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Abstract
The first author explicitly describes the set of Fourier—Mukai partners of elliptic ruled sur-
faces over the complex number field in [30]. In this article, we generalize it over arbitrary
characteristic fields. We also obtain a partial evidence of the Popa—Schnell conjecture in the
proof.

1. Introduction

Let us consider the derived category of coherent sheaves D”(X) for a smooth projective
variety X over an algebraically closed field k of p := chk > 0. We call a smooth projec-
tive variety Y a Fourier—Mukai partner of X if there exists an equivalence D’(X) = D’(Y)
as k-linear triangulated categories. We let FM(X) denote the set of isomorphism classes of
Fourier—Mukai partners of X. It is a fundamental question to describe the set FM(X) explic-
itly. It is known that | FM(C)| = 1 for any smooth projective curves C (see [13, Corollary
5.46]). On the other hand, smooth projective surfaces S may have non-trivial Fourier—Mukai
partners: Namely, | FM(S)| # 1 may occur. Bridgeland, Maciocia and Kawamata show in [6]
and [16] that if a smooth projective surface S over C has a non-trivial Fourier—Mukai partner
T, then both are abelian surfaces, K3 surfaces or elliptic surfaces with nonzero Kodaira di-
mension. There exist several known examples of surfaces S with | FM(S)| # 1 ([19, 20, 29]).

In this article, we study the set FM(S) of elliptic ruled surfaces S defined over k. Here, an
elliptic ruled surface means a smooth projective surface with a P'-bundle structure over an
elliptic curve. We obtain the following theorem, which is a generalization of the result for
k = Cin [30] to an arbitrary algebraically closed field k.

Theorem 1.1. Let S be an elliptic ruled surface defined over k and n: S — E be a
P'-bundle over an elliptic curve E. If [FM(S)| # 1, then S is of the form

S=POre®L)
for some L € Pic’ E of order m > 5. Furthermore we have
FM(S) = (P(Og @ L) | i € Zwith (i,m)=1and 1 <i<m}/ =,
and

IFM(S)| = @(m)/|H].

2020 Mathematics Subject Classification. 14F08, 14J27, 18G80.
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Here, ¢ is the Euler function, and we define
(1) Hg :={i € (Z/mZ)" | 3¢ € Auty(E) such that 'L = L'}

as a subgroup of (Z/mz)*. We also have |H§| = 2,4 or 6, depending on the choice of E and
L.

In the case k = C, it is known (cf. [30, Equation (3.4)]) that S = P(Og @ L) is a quotient of
Fo x P! by a cyclic group action, where F is an elliptic curve, and the first author uses this
fact to describe the set FM(S) in [30]. On the other hand, in the case p := chk > 0, elliptic
ruled surfaces S = P(Og & L) with p | m do not admit a similar construction (see [28, §5.1]).
Therefore, we need more general treatment to show Theorem 1.1.

In the proof of Theorem 1.1, we obtain some evidence of the Popa—Schnell conjecture
in [24], which states that for any Fourier—Mukai partners X’ of a given smooth projective
variety X, there exists an equivalence D’(Alb(X")) = D’(AIb(X)) of derived categories of
their albanese varieties.

Proposition 1.2 (=Corollary 4.7). Let X — A and X’ — A’ be P"-bundles over abelian
varieties A and A’ for n = 1,2. If X and X' are Fourier—Mukai partners, then so are A and
A’. Furthermore, the Popa—Schnell conjecture holds true in this case.

The plan of this article is as follows. In §2, we explain some results and notation of
relative moduli spaces of stable sheaves on elliptic fibrations, a main tool for the study of
Fourier—Mukai partners of elliptic surfaces. We obtain a characterization of Fourier—Mukai
partners of elliptic surfaces with non-zero Kodaira dimensions in Theorem 2.2 for arbitrary
p = chk, which was originally proved by Bridgeland in the case p = 0.

In §3, we show several results on automorphisms of elliptic curves.

In §4, we first explain Theorem 4.3 by Pirozhkov, and then we apply it to show Proposi-
tion 1.2.

Finally, in §5, we first narrow down the candidates of elliptic ruled surfaces with non-
trivial Fourier—Mukai partners by Proposition 1.2 and the main result in [28], and then prove
Theorem 1.1.

This article is a part of the second author’s doctoral thesis.

Notation and conventions. All algebraic varieties X are defined over an algebraically
closed field k of characteristic p > 0. A point x € X means a closed point unless otherwise
specified.

For an elliptic curve E, Auty(E) is the group of automorphisms fixing the origin.

By an elliptic surface, we will always mean a smooth projective surface S together with
a smooth projective curve C and a relatively minimal projective morphism z: S — C whose
general fiber is an elliptic curve. An elliptic ruled surface means a smooth projective surface
with a P'-bundle structure over an elliptic curve.

For a morphism 7: X — Y between algebraic varieties, the symbol Aut(X/Y) stands for
the group of automorphisms of X preserving 7.

2. Relative moduli spaces of sheaves on elliptic fibrations

2.1. Fourier-Mukai partners of elliptic surfaces. For a smooth projective variety X
defined over an algebraically closed field k of characteristic p > 0, we denote by D’(X) the
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bounded derived categories of coherent sheaves on X. We call a smooth projective variety
Y a Fourier—-Mukai partner of X if D’(X) is k-linear triangulated equivalent to D”(Y). We
denote by FM(X) the set of isomorphism classes of Fourier—Mukai partners of X.

We study the set FM(S) for elliptic surfaces S. Let 7: § — C be an elliptic surface and
denote a general fiber of 7 by F,. We define

2) A :=min{D - F; | D is a horizontal effective divisor on S}.

Fix a polarization on S and consider the relative moduli scheme M(S/C) — C of stable
purely 1-dimensional sheaves! on the fibers 7, whose existence is assured by Simpson in
the case p = 0 in [26], and by Langer in the case of arbitrary p in [17]. For integers
a > 0 and i with i coprime to ad,, let Jg(a, i) be the union of those components of M(S/C)
which contains a point representing a rank a, degree i vector bundle on a smooth fiber of 7.
Bridgeland shows in [4] that Js(a, i) is actually a smooth projective surface and the natural
morphism Jg(a, i) — C is a minimal elliptic fibration.

Put J(S) := Jg(1,i). We can also define an elliptic surface J/(S) — C for arbitrary j € Z,
which is not necessarily fine but the coarse moduli space of a suitable functor (see [14,
§11.4]). We have JO(S) = J(S), the Jacobian surface associated to S, J'(S) = S and

3) J(J(S)) = JU(S)

for i, j € Z. See the argument after (8) for the proof of (3).
It is well-known that the following statement holds in the case p = 0 by [4, Theorem 1.2].
We state that it is also true for arbitrary p.

Proposition 2.1. Elliptic surfaces S and J(S) for some integer i with (i,A;) = 1 are

derived equivalent via an integral functor ®* := (Dﬁ ()=S for a universal sheaf P on J'(S)XS.

Proof. To prove the statement for p = 0, Bridgeland first applies the Bondal-Orlov’s
criterion [2] (see also [13, Proposition 7.1]) for the functor ®” to be fully faithful, namely
he checks the strongly simpleness of 7. Then it is easy to show ®” is an equivalent by
checking the Bridgeland’s criterion [5] for ®” to be equivalent. But the Bondal-Orlov’s
criterion is false in the case p > 0 [11, Remark 1.25]. Instead, if we put an extra assumption
that the Kodaira—Spencer map Ext},.(s)((%, O, — Exté(Px, P,) is injective, we see the proof
of [2] works, and so the criterion holds (see also [13, Step 5 in the proof of Proposition
7.1]). Actually, the map is an isomorphism in our case because P is a universal family. This

completes the proof. m|

We have a nice characterization of Fourier—Mukai partners of elliptic surfaces with non-
zero Kodaira dimensions.

Theorem 2.2. Let n: S — C be an elliptic surface and T a smooth projective variety.
Assume that the Kodaira dimension «(S) is non-zero. Then the following are equivalent.

(1) T is a Fourier—Mukai partner of S.
(i) T is isomorphic to J'(S) for some integer i with (i, 1;) = 1.

"Here we consider the Gieseker stability, equivalently the slope stability for 1-dimensional sheaves. More-
over, the stability does not depend on the choice of polarizations for such sheaves.
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Proof. It follows from Proposition 2.1 that (ii) implies (i). The opposite direction was
proved in [6, Proposition 4.4] when p = 0 and S has no (—1)-curves. The most of the proof
there works even for p > 0. So we give only a sketch of the proof.

As the proof in [6, Proposition 4.4], we can show that there exists an equivalent functor
OV DX(T) — DP(Ji(S)) for some integer i with (i,4,) = 1 such that ®V(O,) = O, for
some t € T,y € Ji(S). Then as in [6, Lemma 2.5], we see that there exists a rational map
f: T - Ji(S) such that the kernel U is supported on the graph of f near the point (z, y).
Because @V is an equivalence, we can avoid the possibility that f is inseparable, and hence
f is a birational map. Then the proof of [6, Proposition 4.4] works in the rest (including the
case that S is not minimal). m]

As a consequence of Theorem 2.2, we obtain
FM(S) = {(J/(S) i € Z, (i,4,) = 1}/ =.
Moreover we see that there exist natural isomorphisms
4) J'(S) = JH(S) = JT(S).

Hence, in order to count the cardinality of the set FM(S), we often regard an integer i as an
element of the unit group (Z/A,2)*. It follows from the isomorphisms (3) and (4) that the
set

&) Hy = {i € (Z/2,2)" | J'(S) = S}

forms a subgroup of (Z/A,Z)*. Moreover, we see from (3) that Ji(S) = J/(S) for i,j €
(Z],Z)" if and only if (S =)J'(S) = J7 '/(S). Combining all together, we have the following.

Lemma 2.3. For an elliptic surface n: S — C with «(S) # 0, the set FM(S) is naturally
identified with the group (Z]A;Z)" | H,.

Since H, contains the subgroup {+1} if A, > 3, we see
(6) [EM(S)| < ¢(4:)/2,
where ¢ is the Euler function.

Lemma 2.4. Let n: S — C be an elliptic surface. Then we have the following.

(i) For i € Z with (i,A;) = 1, consider the elliptic fibration n;: J'(S) — C. The
multiplicities of the fibers F, and F', of m and n; over a fixed point x € C coincide.
Furthermore, if the fiber F, is smooth, then it is isomorphic to F.

(ii) Let S be an elliptic ruled surface, and take S’ € FM(S). Then S’ is also an elliptic
ruled surface with an elliptic fibration.

Proof. (i) The first statement will be explained by using Weil-Chételet group in §2.2. See
the argument around (12). By the property of the relative moduli scheme, the fiber F7, is the
fine moduli space of line bundles of degree i on a smooth elliptic curve F,. Consequently,
the second statement follows.

(ii) Theorem 2.2 implies that there exists an integer i with (i, A,) = 1 such that J/(S) = §’,
which implies that S has an elliptic fibration ’. The Kodaira dimension is derived invariant
by [27, Corollary 4.4], and hence $’ is a rational elliptic surface or an elliptic ruled surface.
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Then, [12, Theorem B] implies that $’ is also an elliptic ruled surface. |

2.2. Weil-Chatelet group. In this subsection, we recall the definition of the Weil-
Chatelet group. For more details, see [25, Ch.X.3] and [14, Ch.11.5].

Let Ey be an elliptic curve over a field K. A homogeneous space for Ej is a pair (E, w),
where E is a smooth curve over K, and y is a simply transitive algebraic group action

,u:E><E0—>E.

We say that two homogeneous spaces (E,u) and (E’, u’) are equivalent if there exists
an isomorphism 6: £ — E’ defined over K which is compatible with the action of Ej.
The collection WC(E)) of equivalence classes of homogeneous spaces for E( has a natural
group structure (cf. [25, Theorem X.3.6], [14, Proposition 11.5.1]), and it is called the Weil-
Chatelet group.

Let r: S — C be an elliptic surface (over an algebraically closed field k). We denote the
generic fiber of 7;: Ji(S) — C by Jf7 for i € Z. Then J,? is an elliptic curve over the function
field of C, and we have a natural homogeneous space structure

pic Jy X J) = Ty (L, M) - LOM,
and hence we can regard (J', u;) € WC(J,(;). We define
(7) &= (Jy.p1) € WCU,
then, we have
(8) i€ = (Jy, 1)
(cf. [14, Remark 11.5.2]) and thus
9 ord € | A

It follows from (8) that the generic fibers of J/(J/(S)) — C and J"/(S) — C are isomorphic to
each other, and taking the relative smooth minimal models of compactifications of generic
fibers, we obtain Ji(J/(S)) = JY(S) as in (3).

Take a closed point x € C and consider the henselization of the local ring O¢, and
denote it by O}é,x. We also denote the base change of 7p: J°(S) — C by the morphism
Spec 0., — C by

J? — Spec (92’)6.

Then it is known by [7, Proposition 5.4.3 in p.314, Theorem 5.4.3 in p.321] that there exists
an exact sequence:

0 — Br(J%S) — WCU) — P WCU)
(10) w w
& = (&x)xec
Here, we denote the image of & (given in (7)) in WC (Jg) by &,. It follows from [7, Propo-

sition 5.4.2] that m, = ord&,, where m, is the multiplicity of the fiber of 7 over the point
x € C. Define
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(11 Ay := Lemgec(my) = ord((§x)rec)-
Since ord ¢ is divided by ord((¢,).ec), we see from (9) that
| Ay
In particular, if i € Z is coprime to A, then i is coprime to each m,, and thus we have
12) ord(i&), = ord i(§,) = ord(&y) = my.

Combining (12) with (8), we know that the multiplicity of the fiber of 7; over the point x is
also m,. This shows the first statement of Lemma 2.4 (i).
Define a subgroup H. of the group H,(:= {i € (Z/A;Z)" | Ji(S) = S} given in (5)) to be

(13) H, :={ie H;|i=1 (mod 1})}.
We use the following lemma to obtain a lower bound of the cardinality of the set FM(S).
Lemma 2.5. Let m: S — C be an elliptic surface with Br(J°(S)) = 0. Then we have
|H/H,,

<| Auto(J9)]-

Proof. For each i € H,, fix an isomorphism 6;: J; - J,"7 over the generic point n € C.
Then we obtain a structure of a homogeneous space on J; by the action

pi =67 oo (6 xidp): Jy x Jy) = U,

such that (J,"], i) = (J;, u7) holds in WC(J,(I)) by the definition. On the other hand, by [25,
Exercise 10.4], (J), ;) = (J), uro(id J1%¢)) for some ¢ € Auty(J)). We define an equivalence
relation ~ of Auto(J9) such that
¢ ~ ¢
for ¢; € Auto(Jg) when
(Jys 1 © (id g1 X 1)) = (Jy, 1 © (idyy X ).
Then we can define a map
[ Hy = Autg(J))/~ i ¢.
We see that ij~! € H. if and only if f(i) = f(j) as follows. First note that we have an
injection

WCUD = EPWCU)  £= ) - Edec
xeC

by the vanishing of the Brauer group Br(J°(S)) and (10), and hence
(14) ord¢ = A7(:= ord((£.)xe))-

We observe that for i, j € Hy, the condition f(i) = f(j) is equivalent to the equality i = jé
by (8), which is also equivalent to i~!j € H. by (14).
Consequently, we obtain an inclusion

H,/H}, — Auty(J)/~
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and the conclusion. O

3. Elliptic curves and automorphisms

Let F be an elliptic curve over an algebraically closed field £ with p = chk > 0. The
explicit description of the automorphism group Auty(F) fixing the origin O is well-known,
and is given as follows.

Theorem 3.1 (cf. Appendix A in [25]). The automorphism group Auty(F) is

Z/2Z if j(F)#0,1728,

Z/4Z if j(F)=1728 and p #+ 2,3,
Z/6Z if (F)=0and p #+ 2,3,
Z[3Z<Z]AZ if j(F)=0=1728 and p =3,
0 =7Z/3Z if j(F)=0=1728 and p = 2.

Note that in the last second case, Z/4Z acts on Z/3Z in the unique non-trivial way, and in
the last case, the group is so called a binary tetrahedral group, and Q is the quaternion
group. In the last two cases F is necessarily supersingular.

For points x;, x, € F, to distinguish the summation of divisors and of elements in the
group scheme F, we denote by x; @ x, the sum of them by the operation of F, and

i-x1:=x1®---@®x; (itimes).
Furthermore, we use the symbol 7, to stand for the translation by a € F":
T, F—>F x—>ad®ux.
We also denote by
ix; :=x1+---+x; (itimes)

the divisors on F of degree i. We denote the dual abelian variety Pic’ F of F by F. It is
well-known that there exists a group scheme isomorphism

(15) Fo>F x Op(x-0),

where O is the origin of F.
We will use the following lemma several times.

Lemma 3.2. Take a point a € F with ord(a) > 4, and ¢ € Auty(F). If ¢(a) = a, then

¢ = idp.
Proof. In any of the cases in Theorem 3.1, we have ord(¢) € {1,2,3,4,6}. Let us first
consider the case ord(¢) = 2,4 or 6. In this case, ¢' = —idr for some i € Z, and hence we

get —1 - a = a. The condition ord(a) > 4 yields a contradiction. Next, consider the case
ord(¢) = 3. Then we have

(¢ —idp)(¢* + ¢ +idp) = 0
in the domain End(F), which implies that ¢* + ¢ +idr = 0, and hence ¢*(a) ® ¢(a) D a = O.
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By the assumption ¢(a) = a, we see that 3 - @ = O. This is absurd by ord(a) > 4. O

For a non-zero integer m, we define the m-torsion subgroup of F to be
Fim]:={aeF|m-a= 0}
Equivalently, F[m] is the kernel of the multiplication map by m. Recall that

Z|p°Z if F is ordinary, m = p°, e > 0
F[m] = {0} if F is supersingular, m = p®, e > 0
ZimZ X Z/mZ if p ¥ m.

(See [25, Corollary I11.6.4].) Note that these 3 cases do not exhaust all possibilities (i.e.,
cases where m is divisible by p but is not power of p is not covered.)

Take a € F with ord(a) = m. In order to count Fourier—Mukai partners of elliptic ruled
surfaces, we need to study the subgroup

(16) Hy = {i € (Z/mZ)" | 3¢ € Auto(F)such that¢(a) =i a}

of (Z/mz)*. Note that the definition of H g given in (1) is compatible with (16). We obtain
the following result as a direct consequence of Lemma 3.2.

Lemma 3.3. Take a € F with ord(a) > 4.

(1) We have an injective group homomorphism
17) t: Hi — Autg(F).

Furthermore, we have |Hf| = 2,4 or 6.
(i1) Suppose that p > 0 and ord(a) = p°¢. Then (17) is an isomorphism.

Proof. (i) Take i € Hf.. Then there exists ¢ € Auto(F) such that ¢(a) = i - a, and define
(i) to be ¢. The well-definedness of ¢ follows from Lemma 3.2, and ¢ is injective by the
definition. Since HY. is regarded as an abelian subgroup of Auty(F) described in Theorem
3.1, and HY. contains {+1} as a subgroup, we obtain the second assertion.

(ii) The existence of an order p¢ element in F implies that F is ordinary. Since F[p¢] =
Z|p°Z = {a), for any ¢ € Auty(F) we see that ¢(a) =i - a for some i € (Z/p°Z)*. Hence the
injective homomorphism in (17) is surjective, and then we can confirm the statement. m|
From now on, by (17) we often regard Hy. as a subgroup of Auty(F) when orda > 4.

4. Pirozhkov’s result and its application

In this section, we summarize some definitions and results in [23], and give their appli-
cation to the Popa—Schnell conjecture. We also refer to [21] for fundamental notions of
oco-categories.

For a Noetherian scheme S over k, we denote by Perf(S) the full subcategory of D’(S)
consisting of perfect complexes. A stable k-linear co-category D is said to be S-linear if
there exists an action functor

ap: D X Perf(S) - D

together with associativity data.
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For a morphism f: X — § between smooth projective varieties X and S over k, the
category D”(X) has a natural S-linear structure via the functor

b b b L .
D°(X)x D’(S) » D’(X) (&, F)— EQx LfF.

DerintTion 4.1 ([23]). Let S be a Noetherian scheme over a field k. We say that S is non-
commutatively stably semiorthogonally indecomposable, or NSSI for brevity, if for arbitrary
choices of

(i) D, an S-linear category which is proper? over S and has a classical generator, and
(i1) A, a left admissible subcategory of D which is linear over k,

the subcategory A is closed under the action of Perf(S) on D.

REmARK 4.2. For a quasi-compact and quasi-separated scheme S, the category Perf(S) has
a classical generator by [3, Corollary 3.1.2]. In particular, for a smooth projective variety S,
the category D”(S) has a classical generator.

Theorem 4.3 (Lemma 6.1 in [23]). Let n: X — S be a smooth projective morphism which
is an étale-locally trivial fibration with fiber X,. Assume that S is a connected excellent
scheme®. Then for any point s € S the base change map

S-linear admissible
subcategories

restriction to X, = X, {admissible subcategories}
ﬁ
A c DP(X)

Ao € DP(Xo)
is an injection.

DerniTion 4.4. Let m: X — S be a smooth projective morphism of Noetherian schemes.
(i) An object € € Perf(X) is m-exceptional if Rn, RHomyx(&E, E) = Os.
(i1) A collection of m-exceptional objects &1, ..., Ey € Perf(X) is a m-exceptional col-
lection if Rr, RHom(&;, &) = 0forany 1 <i< j<N.
(iii) A m-exceptional pair is a m-exceptional collection of length 2.

For a m-exceptional pair &£, F, the left m-mutation LgF of F through £ and the right n-
mutation Rr & of £ through F are defined by the following distinguished triangles:

7R, RHomy (€, F) ®o, € > F — LgF
Rr& — €5 n*Rr, RHomy(E,F)" ¢, F
We see that mutations commute with base change.

Lemma 4.5 (Lemma 2.22 in [15]). Consider the following Cartesian square of finite
dimensional Noetherian schemes, where 1t is smooth projective.

2See [21] for this notion.
3In [23, Lemma 6.1], Pirozhkov assumes that S is a scheme over Q, but it is not needed in its proof.
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y

% J

TT>S

For any m-exceptional pair (E,TF), it follows that (f*E, f*F) is an g-exceptional pair and
we have the following isomorphisms:

Lpe (f"F) = f*(LeF)

We apply Theorem 4.3 and Lemma 4.5 to obtain the following.

Proposition 4.6. Letn: X — S be aP"-bundle (n = 1,2) over a smooth projective variety
S. Then any non-trivial S-linear admissible subcategory of D’(X) is of the following form.:

(i) (Casen=1)
DP(S)(i)(:= n* D" (S) ®o, Ox(i))

for some i € Z.
(i1) (Casen=2)

7D’ (S) @0, (E1,..., &),
where E1,...,& (1 <1< n+1)is am-exceptional collection.

Proof. (i) Any non-trivial admissible subcategory in D?(P') is known to be of the form
(Op:1(i)) for some i € Z. Since the restriction of the admissible category DP(S)(i) to a fiber
is (Opi(i)), the injective base change map in Theorem 4.3 is surjective. Hence the result
follows.

(i) [22, Theorem 4.2] states that any non-trivial admissible subcategory A in D”(P?) is
generated by a subcollection of successive mutations of the standard exceptional collection
O, Op2(1), Op2(2). Lemma 4.5 yields an S-linear admissible subcategory Ay of D’(X),
which is generated by a m-exceptional subcollection obtained by successive r-mutations of
the m-exceptional collection Oy, Ox(1), Ox(2), and its derived restriction on a fiber is A.
This means that the injective base change map in Theorem 4.3 is surjective, and hence we
obtain the result. m|

The Popa—Schnell conjecture in [24] states that for any Fourier—-Mukai partners X’ of a
given smooth projective variety X, there exists an equivalence D’(Alb(X")) = D’(AIb(X)) of
derived categories.

From Proposition 4.6, we deduce that the Popa—Schnell conjecture holds true in certain
situations.

Corollary 4.7. Let X — A and X’ — A’ be P"-bundles over abelian varieties A and A’
forn = 1,2. If X and X' are Fourier—-Mukai partners, then so are A and A’. Furthermore,
the Popa—Schnell conjecture holds true in this case.

Proof. Put D”(A)(i) = n"D"(A) ® Ox(i), where r is the P'-bundle X — A. Since abelian
varieties are NSSI by [23, Theorem 1.4], any admissible category of D?(X) is A-linear.



FM ParTNERS OF ELLIPTIC RULED SURFACES 155

Proposition 4.6 implies that any non-zero indecomposable admissible subcategory of D?(X)
is equivalent to D”(A). This completes the proof of the first assertion. We see that A =
Alb(X) and A" = Alb(X”), and hence obtain the second. |

If X is an elliptic ruled surface over C, namely n = 1 and k = C, in Corollary 4.7, the
statement follows from [30, Theorem 1.1]. The proof given above for n = 1,2 and arbitrary
k is more direct and natural.

RemMark 4.8. Let X — E and X’ — E’ be P"-bundles over elliptic curves E and E’ for
n = 1,2. As a consequence of Corollary 4.7, if X and X’ are Fourier—Mukai partners, then
DP(E) = D’(E"), and hence E = E’ by [13, Corollary 5.46].

5. Fourier—Mukai partners of elliptic ruled surfaces

5.1. Singular fibers of elliptic ruled surfaces. In this subsection, we recall a result in
[28]. Let £ be a normalized, in the sense of [10, Ch. 5. §2], rank 2 vector bundle on an
elliptic curve E and

f:S=PE) > E

be a P'-bundle on E defined by €. Let us put e := —deg €. If S has an elliptic fibration, then
—Kj is nef. Then we can easily deduce e = 0 or —1 from [10, Corollary V.2.11, Theorems
V.2.12, V.2.15]).

Theorem 5.1 (Theorem 1.1 in [28]). Let us consider the above situation.

(1) For e = 0, we have the following possibilities:

‘ ‘ & ‘ d an elliptic fibration on S? ‘ P ’
(-1) O @ Og no multiple fibers p=0
(1-2) | Og@L,ordL =m > 1 (m, m) p>0
(1-3)| Ope®L,ordL =0 no elliptic fibrations p=0
(i-4) indecomposable no elliptic fibrations p=0
(i-5) indecomposable (p") p>0

Here L is an element of Pic’ E. In the case S has an elliptic fibration n, for
example, the notation (m, m) in (i-2) means that © has exactly two multiple fibers of
multiplicities m.

(i1) Suppose that e = —1. Then the isomorphism class of such vector bundle € on E is
unique, and S has an elliptic fibration. The list of singular fibers are as follows:
‘ ‘ multiple fibers ‘ E ‘ P ‘
>ii-1) 2,2,2) p#2
>ii-2) (2%) supersingular | p =2
(>ii-3) (2,29 ordinary p=2
The symbol * stands for a wild fiber in the tables.

By [6] and [16], we know that if S has non-trivial Fourier—Mukai partners, S has an
elliptic fibration. Hence, from now on, we suppose that S has an elliptic fibration 7: § — P!,
Theorem 5.1 says that the multiplicities of all multiple fibers of 7 are the same number m.
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When e = 0 (resp. e = —1), we see
(18) Fp-Fr=mCo-Fr=m (resp. Fp-Co=m(2Co— Fy)-Co=m)
by [28, Remark 4.2], and hence
(19) Ar=m= A

for both cases (recall the definitions of A, and A, in (2) and (11) respectively). Here F,
(resp. Fy) is a fiber of & (resp. f), and Cy stands for a section of f satisfying C(z) = —e.
Consider the case | FM(S)| # 1. Then the inequality (6) yields m = A, > 5. Hence, S fits
into either (i-2), m > 5 or (i-5), p > 5 in Theorem 5.1. Then §" € FM(S) is also an elliptic
ruled surface admitting an elliptic fibration n’ fitting into the same case as S by Lemma 2.4.

Lemma 5.2. Suppose that |FM(S)| # 1. Then S fits into the case (i-2).

Proof. It suffices to show that |[FM(S)| = 1 in the case (i-5). Suppose that S fits into
the case (i-5). As we explained above, S’ € FM(S) is also an elliptic ruled surface in the
case (i-5). In other words, S’ has a P'-bundle structure f’: P(£’) — E’, where £’ is the
indecomposable vector bundle of rank 2, degree 0 on an elliptic curve E’. By Corollary 4.7,
we have E = E’. Then, we see S = §’ by [10, Theorem V.2.15], in other words, | FM(S)| = 1.

|

The purpose of this paper is to describe the set FM(S) for elliptic ruled surfaces. Hence
in the sequel, we will concentrate on the case (i-2), the unique candidate of S admitting
non-trivial Fourier—Mukai partners.

5.2. Case (i-2). Take £ € Pic’ E with 1 < m := ord £ < oo, and set
S:=P(OraL).

The following lemma is elementary and useful.

Lemma 5.3. (1) There exists an isomorphism S = P(Or & M) over E if and only if
L= M=
(i1) For ¢ € Aut(E), we have an isomorphism f*¢g in the fiber product diagram:
(20) PO ® 9L0) T s

Julf

E———
(5

(iii) For some M € Pic’E, let fr: T = P(Op ® M) — E be the P'-bundle over
E. Suppose that we are given an isomorphism ¢: T — S. Then, if we replace ¢
appropriately, we can take ¢r € Auty(E), which makes the diagram

S
lf
[ E

4

(21) —

fr

oy N
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commutative. Moreover we have an isomorphism
(22) T =P(Op @ ¢pL)
over E, and an isomorphism
(23) M= gL,

Proof. (i) This fact directly follows from [10, Exercise I11.7.9(b)].

(i1) This assertion must be well-known. We leave the proof to readers. (For example, use
[10, Proposition 11.7.12].)

(iii) Since S has a unique P'-bundle structure, the existence of ¢ € Aut(E) fitting in (21)
is assured. Next, write ¢ = T, o ¢, for some ¢}, € Auto(E) and a € E. Since T L = L, the
isomorphism f*T, (given as f*¢g in (20)) gives an automorphism of S. Then, if necessary,
replace ¢ with (f*T,)~! o ¢, we may assume that ¢z € Auty(E). By the universal property
of the fiber product in (20), we obtain an isomorphism (22) over E. Then by (i) there exists
an isomorphism M*! = ¢ L. Since (—idg)" L = L£7!, f*(~idg) also gives an automorphism
of S. Thus, replace ¢ with f*(—idg) o ¢ if necessary, we may assume that ¢r € Auty(E) and
(23) holds simultaneously. O

Lemma 5.4. Fori € (Z/mZ)", S = P(Or & L) if and only if there exists an automorphism

¢r € Autg(E) such that ¢, L = L'. Consequently, the set
POz @ L)]ie(Z/mZ))] =
is naturally identified with the group
(Z/mZ)"|H.

Here, recall that Hg = {i € (Z/mZ)*| 3¢ € Auty(E) such that ¢*L = L'}.

Proof. “If” part follows from Lemma 5.3 (ii). “Only if” part follows from Lemma 5.3
(iii). O

Consider the dual morphism
(24) q1: Fo = E[(£) > E

of the quotient morphism £ — E/(L). Then it follows from the definition of ¢; that qL =
OFp, holds. Thus we have a diagram

(25) Fo 2t Fy x P! ”2_>]P1
%J O l% th

1

Et——§——F P,

where the left square diagram is a fiber product, and the right one is obtained by the Stein
factorization of 7 o gg. The reason why 7 o gg factors through p, is as follows. First, we have
qsws = Wy by [28, Lemma 2.14]. On the other hand, the elliptic fibration p, (resp. )
are defined by the linear system of some multiple of —Kp .pi (resp. —Ky). Therefore 7 o gg
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factors through p,.
Recall that the elliptic fibration 7 has exactly two multiple fibers.

Convention. By the action of PGL(1,k) on P!, we always assume below that in the case
(i-2), the elliptic fibration 7 has multiple fibers over the points 0 and co in P'. Furthermore,
we also assume that g,(0) = 0 and ¢,(c0) = oo.

For yo € P! with y := ¢2(yo) € P'\{0, o0}, we denote by F, the non-multiple fiber of & over
the point y. Then it follows from f o gs = ¢, o p; that the restriction of gy induces the
isomorphism

(26) qSlFoxyo: FO X yO = Fya
since we see from (18) that f|r, is a finite morphism of degree m. We tacitly identify Fp and
F, by this isomorphism.

Take xp € Fy and set x := qi(xp) € E. Then in a similar way to (26), we have an
isomorphism
(27) q5|x[)xP1 P Xxp X Pl = Fx,

where F, is the fiber of f over the point x. We identify P! and F, by (27). By our convention
above, we see that the two multiple fibers of 7 intersect with each fiber P! of f at 0 and oo
respectively.

Recall that f has two minimal sections, let’s say Cy and C|, corresponding to the projec-
tions

(28) Or®L >0 and OgoL — L.

Then the multiple fibers of 7 are given exactly mCy and mC, (see [28, Remark 4.2]).
We use the following lemma to show Claim 5.7.

Lemma 5.5. Let us regard the multiplicative group G, as a subgroup of Aut(Og & L)(=
G X Gy,) by the diagonal embedding. Then there exists an injective homomorphism

t: G, = Aut(O @& L£)/G,,, — Aut(S/E).

Here, for A € G,,, the automorphism () of S induces the action on each fiber P' of f fixing
the points O and co.

Proof. The existence of the injection ¢ is assured in [9, p.202].* Note that since any
elements of Aut(Og @ L) preserve the projections in (28), any 5 € Im ¢ preserves the minimal
sections Cy and Cy, and hence it gives an automorphism on each fiber P! of f fixing the
points 0 and oo. m|

5.3. Proof of Theorem 1.1. Let S be an elliptic ruled surface and suppose | FM(S)| # 1.
Lemma 5.2 implies that

S = PO & L)

4See also [18, Lemma 3]). Because A in ibid. is trivial, we actually see that ¢ gives an isomorphism.
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for some £ € Pic’ E with ord £ = m > 5. Now if §' € FM(S), by the same reason we get
S = P(Op & L) for some L’ € Pic’ E’ with

m=A,=ordL =ord L.

Moreover, by Corollary 4.7, we see that £ = E’.
We divide the proof of Theorem 1.1 into two cases: The case m = p¢ > 5 for some ¢ > 0,
and the case arbitrary m > 5 with m # p°. In both cases, first we define an injective map

(29) {J'(S) |i € (Z/mZ)"}) == (PO & L) | i € (Z/mZ)"}] =,
and secondly we shall see
(30) || < |HE).

The cardinality of the L.H.S in (29) is ¢(m)/|H,| by Lemma 2.3, and the cardinality of the
R.H.S. in (29) is ¢(m)/ |H§| by Lemma 5.4. Therefore, combining (29) with (30), we can
conclude that (29) is a bijection, and hence Theorem 2.2 yields

FM(S) = (P(Op @ L) | i € (Z/mZ)"}] =
as required in Theorem 1.1.

Case: m = p° > 5 for some e > 0. Theorem 5.1 implies that J'(S) = P(Or & L;) for some
L; € Pic’ E with ord £; = p°. But in this case, E is necessarily ordinary, and hence E[p¢] is
a cyclic group generated by £. So in this case, £; = £P? for some B(i) € (Z/mZ)*, and thus
we can define an injective map (29) by J'(S) — P(O & £PD).

Denote by Fj the elliptic curve satisfying Fo = £/ (L) as in §5.2. Then by (26), a general
fiber of the elliptic fibration : § — P! is isomorphic to Fj.

Cram 5.6. The inequality (30) holds (if m = p¢ > 5).

Proof. [7, Propositions 5.3.3, 5.3.6] implies that «(J°(S)) = —co. Combining this fact with
[7, Corollary 5.3.5], we see that J°(S) is an elliptic ruled surface with a section. Therefore,
by the classification in Theorem 5.1 and [7, Theorem 5.3.1 (i)], we have J°(S) = Fy x P'.
Then we have Br(J°(S)) = 0 by [8, Proposition 2.1]. Moreover we have A, = p® = A, by
(19), and hence the group H, in Lemma 2.5 is trivial. Therefore Lemma 2.5 yields

|Ha| < |Auto(I))].

Recall that Hg = Auty(E) by Lemma 3.3 (ii) in the case m = p° > 5. Hence, to obtain
the conclusion, it suffices to check that |Aut0(12)| < |Auty(E)|. Thus we may assume 2 <
| Auto(J,(]))l. Note that we have a surjective homomorphism

Auto(J°(S)/P) — Aute(J9),

where Auty(J°(S)/P') means the automorphism group of J(S)(= Fy x P!) over P!, fixing
the O-section. Thus, we have an isomorphism Auty(JO(S)/P") = Auty(Fy), and moreover
obtain

2 < | Auto(J)] = | Auto(J(S)/PH)| = | Auto(Fo)|.



160 H. UeHARA AND T. WATANABE

This yields j(Fp) = 0 or 1728. Since the morphism q;: Fy — E obtained in (24) is a compo-
sition of relative Frobenius morphisms (cf. [25, Theorem V.3.1]), [10, Exercise IV.4.20(a)]
produces the isomorphism E = F(, which completes the proof. m|

Claim 5.6 completes the proof of Theorem 1.1 in the case m = p® > 5.

Case: Arbitrary m > 5 with m # p° for any ¢ > 0. We may put m = np® with e > 0,
n > 1, p ¥ n. We generalize the method of [30] below.

Recall that § = P(Og & L), and define elliptic curves F and F as Fo = E/(L) and
F:=E/ <£1’e>. Denote by

qE: F—>E
the dual morphism of the quotient morphism £ — F = E/ <[ipe> . Set
M :=¢qpL and T :=P(Op & M).

Then we see Fy = F/(M) and ord M = p°. Moreover if e > 0, the existence of a non-
zero element M of F[p¢] implies that F is ordinary, and the dual morphism of the quotient
morphism

F—Fy=F/(M).

is the e-th iteration of the relative Frobenius morphisms (cf. [25, Theorem V.3.1]). Then we
obtain the following commutative diagram:

31) FoiF()XPIPZ—HP’l
Fr"J{ = Jhl fﬁf&l

1

Fe——T— P
qEJ( O lq qul

Ec—F—S—=—PF

Both of the left squares are fiber product diagrams, and the right squares are obtained by the
Stein factorizations of 7y o h; and 7 o g respectively. Moreover we have

deggr = deg g = deg gp1 = n.
Take
(32) i€eZwithl <i<m, (i,m)=1

Note that this condition implies that (i, p°) = (i,n) = 1, and hence we sometimes regard
i€ (Z/pZ)* ori e (Z/nZ)" below.

Recall that we have already proved Theorem 1.1 for line bundles whose order is p-th
power. By applying it to M, we obtain

(33) J(T) = P(OF & MPD)

for some (i) € (Z/p°Z)*. Moreover, since (Fr)* M = Op,, we have a diagram
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(34) Fo - Fyx P! 22— pt
Fr"J o Jhi J{Fﬁ;l
F 4= J(T) —— P!

as in (25). Here f; is a P!-bundle defined by using the P'-bundle structure on P(Or & MPD)
and the isomorphism (33).

Fix an n-th primitive root of unity {. Consider the multiplication on G,, by £, and extend
it to the automorphism of P'. Denote it by gpi. Because we see that gp in (31) fixes points
0 and oo in P, it turns out that the morphism gp: is the quotient morphism by the action of
the group (gpi ) = Z/nZ on P!.

Take a € F such that E = F/{a) and ord a(= ord £”") = n. Then we can construct an
action of the group G := Z/nZ on Ji(T) as follows.

Cram 5.7. For each s € (Z/nZ)" and t € (Z/p°Z)*, there exists an automorphism g, of
J!(T) which induces the translation T, of F and the automorphism gg: of P'.

Proof. Since T, M = M, there exists an automorphism

(33)
a € Aut(J'(T))( = Aut(P(OF & MPD)))

compatible with 75, on F. Note that 7., lifts a translation 7., on Fy for some b € F with
Fré(b) = a, and hence « lifts to T, X idp on Fy x P'.

r., Fos—FyxP' — P!
e < | /l

Fo+— FyxP' — p!

‘ i hy ! l
Fr¢ F <—J— J(T)—|—P!
\/ Tsq v @ .

t
F 7 JU(T)

L
P] ldJP]

T

Therefore, a respects the elliptic fibration 7, i.e. @ € Aut(J'(T)/P").

Next take an integer ¢ with p°q = 1 in (Z/nZ)*. It follows from Lemma 5.5 that there
exists an automorphism B € Aut(J'(T)/F) which induces the automorphism ggﬂ on each
fiber F';, (which we identify with P! by (27)) of the P'-bundle f;. Combining (27) with the
commutativity of the right square in (34), we see that m,|r, : Fy, — P! coincides with Fr];l,
and then 8 induces the automorphism (gz1)”? = gp: on P!, the base space of x,.

Frt,
\

p! —— Fr—— J(T) —— P!

g%, l lﬁ l(gpl B

p! i”vf,c_, JNT) L>P1

\Fr; s

Hence, the automorphism g, := @ o § has the desired property. |
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Denote by g a generator of the cyclic group G = Z/nZ, and define the action of G on
J'(T) by

(35 psi: G = Aut(J(T)) g gs.

For the integer i given in (32), regard i € (Z/nZ)* and i € (Z/p°Z)*, and set p; := p;;. We
define the quotient variety to be

(36) S; == JT)/,,G
by the action p;, and denote the quotient morphism by
gi: J'(T) = ..

It is easy to see that S is the quotient of T = J!(T) by the action p,; for some s. Replace
a € F with s - a, and redefine g, and p,, by this new a, so that S = §; holds. After this
replacement, we consider only the action p;, but not general p; ;.

We set

g} :=Tip X g7, € Aut(Fo X P').

Then we see that ordg{ = ord Ty, = ordg!, = n and it is compatible with g; € Aut(J/(T))
defined in Claim 5.7:

(37) hio g} = giohi.
We also define the action on Fy X P! by
(38) PV G — Aut(Fox P g g)

for each i.
Take an integer j with 1 < j <m, (j,m) =1 and ij = 1 in (Z/mZ)*. For the projection

P13: Fo X Api X Fo — Fo X Fy,
define a line bundle
Uy := p130rxr,(Ar, + (j— DFy x O + (i = 1)0 X Fy)
on
Fo X Api X Fo(= (Fo X P') xp1 (Fy x P1)).

Then Fy x P! in the second factor in R.H.S. serves as J/(Fy x P') where U5 plays the role of
a universal sheaf, and moreover it is shown in [30, page 3229] that it satisfies

(39) (0Y(g) X pY(g)) Uy = V.

On the other hand, it follows from [4, Theorem 5.3] that we can take a universal sheaf U’
on T Xpi J{(T), which satisfies that U”|, Jicry 1s a line bundle of degree j on F for general
z € T. For a point (x, y) € Fo X (P'\{0, co}), there exists an isomorphism

(40) ((h1 X W) U (Foxey (e = U I (o)

since the restriction of 4, X h; gives
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(FoxPY)Xp (x,y) = Foxy = Fy = T Xa1 hi(x, y)),

where the second isomorphism comes from (26). Hence, we see that the L.H.S. in (40)
is a line bundle of degree i on Fy. Then, by the universal property of Uy, there exists an
automorphism ¢y € Aut(Fy) such that

(idpyxa,, X ¢0) Vb = (hy X )" U” ® p3No

for some N € Pic” F,.
We shall construct an elliptic ruled surface 7’ and (iso)morphisms ¢, ¢, i’ which make
the following diagrams commutative:

(41)
l Frel ‘/h’ |
Fe|  F+—|—JU(T)

First, ¢y descends to ¢ € Aut(F) via Fr¢: Fy — F by [25, Corollary 11.2.12], and ¢r
induces an isomorphism

¢: J(T) = P(Op ® MPV) - T' := PO ® ¢ MP?).

Note that ¢r, € Auty(F) preserves the subgroup kerFre = F [p¢] = (M) of F, and thus
P MPD € (M). Hence we obtain a morphism

W:FyxP'=P(Op ®Op) > T’ =P(Or & ¢p. M),
which fits into the diagram in (41). Moreover we have the following commutative diagram:

(idrgxa_1)%¢o 3
F()XAPI XFo(iF()XAPI X Fo—— Fy

hy Xh’J/ ihl xh; lFre

’ i
T xXp T <—id7><¢ T Xpt JY(T) —>f,-0p2 F

Take N € Pic” F such that (Fr¢)* N = Ny, and define a line bundle
U = (idr X 9).(U” ® (fi o p2)'N)

on T Xpi1 T’ so that

42) Vo= xh)Y'U

holds. The pair (77, U") serves as J'(T') and its universal sheaf, and thus we redefine 7" to be
JUT).

Cramv 5.8. The universal sheaf V" on T xp J'(T) satisfies
(p1(g) X pi(@)' VU = V.

Proof. Take yo € P'\{0, co} with y := Fr(yo) € P'\{0, co}. Denote by F,, x F the fiber of
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X Txp J(T) — P! over the point y. Pull back the isomorphism (42) to the subscheme
Fo X yox Fo, which is isomorphic to F,, X F’ ; by (26), and combine (37) and (39) with it, and
then we have isomorphisms

((1(9) X Pi(@)) UlF,r, = (0)(9) X PY@) V) Foxoxro = Volroxgoxro = U'lr,xr, -

F()X‘I/QXF()%F()XAPIXFQLPIByO

EJ hlxhiJ( J/Fr;l

Fy X By T xp0 J(T) 2 Pl 2y

This yields that the line bundle L := (p;(g) X pi(g))*U" ® U'~! is trivial over the open set
(m1 x ) L(P'\{0, c0}) by [10, Exercise I11.12.4]. We also see by (37), (39) and (42) that
(hy X hy)*L is trivial over P'\{0, oo}, and thus

(43) L= OTXE] Ji(T)(b(DO X DE) — Dy X Déo))

for some b € Z, where p°Dy and p°Dj, (resp. p°De and p°Dy,) are the multiple fibers over
0 € P! (resp. o) of m; and 7;. Note that ord L divides p°, the multiplicity of the multiple
fibers. Since ord(p1(g) X p;(g)) = n and the R.H.S. in (43) is (01(g) X p;(g))-invariant, we see
that

U = (p1(g) X pi(@)" U = (p1(g) X pi(g)" " U'® L= = U ® L™,

and hence ord L | n. Since p 1 n, we have ord L = 1, as it is required. O

Recall that we have the following commutative diagram by the definition of S; in (36):

fi : T
F JU(T) P!
LIEJ/ ] J{ql‘ lqlpl
E Si 7, P!

Here, g and gp1 are the same one appeared in (31), and 7, is an elliptic fibration.

Cram 5.9. For each i, there exists a(i) € (Z/mZ)* such that we have an isomorphism
S; = P(Op & L)

over E.

10

Proof. First of all, we know by Theorem 5.1 that there exisits an isomorphism §; =
P(Ofg & L;) over E for some L; € Pic? E with ord £; = m. Then the result follows from

L, € ker(Fr° o gp) = (L) = Z/mZ. O

Recall that S = S; below.

Cramv 5.10. There exists an isomorphism J/(S) = S;.
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Proof. First, we shall show that there exists a coherent sheaf U; on S X §; such that
(44) (g1 X idyir)). U" = (ids X ¢;)"U;
for the morphisms

1Xid i idsxg;

. q ‘
TxJ(T) - SxJ(T) — SxS.
Claim 5.8 implies that

(p1(g) X idyicr))* U = (idr X pi(g)") V.

Push forward the both sides by the morphism g X idi(7y and then we obtain

(g1 X idyir) U = (ids X pi(g) ™) (q1 X idyir). U,

that is, the sheaf (g1 X id;i(7)).U" is G-invariant with respect to the diagonal action of G on
Sx JI(T), where G acts on S trivially. Since G = (g} is a finite cyclic group, the G-invariance
of coherent sheaves is equivalent to the G-equivariance, and hence there exists a coherent
sheaf U} on S X §; satisfying (44).

For z € JI(T), we have

Vilsxqio) = ((q1 X idjier))« Ulsxz = q1+(V' 7).

Here, the second isomorphism follows from [2, Lemma 1.3] and the smoothness of g;.
Suppose that z is not contained in multiple fibers of m;, that is, y := m;(z) € PM\{0, co} by
the convention stated in §5.2. Then U’|ry; is actually a sheaf on F, X z, and the restriction
q1lF,x; 1s an isomorphism by (26). It turns out that Uj|sx,,() is also a line bundle of degree i

on FL]L-A ) X qi(2). ‘
Then, by the universal property of J'(S), there exists a morphism from
75, (P'\{0, 00})(C S7) = 7545 (BT \{0, co})(C J/(S))

over P'\{0, oo}, where x5, and 7 Jics) are the elliptic fibrations on §; and Ji(S) respectively.
Since Vilsxqi(z) # Vilsxgiz) on Fy forzy # 25 € JI(T), this morphism is injective, and hence
S; and J/(S) are birational over P!. Then, [1, Proposition II1.8.4] implies that S; = J(S). O
Combining Claims 5.9 and 5.10, we obtain the inclusion (29) by the map
J'(S) b P(Op ® L*D).
The next aim is to show (30).
Cram 5.11. There exists an injective group homomorphism

a: Hy/{xl} —> Hg/{il}.

Proof. Take i € H,(:= {i € (Z/mZ)" | JI(S) = S}). We have a(i) € (Z/mZ)* so that there
exists an isomorphism

v P(Op @ £°0) 5 5, 5 Ji(S)
by Claims 5.9 and 5.10. We use ¢ and the P'-bundle structure on P(Or & £%?) to fix a
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P!-bundle structure on J'(S):
fris): J'(S) > E

Then Lemma 5.3 (iii) implies that there exist an isomorphism ¢ and an automorphism ¢r €
Auty(E) fitting in the commutative diagram

(45) P(Op & £20) L Jis) L s
N
F—— [ [

PE

and ¢} L = L2V is satisfied.

Take another isomorphism ¢’: J/(S) — S. Then since ¢’ o ¢! is an automorphism of
P(Op @ L), we have (¢} 0 goE' )L = £*' by Lemma 5.3 (i) and (ii). Thus we obtain the group
homomorphism

@ Hy — HE/{x1)(:= (i € (Z/mZ)" | 3¢ € Auto(E)s.t. "L = L1)}/{1).)

Thus it suffices to prove Kera = {+1}. Suppose i € Kera. Since ¢, L = £*! holds in this
case, Lemma 3.2 implies that ¢ fitting in the diagram (45) is either idg or —idg. Replace ¢
with f*(—idg) o ¢ (see the notation in Lemma 5.3 (ii) and the proof of ibid. (iii)) if necessary,
and then we may assume that ¢z = idz. We have the following commutative diagram °:

(46) Fetl i
/ ‘fl 5 J{

FTT 3¢
(IE‘ E%lsi
7 o

E+—S

Because the front and the back squares in (46) are the fiber product diagrams, there exists
an isomorphism ¢: J'(T) — T which makes the right square the fiber product.
Since ¢ descends to ¢: §; = J"(T)/p,.G — 8§=T/,G for G = Z/nZ = {g), we have
p1(g) 0 ¢ = ¢ o pi(g)

for some /. Recall that both of p|(g) and p;(g) induce the same automorphism gp:1 on the
base curve P! of the elliptic fibrations on T and J/(T) (see Claim 5.7 and (35)). Then we see
[ = x£1. Next recall p (g) (resp. p;(g)) induces the automorphism 7, (resp. T;,) on F, the
base curve of the P'-bundle f; (resp. f;). Then we know that

T, = (Ti-a)l = Tlias

and hence, 1 = il in (Z/nZ)*. Therefore we have i = +1, and hence Ker @ C {#+1}. The other
direction is obvious. m]

By Claim 5.11, we conclude that |H,| < |H§| as is required in (30).

SHere, we identify S; and Ji(S) by Claim 5.10.
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Therefore, we complete the proof of the first statement in Theorem 1.1 for arbitrary m > 5.
The second follows from Lemma 3.3 (ii).
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