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                                 Introduction 

   All cells keep their life with biomembrane, which separate the cell from 

external circumstances. One important function in the membrane is the 

transport of ions and other substances to maintain their almost constant 

internal condition. Generally K is rich and Na is poor inside the cell. 

Uneven distribution of Na + cannot be explained by the simple electro-

diffusion mechanism alone. Some active mechanisms to transport ions against 

the electrochemical potential gradient are acting in the cell membrane. 

   Ussing and Zerahn (1951) proposed the short-circuit method to determine 

the active transport system quantitatively. In their report , the same 

solution was prepared on both side of the membrane, then the electric 

current , which is necessary to short circuit both side, was measured. At 

the same time, the flux of ions were measured to know which ion- was 

actively transported. Skou (1957) isolated from periferal nerve the ATPase 

which possesed the ability of Na +-K + anti-transport. 

   Before 1960 , active transport system had been considered as electrical 

neutral one, but in the 1960's it was proved that many active transport 

systems worked electrogenically. Na +-K + ATPase, Ca ++ ATPase in the animal 

cells and H + ATPase in the mitochodria and chloroplasts have been investi-

gated very actively (Kerkut & York 1971, Thomas 1972, Kostyuk et al. 

1972, Harold 1977). 

   In plant cells the active pump was also found electrogenic, i.e, it 

hyperpolarizes the resting potential. Slayman (1965) investigated electri-

cal properties of Neurospora crassa. and found that internal potential de-

polarized from -200mV to -30mv by various respiratory inhibitors. Besides, 

he showed a plot of membrane potential versus the intracellular ATP concen-

tration. This plot yielded a saturation curve, which was readily fitted by 

the Michaelis -Menten equation (Slayman et al. 1973). 
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   Subsequently H + extrusion pump was discovered in many plants (Spanswick 

1981). Scarborough investigated biochemically the difference between 

ATPase isolated from Neurospora crassa and H +-ATPase of mitochondria 

(1980). On the other hand, Cl- electrogenic pump was also reported in some 

plant cells. Gradmann and Bentrup showed in marine alga, Acetabularia, that 

the resting potential was about -160 mV in the light and depolarized to -80 

MV in the dark (1970). Saddler found in Acetabularia the necessity of 

external Cl for the electrogenic pump (1970). 

   Recently many data have accumulated to show that the electrogenic pump 

contributes not only to the transport of other ions or amino acides through 

the hyperpolarization of resting potential but also to the cotransport or 

antiport of non electrolytes and neutral electrolytes (Bentrup 1980). The 

electrogenic H+ pump will also work as the regulator of the internal pH. 

(Sanders, Hansen and Slayman 1981 ). Besides, many studies show that the 

non-uniformity of membrane potential play an important role in the growth 

and morphogenesis of plant cell ( Jaffe and Nuccitelli 1977). If the 

electrogenic pump does not distribute equally over the surface of cell 

membrane, non-uniformity of the membrane potential will be performed. 

   In this paper I analyzed the mechanism of electrogenic H + pump in the 

Chara corallina. The Chara corallina is one of fresh water algae. Cylindri-

cal giant internodal cells grow as large as I mm in diameter and 10 cm in 

length. So this material is very suitable for electrophysiolocal study. 

Moreover, Chara corallina has been precisely investigated for a long time 

on its excitability and its relationship with cytoplasmic streaming. The 

internal concentrations of various ions are also measured(Tazawa, Kishimoto 

and Kikuyama 1974 ). 

   In this paper, the method of exact measurement and calculation of elec-

trophysiological parameters such as conductance and electromotive force of 

Chara corallina will be described. An ideal condition to separate the 
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electrogenic pump from the passive electrodiffusion channel, 

ion which drive the electrogeic pump and the driving force of 

pump are discussed in this chapter.

the primary 

electrogenic
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Chapter I 

       A method for a quantitative expression of the electrogenic pump 

                                 Introduction 

   Electrophysiologically there are two reasons to suppose that the elec-

trogenic pump contributes to the membrane potential. First, the measured 

resting potential is generally more negative than the equilibrium potential 

of any of the ions present. Second, the resting potential depolarizes with 

decline of energy metabolism during treatment with anoxia, dark, low 

temperature or metabolic inhibitors. 

   It is very important problem how to express the activity of electrogenic 

pump. . Kitasato showed first the active H + extrusion mechanism of Nitella 

in 1968. He measured K + and Cl- effuluxes by external pH changes. And sum 

of the slope ion conductances gk and gCl was found to be negligible 

compared with membrane conductance. In the range of external pH between 5 

and 6, the chord conductance of H + was almost equal to the membrane con-

ductance. He assumed that the H + conductance was so high that the cell 

membrane behaved like a H + electrode. But the observed membrane potential 

was always about 70 to 80 mV more negative than H + equilibrium potential at 

various pH . The extent of this hyperpolarization was considered to be the 

pump activity . But the depolarized state by metabolic inhibitor (Dinitro-

phenol(DNP)) was not equal to the H + equilibrium potential. Kitasato ex-

plained this DNP effects with the increase of passive conductance. His idea 

stands on the assumption that H +-pump behaves as an ideal current source, 

and all conductances are equal to passive conductance. This model is the 

same as the current source model of Neurospora by Slayman et al .(1973). 

(Fig. 1-b)
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In the current source model (Fig.1-b), pump activity is explained as follows 

      E m E d + E p 

       E 
p E m - E d p gd 

       I 
p - E p - gd = (E d -EM) gd 

E 
m , E dt E p is the electromotive forces of the total membrane, the diffusion 

channel and the pump channel respectively. gd is the conductance of the 

diffusion channel and I 
p is the pump current. 

   In Neurospora this model could explain their experimental results, 

because the resistance of membrane does not seem change appreciably, while 

the membrane potential depolarized with pump inhibition. 

   On the other hand, Keifer & Spanswick (1978) proposed another model 

(Fig. I-a). In this model the membrane is expressed with a pararell 

circuit, one is passive path and the other is active path, each of which 

has its own resistance. The pump current is explained as follows. 

        gm = gd +' 9 p 

      E m = gd x E d / g m + g p x E p / g m 

      I 
p = g p (V m - E p ) 

where gM9 gd' gp is the conductances of the total membrane, the diffusion 

channel and the pump channel respectively. They found that application of 

5 jiM CCCP, 50 pM DCCD, 50 uM DES or 0.1 mM DNP depolarized the membrane 

potential and increased the membrane resistance. They concluded that these 

inhibitors had influence not only on the membrane potential but also on the 

pump conductance. 

   The crucial point is whether the electrogenic pump has a conductance or 

not. In other words, it is important to find out whether the pump current 

may change with membrane potential or not. Simmen and Tazawa (1977) chose 

the current source model in their experiments, in which the resistance did 

not change appreciably, while the membrane potential depolarized by about 
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100 mV by the internal perfusion with 0 mM ATP medium. On the other hand, 

recently Smith and Walker (1981) obtained the I-V curve by the open vacuole 

method in the tonoplast-less perfused cell. According to them 2 mM ADP 

inhibited the 2 mM ATP effect on the current by about 50% and decreased g
m 

2 f
rom 33 to 24 pS/cm Their results seem to indicate an inhibitory effect 

of 2.0 mM ADP on the pump conductance. 

   There are several points to be taken care of in the estimation of the 

membrane conductance. In plant cells following problems needs to be solved. 

1. There is a possibility of change in the electromotive force ( emf 

when we applied the test current pulse to measure the membrane resistance. 

2. Even if current electrode and the membrane potential electrode are in 

the same cylindrical cell, the spacial uniformity of the current flow may 

be sometimes be uncertain. 

3. The plant cell has a thick cell wall and their outside medium is low 

ion strength, so the contribution of their series resistance to the total 

resistance is fairly large. 

   In this report I solved these problems by following methods. To solve 

the first problem, I analyzed the voltage response which is caused by the 

test current pulse as small and as short as possible under the current 

clamp condition( Ohkawa & Kishimoto 1975). 

   About the second problem, I took advantage of the Chara corallina, 

because the internodal cells of this alga are so big that both of the 

current metal wire electrode and the voltage electrode could be inserted in 

a same cell. Actually the platinum-iridium wire coated with platinum black 

was used as an internal current electrode to keep the electrical impedance 

as low as possible. This wire was introduced, into the central vacuole of 

the internodal cell from the nodal end to maintain the uniformity of the 

applied current flow. 

   I could solve the third problem by curve fitting of voltage response 

                                             1-6



from which series resistance could be subtracted by calculation. The re-

sponses were analyzed after A/D conversion with a microcomputer. This 

method is applied also in the analysis of the membrane excitation. The 

change of membrane conductance could be followed from time to time during 

the several seconds of the Chara excitation. 

   If there is an ideal inhibitor against the pump, it must inhibit only 

the electrogenic pump, without affecting the passive channel. In this 

chapter, I compared two drugs and determined which was the more ideal 

inhibitor of the pump. They are Triphenyltin chloride (TPC), which is 

known as the inhibitor of CF 1 and F 1 (Stockdale et al. 1970, Gould 1976, 

Papa et al. 1982) and 2,4-dinitrophenol (DNP), which is known as uncoupler .
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                                  Material 

   The giant internodal cells of .Chara corallina were used throughout this 

work. Chara corallina was cultured in our laboratory with the tap water in 

which extracts of soil were added. A fluorescent lighting (12 hr light and 

12 hr dark) about 2000 lx was employed. Before the experiments Chara 

internodal cells of which the average diameter was 0.7 mm and the length 

was 6 cm were cut from the adjacent cells and were put into the artificial 

pond water ( APW ) under the natural sun light condition beside the window 

for at least one day. The APW contained 0.05 mM KC1, 0.2 mM NaCl, 0.1 mM 

Ca(NO 3)2 and 0.1 mM Mg(NO 3)2 . The pH was adjusted to about 7 with 2 mM MES 

(2-N morpholinoethane sulfonic acid). During experiments the external 

solution was perfused at a constant rate of about 1 liter per hour. 

Temperature and pH of test pool were monitored with a thermister dnd a 

glass pH electrode respectively.

1-8



                                  Result 

The measurements of electromotive force and conductance

    I calculated the membrane conductance and electromotive force (emf) from 

 the voltage responses which were caused by application of the square 

 current pulse. Current clamp was performed following the method of Cole 

and Moore (1960). As shown in Fig. 2 an axial wire which was used as a 

 current electrode was introduced into the internal cell from the nodal end. 

The axial wire coated with platinum black was either a tungsten or a 

 platinum-irridium alloy. The diameter of it was about 0.1 mm. A pair of 

 chlorinated silver plate coated with platinum black was used as an external 

 current electrode. Such a coating are useful for the stability of 

 electrode potential and for the decrease of the electrode impedance.(Cole 

and Kishimoto 1962) 

   The membrane potential was measured between the internal Ag/AgCl glass 

electrode filled with 3 M KC1 contained with 5 mM EGTA and the external 

 reference electrode. The tip of the latter was about 30 pm diameter and 

was filled with agared 100 mM KC1. The tip of internal glass capillary 

 electrode was frequently covered with cytoplasm during several hours. To 

avoid this 5 mM EGTA was added into the microelectrode. The membrane 

potential was amplified with a differential preamplifier of unity gain, 

which was consisted of three integrated circuits, IC (1009, Teledyne 

Philbrick) having 10 11 a input impedance. OP-07 (PMI) was used in the 

current clamp circuit. The speed of current clamp was from 50 to 100 jusec. 

The space constant of the internode was about 3 cm at rest and 6 mm at the 

peak of the excitation. To keep the spacial uniformity of the measuring 

region, the length of which was chosen as 6 mm long. 

    Analog data of the current pulse and the voltage response were converted 

into digital data with Data acquisition system (Datel, MPAS 8D), and 
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recorded with a digital cassette tape recorder (MT-2, TEAC) and with a 

floppy disk drive (Y-E DATA) (Fig. 3). The data of voltage responses were 

simulated with a nonlinear least square program or with a modified Powell's 

program using microcomputer. This was performed with a CP/M system 

(DIGITAL RESEARCH) which uses Z-80 as a central processor. 

The calculation of membrane conductance 

   The biomembrane has its own emf when the current was not applied 

externally. So the relation between current(I) and voltge(V) is expressed 

with a following equation according to the law of Kirchhoff. 

      V = E + ZI 

where E is the emf and Z is the impedance of the Chara membrane. 

   When a small perturbation is given to the current, the relation of such 

a perturbed current (i) and the resulting voltage response (,dfl is as 

follows. 

        V = iZ + I Z + & E 

Under the current clamp condition (I is kept 0) 

      & V = iZ + -A E 

   Generally, the series resistance between the internal electrode and the 

external electrode can not be ignored, because Chara internode has a thick 

cell wall and external solution of low ion strength. When the series 

resistance (r S ) exists in circuit as shown in Fig.l+(a),the above equation is 

written as follows. 

      V(t) = r S + r m exp(-t / c m x r M)] (1) 

where r m and c m are resistance and capasitance of the Chara membrane re-

spectively. Each parameter was calculated by computer simulation. But 

simulation with single time constant was not fully successful 

(Fig.5(a),(b)). When we simulate the data with two time constant equation 

such as shown in the following (Eq.2), the standard error of curve fitting 
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decreases to 10% of the one obtained with the single time constant equation 

(Fig.4 (b), Fig.5 (c)) 

 V(t)= r 
s x i + (r m x i [I-exp(-t/c M r m )] + r 2 >c i [1-exp(-t/cxr)]) (2) 

   There are two possibilities why the third term in Eq.(2) was needed. 

First, in plant cells tonoplast exist in series with plasmalemma. The 

resistance of the tonoplast is about 10% of plasmalemma Walker 1957, 

Findlay & Hope 1964, Tazawa, Kishimoto and Kikuyama 1974 Second, there 

is a change in emf under the subthrethold current pulse. 

   To investigate the first cause, I used tonoplast free cell obtained by 

EGTA perfusion. The detail of perfusion technique will be described in the 

next chapter. As shown in Fig. 5(d) even in the case of plasmalemma alone, 

the standard error calculated with two time constant model is much smaller 

than with the single time constant model. Then we must consider the second 

reason. As demonstrated clearly by Hodgkin and Huxley (1952) ionic con-

ductances of the squid giant axon are voltage dependent. Similar results 

were reported in Chara and Nitell2, by Beilby and Coster (1980), Hirono and 

Mitsui (1980). 

   I applied a test current pulse as small and short as possible (smaller 

than 3 mV and shorter than 38.6 msec). However, I found the change of emf 

in the voltage response. Therefore, we need to subtract this term from the 

total voltage response to know the exact value of membrane conductance and 

capacitance. I calculated each parameter accurately by computer simulation 

using two time constant equation (Fig.4(b) and Eq.2). By the results of 

accurate simulation we confirm that the value of membrane conductance at 

resting state calculated by single time constant is overestimated by about 

4% compared with the one by the two time constant. All results under 

current clamp condition in this reports were calculated by this method.
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The determination of pump activity 

   If an ideal inhibitor attacks the electrogenic pump selectively, 

following equations will hold under the current source model (Fig. 1-b). 

      G = gd ; E p = E m - E d 

where gd is the conductance of the diffusion channel, E d is the emf of the 

diffusion channel which are estimated after inhibition and E p is the pump 

emf. In general membrane conductance decreases by pump inhibition. There-

fore, we need to conclude that the passive conductance is affected every 

time by the pump inhibitor in the current source model, even if it is an 

ideal inhibitor. This is paradoxial indeed. 

   On the other hand, if we assume that the pump as well as passive channel 

has its own conductance, then the membrane emf and the conductance which 

are measured are expressed as follows (Fig. 1-a). 

  Gm = gd + g p (3) 

  E m = ( gd x E d + g p x E p gd + gp (4) 

When an inhibitor blocks only the electrogenic pump, then the pump con-

ductance (g ) will decrease to zero and the membrane potential will decay 
p 

to the passive diffusion potential (E d In other words, the final values 

of conductance and emf correspond to the passive conductance (gd ) and the 

passive emf (E d respectively. Therefore, the pump conductance (g p ) and 

the pump emf (E 
P can be calculated as follows: 

   9p = G - gd (5) 

   E
p = ( gm x E m - gd x E d g p (6) 

Change of pump parameters, i.e, g p and E p during pump inhibition can be 

traced with these equations.
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The effects of .pump inhibitors 

    DNP is known as an uncoupler of H + or electron flow and is an inhibitor 

of ATP synthesis. After treatment with 0.2 mM DNP in the dark for about 40 

min the resting potential of the Chara membrane depolarized from -190 mV to 

-110 mV and the conductance decreased from 200 to 85 juScm-2 (Fig. 6). When 

I chose these final values as E d and gd respectively , the pump-activity can 

be calculated according to the Eqs. (5) and (6). In this case the pump 

conductance before inhibition was 115 uScm-2 which is greater than the 

passive conductance. The pump emf is -230 mV and the pump current was 7 

pA cm-2 before inhibition. During pump inhibition with DNP, both of the 

pump conductance (g p ) and the pump current (I P ) gradually decreased to 

zero, but the pump emf (E 
p ) showed a transient hyperpolarization. This 

transient hyperpolarization is so unexpected that the reason of its will be 

discussed later. 

   Fig. 7 shows the change of pump and passive parameters at the peak of 

action potential during DNP treatment. The peak conductance which is 10 

times as large as the conductance at the resting state was caused mainly by 

the marked increase Of gd- With the progress of DNP inhibition the peak of 

gd decreased and the peak of E d moved to more negative level. Actually no 

action potential took place at the end of the DNP treatment. These results 

show that DNP affected not only the electrogenic pump but also the passive 

channel as well. So DNP can not be regarded as an ideal pump inhibitor . 

   Next we used 2 uM Triphenyltin chloride (TPQ which is known as a 

inhibitor of CF 1 in the chloroplast and F I in the mitochondria . The TPC 

effects were investigated in much the same way as DNP. APW containing 2 ,UM 

TPC was added when membrane potential was stable in the dark condition . The 

membrane potential gradually depolarized from -200 mV to -100 mV, while g m 

decreased from 150 )jS cm-2 to 60 )1S cm-2 after 60 min (Fig. 8) . Using this 

data g 
p 9 E p and I p were calculated in the same way as in the case of DNP. 
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   As shown in Fig. 8 before inhibition g 
P was 90 juS cm-2 and I p was 

5.3 pA cm-2. I 
P and g p decreased to almost zero with TPC treatment. On 

the other hand, the pump emf showed a transient hyperpolarization. 

   Then I investigated the effect of TPC on the membrane excitation. 

Fig. 9 showed the change Of gd' E d' 9
P and E P at the peak of the action 

potential by TPC. The peak value Of gd was a little decreased by TPC 

treatment, while that of E d did not change appreciably. This reduction of 

peak gd may be caused by the direct effect of TPC on the passive channel. 

For example the duration of action potential was prolonged by TPC treat-

ment. But the emf of passive channel did change little and action 

potential took place even after 60 min. This facts show that TPC is a much 

better inhibitor of the electrogenic pump than DNP.
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                                 Discussion 

   The membrane conductance was measured with high degree of accuracy by 

applying short and small test current pulse under the current clamp 

condition and later by the curve fitting with computer simulation. The 

decrease of conductance as well as the depolarization of membrane potential 

occurred by the pump inhibitor which is known as the blocker of ATP synthe-

sis. These results agree with the report by Spanswick (1972). 

   Generally pump current is affected by the membrane voltage and the ATP 

concentration. Finkelstein (1964) and Rapoport (1970) published theoreti-

cal analyses of voltage dependency of the pump channel. 

  Gradmann (1975) obtained the I-V relation of Cl active pump in 

Acetabularia. Recently Gradman et al. (1978) also measured the I-V curve 

of H + pump of Neurospora and showed the potential dependency of pump. These 

experiments were based on an idea that pump have the conductance. 

   For example the total conductance calculated by the passive ion fluxes 

in Chara corallina is not equal to the actual measured cunductance 

(Williams, Johnston and Dainty 1964). Keifer & Spanswick (1978) showed the 

remarkable change of g during pump inhibition, and he concluded that pump m 

conductance occupied most of the gm. In his report, gd is equal to 3-
        -2 -2 5

,uS cm and g P is 67 pS cm . But in my experiment the ratio of pump 

conductance and passive conductance ranged from 1 : 1 to 10 : 1. 

   At the resting state E 
P is about -250 mV and after inhibitor treatment 

in the dark, the pump emf showed a transient hyperpolarization. This 

hyperpolariza-tion of E 
P will be discussed in the following Chapter. I 

used two pump inhibitors and concluded that TPC is a much better inbibitor 

than DNP. DNP damaged the generation of action potential, while TPC caused 

only a slight effect on the action potential. 

   Finally I shall discuss my assumption under which the pump activity was 
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calculated. The first assumption is that passive factor does not change by 

pump inhibitor. Second is that at the late stage of pump inhibition, the 

remaining factor is only passive channel. Third is that pump parameters 

(g p , E p ) may change only a little during action potential. 

   It is reported that TPC acts as Cl-/OH- exchanger in mitochondrial 

membranes (Aldridge et al. 1977). But even if TPC may form a Cl-/OH-

exchange path in Chara corallina, TPC may have no effect in passive con-

ductance, if C1 and OR are exchanged under electroneutral condition. 

There is a possibility that the passive channel will change according to 

the cytoplasmic pH change, if TPC works as Cl-/OH- exchanger. As will be 

shown in the next chapter, the conductance of the passive channel is almost 

unchanged with external pH change. So the change of the conductance by TPC 

can be caused by the change of the pump conductance. Next I consider about 

the second assumption that the pump factor is completely lost by TPC. As 

will be described in the next chapter, the changes of the conductance and 

membrane potential after TPC treatment were only a little by the change of 

pH and temperature, while marked change occurred before inhibition. These 

facts show the validity of second assumption. 

   Whether the pump parameters ( g 
p 9 E p ) remained unchanged or not in the 

process of action potential is an unsolved question. It is interesting to 

note that the duration of action potential prolonged by TPC treatment.(Fig. 

10). As shown in Fig.11, the recovery to resting state from excited state 

seemes to be accelerated by the pump current. The current which flow 

through passive channel from active pump may accelerate the inactivation 

process of action potential. Recently Kishimoto analysed the change of 

pump parameters during the process of -action potential using i -V curve of P 

the pump channel (1984). From his data g 
p decreased to some extent, but 

it is worth noting that the pump conductance is much smaller than that of 

the passive channel at the peak of action potential. 
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Chapter2 

                The pH dependency of the electrogenic pump 

                                Introduction 

   Many experiments have been performed on the pH dependence of the mem-

brane potential in Chara and Nitella. First, Kishimoto (1959) investigated 

the pH dependency on the membrane potential and reported that the membrane 

potential is most hyperpolarized at pH 7 and depolarized below and above pH 

7. Kitasato (1968) reported that membrane in Nitella seemed to behave as a 

pH electrode and claimed that passive H + conductance was very large. 

   In order to explain the pH dependency of membrane potential, the fol-

lowing possibilities should be taken into account. 

1) The change of permeabilities of other ions than H + may occur by the 

   change of the external pH. 

2) The change of activity of the electrogenic pump of H 

3) The change of other active transport system beside H 

4) The change of permeability of H + of the passive diffusion channel. 

5) The change of other transport system coupled with H 

   If I choose the fourth possibility, the membrane potential must retain 

the pH dependency even after the pump inhibition. But Saito and Senda 

(1974) showed that the dependency of membrane potential on the external pH 

in Nitella was decreased by various metabolic inhibitors and cooling. They 

proposed the existence of the electrogenic H +-Pump. Richard and Hope 

(1974), Keifer and Spanswick (1978) reported also the existence of the 

electrogenic pump. Besides, there is no-report indicating that fluxes of 

other ion than H + are much reduced by the metabolic inhibition. Therefore, 

the second possibility that H + pump activity chances with the external pH 
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change is most likely. However, possibilities of cotransport and anti-

transport with H + still remains. 

   The facts which were common in all of these reports were that the 

resting potential was most hyperpolarized between pH 7 and pH 8, and that 

the membrane potential changed with a slope ranging 20 - 50 mV/pH below 

pH 7 and depolarized again above pH 9. However, the data so far published 

on the conductance change against external pH are not equivocal. Saito and 

Senda (1974) reported that the conductance at pH 8 was larger than at pH 5, 

while Richard and Hope (1974) reported the opposite results. Keifer and 

Spanswick (1978) showed that in the light the membare conductance was 

larger at pH 8 than at pH 6, while in the dark the conductance was smaller 

in alkaline medium. The reason for such a qualitative difference among 

conductance data has not been elucidated yet. Anyway, accurate measure-

ments both of the pump emf and the pump conductance are very important to 

know the pump mechanism. 

   In Chapter I the method of accurate measurement of the pump emf and the 

conductance by using TPC, an ideal inhibitor of H + pump, was described. In 

this chapter, pH dependency of the electrogenic H + pump will be analysed. 

The H + pump of plasmalemma was more clarified in tonoplast-less cell. The 

effect of EGTA perfusion-was also described.
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                                  Result 

The effects of perfusion. 

   In the case of perfused cell, test current pulse was supplied from 

external current electrode as shown in Fig. 12. The internodal cell of 

Chara corallina was cooled before perfusion, then the surface water of the 

cell was wiped away to reduce the turgor pressure. The cell was cut at 

both ends and then internal medium was exchanged with the perfusion medium 

contains 5 mM EGTA (contain 20 mM K + ), 2 mM ATP, 66 mM KCH 3 so 31 6 mM MgCl 2~ 

300 mM sorbitol and pH was adjusted at pH 7.02 with 5 mM TES n-Tris 

(hydroxymethyl) methyl-2-aminoethanesulfonic acid ) buffer. 

   During the internal perfusion I observed under the microscope the border 

of cytoplasm and vacuole was destroyed. After 5 min, both ends of the cell 

were tied off with a piece of polyester thread (Tetron #60). The cell was 

transferred first into the 150 mM sorbitol APW and then placed in the 

normal APW to recover its osmotic pressure. 

   When I perfused the Chara cell with a medium containing 2 mM ATP, I 

observed that normal resting potential (about -200 mV) was maintained more 

than 1 hour. But conductance of the perfused cell membrane had a smaller 

value than that of the unperfused cell. The cause of this conductance 

change may be in the modification of the intramembrane structure which 

supports the channel protein because of the low ionic strength of the 

perfusion medium. 

   The action potential in the perfused cell became to be a plateau type. 

The duration of the plateau ranged from 30 sec to 1 min. The duration of 

the action potential of the unperfused cell was several sec generally. This 

suggests that the low concentration of internal Ca ++ by internal applica-

tion of EGTA modified gating mechanisms of K + and Cl- channels (which 

contribute to the action potential). However, the duration of action poten-
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tial could be shortened by various treatments such as lowering the external 

pH (Fig. 13), lowing temperature and lowing osmotic pressure. 

   When 1 pM TPC was added to the perfused cell externally, the membrane 

potential depolarized from -200 mV to -130 mV and the membrane conductance 

decreased from 60 pS to 40 uS/cm 2 during 60 min at pH 8.0 (Fig.14). The 

process of inhibition was roughly the same as the unperfused cell. The 

change of E 
p and g p are calculated from the Eq. (5),(6) in Chapter 1. it 

is worth noting that in the perfused cell E 
p did not show a transient 

hyperpolarization during the process of inhibition. 

The pH dependency of the electrogenic pump 

   The pH dependency in the light of unperfused cell which has both plas-

malemma and tonoplast is shwon in Fig. 15 (E, G). External pH was varied 

by using following buffers. 

  pH 5.5 - 7 :MES 2-(N-Morpholino)ethanesulfonic acid, monohydrate 

  pH 7 - 8 :TES N-Tris(hydroxymethyl)methyl-2-aminoethanesulfonic acid 

  pH 7.5 - 9 :TRICINE N-Tris(hydroxymethyl)-methylglycine 

   Each buffer was used as 2 mM solved in APW. This cell had been cultured 

with the tap water, the pH of which was about 8.5. The resting potential 

was the most hyperpolarized near this pH and that the membrane conductance 

became gradually large as the pH became lower than 8. Under alkaline 

condition like pH 9, the membrane potential was depolarized and the con-

ductance increased again. When TPC was applied to this cell in the dark at 

pH 8.0, the membrane potential depolarized to about -100 mV. The conduct-

ance decreased by almost 40 %. The pump activity was almost perfectly 

inhibited at this state. So the pH dependency of the passive channel could 

be obtained by changing the external pH after TPC treatment in the dark . 

The pH effect on the electrogenic pump can be analysed according to the 

method destribed in Chapter 1. 
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   After TPC treatment the passive emf changed with a slope of 20 mV/pH, 

while the conductance changed little (Fig. 15 (gd , E d))' On the other hand 

the pump emf (E 
p ) changed with a slope of 52 mV/pH and the pump conductance 

(g p ) decreased with the external pH. ( Fig. 15 (g 
p , E p )). 

   Fig. 16 show the pH dependency of perfused tonoplast-less cell. The 

membrane emf(E) changed with a slope of about 20 mV/pH and the membrane 

conductance(G) gradually increased in the acid medium. On the oter hand, 

at the late stage of TPC poisoning the membrane potential depolarized from 

-200 mV to -130 mV and the conductance decreased from 60 j1S to 40 juS/cm 2 at 

pH 8.0 (Fig.14). Changes of .the passive parameters (9d' E d ) and pump 

parameters (gp, Ep) of the plasmalemma against external pH are shown in 

Fig. 16. This result is similar to that of the unperfused cell. The 

parameter which changed markedly with pH was E p . The slope of change in 

E 
p was 60 mV/pH. E p of the tonoplast-less cell was more negative than-that 

of the unperfused cell. The pH effects on the conductances of passive 

channel and active pump were very similar to those of unperfused cell. The 

marked difference is that the slope of passive emf is 20 mV/pH in the 

unperfused cell and 6 mV/pH in the perfused cell. These results indicate 

that the passive channel of plasmalemma was affected by perfusion to some 

extent. 

   Another merit of perfusion method is to regulate the internal concentra-

tion of ions and ATP. Kikuyama et al. (1979) reported that the cellular 

ATP concentration decreased to below 1 yM by perfusing with 1 mg/ml hexo-

kinase and 5 mM glucose. I reinvestigated the pH sensitivity of such a 

cell. As shown in Fig. 17 the emf and the conductance of hexokinase 

treated cell, which had no ATP supply to the pump, is similar to that of 

TPC treated cell in Fig. 16 (E d' gd ). This result also supports our 

assumption that TPC is an ideal inhibitor of the ele6trogenic pump of the 

Chara plasmalemma. 
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                                  Discussion 

   The pump emf (E ) chanced with a slope of 52 mV/pH at 200 C in the 
                 p 0 

unperfused cell and 60 mV/pH at 10 0 C in the perfused cell. E p was between 

-200 mV to -300 mV at pH 7. This value of E 
p is far from the electro-

chemical potential of H 

   Mitchell(1967) described the mechanism of the If+-pump of mitochondria. 

If the similar H+_ATPase exsists in the plasmalemma of the Chara, the free 

energy of ATP hydrolysis can be transferred to the electrochemical 

potential of H . This idea was applied to the H pump of Chara corallina. 

At the thermodynamic equilibrium E p can be expressed as follows. If m mol 

of H + is driven by the hydrolysis of 1 mol ATP. 

    E P = 1/(mF) G ATP + (RT/F) ln QH + 10 /[H+] i) 

I choose the concentrations of ATP was I mM, ADP 0.5 mM and Pi 0.5 mM 

(The bases of this assumption was described in the next chapter). Then, 

    G ATP = G 0 ATP -(RT/F) ln [ATP [ADP [Pi] 10 Kcal/mol 

Accordingly E p at 20 0 C is, 

    E 
p = 1/m (-525) - 58 log [H+] 0 [H+] (MV) (1) 

If m=2 in equation (1), E P was about -250 mV when the external pH was at 

7.0. The pH dependency of E p of the plasmalemma of the perfused cell was 

almost equal to -58 mV. This indicates that m is about 2 in the plasmalemma. 

of the Chara corallina. That is, this electrogenic pump carries out 2 mol 

H+ following the hydrolysis of 1 mol ATP. 

   The problem is why E p was hyperpolarized by TPC in the dark. Generally 

the pump emf is expected to decrease during the pump inhibition because of 

the decrease of ATP concentration. When E p is hyperpolarized, it might be 

caused either by the decrease of stoichiometry ratio of H+ with ATP or by 

the increase of internal H+ concentration (Eq.1). The latter possibility 

 is scarce, since the internal H + concentration need to increase more than 
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100 times. If the efficiency of driving 2 H + by 1 mol ATP decreased to 

1 H + by 1 mol ATP, E 
P would hyperpolarize from -250 mV to -500 mV. 

   In this experiment the conductance of the passive channel (gd) changed 

little by external pH. This fact is inconsistant with the Kitasato's 

(1968) assumption that the conductance of passive H + channel was very 

large. Passive emf (E d ) changed 20 mV/pH in the case of unperfused cell. 

I assume here that ions which contribute to the diffusion potential are K 

Cl-, and H +. Each equilibrium potential are calculated by Nernst equation 

and are shown in Fig. 18. The equilibrium potential of K + and Cl-

are -190 mV and +150 mV respectively. Diffusion potential of H + is 0 mV at 

pH 7.0 and should change with a slope of 58 mV/pH. Since each ion channel 

distributes in parallel in the membrane, the experimental data should be 

simulated using these values. As shown in Fig.18, 9K > gC1 > 9H2 and 9H is 

small so long as the external pH was smaller than 8.3. It is worth noting 

that gCl decreases with the increase of the external pHo, while gk 

increases. As the external solution became more alkaline than pH8, 9K and 

9cl both increased greatly (Fig. 18). This result seems interesting, since 

the Chara membrane often shows an action potential when the external pH was 

increased from 7 to 9-10. In this case E d also depolarized by the alkaline 

treatment and did not recover to the hyperpolarized state. This suggests 

some qualitative changes in the plasmalemma might occur at pH 0 larger than 

8.0.
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Chapter3 

         Internal ATP level and electrogenic pump in Chara corallina 

                               Introduction 

   It is very important to know the relationship between the activity of 

electrogenic pump and the internal ATP concentration. Slayman et al. 

reported a close correlation of the extent of depolarization with decrease 

of internal ATP level during CN treatment in Neurospora hyphae (1973). 

They analysed membrane potential and ATP content using a first order 

Michaelis-Menten kinetics on the base of current source model and found 

that apparent K 
m value was 2 mM. 

   Similar correlation was found also in red beet K +-ATPase by Mercier & 

Poole (1980). In this case the internal ATP level at which the membrane 

potential was much depolarized was 0.4 mM. Shimmen & Tazawa (1977) re-

ported that in Chara.australis, Nitella axillaris and Nitella pulchella, 

the pump activity reached saturation at the internal ATP larger than about 

50 juM. According to Keifer & Spanswick (1979) 5 juM CCCP depolarized the 

membrane potential of the Chara corallina to the diffusion potential and 

decreased ATP concentration down to 0.13 mM. 

   To know the relation between the pump activity and ATP concentration, it 

is not necessarily a good way to compare ATP concentration simply with the 

membrane potential. We know that the E 
p sometimes showed a transient hyper-

polarization during pump inhibition with TPC poisoning. So -in this 

Chapter, I try to compare the change both of E 
p and g p with ATP level. 

   Smith & Walker (1981) described that 2mM ADP added to 2mM ATP inhibited 

50 % of the pump activity of perfused internode of Chara corallina and 

decreased g 
m from 33 to 24 j1S cm-2 and decreased pH sensitivity of the 

                                          3-1



membrane potential. Tazawa et al. (1982) reported that K m value, which 

obtained by the plot of membrane potential against the [ATP] i 

perfusion method, increased from 0.08 mM to 0.25 mM by addition of 1 

ADP. These results suggest a possibility of direct inhibitory effect 

ADP. In this Chapter changes of concentrations of ATP, ADP and AMP 

compared with the change of pump activity during inhibition.

 was 

with 

  mm 

  of 

 are
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                             Material & method 

  Chara corallina was cultured in our laboratory with a photoperiod of 12 

hr. light ( Ca. 2000 lx) and 12 hr. dark. The internodes which were 0.7 mm 

in diameter and 6 cm in length on the average were isolated from adjacent 

cells and kept in the APW for at least one day in a natural sun light 

condition beside the window. 

   The diameter and length of each sample were measured to calculate the 

cell volume , then put into a test tube. These test tubes contained 3 ml 

APW with or without inhibitor. Inhibitors are 2 pM TPC, 0.1 mM monoido-

acetic acid (MIA) , 0.2 mM 2-4-dinitrophenol (DNP), 50 )1M dicyclohexyl-

carbodiimide (DCCD) or I mM sodium azide. APW was the same as described in 

Chapter 1. These test tubes with samples were incubated at 20 0 C and was 

taken out of a water bath at desired time, then boiled for 10 min at 100 0 C 

to stop the ATPase activity in the sample, and then frozen quickly. They 

were stored in a deep-freezer before use. 

   ATP concentration in the sample was determined with a luciferin-

luciferase assay ( Strehler, 1952; Miyamoto et al., 1976). One vial of 

the buffered firefly lantern extract FLE-50 ( Sigma, Chem. Co ) was 

dissolved in 5-10 ml distilled water and to which about 1 g calcium 

phosphate tribasic was added. After 10 min incubation at room temperature, 

they were centrifuged to remove the ATP contamination in FLE-50. Then the 

supernatant was used as the assay medium for ATP measurement. Luminescence 

reaction was performed with a mixture of equal volumes (0.4 ml) of four 

reagents. They are 0.2 M sodium arsenate (pH 8.0), supernatant of FLE -50, 

0.08 M MgSO 4 and sample or standard ATP solution. This luminescence was 

detected by a photomultiplier. Calibration curve for the ATP luminescence 

was linear for ATP concentration from 10-8 to 10-5 M. The ATP concentra-

tion per cell was calculated under the assumption that the volume of cyto-
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plasm was one tenth , on the average, of the total cell volume (Tazawa, 

Kishimoto & Kikuyama, 1974) 

   ADP concentration was measured according to the method of Kimmich et al. 

(1975) in which ADP was converted to ATP enzymatically. In this method 

phosphoenolpyruvate was used as substrate and pyruvate kinase converted ADP 

to ATP by about 95%. 0.2 ml assay medium was added to 2 ml of the sample 

or standerd ADP solution and incubated for about 40 min at room tempera-

ture. Then this solution was boiled at 100 0 C for 10 min and frozen quickly 

to stop the reaction. Assay medium contained 50 mM phophoenolpyruvate, 35 

mM KNO 30 6 mM MgSO 4 and 150 International Unit(IU)/ml pyruvate kinase 

(Behringer-Mannheim). The pH of the assay medium was buffered at 7.4 with 

100 mM TES. 

   AMP was also measured by the enzymatic method. ATP was used as the 

substrate and myokinase which convert the AMP to ADPwas added, and ADP was 

then converted to ATP by the ADP assay method AMP assay medium contains 

0.02 juM ATP and 100 IU/ml myokinase(Sigma,Chem.Co.) added to ADP assay 

medium. The concentration of ATP which was converted from AMP or ADP was 

measured with a luciferin-luciferase assay as described above.
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                                  Result 

   In Chara corallina it has been reported that the concentration of ATP 

did not change much by dark treatment in spite of the existence of chloro-

plast and photosystem. The change of internal ATP value after dark was 

variable depending on the condition of pretreatment with light or dark. 

First, I measured the change of ATP level during long dark condition. As 

shown in Fig.19 the ATP concentration was decreased to half of the control 

level after 4 days in the constant dark. When such a long dark adapted 

cell in which ATP concentration decreased to half level was placed in the 

light condition, the ATP level recovered to near the control level after 

two hours. Then this cell was placed in the dark again. As shown in Fig.20 

the ATP concentration of dark adapted cell which had been placed in the 

dark for 3 days and then placed in the light for 2 hour decreased in I hour 

dark. On the other hand, the ATP concentration of the cell of normal 

photoperiodism (12 hr. light and 12 hr. dark) did not change appreciably or 

increased a little during 1 hour dark. Later experiments were performed on 

the cell under the normal photoperiodism. 

   In Chapter 1, 1 showed that TPC is an ideal inhibitor of electrogenic 

pump. I measured the change of internal concentration of ATP during TPC 

poisoning in the dark. As shown in Fig.21, ATP level gradually decreased 

to one third of the control. If TPC was treated in the light , ATP level 

reduced to 0.6 mM. These decline of ATP level seemes to have a good 

correlation with the results of electrophysiological measurement in 

membrane potential. That is, TPC in the dark abolished the pump activity 

almost completely in an hour, while it affected much more slowly in the 

light. 

   The effect of 0.2 mM DNP, which is known as an uncoupler, on the ATP 
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level was shown in Fig.22. DNP also reduced the ATP level to half of the 

control. 

   The ATP level was not zero at all after the pump activity was abolished, 

but it remained at about 0.3 mM as shown in Fig.21. When I applied 1 mM 

MIA , which is known as an inhibitor of glycolysis, ATP concentration was 

reduced to 60 % of the control level. When both MIA and TPC were applied 

simultanously, ATP level decreased to 10-20 % of the control level 

(Fig.23). These results show that ATP was synthesized both by glycolysis 

and by electron transfer system. When TPC and MIA were applied at the same 

time, the velocity of cytoplasmic streaming was reduced within 30 min. 

   If the cell was illuminated ( 2000 lx) after TPC treatment in the dark, 

the ATP level recovered to the level of TPC in the light (Fig.24). I found 

that the depolarized cell with TPC in the dark hyperpolarized again by 

illumination, even if the APW contained TPC. This agrees with the present 

results of the change of ATP level. 

   As shown in Fig.25, the decreasing process of ATP level during TPC 

poisoning is similar to the decrease of pump conductance. But it does not 

agree with the change of pump emf, which hyperpolarized transiently with 

TPC in the dark. 

   I also investigated the effects of DCCD which is known as an inhibitor 

of mitochondrial H +-ATPase. DCCD decreased the internal ATP level more 

slowly than TPC or DNP. As shown in Fig.26, ATP level decreased to half of 

the control level after 90 min with 50 pM DCCD. The progress of decrease 

of ATP level was practically the same in the dark as in the light. Effects 

of 50 pM DCCD progressed slowly also in the electrophysiological 

measurement. Time courses of slow decreases of pump conductance, pump emf 

and the pump current are very similar to that of ATP level. 

   I measured the changes of other nucleotides than ATP during inhibition. 

In the control state ATP, ADP, AMP levels in the Chara are about 0.75 mM + 
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0.07 mM, 0.35 mM + 0.03 mM, 0.27 mM + 0.05 mM respectively . When the ATP 

concentration gradually decreased to one thrid of the control level with 

1 )1M TPC in the dark , the ADP level increased transiently twofold during 

first 10 min, then decreased to the control level in 60 min (Fig .27). AMP 

level increased gradually during 30 min and decreased almost to the control 

level again. When 1 yM TPC was added to the cell in the light , the ATP 

decay progressed more slowly, and the change of ADP and AMP also progressed 

more slowly (Fig.28). For example ADP level increased twofold during 

30 min, then decreased again, while AMP gradually increased during 60 min . 

   Treatment with 1 mM NaCN, which is an inhibitor of electron transfer , in 

the dark decreased the ATP level transiently and then recovered to the 

control level again. The ADP level also changed transiently as shwon in 

Fig.29. The changes of these nucleotide levels during I mM NaCN treatment 

progressed slower in the light (Fig. 30) than in the dark (Fig. 29).
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                                 Discussion 

  Metabolic inhibitors such as TPC, DNP, DCCD, and MIA all decreased the 

internal ATP level. Slayman et al. reported a close correlation of inter-

nal ATP level with membrane potential (1973). The data was simulated with 

Michalis-Menten equation in their report. Slayman expressed Vm as follows 

   V M = V pm [ATP] i K 1/2 ' [ATP] i + V 0 

V 
0 is the membrane potential in the absence of electrogenic pumping 

V 
pm is the apparent maximal added voltage developed by the pump. 

In Neurospora membrane, resistance seemed change scarcely during pump 

inhibition. So Slayman proposed that V 0 was passive potential and K 1/2 was 

equal to 2.0 mM. But in Chara corallina the resistance decreased largely 

by pump inhibition. I expressed the pump with the pump conductance and the 

pump emf as described in Chapter 1. As shwon in Fig.25, g p and ATP level 

had a close correlation during TPC inhibition. Similar result was obtained 

with DCCD inhibition. Even if g p is zero by inhibitor, 0.3 mM ATP 

remained. So the direct effect of inhibitor on the membrane conductance is 

also expected. The change of E P could not be explained simply by the change 

of ATP level. Generally the electrogenic pump of Chara corallina possess 

high sensivity to H + and the E p can be expressed as follows (described in 

Chapter 2). 

 E P = 1/m xRT/F ( lnk ATP + ln[ATP]/[ADP] [Pil + RT/F ( ln [H'I 0 / [H+]i 

   After pump inhibition, ATP level decreased to one-third of the control 

level and ADP level increased to twofold. So the ratio of ATP/ADP decreased 

from 2 to 0.3, then E p is expected to depolarize by about 20 mV. However, 

we know in some occasion E p will hyperpolarize during pump inhibition. For 

such a case following possibilities can be postulated. First, if the 

stoichiometry may change from 2 to 1, E P will hyperpolarize from -250 mV to 

-500 mV. Second, if the internal ATP level may increase or ADP will 
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decrease, Ep will hyperpolarize. Third, if internal pH becomes low or 

external pH becomes high, E P will hyperpolarize. 

   As shown in my results, ATP concentration did not increase and ADP 

concentration did not decrease at all with many poisons, so the second 

possibility can be neglected. Walker and Smith measured the internal pH 

both in the light and in the dark (1975). In their reports cytoplasmic pH 

changed to 7.4 from 7.7 with the dark treatment. Moreover, in my experiment 

external solution was perfused with APW containing pH buffer, the pH change 

by the dark should not be large. So the first possibility is not likely. I 

will discuss about the possibility of the change of stoichiometric ratio in 

the next chapter. 

   Next question is why the several hundred )iM of internal ATP still remain 

even after simultaneous treatment with TPC and MIA. I investigated the 

activity of adenylate kinase which might remain in the sample even after 

10 min heat teatment. But the added ADP to the sample did not change into 

ATP. Such residual ATP may be the foundamental ATP to maintain the 

cellular structure or the compartmented ATP which was not affected directly 

by inhibitors. This problem remaines to be solved by future study. 

   The results of the changes of other nucleotides levels indicated the 

existence of regulatory mechanism of internal ATP level. Inhibitors block 

the synthesis of ATP primarily. Then the ADP and Pi level will increase by 

the hydrolysis of ATP in various mechanism. Actually ADP increased during 

first 10 min by TPC inhibition. In this case total adenine nucleotide also 

decreased, so the following reaction may be enhanced at the same time. 

       ATP AMP + PPi 

       AMP ADEN + Pi 

In this case another possibility that transphosphorylation may occur be-

tween ATP and other nucleotides such as GTP or CTP. 

   The later changes of AMP and ADP were very similar to the result which 
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was described in Neurospora by Slayman (1973). This decrease of ADP may be 

caused by the activation of adenylate kinase. 

                     ATP + AMP       2ADP I 

   Recovery of ATP and decrease of AMP were markedly large especially in 

NaCN inhibition. Such a regulatory mechanism of ATP level by AMP/ATP ratio 

would be caused by the action of phosphofructokinase (Atkinson 1966, Conn 

and Stump 1976). 

   The ATP level of the Chara internode did not decrease appreciably during 

first one hour in the dark, if the cell was pretreated under normal 

photoperiodic condition. This result is the same as the other algae 

(Holm-Hansen 1970, Penth & Weigl 1971, Jeanjean 1976, Lilly and Hope 1971, 

Keifer and Spanswick 1979). But the ATP level decreased to half of the 

original level in a long dark period such as three or four days. This 

suggests that glycolysis may be enhanced, contributing to protect against 

the decrease of ATP level in the case of short dark treatment. If the 

level of total glucose, which is the substrate of glycolysis, become small 

during long dark treatment, the regulation of ATP level by glycolysis may 

not work anymore.
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Chapter 4 

     Current voltage relationship of the H+-pump in Chara corallina 

                                Introduction 

   It is not yet equivocal that electrogenic pump has its own conductance. 

Finkelstein (1964) and Rapoport (1970) proposed that an electrogenic pump 

is voltage sensitive and consequently contributes to the membrane conduct-

ance from their theoretical model. Gradmann (1975) reported on the Cl-

pump in Aetabularia that the nonlinear current-voltage relationship is 

sensitive to light and temperature. Graves & Gutkneckt investigated the 

Cl pump in Halicystis parvula and concluded that this electrogenic pump is 

an ion conducting pump (1977). Slayman initially considered the H+ pump as 

the current source (Slayman et al.1973). Subsequently by the analysis of 

current-voltage curve before and after inhibition with CN he showed that 

conductance of the pump accounted 5-10 % of the total membrane conductance 

(Gradmann et al., 1978). 

   Recently, Hansen et al. (1981) explained the pump mechanism with a kinetic 

model, and presented the current-voltage relationship of H + pump in 

Neurospora. As described in Chapter 1, 1 concluded that H + pump in Chara 

corallina also posseses the conductance from the results of current clamp 

method. Anyway, it is a crucial points to demonstrate how the pump 

conductance is voltage dependent. 

   In this Chapter, the current-voltage relationship of both control and 

passive channels will be analysed. The I-V relationship of pump channel 

can be obtained from the difference of two I-V curves before and after 

inhibition. 

   The I-V curve has another advantage to know the pump mechanism. We can 
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choose the pump model in which I-V relation of the pump can be explained 

and determine kinetic parameters of the pump by simulating the pump I-V 

relation. Some results on the effects of various inhibitors such as TPC, 

DCCD, NaCN and the changes of light and pH are presented in the followings. 

Changes of the kinetic parameters of the pump are also analyzed.
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                             Material Method 

   Internodal cell of .Chara corallina was prepared as described in Chap-

ter 1. APW and inhibitors are the same as described before. 

Voltage clamp method 

   The basic setup is the same as described in Chapter 1 (Fig.2). Voltage 

clamping was achieved by the negative feedback circuit with a control 

amplifier, DATEL AM-303B. The total gain of the feedback system was about 

6000. This output was connected to the internal platinum-coated tungsten 

wire electrode, which was inserted from the nodal end into the vacuole of 

the Chara internode. The small and short pulse was applied under the 

voltage clamp condition. The response was monitored with an ocilloscope or 

penrecorder and stored into the memories of the microcomputer for later 

computation. 

   What we need to know is the change of membrane emf and conductance from 

time to time during pump inhibition from the change of I-V curve. As shown 

in Fig.31 (a), the current response to square pulse in various voltage 

reached to a stable state in <20 sec . Fig.31 (b) showed the current 

response to the ramp vo ltage pulse. If we choose the rate of ramp, i.e., 

k = 200 mV /25 sec, the I-V curve obtained with ramp voltage clamp agreed 

with that of the step pulse method (Fig.32). The ramp pulse method was 

useful enough to analyse the steady I-V relation during inhibition. 

   Conductance values were calculated from the size of the current response 

to the square voltage pulse which was applied during ramp voltage change 

under voltage clamp condition. The length and amplitude of this test pulse 

were chosen as short and small as possible,that is,40-100 msec and 5-20 mV 

respectively. 
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                                 Result 

TPC effect 

   TPC is an ideal inhibitor of the H +-pump of Chara plasmalemma as de-

scribed in Chapter 1. When 1 pM TPC was added to the internodal cell in the 

light, the resting potential where I=O gradually depolarized from -220MV to 

-170 mV and the slope of I-V curve became small (Fig.33). The maximum 

value of the membrane conductance decreased from 70 to 20 juS/cm 2 with TPC 

in the light (Fig.34). Then the Chara was placed in the dark. About 25 

min in the dark with 1 pM TPC, the membrane potential additionally de-

polarized to -130 mV (Fig.33) and the maximum value of the membrane con-

ductance decreased to 12 pS/cm 2 (Fig.34). In the final state of TPC poi-

soning (i.e.,65min) only the diffusion channel is acting as described in 

Chapter 1. As shown with an interrupted line in Fig.330 , I-V relation of 

the diffusion channel i.e., i d-V curve was comparatively linear from about 

-250 mV to -150 mV. When membrane potential is below -250 mV and over -150 

mV, the conductance of the passive channel (gd) increases again(Fig.34). 

Such an increase of gd occurs generally by the breakedown response 

below -250 mV and by the excitatory mechanism over -150 mV. 

   The change of pump current during TPC poisoning in the light was calcu-

lated from the difference between the I-V and the i d-V. As shown in 

Fig.35, I-V relation curve of the electrogenic pump i.e., i p -V curve is 

nonlinear and saturated in both for a large depolarization and for a large 

hyperpolarization i.e., sigmoidal shape. The voltage at which the pump 

current is zero is equal to the electromotive force of pump (E p ). In 

the control state E p of Chara corallina was about -270 mV at pH 7.0. The 

pump current decreased from 4.5 to 0.8 pA/cm 2 during the inhibitory process 

in the light. E 
p decreased from -270 mV to -230 mV and did not show any 

transient hyperpolarization during first 20 min by TPC poisoning in the 
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light. But when TPC and dark treatment applied simultaneously, E 
p hyper-

polarized transiently after 8 min (data not shown). This transient hyper-

polarization is similar to the results obtained by the current clamp method 

in Chapter I(Fig.8). On the other hand, when TPC was applied to the dark 

adapted cell which was about 75 min in the dark before TPC poisoning, E 
P 

depolarized gradually from -310 mV to -220 mV during 40 min TPC poisoning 

without a transient hyperpolarization (Fig.36). It is worth noting that E p 

hyperpolarized from -260 mV to -310 mV after 75 min in the dark without TPC 

as shown in Fig.36. These results suggest that the hyperpolarization of 

E reflects the change of pump mechanism, which was caused mainly by the 
P 

dark. 

DCCD effect 

   DCCD is known as an inhibitor of H +-pump and decreased the internal ATP 

level to half of the control level. When 50 juM DCCD was applied in the 

dark, membrane potential gradually depolarized from -240 mV to -130 mV and 

the slope of I-V relation became small during 130 min (Fig.37). The change 

of the membrane conductance (G) with 50 )iM DCCD is shown in Fig.38. The 

peak conductance decreased from 180 to 30 uS/cm 2 during 130 min. The con-

ductance of the passive channel( gd : after 130 min DCCD) is almost con-

stant between from -250 to -150 mV. The E d where i d = 0 reached by 50 juM 

DCCD is almost similar to the one obtained by I pM TPC inhibition. But the 

process of inhibition and the time needed to the complete inhibition are 

not necessarily the same. 

   Fig.39 show the i 
p -V relation of the electrogenic pump calculated from 

the difference between the I-V curve and the i d-V curve in Fig.37. The i 
p -V 

relation of the pump obtained by DCCD is sigmoidal shape. E 
p is about -270 

mV before inhibition and gradually depolarized during inhibition. E p 

reached to about -200 mV 105 min after application of DCCD. Maximum 
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current of the pump(i p ) decreased from about 12 to 0 pA cm. 2 . When 50 uM 

DCCD was applied, perfect inhibition of the pump reached after 90-120 min. 

The extent of depolarization of E p by DCCD is almost the same as that in 

the dark ( data not shown). The effect of DCCD was irreversible. 

CN effect 

   CN is an inhibitor of electron transfer. 3 mM NaCN depolarized membrane 

potential from -240 mV to -130 mV and the slope of I-V curve decreased 

(Fig.40). As shown with an interrupted line in Fig.40, I-V relation of the 

diffusion channel was comparatively linear from -300 mV to -150 mV. The I-

V relation of the pump (i p-V) obtained from the difference I of control state 

and final state during CN- poisoning is shown in Fig.40(o). In the control 

state, E P is -275 mV and i p -V relation of pump is sigmoidal shape. 

   Now the common points obtained with these three inhibitors TPC, DCCD and 

CN are follows. 

1) The relationship between the voltage and pump current is a typical 

    sigmoid. 

2) E P is about -250 mV at pH 7 before inhibition and gradually depo-

    larized to -200 mV except for the TPC treatment in the dark. 

3) Pump conductance decreased gradually almost to zero during inhibition. 

4) Conductance of the passive channel remains almost unchanged from -250mV 

    to -150 mV. 

The effect of external pH change 

   The pH sensitivity of the pump was obtained by the current clamp method 

as described in Chapter2. E 
p changed with a slope of about 50 mV/pH at 

20 0 C. 

   Following the change of external pH the I-V curve moved almost paral-
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lel along the pH axis. Resting potential changed with a slope of about 30-

40 mV/pH (Fig.41). In this data only TES buffer was used. Fig.41 also 

demonstrates the effect of external pH change on the i d-V curve obtained 

after pump inhibition with 50 juM DCCD. The pH sensitivity of the passive 

channel was very small. The conductance of the passive channel was practi-

cally constant from -150 to -250 mV at various pH value. This finding 

agreed with the result of current clamp method (Chapter 2, Fig. 12). The 

change of emf of the diffusion channel after inhibition was only about 

10mV/pH. From the difference of I-V curves between before and after inhibi-

tion in Fig.41, the i 
P_V curve of the pump channel at various pH can be 

drawn. As shown in Fig.42 the shapes of the pump i 
p -V curves at three 

different pH's resembled each other. In this data the value of E 
p is -270 

mV at pH 7.0 and changed with a slope of about 40 mV/pH between pH 7.5 and 

6.5. 

   When the cell was in the alkaline condition above pH 8.0 in the light, 

the change of E 
p became to small. For example, the difference of E p 

between pH 7.5 and 8.0 was about 10 mV (data not shown). Generally the 

membrane potential depolarized in the dark by about 10-20 mV and the con-

ductance in the dark decreased to half that in the light. This tendency 

seemed to be common in various pH. When I examined the pump i 
P_V curve in 

the dark at various pH, very interesting result was obtained. That is , at 

pH8 E p hyperpolarized in the dark largely comparing with at smaller pH. 

In the dark, E changed by 50 mV/pH in both acid and basic condition (data 
            p 0 

not shown). These results suggest that other mechanism than the H +-Pump 

of stoichiometry =2 will work, when the external solution becomes alkaline 

above pH 8.0 in the light. 

The effect of darkness on the pump activity 

   As described in Chapter 3, the ATP level scarcely changes by the dark 
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treatment, while the membrane conductance decreases to half the control 

level. 

   As shown in Fig.43, the effect of darkness during 1 hour on the membrane 

potential could be classified in three types, that is, depolarization type 

(from -210 mV to -130 mV), stable type (from -220 mV to -200 mV ) and 

hyperpolarization type ( from -200 mV to -240 mV ). This hyperpolarization 

type was often found, when the cell was pretreated in the long dark. On 

the other hand, the membrane conductance (G) decreased in all three type 

from 30-180 to 30-50 pS /cm 2 during 1 hour in the dark. The main difference 

in these cells is in the E p change as shown in Fig.44, in which E p was cal-

culated by current clamp method described in Chapter 1. E p depolarized from 

-260 mV to -180 mV in the depolarization type, and hyperpolarized from -230 

mV to -260 mV in the stable type and also hyperpolarized from -250 mV to 

-320 mV in the hyperpolarization type. 

   Then I investigated the change of I-V relation in Chara corallina by 

dark treatment. The change of i p -V curve of pump is demonstrated in 

Fig.45. In this stable type the membrane potential(E) did not change much, 

while conductance(G) decreased largely in the dark. However, E p hyper-

polarized from about -250 mV to below -300 mV and maximum pump current 
2 d

ecreased from 10 to 3 pA/cm . In the depolarization type the membrane 

potential depolarized largely in the dark and the conductance decreased 

largely. However, E p depolarized from below -300 mV to -180 mV and maximum 

pump current also decreased from 6 to 0.5 )iA/cm 2 (Fig.46). These results 

suggest the imperfect inhibition with dark and the existence of another 

pump mechanism having a stoichiometric ratio not 2 but I in the Chara.
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                                 Discussion 

   The relationship between pump current and the voltage is a sigmoid type. 

These I-V curve can be simulated with our kinetic model satisfactory. Our 

kinetic model for the H +-pump gives not only the size of E p but also a 

quantitative expression for the pump conductance (g p ) as a function of 

voltage. 

A kinetic model for the electrogenic H + pump in the Chara 

   lie assume a cyclic change of five states of H +_ ATPase, i.e., El. E 2f 

E 3~ E 4 and E 5 (Fig.47). Schemes of reaction in this change are listed in 

the followings. 

1) The transformation of ATPase from E I into E 2 is mediated by using energy 

   from ATP hydrolysis. 

 E 2 = K ATP [ATP i I [ADP il- 1 [P il- 1 [E 1 M [E 11 (1) 

   K ATP is the dissociation constant of ATP. K ATP is equal to 4.247 x 10-6, 

   if the standard free energy change of the ATP hydrolysis is taken 

   as -7.2K cal/mol 

2) When mH + ions are incorporated in the ATPase 

 E 3 = o( [H il +M [E 21 (2) 

   where OL is the ratio of forward and backward rate constants for incorpo-

   ration of mH + ions into an ATPase molecule. 

3) The transition of ATPase from E 3 into E 4 is a charge carrying process 

    and therefore its rate is voltage dependent. For simplisity, I assume 

    here the ATPase itself is uncharged. Then, the effulux of H + can be 

    written with Eq.3 

  f 34 = k 34 [E 3 ] -k 43 [E 4] (3) 

   where k 34 is the rate constant for the transition from E 3 into E 49 while 

   k 43 is the one for the opposite transition. If I assume a symmetry of 
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4)

5)

 energy barrier in the pump cahnnel (L9uger, 1979), 

f 34 ~K I (M[H il m exp(mFV/(2RT))[E I I - [H 
0 ]mexp(-mFV/(2RT)) [E 51 (4) 

R, T and F have usual meanings. 

 mH + ions are realesed outside during transition of ATPase from E 
4 
  into E 5* Then, 

                           -M 
      E 5 [H 

0 1 E 4 (5) 

 where p is the ratio of forward and backward rate constants for the 

 release of mH 

 The transition from E 5 into E 1 is assumed here for simplicity as a 

 electroneutral process and the rate is voltge independent . Then, 

 the rate of transition is given by 

      f 51 = k 51 [E 5 k 15 [E 1 K 2 ([E 5 [E 11) (6) 

 Supposing that the H + pump is working steadily by a cyclic 

 transition of ATPase, i.e., E I -) E 2 --~, E 3 -4 E 4 --)- E 5 -* Ei- , then f 
34 should 

 be equal to f 51* The total amount of the ATPase [E 0 1 remains constant . 

 Thus, [E I I + [E 2 1 + [E 3 + [E 4] + [E 5] = [E
OI (7) 

 The current carried by H i.e., I 
p (=pump current), is proportional to 

 f 34 (=f5l)* Then, I 
p can be calculated with Eq. (1) - (7) 

I
P = (D - A I /D) A 4 / , (D + A 2 /D + A 3) (8) 

 where D = exp(mFV/(2RT), R 2 [E 0 ]m, R 
1 = M[H i1m, 

       A 1 = R 2 /R11 A 2 (R 2 /R I (I + RfL) / (1 + R 
2/P) 
      A 3 = (K 2 /K 1 )(I/R 1 )(1 + Rjd) (1 + R 2/9) 

      A 4 = K 2 [E 0 IF/O + R 2/p) (9) 

 E 
P can be calculated at the voltage where I P = 0. 

E
p = (1/m) (RT/F) (ln([ADP I 1P I / [ATP.1) + ln(l/K +                        i i ATP 

         (RT/F)ln([H 0 I/[H iD (10) 

 Then, the conductance of the H + pump, i.e., g 
p can be given by 

9p = I P / (V - E P ) (11) 

 This conductance is given not as a slope conductance but as a chord 
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    conductance in our model. 

  The expression for E P can also be derived theoretically with thermo-

dynamics, while g p can be derived only from the reaction kinetics like the 

one shown above. Similar kinetic analysis on the active transport mech-

anism has been also reported by L9uger (1979), Hansen et al. (1981) and 

Chapman et al.(1983). 

   The experimental i P -V curves were simulated using this kinetic model as 

shown in Fig.48. This data is the change of i P_V relation of the pump 

channel during 50 uM DCCD poisoning in the dark from Fig.39. The data are 

satisfactory simulated by the theoretical curves (solid line) using Eq.(8) 

and four parameters in Eq.(8) i.e., Al, A 29 A 3 and A 4 was determined by 

computer simulation. Then, each parameters in our kinetic model i.e., Ki. 

K k 0 k 9 t and p were determined using Eq.(9). Fig.49 and 50 show the  2' 34' 43' 

results of analysis of the data of Fig.35 and 39 during poisoning with TPC 

and DCCD. In the case of pump inhibition, such as 50 pM DCCD in the dark 

and 1 jiM TPC in the light, the factor of P, which is the ratio of rate 

constants for releasing mH + decreased largely, whileoL , which is the 

ratio of rate constants for incorporation of mH + ions into ATPase in-

creased. The decrease of the factor "M" during inhibition corresponds to 

the decrease of the internal ATP level. 

   Changes of kinetic parameters with pH was also calculated using the data 

in Fig.42. In the case of alkaline treatment cl did not changed much while 

  decreased markedly (Fig.51). 

   E 
p was hyperpolarized frequently during dark treatment. As described in 

Eq.10, E 
p was determined with the concentrations of ATP, ADP, Pi. m and the 

equilibrium potential of H ATP level did not change much during short 

dark treatment as described in Chapter 3. The external H + concentration 

will not change much, because outer medium which was buffered was perfused 

with high speed. Walker & Smith reported that the cytoplasmic pH changed 
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only a little with dark treatment (1975). So in the case of dark treatment 

9 1 must consider another contribution to explain the hyperpolarization of 

E 
P As shown in Fig.52, I assumed that both H + pumps of stoichiometric 

ratio 1 and 2 exist in Chara corallina. Practically the i -V curve could be p 

simulated under an assumption that in the range from -300mV to -150mV 

another constant outward current exist in addition to the H+ pump of 

stoichiometric ratio 2. The simulated curve of the data and the parameters 

of two electrogenic pumps were shown in Fig.53 and 54 using the data from 

Fig.45 and 46. When E P was hyperpolarized during dark treatment, the 

contribution of Ipl( pump current of the stoichiometric ratio 1) became 

comparatively greater than IP2 (pump current of the stoichiometric ratio 2) 

compared with control (Fig.53). On the other hand , in a case when E p 

depolarized during dark treatment, Ip, decreased as shown in Fi.54. 

   Recently the effect of fusicoccin was analysed on the plasmalemma of 

Sinapis alba (Felle 1982). From the current-voltage analysis of this root 

hair cell, the pump current increased a nd E p shifted to hyperpolarize with 

fusicoccin. On the other hand, Lucas reported a large hyperpolarization in 

membrane potential such as from -250 mV to -400 mV by dark treatment in 

Chara corallina (1982). This result suggests that the existence of the 

pump, the emf of which is more negative than -400 mV. 

   There are many reports about other transport system beside the H +-ATPase 

such as 2H + :lCl- co-transport in Chara (Sanders:1980). On the other hand, 

the light dependent mosaic characteristics of Chara membrane were studied 

electrophysiologically (Lucas & Dainty:1977, Walker & Smith:1977). In 

their reports HCO 3 influx is associated with acid and alkaline band 

formation. In the alkaline zone formation of OH_ (H + ) channel was proposed 

(Bisson & Walker:1981). The relationship between H +-ATPase and other 

transport system and the relationship between two types of H +-ATPase which 

have the different value of stoichiometric ratio remain to be studied. 
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                                Summary 

Membrane conductance and membrane emf could be obtained accurately by 

the method of curve fitting of the voltage response caused by the test 

current pulse under current clamp condition. 

The emf change of the pump in Chara corallina against external pH was 

about 50 mV/pH in unperfused cell and 60 mV/pH in perfused cell. This 

value suggests that the pump in Chara is almost consisted with e 

extrusion pump and the H +-pump of plasmalemma mainly contributes to the 

membrane potential. 

The H +-pump in Chara is driven by the energy of ATP hydrolysis. 

The i 
p -V relation of pump current is sigmoidal. 

The i 
p -V curve of Chara membrane could be simulated by a kinetic model. 

This model is based on the assumption that H +-ATPase incorporated mH + 

using the energy of hydrolysis of one molecule of ATP and then mH+ was 

translocated by the membrane potential. These mecahnism are working by 

a cyclic transition of ATPase. 

The value of E p is about -250 mV at pH 7.0. This suggests that the H +_ 

pump of stoichiometric ratio =2 is acting mainly in the Chara membrane. 

But in .Chara corallina in the dark another H + pump having stoichiomet-

ric ratio one seems working. Different contribution of two pumps might 

 cause the hyperpolarization of the electromotive force of the pump in 

the dark. 

 DCCD and TPC seem to be ideal inhibitors of the pump. These reagents 

 inhibit the activities both of these two pumps by mainly inhibiting the 

 H + releasing reaction. 

 Dark treatment reduces the kinetic parameters of the pump mechanism. 

 However, the extent of reduction of the pump activity is not large. In 

 other words, the effect of darkness is far from complete inhibition of 
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conductance 

potential 

reduce the 
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 ATP level did not decrease by the dark. The membrane 

 decreased to half level of the control, while the membrane 

did not depolarize much. Dark treatment is suggested to 

contribution of the H +-pump, the stoichiometry of which is
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