an algebraically closed field k of p := ch k ≥ 0. We call a smooth projec-
tive variety Y a Fourier–Mukai partner of X if there exists an equivalence Db(X) � Db(Y)
as k-linear triangulated categories. We let FM(X) denote the set of isomorphism classes of
Fourier–Mukai partners of X. It is a fundamental question to describe the set FM(X) explic-
itly. It is known that |FM(C)| = 1 for any smooth projective curves C (see [13, Corollary
5.46]). On the other hand, smooth projective surfaces S may have non-trivial Fourier–Mukai
partners: Namely, |FM(S)| � 1 may occur. Bridgeland, Maciocia and Kawamata show in [6]
and [16] that if a smooth projective surface S over C has a non-trivial Fourier–Mukai partner
T , then both are abelian surfaces, K3 surfaces or elliptic surfaces with nonzero Kodaira di-
mension. There exist several known examples of surfaces S with |FM(S)| � 1 ([19, 20, 29]).

In this article, we study the set FM(S) of elliptic ruled surfaces S defined over k. Here, an
elliptic ruled surface means a smooth projective surface with a P1-bundle structure over an
elliptic curve. We obtain the following theorem, which is a generalization of the result for
k = C in [30] to an arbitrary algebraically closed field k.

Theorem 1.1. Let S be an elliptic ruled surface defined over k and π : S → E be a
P1-bundle over an elliptic curve E. If |FM(S)| � 1, then S is of the form

S = P(E ⊕ )

for some  ∈ Pic0 E of order m ≥ 5. Furthermore we have

FM(S) = {P(E ⊕ i) | i ∈ Z with (i,m) = 1 and 1 ≤ i < m}/ �,
and

|FM(S)| = ϕ(m)/|H

Ê
|.
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Here, ϕ is the Euler function, and we define

(1) H

Ê
:= {i ∈ (Z/mZ)∗ | ∃φ ∈ Aut0(E) such that φ∗ � i}

as a subgroup of (Z/mZ)∗. We also have |H

Ê
| = 2, 4 or 6, depending on the choice of E and

.

In the case k = C, it is known (cf. [30, Equation (3.4)]) that S = P(E ⊕) is a quotient of
F0 × P1 by a cyclic group action, where F0 is an elliptic curve, and the first author uses this
fact to describe the set FM(S) in [30]. On the other hand, in the case p := ch k > 0, elliptic
ruled surfaces S = P(E ⊕) with p | m do not admit a similar construction (see [28, §5.1]).
Therefore, we need more general treatment to show Theorem 1.1.

In the proof of Theorem 1.1, we obtain some evidence of the Popa–Schnell conjecture
in [24], which states that for any Fourier–Mukai partners X′ of a given smooth projective
variety X, there exists an equivalence Db(Alb(X′)) � Db(Alb(X)) of derived categories of
their albanese varieties.

Proposition 1.2 (=Corollary 4.7). Let X → A and X′ → A′ be Pn-bundles over abelian
varieties A and A′ for n = 1, 2. If X and X′ are Fourier–Mukai partners, then so are A and
A′. Furthermore, the Popa–Schnell conjecture holds true in this case.

The plan of this article is as follows. In §2, we explain some results and notation of
relative moduli spaces of stable sheaves on elliptic fibrations, a main tool for the study of
Fourier–Mukai partners of elliptic surfaces. We obtain a characterization of Fourier–Mukai
partners of elliptic surfaces with non-zero Kodaira dimensions in Theorem 2.2 for arbitrary
p = ch k, which was originally proved by Bridgeland in the case p = 0.

In §3, we show several results on automorphisms of elliptic curves.
In §4, we first explain Theorem 4.3 by Pirozhkov, and then we apply it to show Proposi-

tion 1.2.
Finally, in §5, we first narrow down the candidates of elliptic ruled surfaces with non-

trivial Fourier–Mukai partners by Proposition 1.2 and the main result in [28], and then prove
Theorem 1.1.

This article is a part of the second author’s doctoral thesis.

Notation and conventions. All algebraic varieties X are defined over an algebraically
closed field k of characteristic p ≥ 0. A point x ∈ X means a closed point unless otherwise
specified.

For an elliptic curve E, Aut0(E) is the group of automorphisms fixing the origin.
By an elliptic surface, we will always mean a smooth projective surface S together with

a smooth projective curve C and a relatively minimal projective morphism π : S→ C whose
general fiber is an elliptic curve. An elliptic ruled surface means a smooth projective surface
with a P1-bundle structure over an elliptic curve.

For a morphism π : X → Y between algebraic varieties, the symbol Aut(X/Y) stands for
the group of automorphisms of X preserving π.

2. Relative moduli spaces of sheaves on elliptic fibrations

2. Relative moduli spaces of sheaves on elliptic fibrations2.1. Fourier–Mukai partners of elliptic surfaces.
2.1. Fourier–Mukai partners of elliptic surfaces. For a smooth projective variety X

defined over an algebraically closed field k of characteristic p ≥ 0, we denote by Db(X) the



FM Partners of Elliptic Ruled Surfaces 147

bounded derived categories of coherent sheaves on X. We call a smooth projective variety
Y a Fourier–Mukai partner of X if Db(X) is k-linear triangulated equivalent to Db(Y). We
denote by FM(X) the set of isomorphism classes of Fourier–Mukai partners of X.

We study the set FM(S) for elliptic surfaces S. Let π : S → C be an elliptic surface and
denote a general fiber of π by Fπ. We define

(2) λπ := min{D · Fπ | D is a horizontal effective divisor on S}.
Fix a polarization on S and consider the relative moduli scheme (S/C) → C of stable
purely 1-dimensional sheaves1 on the fibers π, whose existence is assured by Simpson in
the case p = 0 in [26], and by Langer in the case of arbitrary p in [17]. For integers
a > 0 and i with i coprime to aλπ, let JS(a, i) be the union of those components of (S/C)
which contains a point representing a rank a, degree i vector bundle on a smooth fiber of π.
Bridgeland shows in [4] that JS(a, i) is actually a smooth projective surface and the natural
morphism JS(a, i)→ C is a minimal elliptic fibration.

Put Ji(S) := JS(1, i). We can also define an elliptic surface J j(S)→ C for arbitrary j ∈ Z,
which is not necessarily fine but the coarse moduli space of a suitable functor (see [14,
§11.4]). We have J0(S) � J(S), the Jacobian surface associated to S, J1(S) � S and

(3) Ji(J j(S)) � Ji j(S)

for i, j ∈ Z. See the argument after (8) for the proof of (3).
It is well-known that the following statement holds in the case p = 0 by [4, Theorem 1.2].

We state that it is also true for arbitrary p.

Proposition 2.1. Elliptic surfaces S and Ji(S) for some integer i with (i, λπ) = 1 are
derived equivalent via an integral functorΦ := Φ

Ji(S)→S for a universal sheaf  on Ji(S)×S.

Proof. To prove the statement for p = 0, Bridgeland first applies the Bondal–Orlov’s
criterion [2] (see also [13, Proposition 7.1]) for the functor Φ to be fully faithful, namely
he checks the strongly simpleness of  . Then it is easy to show Φ is an equivalent by
checking the Bridgeland’s criterion [5] for Φ to be equivalent. But the Bondal–Orlov’s
criterion is false in the case p > 0 [11, Remark 1.25]. Instead, if we put an extra assumption
that the Kodaira–Spencer map Ext1Ji(S)(x,x)→ Ext1S(x,x) is injective, we see the proof
of [2] works, and so the criterion holds (see also [13, Step 5 in the proof of Proposition
7.1]). Actually, the map is an isomorphism in our case because  is a universal family. This
completes the proof. �

We have a nice characterization of Fourier–Mukai partners of elliptic surfaces with non-
zero Kodaira dimensions.

Theorem 2.2. Let π : S → C be an elliptic surface and T a smooth projective variety.
Assume that the Kodaira dimension κ(S) is non-zero. Then the following are equivalent.

(i) T is a Fourier–Mukai partner of S.
(ii) T is isomorphic to Ji(S) for some integer i with (i, λπ) = 1.

1Here we consider the Gieseker stability, equivalently the slope stability for 1-dimensional sheaves. More-
over, the stability does not depend on the choice of polarizations for such sheaves.
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Proof. It follows from Proposition 2.1 that (ii) implies (i). The opposite direction was
proved in [6, Proposition 4.4] when p = 0 and S has no (−1)-curves. The most of the proof
there works even for p > 0. So we give only a sketch of the proof.

As the proof in [6, Proposition 4.4], we can show that there exists an equivalent functor
Φ : Db(T ) → Db(Ji(S)) for some integer i with (i, λπ) = 1 such that Φ (t) = y for
some t ∈ T, y ∈ Ji(S). Then as in [6, Lemma 2.5], we see that there exists a rational map
f : T � Ji(S) such that the kernel  is supported on the graph of f near the point (t, y).
Because Φ is an equivalence, we can avoid the possibility that f is inseparable, and hence
f is a birational map. Then the proof of [6, Proposition 4.4] works in the rest (including the
case that S is not minimal). �

As a consequence of Theorem 2.2, we obtain

FM(S) = {Ji(S) | i ∈ Z, (i, λπ) = 1}/ � .
Moreover we see that there exist natural isomorphisms

(4) Ji(S) � Ji+λπ(S) � J−i(S).

Hence, in order to count the cardinality of the set FM(S), we often regard an integer i as an
element of the unit group (Z/λπZ)∗. It follows from the isomorphisms (3) and (4) that the
set

(5) Hπ := {i ∈ (Z/λπZ)∗ | Ji(S) � S}
forms a subgroup of (Z/λπZ)∗. Moreover, we see from (3) that Ji(S) � J j(S) for i, j ∈
(Z/λπZ)∗ if and only if (S �)J1(S) � Ji−1 j(S). Combining all together, we have the following.

Lemma 2.3. For an elliptic surface π : S → C with κ(S) � 0, the set FM(S) is naturally
identified with the group (Z/λπZ)∗/Hπ.

Since Hπ contains the subgroup {±1} if λπ ≥ 3, we see

(6) |FM(S)| ≤ ϕ(λπ)/2,

where ϕ is the Euler function.

Lemma 2.4. Let π : S→ C be an elliptic surface. Then we have the following.

(i) For i ∈ Z with (i, λπ) = 1, consider the elliptic fibration πi : Ji(S) → C. The
multiplicities of the fibers Fx and F′x of π and πi over a fixed point x ∈ C coincide.
Furthermore, if the fiber Fx is smooth, then it is isomorphic to F′x.

(ii) Let S be an elliptic ruled surface, and take S′ ∈ FM(S). Then S′ is also an elliptic
ruled surface with an elliptic fibration.

Proof. (i) The first statement will be explained by using Weil–Châtelet group in §2.2. See
the argument around (12). By the property of the relative moduli scheme, the fiber F′x is the
fine moduli space of line bundles of degree i on a smooth elliptic curve Fx. Consequently,
the second statement follows.

(ii) Theorem 2.2 implies that there exists an integer i with (i, λπ) = 1 such that Ji(S) � S′,
which implies that S′ has an elliptic fibration π′. The Kodaira dimension is derived invariant
by [27, Corollary 4.4], and hence S′ is a rational elliptic surface or an elliptic ruled surface.
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Then, [12, Theorem B] implies that S′ is also an elliptic ruled surface. �

2.2. Weil–Châtelet group.
2.2. Weil–Châtelet group. In this subsection, we recall the definition of the Weil–

Châtelet group. For more details, see [25, Ch.X.3] and [14, Ch.11.5].
Let E0 be an elliptic curve over a field K. A homogeneous space for E0 is a pair (E, μ),

where E is a smooth curve over K, and μ is a simply transitive algebraic group action

μ : E × E0 → E.

We say that two homogeneous spaces (E, μ) and (E′, μ′) are equivalent if there exists
an isomorphism θ : E → E′ defined over K which is compatible with the action of E0.
The collection WC(E0) of equivalence classes of homogeneous spaces for E0 has a natural
group structure (cf. [25, Theorem X.3.6], [14, Proposition 11.5.1]), and it is called the Weil–
Châtelet group.

Let π : S → C be an elliptic surface (over an algebraically closed field k). We denote the
generic fiber of πi : Ji(S)→ C by Ji

η for i ∈ Z. Then J0
η is an elliptic curve over the function

field of C, and we have a natural homogeneous space structure

μi : Ji
η × J0

η → Ji
η (,) 	→  ⊗,

and hence we can regard (Ji
η, μi) ∈ WC(J0

η). We define

(7) ξ := (J1
η , μ1) ∈ WC(J0

η),

then, we have

(8) iξ = (Ji
η, μi)

(cf. [14, Remark 11.5.2]) and thus

(9) ord ξ | λπ.
It follows from (8) that the generic fibers of Ji(J j(S))→ C and Ji j(S)→ C are isomorphic to
each other, and taking the relative smooth minimal models of compactifications of generic
fibers, we obtain Ji(J j(S)) � Ji j(S) as in (3).

Take a closed point x ∈ C and consider the henselization of the local ring C,x and
denote it by h

C,x. We also denote the base change of π0 : J0(S) → C by the morphism
Spech

C,x → C by

J0
x → Spech

C,x.

Then it is known by [7, Proposition 5.4.3 in p.314, Theorem 5.4.3 in p.321] that there exists
an exact sequence:

(10)
0 → Br(J0(S)) → WC(J0

η) → ⊕
x∈C WC(J0

x)

∈ ∈

ξ 	→ (ξx)x∈C

Here, we denote the image of ξ (given in (7)) in WC(J0
x) by ξx. It follows from [7, Propo-

sition 5.4.2] that mx = ord ξx, where mx is the multiplicity of the fiber of π over the point
x ∈ C. Define
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(11) λ′π := l.c.m.x∈C(mx) = ord((ξx)x∈C).

Since ord ξ is divided by ord((ξx)x∈C), we see from (9) that

λ′π | λπ.
In particular, if i ∈ Z is coprime to λπ, then i is coprime to each mx, and thus we have

(12) ord(iξ)x = ord i(ξx) = ord(ξx) = mx.

Combining (12) with (8), we know that the multiplicity of the fiber of πi over the point x is
also mx. This shows the first statement of Lemma 2.4 (i).

Define a subgroup H′π of the group Hπ(:= {i ∈ (Z/λπZ)∗ | Ji(S) � S} given in (5)) to be

H′π :={i ∈ Hπ | i ≡ 1 (mod λ′π)}.(13)

We use the following lemma to obtain a lower bound of the cardinality of the set FM(S).

Lemma 2.5. Let π : S→ C be an elliptic surface with Br(J0(S)) = 0. Then we have∣∣∣Hπ/H′π
∣∣∣ ≤∣∣∣Aut0(J0

η)
∣∣∣.

Proof. For each i ∈ Hπ, fix an isomorphism θi : J1
η → Ji

η over the generic point η ∈ C.
Then we obtain a structure of a homogeneous space on J1

η by the action

μ′i := θ−1
i ◦ μi ◦ (θi × idJ0

η
) : J1

η × J0
η → J1

η

such that (Ji
η, μi) = (J1

η , μ
′
i) holds in WC(J0

η) by the definition. On the other hand, by [25,
Exercise 10.4], (J1

η , μ
′
i) = (J1

η , μ1◦(idJ1
η
×φ)) for some φ ∈ Aut0(J0

η). We define an equivalence
relation ∼ of Aut0(J0

η) such that

φ1 ∼ φ2

for φi ∈ Aut0(J0
η) when

(J1
η , μ1 ◦ (idJ1

η
× φ1)) = (J1

η , μ1 ◦ (idJ1
η
× φ2)).

Then we can define a map

f : Hπ → Aut0(J0
η)/∼ i 	→ φ.

We see that i j−1 ∈ H′π if and only if f (i) = f ( j) as follows. First note that we have an
injection

WC(J0
η) ↪→

⊕
x∈C

WC(J0
x) ξ = (J1

η , μ1) 	→ (ξx)x∈C

by the vanishing of the Brauer group Br(J0(S)) and (10), and hence

(14) ord ξ = λ′π(:= ord((ξx)x∈C)).

We observe that for i, j ∈ Hπ, the condition f (i) = f ( j) is equivalent to the equality iξ = jξ
by (8), which is also equivalent to i−1 j ∈ H′π by (14).

Consequently, we obtain an inclusion

Hπ/H′π ↪→ Aut0(J0
η)/∼
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and the conclusion. �

3. Elliptic curves and automorphisms

3. Elliptic curves and automorphisms
Let F be an elliptic curve over an algebraically closed field k with p = ch k ≥ 0. The

explicit description of the automorphism group Aut0(F) fixing the origin O is well-known,
and is given as follows.

Theorem 3.1 (cf. Appendix A in [25]). The automorphism group Aut0(F) is

Z/2Z if j(F) � 0, 1728,

Z/4Z if j(F) = 1728 and p � 2, 3,

Z/6Z if j(F) = 0 and p � 2, 3,

Z/3Z � Z/4Z if j(F) = 0 = 1728 and p = 3,

Q � Z/3Z if j(F) = 0 = 1728 and p = 2.

Note that in the last second case, Z/4Z acts on Z/3Z in the unique non-trivial way, and in
the last case, the group is so called a binary tetrahedral group, and Q is the quaternion
group. In the last two cases F is necessarily supersingular.

For points x1, x2 ∈ F, to distinguish the summation of divisors and of elements in the
group scheme F, we denote by x1 ⊕ x2 the sum of them by the operation of F, and

i · x1 := x1 ⊕ · · · ⊕ x1 (i times).

Furthermore, we use the symbol Ta to stand for the translation by a ∈ F:

Ta : F → F x→ a ⊕ x.

We also denote by

ix1 := x1 + · · · + x1 (i times)

the divisors on F of degree i. We denote the dual abelian variety Pic0 F of F by F̂. It is
well-known that there exists a group scheme isomorphism

(15) F → F̂ x 	→ F(x − O),

where O is the origin of F.
We will use the following lemma several times.

Lemma 3.2. Take a point a ∈ F with ord(a) ≥ 4, and φ ∈ Aut0(F). If φ(a) = a, then
φ = idF.

Proof. In any of the cases in Theorem 3.1, we have ord(φ) ∈ {1, 2, 3, 4, 6}. Let us first
consider the case ord(φ) = 2, 4 or 6. In this case, φi = −idF for some i ∈ Z, and hence we
get −1 · a = a. The condition ord(a) ≥ 4 yields a contradiction. Next, consider the case
ord(φ) = 3. Then we have

(φ − idF)(φ2 + φ + idF) = 0

in the domain End(F), which implies that φ2 + φ+ idF = 0, and hence φ2(a)⊕ φ(a)⊕ a = O.
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By the assumption φ(a) = a, we see that 3 · a = O. This is absurd by ord(a) ≥ 4. �

For a non-zero integer m, we define the m-torsion subgroup of F to be

F[m] := {a ∈ F | m · a = O}.
Equivalently, F[m] is the kernel of the multiplication map by m. Recall that

F[m] =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Z/peZ if F is ordinary, m = pe, e > 0

{O} if F is supersingular, m = pe, e > 0

Z/mZ × Z/mZ if p � m.

(See [25, Corollary III.6.4].) Note that these 3 cases do not exhaust all possibilities (i.e.,
cases where m is divisible by p but is not power of p is not covered.)

Take a ∈ F with ord(a) = m. In order to count Fourier–Mukai partners of elliptic ruled
surfaces, we need to study the subgroup

(16) Ha
F := {i ∈ (Z/mZ)∗ | ∃φ ∈ Aut0(F) such that φ(a) = i · a}

of (Z/mZ)∗. Note that the definition of H

Ê
given in (1) is compatible with (16). We obtain

the following result as a direct consequence of Lemma 3.2.

Lemma 3.3. Take a ∈ F with ord(a) ≥ 4.

(i) We have an injective group homomorphism

(17) ι : Ha
F ↪→ Aut0(F).

Furthermore, we have |Ha
F | = 2, 4 or 6.

(ii) Suppose that p > 0 and ord(a) = pe. Then (17) is an isomorphism.

Proof. (i) Take i ∈ Ha
F . Then there exists φ ∈ Aut0(F) such that φ(a) = i · a, and define

ι(i) to be φ. The well-definedness of ι follows from Lemma 3.2, and ι is injective by the
definition. Since Ha

F is regarded as an abelian subgroup of Aut0(F) described in Theorem
3.1, and Ha

F contains {±1} as a subgroup, we obtain the second assertion.
(ii) The existence of an order pe element in F implies that F is ordinary. Since F[pe] =

Z/peZ = 〈a〉, for any φ ∈ Aut0(F) we see that φ(a) = i · a for some i ∈ (Z/peZ)∗. Hence the
injective homomorphism in (17) is surjective, and then we can confirm the statement. �
From now on, by (17) we often regard Ha

F as a subgroup of Aut0(F) when ord a ≥ 4.

4. Pirozhkov’s result and its application

4. Pirozhkov’s result and its application
In this section, we summarize some definitions and results in [23], and give their appli-

cation to the Popa–Schnell conjecture. We also refer to [21] for fundamental notions of
∞-categories.

For a Noetherian scheme S over k, we denote by Perf(S) the full subcategory of Db(S)
consisting of perfect complexes. A stable k-linear ∞-category  is said to be S-linear if
there exists an action functor

a :  × Perf(S)→ 

together with associativity data.
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For a morphism f : X → S between smooth projective varieties X and S over k, the
category Db(X) has a natural S-linear structure via the functor

Db(X) × Db(S)→ Db(X) ( , ) 	→ 
L⊗X L f ∗ .

Definition 4.1 ([23]). Let S be a Noetherian scheme over a field k. We say that S is non-
commutatively stably semiorthogonally indecomposable, or NSSI for brevity, if for arbitrary
choices of

(i) , an S-linear category which is proper2 over S and has a classical generator, and
(ii) , a left admissible subcategory of  which is linear over k,

the subcategory  is closed under the action of Perf(S) on .

Remark 4.2. For a quasi-compact and quasi-separated scheme S, the category Perf(S) has
a classical generator by [3, Corollary 3.1.2]. In particular, for a smooth projective variety S,
the category Db(S) has a classical generator.

Theorem 4.3 (Lemma 6.1 in [23]). Let π : X → S be a smooth projective morphism which
is an étale-locally trivial fibration with fiber X0. Assume that S is a connected excellent
scheme3. Then for any point s ∈ S the base change map⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

S-linear admissible
subcategories
 ⊂ Db(X)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
restriction to Xs � X0−−−−−−−−−−−−−−→

{
admissible subcategories

0 ⊂ Db(X0)

}

is an injection.

Definition 4.4. Let π : X → S be a smooth projective morphism of Noetherian schemes.
(i) An object  ∈ Perf(X) is π-exceptional if Rπ∗ RomX( , ) � S.

(ii) A collection of π-exceptional objects 1, . . . , N ∈ Perf(X) is a π-exceptional col-
lection if Rπ∗ RHom( j, i) = 0 for any 1 ≤ i < j ≤ N.

(iii) A π-exceptional pair is a π-exceptional collection of length 2.

For a π-exceptional pair  , , the left π-mutation L of  through  and the right π-
mutation R of  through  are defined by the following distinguished triangles:

π∗Rπ∗ RomX( , ) ⊗X 
ε−→  → L

R → 
η−→ π∗Rπ∗ RomX( , )∨ ⊗X 

We see that mutations commute with base change.

Lemma 4.5 (Lemma 2.22 in [15]). Consider the following Cartesian square of finite
dimensional Noetherian schemes, where π is smooth projective.

2See [21] for this notion.
3In [23, Lemma 6.1], Pirozhkov assumes that S is a scheme over Q, but it is not needed in its proof.
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Y
f

��

ϕ

��

X

π

��

T g
�� S

For any π-exceptional pair ( , ), it follows that ( f ∗ , f ∗ ) is an ϕ-exceptional pair and
we have the following isomorphisms:

L f ∗ ( f ∗ ) � f ∗(L )

Rf ∗ ( f ∗) � f ∗(R)

We apply Theorem 4.3 and Lemma 4.5 to obtain the following.

Proposition 4.6. Let π : X → S be a Pn-bundle (n = 1, 2) over a smooth projective variety
S. Then any non-trivial S-linear admissible subcategory of Db(X) is of the following form:

(i) (Case n = 1)

Db(S)(i)(:= π∗Db(S) ⊗X X(i))

for some i ∈ Z.
(ii) (Case n = 2)

π∗Db(S) ⊗X 〈1, . . . , l〉 ,
where 1, . . . , l (1 ≤ l ≤ n + 1) is a π-exceptional collection.

Proof. (i) Any non-trivial admissible subcategory in Db(P1) is known to be of the form
〈P1 (i)〉 for some i ∈ Z. Since the restriction of the admissible category Db(S)(i) to a fiber
is 〈P1 (i)〉, the injective base change map in Theorem 4.3 is surjective. Hence the result
follows.

(ii) [22, Theorem 4.2] states that any non-trivial admissible subcategory  in Db(P2) is
generated by a subcollection of successive mutations of the standard exceptional collection
P2 ,P2 (1),P2 (2). Lemma 4.5 yields an S-linear admissible subcategory X of Db(X),
which is generated by a π-exceptional subcollection obtained by successive π-mutations of
the π-exceptional collection X ,X(1),X(2), and its derived restriction on a fiber is .
This means that the injective base change map in Theorem 4.3 is surjective, and hence we
obtain the result. �

The Popa–Schnell conjecture in [24] states that for any Fourier–Mukai partners X′ of a
given smooth projective variety X, there exists an equivalence Db(Alb(X′)) � Db(Alb(X)) of
derived categories.

From Proposition 4.6, we deduce that the Popa–Schnell conjecture holds true in certain
situations.

Corollary 4.7. Let X → A and X′ → A′ be Pn-bundles over abelian varieties A and A′

for n = 1, 2. If X and X′ are Fourier–Mukai partners, then so are A and A′. Furthermore,
the Popa–Schnell conjecture holds true in this case.

Proof. Put Db(A)(i) = π∗Db(A) ⊗ X(i), where π is the P1-bundle X → A. Since abelian
varieties are NSSI by [23, Theorem 1.4], any admissible category of Db(X) is A-linear.
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Proposition 4.6 implies that any non-zero indecomposable admissible subcategory of Db(X)
is equivalent to Db(A). This completes the proof of the first assertion. We see that A �
Alb(X) and A′ � Alb(X′), and hence obtain the second. �

If X is an elliptic ruled surface over C, namely n = 1 and k = C, in Corollary 4.7, the
statement follows from [30, Theorem 1.1]. The proof given above for n = 1, 2 and arbitrary
k is more direct and natural.

Remark 4.8. Let X → E and X′ → E′ be Pn-bundles over elliptic curves E and E′ for
n = 1, 2. As a consequence of Corollary 4.7, if X and X′ are Fourier–Mukai partners, then
Db(E) � Db(E′), and hence E � E′ by [13, Corollary 5.46].

5. Fourier–Mukai partners of elliptic ruled surfaces

5. Fourier–Mukai partners of elliptic ruled surfaces5.1. Singular fibers of elliptic ruled surfaces.
5.1. Singular fibers of elliptic ruled surfaces. In this subsection, we recall a result in

[28]. Let  be a normalized, in the sense of [10, Ch. 5. §2], rank 2 vector bundle on an
elliptic curve E and

f : S = P()→ E

be a P1-bundle on E defined by  . Let us put e := − deg  . If S has an elliptic fibration, then
−KS is nef. Then we can easily deduce e = 0 or −1 from [10, Corollary V.2.11, Theorems
V.2.12, V.2.15]).

Theorem 5.1 (Theorem 1.1 in [28]). Let us consider the above situation.

(i) For e = 0, we have the following possibilities:
 ∃ an elliptic fibration on S? p

(i-1) E ⊕ E no multiple fibers p ≥ 0
(i-2) E ⊕ , ord = m > 1 (m,m) p ≥ 0
(i-3) E ⊕ , ord = ∞ no elliptic fibrations p ≥ 0
(i-4) indecomposable no elliptic fibrations p = 0
(i-5) indecomposable (p∗) p > 0

Here  is an element of Pic0 E. In the case S has an elliptic fibration π, for
example, the notation (m,m) in (i-2) means that π has exactly two multiple fibers of
multiplicities m.

(ii) Suppose that e = −1. Then the isomorphism class of such vector bundle  on E is
unique, and S has an elliptic fibration. The list of singular fibers are as follows:

multiple fibers E p

(ii-1) (2, 2, 2) p � 2
(ii-2) (2∗) supersingular p = 2
(ii-3) (2, 2∗) ordinary p = 2

The symbol ∗ stands for a wild fiber in the tables.

By [6] and [16], we know that if S has non-trivial Fourier–Mukai partners, S has an
elliptic fibration. Hence, from now on, we suppose that S has an elliptic fibration π : S→ P1.
Theorem 5.1 says that the multiplicities of all multiple fibers of π are the same number m.
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When e = 0 (resp. e = −1), we see

(18) Fπ · F f = mC0 · F f = m (resp. Fπ ·C0 = m(2C0 − F f ) ·C0 = m)

by [28, Remark 4.2], and hence

(19) λπ = m = λ′π

for both cases (recall the definitions of λπ and λ′π in (2) and (11) respectively). Here Fπ

(resp. F f ) is a fiber of π (resp. f ), and C0 stands for a section of f satisfying C2
0 = −e.

Consider the case |FM(S)| � 1. Then the inequality (6) yields m = λπ ≥ 5. Hence, S fits
into either (i-2), m ≥ 5 or (i-5), p ≥ 5 in Theorem 5.1. Then S′ ∈ FM(S) is also an elliptic
ruled surface admitting an elliptic fibration π′ fitting into the same case as S by Lemma 2.4.

Lemma 5.2. Suppose that |FM(S)| � 1. Then S fits into the case (i-2).

Proof. It suffices to show that |FM(S)| = 1 in the case (i-5). Suppose that S fits into
the case (i-5). As we explained above, S′ ∈ FM(S) is also an elliptic ruled surface in the
case (i-5). In other words, S′ has a P1-bundle structure f ′ : P( ′) → E′, where  ′ is the
indecomposable vector bundle of rank 2, degree 0 on an elliptic curve E′. By Corollary 4.7,
we have E � E′. Then, we see S � S′ by [10, Theorem V.2.15], in other words, |FM(S)| = 1.

�

The purpose of this paper is to describe the set FM(S) for elliptic ruled surfaces. Hence
in the sequel, we will concentrate on the case (i-2), the unique candidate of S admitting
non-trivial Fourier–Mukai partners.

5.2. Case (i-2).
5.2. Case (i-2). Take  ∈ Pic0 E with 1 < m := ord < ∞, and set

S := P(E ⊕ ).

The following lemma is elementary and useful.

Lemma 5.3. (i) There exists an isomorphism S � P(E ⊕) over E if and only if
 �±1.

(ii) For φE ∈ Aut(E), we have an isomorphism f ∗φE in the fiber product diagram:

(20) P(E ⊕ φ∗E)

��

f ∗φE
�� S

f
��

E
φE

�� E

�

(iii) For some  ∈ Pic0 E, let fT : T := P(E ⊕) → E be the P1-bundle over
E. Suppose that we are given an isomorphism φ : T → S. Then, if we replace φ
appropriately, we can take φE ∈ Aut0(E), which makes the diagram

(21) T

fT
��

φ
�� S

f
��

E
φE

�� E
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commutative. Moreover we have an isomorphism

(22) T � P(E ⊕ φ∗E)

over E, and an isomorphism

(23)  � φ∗E.

Proof. (i) This fact directly follows from [10, Exercise II.7.9(b)].
(ii) This assertion must be well-known. We leave the proof to readers. (For example, use

[10, Proposition II.7.12].)
(iii) Since S has a unique P1-bundle structure, the existence of φE ∈ Aut(E) fitting in (21)

is assured. Next, write φE = Ta ◦ φ0
E for some φ0

E ∈ Aut0(E) and a ∈ E. Since T ∗a � , the
isomorphism f ∗Ta (given as f ∗φE in (20)) gives an automorphism of S. Then, if necessary,
replace φ with ( f ∗Ta)−1 ◦ φ, we may assume that φE ∈ Aut0(E). By the universal property
of the fiber product in (20), we obtain an isomorphism (22) over E. Then by (i) there exists
an isomorphism ±1 � φ∗E. Since (−idE)∗ � −1, f ∗(−idE) also gives an automorphism
of S. Thus, replace φ with f ∗(−idE) ◦ φ if necessary, we may assume that φE ∈ Aut0(E) and
(23) holds simultaneously. �

Lemma 5.4. For i ∈ (Z/mZ)∗, S � P(E ⊕i) if and only if there exists an automorphism
φE ∈ Aut0(E) such that φ∗E � i. Consequently, the set

{P(E ⊕ i) | i ∈ (Z/mZ)∗}/ �
is naturally identified with the group

(Z/mZ)∗/H

Ê
.

Here, recall that H

Ê
:= {i ∈ (Z/mZ)∗ | ∃φ ∈ Aut0(E) such that φ∗ � i}.

Proof. “If” part follows from Lemma 5.3 (ii). “Only if” part follows from Lemma 5.3
(iii). �

Consider the dual morphism

(24) q1 : F0 := ˆ̂E/ 〈〉 → E

of the quotient morphism Ê → Ê/ 〈〉. Then it follows from the definition of q1 that q∗1 �
F0 holds. Thus we have a diagram

(25) F0

q1

��

F0 × P1p1
��

p2
��

qS

��

P1

q2

��

E S π
��

f
��

�

P1,

where the left square diagram is a fiber product, and the right one is obtained by the Stein
factorization of π◦qS. The reason why π◦qS factors through p2 is as follows. First, we have
q∗SωS � ωF0×P1 by [28, Lemma 2.14]. On the other hand, the elliptic fibration p2 (resp. π)
are defined by the linear system of some multiple of −KF0×P1 (resp. −KS). Therefore π ◦ qS
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factors through p2.
Recall that the elliptic fibration π has exactly two multiple fibers.

Convention. By the action of PGL(1, k) on P1, we always assume below that in the case
(i-2), the elliptic fibration π has multiple fibers over the points 0 and ∞ in P1. Furthermore,
we also assume that q2(0) = 0 and q2(∞) = ∞.

For y0 ∈ P1 with y := q2(y0) ∈ P1\{0,∞}, we denote by Fy the non-multiple fiber of π over
the point y. Then it follows from f ◦ qS = q1 ◦ p1 that the restriction of qS induces the
isomorphism

(26) qS|F0×y0 : F0 × y0 � Fy,

since we see from (18) that f |Fy
is a finite morphism of degree m. We tacitly identify F0 and

Fy by this isomorphism.
Take x0 ∈ F0 and set x := q1(x0) ∈ E. Then in a similar way to (26), we have an

isomorphism

(27) qS|x0×P1 : x0 × P1 � Fx,

where Fx is the fiber of f over the point x. We identify P1 and Fx by (27). By our convention
above, we see that the two multiple fibers of π intersect with each fiber P1 of f at 0 and ∞
respectively.

Recall that f has two minimal sections, let’s say C0 and C1, corresponding to the projec-
tions

(28) E ⊕ → E and E ⊕ → .

Then the multiple fibers of π are given exactly mC0 and mC1 (see [28, Remark 4.2]).
We use the following lemma to show Claim 5.7.

Lemma 5.5. Let us regard the multiplicative group Gm as a subgroup of Aut(E ⊕ )(�
Gm × Gm) by the diagonal embedding. Then there exists an injective homomorphism

ι : Gm � Aut(E ⊕ )/Gm ↪→ Aut(S/E).

Here, for λ ∈ Gm, the automorphism ι(λ) of S induces the action on each fiber P1 of f fixing
the points 0 and∞.

Proof. The existence of the injection ι is assured in [9, p.202].4 Note that since any
elements of Aut(E⊕) preserve the projections in (28), any β ∈ Im ι preserves the minimal
sections C0 and C1, and hence it gives an automorphism on each fiber P1 of f fixing the
points 0 and∞. �

5.3. Proof of Theorem 1.1.
5.3. Proof of Theorem 1.1. Let S be an elliptic ruled surface and suppose |FM(S)| � 1.

Lemma 5.2 implies that

S � P(E ⊕ )

4See also [18, Lemma 3]). Because Δ in ibid. is trivial, we actually see that ι gives an isomorphism.
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for some  ∈ Pic0 E with ord = m ≥ 5. Now if S′ ∈ FM(S), by the same reason we get
S′ � P(E′ ⊕ ′) for some ′ ∈ Pic0 E′ with

m = λπ = ord = ord′.

Moreover, by Corollary 4.7, we see that E � E′.
We divide the proof of Theorem 1.1 into two cases: The case m = pe ≥ 5 for some e > 0,

and the case arbitrary m ≥ 5 with m � pe. In both cases, first we define an injective map

{Ji(S) | i ∈ (Z/mZ)∗}/ �↪→ {P(E ⊕ i) | i ∈ (Z/mZ)∗}/ �,(29)

and secondly we shall see

(30) |Hπ| ≤ |H

Ê
|.

The cardinality of the L.H.S in (29) is ϕ(m)/|Hπ| by Lemma 2.3, and the cardinality of the
R.H.S. in (29) is ϕ(m)/|H

Ê
| by Lemma 5.4. Therefore, combining (29) with (30), we can

conclude that (29) is a bijection, and hence Theorem 2.2 yields

FM(S) = {P(E ⊕ i) | i ∈ (Z/mZ)∗}/ �
as required in Theorem 1.1.

Case: m = pe ≥ 5 for some e > 0. Theorem 5.1 implies that Ji(S) � P(E ⊕i) for some
i ∈ Pic0 E with ordi = pe. But in this case, E is necessarily ordinary, and hence Ê[pe] is
a cyclic group generated by . So in this case, i � β(i) for some β(i) ∈ (Z/mZ)∗, and thus
we can define an injective map (29) by Ji(S) 	→ P(E ⊕ β(i)).

Denote by F0 the elliptic curve satisfying F̂0 = Ê/ 〈〉 as in §5.2. Then by (26), a general
fiber of the elliptic fibration π : S→ P1 is isomorphic to F0.

Claim 5.6. The inequality (30) holds (if m = pe ≥ 5).

Proof. [7, Propositions 5.3.3, 5.3.6] implies that κ(J0(S)) = −∞. Combining this fact with
[7, Corollary 5.3.5], we see that J0(S) is an elliptic ruled surface with a section. Therefore,
by the classification in Theorem 5.1 and [7, Theorem 5.3.1 (i)], we have J0(S) � F0 × P1.
Then we have Br(J0(S)) = 0 by [8, Proposition 2.1]. Moreover we have λπ = pe = λ′π by
(19), and hence the group H′π in Lemma 2.5 is trivial. Therefore Lemma 2.5 yields∣∣∣Hπ

∣∣∣ ≤ ∣∣∣Aut0(J0
η)
∣∣∣.

Recall that H

Ê
= Aut0(E) by Lemma 3.3 (ii) in the case m = pe ≥ 5. Hence, to obtain

the conclusion, it suffices to check that |Aut0(J0
η)| ≤ |Aut0(E)|. Thus we may assume 2 <

|Aut0(J0
η)|. Note that we have a surjective homomorphism

Aut0(J0(S)/P1)→ Aut0(J0
η),

where Aut0(J0(S)/P1) means the automorphism group of J0(S)(� F0 × P1) over P1, fixing
the 0-section. Thus, we have an isomorphism Aut0(J0(S)/P1) � Aut0(F0), and moreover
obtain

2 < |Aut0(J0
η)| = |Aut0(J0(S)/P1)| = |Aut0(F0)|.
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This yields j(F0) = 0 or 1728. Since the morphism q1 : F0 → E obtained in (24) is a compo-
sition of relative Frobenius morphisms (cf. [25, Theorem V.3.1]), [10, Exercise IV.4.20(a)]
produces the isomorphism E � F0, which completes the proof. �

Claim 5.6 completes the proof of Theorem 1.1 in the case m = pe ≥ 5.

Case: Arbitrary m ≥ 5 with m � pe for any e > 0. We may put m = npe with e ≥ 0,
n > 1, p � n. We generalize the method of [30] below.

Recall that S � P(E ⊕ ), and define elliptic curves F0 and F as F̂0 := Ê/ 〈〉 and
F̂ := Ê/

〈
pe
〉
. Denote by

qE : F → E

the dual morphism of the quotient morphism Ê → F̂ = Ê/
〈
pe
〉
. Set

 := q∗E and T := P(F ⊕).

Then we see F̂0 = F̂/ 〈〉 and ord = pe. Moreover if e > 0, the existence of a non-
zero element  of F̂[pe] implies that F is ordinary, and the dual morphism of the quotient
morphism

F̂ → F̂0 = F̂/ 〈〉 .
is the e-th iteration of the relative Frobenius morphisms (cf. [25, Theorem V.3.1]). Then we
obtain the following commutative diagram:

(31) F0

Fre

��

F0 × P1p1
��

p2
��

h1

��

P1

Fre
P1

��

F

qE

��

T π1
��

q

��

f1
��

�

P1

q
P1

��

E S π
��

f
��

�

P1

Both of the left squares are fiber product diagrams, and the right squares are obtained by the
Stein factorizations of π1 ◦ h1 and π ◦ q respectively. Moreover we have

deg qE = deg q = deg qP1 = n.

Take

(32) i ∈ Z with 1 ≤ i < m, (i,m) = 1.

Note that this condition implies that (i, pe) = (i, n) = 1, and hence we sometimes regard
i ∈ (Z/peZ)∗ or i ∈ (Z/nZ)∗ below.

Recall that we have already proved Theorem 1.1 for line bundles whose order is p-th
power. By applying it to , we obtain

(33) Ji(T ) � P(F ⊕β(i))

for some β(i) ∈ (Z/peZ)∗. Moreover, since (Fre)∗ � F0 , we have a diagram
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(34) F0

Fre

��

F0 × P1p1
��

p2
��

hi

��

P1

Fre
P1

��

F Ji(T ) πi
��

fi
��

�

P1

as in (25). Here fi is a P1-bundle defined by using the P1-bundle structure on P(F ⊕β(i))
and the isomorphism (33).

Fix an n-th primitive root of unity ζ. Consider the multiplication on Gm by ζ, and extend
it to the automorphism of P1. Denote it by gP1 . Because we see that qP1 in (31) fixes points
0 and ∞ in P1, it turns out that the morphism qP1 is the quotient morphism by the action of
the group 〈gP1〉 � Z/nZ on P1.

Take a ∈ F such that E � F/ 〈a〉 and ord a(= ordpe
) = n. Then we can construct an

action of the group G := Z/nZ on Ji(T ) as follows.

Claim 5.7. For each s ∈ (Z/nZ)∗ and t ∈ (Z/peZ)∗, there exists an automorphism gs of
Jt(T ) which induces the translation Ts·a of F and the automorphism gP1 of P1.

Proof. Since T ∗s·a �, there exists an automorphism

α ∈ Aut(Jt(T ))(
(33)
� Aut(P(F ⊕β(t))))

compatible with Ts·a on F. Note that Ts·a lifts a translation Ts·b on F0 for some b ∈ F0 with
Fre(b) = a, and hence α lifts to Ts·b × idP1 on F0 × P1.

F0

��

Ts·b
�����

F0 × P1

����

��

�� �� P1

������

��

F0

Fre

��

F0 × P1

ht

��

�� �� P1

��

F
Ts·a����

�
Jt(T )�� ��

α�����
P1

id
P1

��

F Jt(T )
ft

��
πt

�� P1

Therefore, α respects the elliptic fibration πt, i.e. α ∈ Aut(Jt(T )/P1).
Next take an integer q with peq = 1 in (Z/nZ)∗. It follows from Lemma 5.5 that there

exists an automorphism β ∈ Aut(Jt(T )/F) which induces the automorphism g
q
P1 on each

fiber F ft (which we identify with P1 by (27)) of the P1-bundle ft. Combining (27) with the
commutativity of the right square in (34), we see that πt|F ft

: F ft → P1 coincides with Fre
P1 ,

and then β induces the automorphism (gP1 )peq = gP1 on P1, the base space of πt.

P1

g
q
P1

��

�
��

Fre
P1

��F ft
� � �� Jt(T ) πt

��

β

��

P1

(g
P1 )peq=g

P1

��

P1 � ��

Fre
P1

��F ft
� � ���� Jt(T )

πt �� P1

Hence, the automorphism gs := α ◦ β has the desired property. �
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Denote by g a generator of the cyclic group G = Z/nZ, and define the action of G on
Jt(T ) by

(35) ρs,t : G → Aut(Jt(T )) g 	→ gs.

For the integer i given in (32), regard i ∈ (Z/nZ)∗ and i ∈ (Z/peZ)∗, and set ρi := ρi,i. We
define the quotient variety to be

(36) Si := Ji(T )/ρiG

by the action ρi, and denote the quotient morphism by

qi : Ji(T )→ Si.

It is easy to see that S is the quotient of T = J1(T ) by the action ρs,1 for some s. Replace
a ∈ F with s · a, and redefine gs and ρs,t by this new a, so that S = S1 holds. After this
replacement, we consider only the action ρi, but not general ρs,t.

We set

g0
i := Ti·b × gq

P1 ∈ Aut(F0 × P1).

Then we see that ord g0
i = ord Ti·b = ord gq

P1 = n and it is compatible with gi ∈ Aut(Ji(T ))
defined in Claim 5.7:

(37) hi ◦ g0
i = gi ◦ hi.

We also define the action on F0 × P1 by

(38) ρ0
i : G → Aut(F0 × P1) g 	→ g0

i

for each i.
Take an integer j with 1 ≤ j < m, ( j,m) = 1 and i j = 1 in (Z/mZ)∗. For the projection

p13 : F0 × ΔP1 × F0 → F0 × F0,

define a line bundle

0 := p∗13F0×F0 (ΔF0 + ( j − 1)F0 × O + (i − 1)O × F0)

on

F0 × ΔP1 × F0(� (F0 × P1) ×P1 (F0 × P1)).

Then F0 × P1 in the second factor in R.H.S. serves as Ji(F0 × P1) where 0 plays the role of
a universal sheaf, and moreover it is shown in [30, page 3229] that it satisfies

(39) (ρ0
1(g) × ρ0

i (g))∗0 � 0.

On the other hand, it follows from [4, Theorem 5.3] that we can take a universal sheaf  ′

on T ×P1 Ji(T ), which satisfies that  ′|z×Ji(T ) is a line bundle of degree j on F0 for general
z ∈ T . For a point (x, y) ∈ F0 × (P1\{0,∞}), there exists an isomorphism

(40) ((h1 × hi)∗ ′)|(F0×P1)×
P1 (x,y) �  ′|T×

P1 hi((x,y)),

since the restriction of h1 × hi gives
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(F0 × P1) ×P1 (x, y) � F0 × y � Fy � T ×P1 hi((x, y)),

where the second isomorphism comes from (26). Hence, we see that the L.H.S. in (40)
is a line bundle of degree i on F0. Then, by the universal property of 0, there exists an
automorphism φ0 ∈ Aut(F0) such that

(idF0×ΔP1 × φ0)∗0 � (h1 × hi)∗ ′ ⊗ p∗30

for some 0 ∈ Pic0 F0.
We shall construct an elliptic ruled surface T ′ and (iso)morphisms φF , φ, h′ which make

the following diagrams commutative:

(41) F0

Fre
��

φ0
�����

F0 × P1

����

hi

��

��

F0

Fre

��

F0 × P1

h′

��

��

F
φF����

�
Ji(T )��

φ�����

F T ′��

First, φ0 descends to φF ∈ Aut(F) via Fre : F0 → F by [25, Corollary II.2.12], and φF

induces an isomorphism

φ : Ji(T ) � P(F ⊕β(i))→ T ′ := P(F ⊕ φF∗β(i)).

Note that φF∗ ∈ Aut0(F̂) preserves the subgroup ker F̂re = F̂[pe] = 〈〉 of F̂, and thus
φF∗β(i) ∈ 〈〉. Hence we obtain a morphism

h′ : F0 × P1 � P(F0 ⊕ F0 )→ T ′ � P(F ⊕ φF∗β(i)),

which fits into the diagram in (41). Moreover we have the following commutative diagram:

F0 × ΔP1 × F0

h1×h′

��

F0 × ΔP1 × F0

(idF0×ΔP1 )×φ0
��

h1×hi

��

p3
�� F0

Fre

��

T ×P1 T ′ T ×P1 Ji(T )
idT×φ

��
fi◦p2

�� F

Take  ∈ Pic0 F such that (Fre)∗ =0, and define a line bundle

 := (idT × φ)∗( ′ ⊗ ( fi ◦ p2)∗ )

on T ×P1 T ′ so that

(42) 0 � (h1 × h′)∗

holds. The pair (T ′, ) serves as Ji(T ) and its universal sheaf, and thus we redefine T ′ to be
Ji(T ).

Claim 5.8. The universal sheaf  on T ×P1 Ji(T ) satisfies

(ρ1(g) × ρi(g))∗ �  .

Proof. Take y0 ∈ P1\{0,∞} with y := Fre(y0) ∈ P1\{0,∞}. Denote by Fy × F′y the fiber of
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π1×πi : T ×P1 Ji(T )→ P1 over the point y. Pull back the isomorphism (42) to the subscheme
F0 × y0 ×F0, which is isomorphic to Fy ×F′y by (26), and combine (37) and (39) with it, and
then we have isomorphisms

((ρ1(g) × ρi(g))∗ )|Fy×Fy
� ((ρ0

1(g) × ρ0
i (g))∗0)|F0×y0×F0 � 0|F0×y0×F0 �  |Fy×Fy

.

F0 × y0 × F0
� � ��

�
��

F0 × ΔP1 × F0

h1×hi

��

p2
�� P1 � y0

Fre
P1

��

Fy × F′y � � �� T ×P1 Ji(T ) π1×πi

�� P1 � y

This yields that the line bundle L := (ρ1(g) × ρi(g))∗ ⊗  −1 is trivial over the open set
(π1 × πi)−1(P1\{0,∞}) by [10, Exercise III.12.4]. We also see by (37), (39) and (42) that
(h1 × hi)∗L is trivial over P1\{0,∞}, and thus

(43) L � T×
P1 Ji(T )(b(D0 × D′0 − D∞ × D′∞))

for some b ∈ Z, where peD0 and peD′0 (resp. peD∞ and peD′∞) are the multiple fibers over
0 ∈ P1 (resp. ∞) of π1 and πi. Note that ord L divides pe, the multiplicity of the multiple
fibers. Since ord(ρ1(g)× ρi(g)) = n and the R.H.S. in (43) is (ρ1(g)× ρi(g))-invariant, we see
that

 � (ρ1(g) × ρi(g))n∗ � (ρ1(g) × ρi(g))(n−1)∗ ⊗ L � · · · �  ⊗ L⊗n,

and hence ord L | n. Since p � n, we have ord L = 1, as it is required. �

Recall that we have the following commutative diagram by the definition of Si in (36):

F

qE

��

Ji(T )
fi

��
πi ��

qi

��

P1

q
P1

��

E Si πSi

����

�

P1

Here, qE and qP1 are the same one appeared in (31), and πSi is an elliptic fibration.

Claim 5.9. For each i, there exists α(i) ∈ (Z/mZ)∗ such that we have an isomorphism

Si � P(E ⊕ α(i))

over E.

Proof. First of all, we know by Theorem 5.1 that there exisits an isomorphism Si �
P(E ⊕ i) over E for some i ∈ Pic0 E with ordi = m. Then the result follows from

i ∈ ker(F̂re ◦ q̂E) = 〈〉 � Z/mZ. �

Recall that S = S1 below.

Claim 5.10. There exists an isomorphism Ji(S) � Si.
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Proof. First, we shall show that there exists a coherent sheaf i on S × Si such that

(44) (q1 × idJi(T ))∗ � (idS × qi)∗i

for the morphisms

T × Ji(T )
q1×idJi(T )→ S × Ji(T )

idS×qi→ S × Si.

Claim 5.8 implies that

(ρ1(g) × idJi(T ))∗ � (idT × ρi(g)−1)∗ .

Push forward the both sides by the morphism q1 × idJi(T ) and then we obtain

(q1 × idJi(T ))∗ � (idS × ρi(g)−1)∗(q1 × idJi(T ))∗ ,

that is, the sheaf (q1 × idJi(T ))∗ is G-invariant with respect to the diagonal action of G on
S× Ji(T ), where G acts on S trivially. Since G = 〈g〉 is a finite cyclic group, the G-invariance
of coherent sheaves is equivalent to the G-equivariance, and hence there exists a coherent
sheaf i on S × Si satisfying (44).

For z ∈ Ji(T ), we have

i|S×qi(z) � ((q1 × idJi(T ))∗ )|S×z � q1∗( |T×z).

Here, the second isomorphism follows from [2, Lemma 1.3] and the smoothness of q1.
Suppose that z is not contained in multiple fibers of πi, that is, y := πi(z) ∈ P1\{0,∞} by
the convention stated in §5.2. Then  |T×z is actually a sheaf on Fy × z, and the restriction
q1|Fy×z is an isomorphism by (26). It turns out that i|S×qi(z) is also a line bundle of degree i
on Fq

P1 (y) × qi(z).
Then, by the universal property of Ji(S), there exists a morphism from

π−1
Si

(P1\{0,∞})(⊂ Si)→ π−1
Ji(S)(P

1\{0,∞})(⊂ Ji(S))

over P1\{0,∞}, where πSi and πJi(S) are the elliptic fibrations on Si and Ji(S) respectively.
Since i|S×qi(z1) � i|S×qi(z2) on Fy for z1 � z2 ∈ Ji(T ), this morphism is injective, and hence
Si and Ji(S) are birational over P1. Then, [1, Proposition III.8.4] implies that Si � Ji(S). �

Combining Claims 5.9 and 5.10, we obtain the inclusion (29) by the map

Ji(S) 	→ P(E ⊕ α(i)).

The next aim is to show (30).

Claim 5.11. There exists an injective group homomorphism

α : Hπ/{±1} → H

Ê
/{±1}.

Proof. Take i ∈ Hπ(:= {i ∈ (Z/mZ)∗ | Ji(S) � S}). We have α(i) ∈ (Z/mZ)∗ so that there
exists an isomorphism

ψ : P(E ⊕ α(i))
�→ Si

�→ Ji(S)

by Claims 5.9 and 5.10. We use ψ and the P1-bundle structure on P(E ⊕ α(i)) to fix a
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P1-bundle structure on Ji(S):

fJi(S) : Ji(S)→ E

Then Lemma 5.3 (iii) implies that there exist an isomorphism ϕ and an automorphism ϕE ∈
Aut0(E) fitting in the commutative diagram

(45) P(E ⊕ α(i))
ψ

��

��

Ji(S)

fJi(S)

��

ϕ
�� S

f
��

E E ϕE
�� E

and ϕ∗E � α(i) is satisfied.
Take another isomorphism ϕ′ : Ji(S) → S. Then since ϕ′ ◦ ϕ−1 is an automorphism of

P(E ⊕), we have (ϕ′E ◦ϕ−1
E )∗ � ±1 by Lemma 5.3 (i) and (ii). Thus we obtain the group

homomorphism

α : Hπ → H

Ê
/{±1}(:= {i ∈ (Z/mZ)∗ | ∃φ ∈ Aut0(E) s.t. φ∗ � i}/{±1}.)

Thus it suffices to prove Kerα = {±1}. Suppose i ∈ Kerα. Since ϕ∗E � ±1 holds in this
case, Lemma 3.2 implies that ϕE fitting in the diagram (45) is either idE or −idE . Replace ϕ
with f ∗(−idE)◦ϕ (see the notation in Lemma 5.3 (ii) and the proof of ibid. (iii)) if necessary,
and then we may assume that ϕE = idE . We have the following commutative diagram 5:

(46) F

��

��
�

��
�

Ji(T )
fi

��

��

∃φ
��

F

qE

��

T
f1

��

��

E
��

�
��

�
Si

ϕ�����
�

��

E S��

Because the front and the back squares in (46) are the fiber product diagrams, there exists
an isomorphism φ : Ji(T )→ T which makes the right square the fiber product.

Since φ descends to ϕ : Si = Ji(T )/ρiG → S = T/ρ1G for G = Z/nZ = 〈g〉, we have

ρ1(g) ◦ φ = φ ◦ ρi(g)l

for some l. Recall that both of ρ1(g) and ρi(g) induce the same automorphism gP1 on the
base curve P1 of the elliptic fibrations on T and Ji(T ) (see Claim 5.7 and (35)). Then we see
l = ±1. Next recall ρ1(g) (resp. ρi(g)) induces the automorphism Ta (resp. Ti·a) on F, the
base curve of the P1-bundle f1 (resp. fi). Then we know that

Ta = (Ti·a)l = Tli·a,

and hence, 1 = il in (Z/nZ)∗. Therefore we have i = ±1, and hence Kerα ⊂ {±1}. The other
direction is obvious. �

By Claim 5.11, we conclude that |Hπ| ≤ |H
E | as is required in (30).

5Here, we identify Si and Ji(S) by Claim 5.10.
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Therefore, we complete the proof of the first statement in Theorem 1.1 for arbitrary m ≥ 5.
The second follows from Lemma 3.3 (ii).
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