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Introduction

For any />-local connective spectrum F (with p a prime number), the first
author discovered in [2] integers p. and maps F-*Σi+1 H(πjF, 0) between F
and Eilenberg-MacLane spectra such that the compositions

F > Σy+1 H(πjF, 0) ^U τi+ι H(πjF, 0)

are trivial. This enabled him to prove that in the Atiyah-Hirzebruch-Dold spe-
ctral sequence for the F-homology of any bounded below spectrum, p9jdi+t

1=0
for ally > 1 , s and t. Now, let us consider the Brown-Peterson spectrum BP with
BP%=Z(p)[vlf v2, •••]> where the degree of vk is \vk\ =2(pk— 1) for &>1, and
denote as usual by BPζnί} the spectrum such that BP^my^^Z^fa v2> ""> υm]
for any m>ί. This paper exploits a similar composite

which, as a consequence of calculations by the second author in [6] can be seen
to be trivial. As a result, we can construct maps

for all7 > 1, which we control on the homotopy level (see Theorem 2.1). These
maps induce maps between the Atiyah-Hirzebruch-Dold spectral sequences for
BPζT} and SP<(l)>-homology respectively which provide information about the
differentials in the Atiyah-Hirzebruch-Dold spectral sequence for BPζiy (see
Theorem 3.3). On the other hand, the triviality of the above composition implies
torsion results on the differentials in a modified Bockstein spectral sequence
for BPζiy analogous to the BP Bockstein spectral sequence of Johnson and Wil-
son [5] (see Theorem 4.5).

In order to illustrate how this new information might be used in calculation,

The second author wishes to thank the Natural Sciences and Engineering Research Council of
Canada and the Swiss National Science Foundation for their support while this research was
being carried out.
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we have considered the problem of constructing M{p\ v{ι, vi^y ..., v
J

n»). M(p')
is the Moore spectrum having all integral homology groups trivial except for
Z/p1' in dimension 0. Inductively, M(p% v{i> vfo ..., vJ

n») is the cofiber of a map
2 > > J M(p{, Ό{I9 v

J

22y . . ., vi

HtV)">M(pi

9 v{i, vί*9 •••, vf*^*) which induces multipli-

cation by vin in BP-homology. This means that BP^M(pi

yv{ίyv
J

22y ...^ τ ψ ) ^
BPxliP*) v^y υ22> ""> vnn)- The information about differentials in the spectral
sequences mentioned in the previous paragraph can be used to obtain lower
bounds onjn in terms of iy and j2 in terms of j l y if M(p*y zψ, υfa •••, vJ

n») exists.
It should be noted that better bounds than ours can be obtained from ideas in
RaveneΓs book [8] (see Remark 3.6; see also the conditions on jx and j2 estab-
lished by Lin in [7]). Thus the main theorems of the present paper are Theo-
rems 3.3 and 4.1 giving information about the differentials in the different spec-
tral sequences. The results about the constructibility of M(p\ zψ, vJ

2\ •••, v3

n«)
are given simply to illustrate the use of these theorems. We hope that someone
else will be able to use this information in a more novel way.

The paper is organized as follows. In the first section we show how to use
the first author's results in [2] to derive the condition that if M{pι

y v{*y v
3

2*y •••, vJ

n

n)
is constructible then/n >i. In the second section we introduce a general construc-
tion of maps from BPζmy to BPζm—1>. We apply it in Section 3 to the case
m—2 in order to get the interesting maps between the Atiyah-Hirzebruch-Dold
spectral sequences for SJP<2> and BF<1> respectively; we illustrate the use of

these maps by proving that if M(p\ sψ, vfr) is constructible, then j2>-^1—. Fi-
p+ί

nally, we discuss in the fourth section the set up and general use of the modified
Bockstein spectral sequence for BPζZ) and obtain torsion results on its differen-
tials.

1. The Atiyah-Hirzebruch-Dold spectral sequence for C(m)

The existence of universal bounds for the additive order of the differentials
in the Atiyah-Hirzebruch-Dold spectral sequence was deduced in [2] from tor-
sion results on the Postnikov ^-invariants of spectra which produced maps
between the Atiyah-Hirzebruch-Dold spectral sequence and a spectral sequence
having only one-non-trivial line in its 2?2-term.

The purpose of this first section is to show that these results have direct con-
sequences as soon as we concentrate our attention on specific examples. But
our main goal is to motivate and illustrate the basic ideas of the method we shall
develop in the next sections.

If m is a positive integer, let C(m) be the spectrum such that

(vly v2y •••, vm.ly vm+ly vm+2y •• )

(see Yagita's [9] for the existence of C(m)). The non-trivial Postnikov β-invari-
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ants of C(m) are kh^+\C(ni))t=Hh^+\C(tn)[h\vm\ - 1 ) ] ; Z(p)) for h>ly where
we write C(m) [j] for the 7-th Postnikov section of C(m). If we apply the method
of Theorem 1.4 of [2] to the spectrum C(m), we get:

Lemma 1.1. For any h>\, the k-invariant kh^m^\C{m)) has order dividing
p".

Proof. The spectrum C(m) [h \ υm \ — 1] has non-trivial homotopy groups
(which are isomorphic to Z^) only in dimensions 0, | vm | , 21 vm | , , (h— 1) | vm |
notice in particular that C(m)[h\vm\ — ί]=C(m)[(h— l)\vm\]. Therefore, we can
consider the cofibrations of spectra (where H(G, n) denotes the Eilenberg-Mac-
Lane spectrum having all homotopy groups trivial except for G in dimension n)

C{m)[d\vm\] -» C(m)[(d-ί)\υm\] -* H(Z(ph d\vm\ +1)

and the corresponding long exact homology sequences

for d=l, 2, —, k-1. According to Cartan's [4], Hh]Vm]+2H(Z(ph d\vm\ + 1 ) is a
direct sum of copies of Z/p, as is Hh]υm\+1C(m)[0]. By induction, it is then clear
that ph HhUJ+ιC(m)[h \ vm \ - 1 ] = 0 , and analogously that ph Hhhm] C(m)[h \ vm \ -1]
= 0 . Finally, the universal coefficient theorem implies that the exponent of the
cohomology group Hh^+1(C(m)[h\vm\ — 1]; Z(^) divides ph and the proof is
complete.

Now, consider the Atiyah-Hirzebruch-Dold spectral sequence for C(m)

E2

Stt « HS(X, πtC(m)) ^ HsX®πtC(m) =Φ C(m)s+t(X),

where X is any bounded below spectrum. The non-trival differentials in this

spectral sequence are dh{0>»]+1 for h>\.

Corollary 1.2. In the Atiyah-Hirzebruch-Dold spectral sequence for C(m)y

the differentials satisfy

ph ^ιj«ι + i = o for any h>l, s and t.

Proof. Because of Lemma 1.1, this is a consequence of Proposition 2.1 of
[2] if t=0 and of the idea explained in Lemma 2.3 of [2] in the general case.

EXAMPLE 1.3. We want to apply this result to the problem of the construc-
tibility of M(p*9 sψ, vJ

22, •••, vj

n*). With m an integer between 1 and n, let us
compute C(m)^M(pi

9 υ{i, vfa •••, vJ

n"). Studying the C(m)-homology exact se-
quences of the cofibrations defining M(p\ v{i> v&y •••, vί»), we find an additive
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isomorphism

{ J l ) Z/ίtyJ/^i")® Afa, w2i

where Λ denotes an exterior algebra over Z and |wΛ| = ^ | ^ | + 1 . On the other
hand, we can calculate C(m)*M(p\ zψ, v{*> •••, ί i") via the Atiyah-Hirzebruch-
Dold spectral sequence for C(m). For this, we first need to know the integral
homology of M(p\ v{i, Ό{*> •••, v'n

n): it is not hard to check that, additively,

where | α o | = O a n d |α Λ |==/ A | τ ; A |+l for Λ=l, 2,—,n. But in order to get the
right answer for C(m)*M(p\ zψ, z;̂ 2, ..., vj

n«), there must be a differential which
kills *;£«; more precisely, the differential dj»*]v^+1 must verify

where λ is a generator of Z/^'. Now, it follows from Corollary 1.2 that

pJm\a0®vJ

m

m = 0

and consequently that p'^X must vanish in Z/p*. This implies the following
assertion:

If the spectrum M{pi

}v{^,vj

22> •• ίz;^) is constructίble, then jm>i for m=

1,2,..., n.

One should say that this result is not very strong (see Remark 3.6 and notice that
in the special case of M(p\ v{τ) for an odd prime number p, the exact answer to
the question of the constructibility may be deduced from Theorem 12.1 of
Adams' [1]: M(pi

9v
ίi}) is constructive if and only if j1 is divisible by p*"1),

but it is given here as an example. However, our argument produces the fol-
lowing more general statement: if X is a connective spectrum and m an integer
such that C{m)*X'βZ/p 'tt J / ^ i ) ® ^ for some A (as C(m)*-modules) and H*Xs^

, where \a\ = 7 1 ^ 1 + 1 , thenj>i.

2. A decomposition of BPζjn)

For every integer m>2, let BP<(my denote as usual the spectrum with
y^^Z{p)[v^ v2i •••, vm]. Now, for j a positive integer, consider the cofib-

ration

Σ'ι .ι BP<m> ̂  BP<m> *U BP<m>l(vL),

where the first arrow indicates a map inducing multiplication by vh on homotopy
and where the spectrum BP^jii^jivin) is such that BPζni)>l(v}n)*«
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Ί> 2̂> * * * > vm]l(vm) I notice the homotopy equivalence BPζmy j(vm)^BP<(m— Yy.
This section describes a decomposition of BPζmy in terms of the spectra
BPζm>l{vin) f o r y = l , 2, •••. Look at the following commutative diagram

S ι̂ «ιJ?F<jif> Σ'g>W ? S^JJBP<w-l>

|.ί

BP<m>

>l(vL+1) -Si* BP<fn>l(vL)

in which rows and columns are cofibrations of spectra, the map g. is determined
by the top left square and I. is the cofiber of g.. These maps /;. explain how to
build the BPζmyi(vJ

m

+1γs using BPζm—l> as the building blocks (instead of the
Eilenberg-MacLane spectra in a Postnikov tower). Notice that lj is actually
an element of BPζm— iyiv^+1(BPζfnyi(v3

m)). Especially interesting is the next
result which describes connections between BPζmy and BPζtn—1>.

Theorem 2.1. Let j be any positive integer and assume that there is an
integer βj such that v^'BPζm—iy^^BP^my/iυL^O, then there exists a
map

with the property that the homomorphism (/,)# induced by f. on homotopy acts on
an element ϋ i 1 ^ 2 ^i+*GΰP<w> J |C as follows:

Proof. First, if we compose the last two columns of the above diagram with

maps inducing multiplication by vej_1 in homotopy, we obtain the following

diagram in which only the columns are cofibrations:

I i
BP<my > * > *

I I
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If the hypothesis of the proposition is verified, the bottom composition v2_ι°lj

is trivial and we get a map

f.:
such that fjθv{n=ve

f*_ιo'Σilv>»]σι. The homomorphism V'J^CΣ'^OΊ)* induced by

v'j^o'Σ/^σi on homotopy satisfies:

Consequently,

<rv+'>', if Λ=

REMARK 2.2. In the case when m is 1, the fact that ρs i/Z(p
y|t;i |+1(.BP<l>/

(v{))—§ (follow the argument of the proof of Lemma 1.1) makes it possible to
use the decomposition of 2ΪP<1> and obtain maps f.\ BP<l>->2; |t'lli?Z(i>), for

, such that

f , if Λ=0,

, if

3. Maps between the Atiyah-Hirzebruch-Dold spectral sequences
for BP<2> and

Now, let us consider the decomposition explained in the previous section
in the case nι—2 and show that the hypothesis of Theorem 2.1 is verified for
any positive integer j .

Proposition 3.1. For every positive integer j , the υ^torsion-free part of
BPζY)* {BP(2yi{vJ

2)) is concentrated in even degrees and the vλ-torsion part of
BPζX}*(BPζ2yi(vi)) is concentrated in positive degrees.

Proof. Corollary 10 of [6] implies that the assertion holds for i?P<l)>*
BPζ\y. Then, use inductively the long exact sequences in 2?P<[l]>-cohomology
associated with the cofibrations

BP<2>l(vί+1) ti BP<2>l(vi) - i Σ ; > 2 l + 1 # P < l >

given by the bottom sequence in the first diagram of Section 2, for j= 1,2, •••

(and recall that BP<2>l{v2)—BP<\»\



A DECOMPOSITION OF J5P<2> AND ^-TORSION 573

This produces the statement of the proposition for BF<l>*(l?P<(2>/(^)) for

Corollary 3.2. For all positive integers k and j , ^

(vί))=0 if Sk , is an integer > ^ ± ί In particular, v'j

(vJ

2))=:0for each integer ej>(p+l)j.

Proof. An element #eJ3P<l>2*+1(jBP<2>/(z^)) must be ̂ -torsion because
it is in odd degree and v\kjχ=0 since its degree is negative.

This assertion enables us to apply Theorem 2.1 for m=2 and ej=(p-\-\)j
+ 1 : it produces maps

f.: BP<2>->Σ1-^BPO>

for all positive integers/. For any bounded below spectrum X, let us look at the
Atiyah-Hirzebruch-Dold spectral sequences for BPζ2} and .RP<l)>-homology

E]tt ^ HS(X; ;r,BF<2» « HsX®πtBP<2y ^ BP<2\+t{X)

and

E2

s>t « HS(X; πtBP<X» « HsX®ntBP<X> ^ BP<iys+t(X)

respectively. The f/s induce homomorphisms E2

Stt->E2

Stt+\υi\ and hence maps
between these spectral sequences: we then obtain immediately the next result.

Theorem 3.3. There are maps of spectral sequences

{r>2y t>0) with the following property: if Σ xk®vίkv2+k belongs to Er

st (where

the sum is taken over a finite number of k's, xk is represented by an element xk of HSX,

h is a positive integer and t=dk \ vλ \ -\-(h-\-k) \v2\), then

(/y)*(Σl**®^*^+*) = 0 , if j<h

and

(Λ)*(Σ xk®vίkvh

2

+k) is the class o/^®»i*+c*+1)*+1 in Er..t+\9l\ .

REMARK 3.4. This theorem provides infinitely many ways to compare the
Atiyah-Hirzebruch-Dold spectral sequence for J5P<2> with that for 5P<1>. If
one is dealing with a specific problem, it is generally advantageous to use several
of the maps (/y)# This method may be of special interest in order to understand
the differentials dr

SJ: Er

Stt->Er

s-rιt+r-ι in the spectral sequence for BPζT}: for
instance, if we choose j<h, the vanishing of (/y)#(Σ %®^1*^2+A) gives the
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equality

= O in

EXAMPLE 3.5. We present here a more explicit application of our compar-
ison method. We have seen in Section 1 that if the spectrum M(p'y τψ, vfa
•",vί«) is constructible, then^Ί and j2 are forced to be >i. But now, we can
prove that there must also exist a relation between j1 and j 2 .

If we compute BPζ2y^M(pi

yv{iyv
J

2ή via the J?P<2>-homology exact se-
quences associated with the cofibrations defining M(p*y v{i, v{*)y we find that
BPζ2>*M(p\ uί'i, vJ

22)**Zlpi[v1, v2]l(v{i, vj

2*). On the other hand, if we per-
form this calculation via the Atiyah-Hirzebruch-Dold spectral sequence

E\ti « Hs(M(p\ v{

(recall that H*M(p\ v{i, vty^Z/p-ao®A(alya2) with K | = 0 and 1̂ *1=
+ 1 for k=l and 2), we observe as in Example 1.3 that

where λ is a generator of Z/p\ Then, take the map fh: 5P<2>->χ- | ιΊ |βP<l>
and notice that the homomorphism (fj2)* induced by /, 2 on homotopy maps 1
onto a multiple of vly say μv1 with μ^Z(p)y since (/i2)*(l) belongs to π\Vl\BPζYy.
The homomorphism (/ia)#: ̂ i 2 1 " 1 " 1 - * ^ * 1 ^ ^ , given by Theorem 3.3 provides
the diagram

Consequently, the commutativity of the diagram shows that ^y2^2J+} | t ; ,(

is exactly the class of λtfo®*>(/+1);'2+1 i n ^ofyίij+i^r B u t r e c a 1 1 t n a ^

Mίl'>^{'I>«;2»)βZ/ίl'M/(«;ί1)®Λ(w2) ( s e e Example 1.3). Therefore, there are

only two systems of non-trivial differentials in the spectral sequence E% *:

and

for all Λ^O, where Xk and \J are generators of Zjp1. Thus, we conclude

that ^jiJjjil,,^, is trivial and that the class of Xflo®^+ 1 ) y 2 + 1 in ^2}Ji*,1

+lri,
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is 0. However, it turns out that the only differential which may kill it is
<%!:ί.<w+iy,+w1>ι.1ι

 s t a r t i n g f r o m Ί ® » # + t ) ' f + W l (provided (p+lfo+l-fe
0). This produces the following inequality in order to be in the right Er:

or in other words,

Kl p+ι

(observe that the condition (/>+l)j2+l—ii^O is then trivially verified). There-
fore we have deduced very easily from our general argument the following condi-
tion on the constructibility of M(p\ ϋ{Ί, v[*)\

If the specrtum M(p\ v{iy vfc) is constructible, then jι>i3 jι>i and

h' ρ+1 '

REMARK 3.6. Stronger results may be deduced from the fact that for any
ideal / CBP*, the realizability of BP^jl as the i?P-homology of a spectrum implies
that / is an invariant ideal (see pages 138 and 319 of [8]). Thus the full power
of BP^BP cooperations can be brought to bear on the problem. Notice also
that Lin gives conditions for the realizability of M{p\ v{i> vfa) for the case p>5
in [7].

REMARK 3.7. The method presented in the above example provides in gen-
eral new information on the existence of connective spectra X such that
BPζiy^X^Zlp^ v2]l(v{ιf v

J

22)®A for some A.

REMARK 3.8. In the case when m is 1, Remark 2.2 allows us to compare
the Atiyah-Hirzebruch-Dold spectral sequence for BP<l>-homology with that
for ordinary homology with Z(p)-coefficients (whose £2-term has only one
non-trivial line).

REMARK 3.9. Of course, we would like to generalize our argument and ob-
tain maps between the Atiyah-Hirzebruch-Dold spectral sequences for BP<(m)
and BPζm—iy for any m>\. In particular, if we were able to check the
hypothesis of Theorem 2.1, i.e., to show that for any m>2 some power of vm-χ
annihilates BP<yn^iy]v^+\BPζmyi(vJ

m)) for appropriate /s, then we could
conclude that

— ]m-l

for 2<m<n in a constructible M(p\ vί\ vJ

2\ •••, vJ

n»).
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4. A modified Bockstein spectral sequence for 2?P<2>

In Proposition 5.14 of [5], Johnson and Wilson introduce a spectral sequen-
ce coming from the BP Bockstein cofibration sequence

ΣMBP<n> ^ BP<n> -> BP<jι-\> .

A similar spectral sequence can be obtained by gluing together the cofibrations
in the bottom row of the first diagram in Section 2 to get the following tower of
cofibrations.

\

BP<2>l(vl)

BP<2>l(v2) - i -

The diagonal maps, Δs, are the cofibers of the ls's and have degree one. If
we smash everything with a spectrum X and then take homotopy, we get a
spectral sequence with

dr

Stt . Er

st -» J?5 + r / _i

(see Boardman's [3], Section 4). We call this the modified Bockstein spectral
sequence for BPζiy^X, because, as we will show later, its jB°°-term is analogous
to that of the ordinary Bockstein spectral sequence. It has the same lί^-term,
up to a change of grading, as the spectral sequence of [5]. Note that the inverse
limit of the vertical maps in the tower is BPζΐ).

Let us analyze the convergence of this spectral sequence. For convenience
we will assume that X is (—l)-connected and we set M=BPζ2>*X and write
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Ast for BPζ2yi(vs

2)tX, and for any graded module Z>, write Dt to mean the ele-
ments of degree t in D> so that we have the short exact sequence

0 -> (Mlvs2-M)t ->Ast^+ (Ker{ ©ί: M-> M} ),-..„.-! -> 0 .

In the terminology of [3], this is a right half plane spectral sequence so that, by
Theorem 9.2 of [3], if R l i m Z ^ = 0, where Zr

s.t = A71(ϊm{gs+1o. .ogs+f_1:

As+rt->As+lt}), this spectral sequence converges strongly to Slim {BP<^Σ}j
<—j

(v{)*X), filtered by ί^Ker-flim A.->AS}. We have two jobs, show that
<

Rlimifϊ t #=0 and determine Fs/Fs+1, which is of more interest than the group
< r

being filtered, as is usual for Bockstein spectral sequences.
The whole strategy for both computations, is to work with the much sim-

pler systems, Cs=Mjv2-M and Bs=Kzτ{ vs

2\ M-+M} and then use the short
exact sequence of inverse systems

\g.

0 -> Cs — U As -^-> Bs -> 0

to derive the results for As.

Lemma 4.1. lim ^4sedim Cs.

Proof. If x is an element of Bs+ly then g/

s

/(x)=v2x^Bs because of the
definition of gs given by the first diagram of Section 2. Now use the exact
sequence (see 1.8 of [3])

d
0 -> lim Bs -> ΐ[sBs -> IL Bs -> Rlim Bs -* 0 , (*)

where (dx)s=xs— gs/(xs+i)=:zχs~~^2^.t+i B u t since M%=0 for *<0, for any

ίt there exists an integer k (with 0<&< ) and an e lementyEM^^i such

that x=vk

2y and jy$Im{ z;2}. This shows that d is injective and that
lim JS,=O. Finally, from the six term exact sequence
< s

0 -> lim Cs -> lim As -> lim Bs -> Rlim Cs -> Rlim 4 , -> Rlim Bs -» 0 ,

we get the desired isomorphism.
Now we want to identify FJFS+1. First, define F's=Ker {lim Cj->CS}.
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A diagram chase around

0
ϊ

F's c-> lim Cj > C9
<—

I I - I
(where the two rows and the last column are exact), shows that Fss^Ff

Λ\ so
it is sufficient to identify Fi/F's+i. If xEΐMy let us call x's the class of x in Cs:
it is then clear that ££(#£+1)=x's. Now from the sequence (*) for lim C4, we see

< s

that lim Cs is the usual (z;2)-adic completion of M. Thus F'sIF's+1=v2-Mlv2

+1'
4 s

M and we have proved the following

Lemma 4.2. F8IFs+ι^v$

2 Mjvf+1 M.

Finally we have to show that the spectral sequence converges. Although
we only really need weak convergence, Theorem 9.2 of [3] implies that our filt-
ration makes weak convergence equivalent to strong convergence and that we
may verify the convergence of the spectral sequence to 2 lim (BPζ2yi(vJ

2)%X)£*
<—i

^BPζly^X (see Lemma 4.1) by checking that Rlim Zr

Sti=0. Here we definite-
< r

ly need to fix a value of t before taking these limits. Since the maps in the B
system change t, we are going to regrade B, taking Bst to mean the image of
Ast, i.e. Bst means elements of degree t—s\v2\ —1 annihilated by multiplication
by v2 so that Bs t=0 for t<s\vs\. Having fixed s and t, pick r to be any integer
with (r+s)\v2\ >t+l. Now, a non-zero element x in Zr

st corresponds to an ele-
ment xs+r in A,+r>t with ) ' ^ 5 + i θ o^+r.1(Λ:J+r)φ0 but gs(y)=0. Let Z's

r

ti be
defined similarly: Z's

r

ίt=Δ71(lmiis+1og/

s+1o...og's+r_ί: Cs+Γpί-»C5+M}). For x'Φ
0&Z's

r

tt we have an element x's+r in Cs+rt with analogous conditions about the
action of the g?s: /=* 4 + i °£s^i o °£^r-i(# s '+r)Φ0 but gs(y')=0. But since
Bs+rt=0, we deduce that is+r: Cs+r-*As+r is an isomorphism and it follows from
the fact that£yo^.+1=z'yo£< for ally that

Z; i # «Zί : , fora l l r ;

Now, because Cr+1 maps surjectively onto Cr, Z's't
ι maps onto Z's

r

t so that from
(*) we get

Lemma 4.3. Rlim Zr

st=Rlim Z's
r

tt = 0.
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Finally, what we have proved is

Theorem 4.4. The modified Bocksieίn spectral sequence for BPζ2y*X,
where X is {—\)-connected, converges strongly to BPζΐ)*X filtered by Fs t=
Ker{lim BP<2>l(vi)tX^BP<2>l(vs

2)tX} with
<

Being a kind of Bockstein spectral sequence, although it is meant to give us
a schema for computing Z?P<2>-homology from #P<(l>-hornology, in practice
what, is of interest are the differentials. Since

y / y = o
(see Corollary 3.2), we get:

Theorem 4.5. In the modified Bockstein spectral sequence for

Proof. Notice that the horizontal arrows, lp in the tower of cofibrations
are elements of the groups which Corollary 3.2 tells us are killed by appropriate
powers of vx. Since the definition of the diffeiential dr

SJ involves composing a
certain class of maps in BPζ2yj(v2

+r)*(X) with the homomorphism induced by

ls+r: BP<2>l(vs

2+
r) -> 2(s+r)It>2'+1BP<l> ,

we get the desired result. Notice that the same result holds for the cohomology
version of this spectral sequence.

EXAMPLE 4.6. Again we apply this result to the study of the constructibili-
ty of M{p\ ϋ{Ί, vίή and not surprisingly get a similar result. First, setting
J=Zlρ'[vi]l(v{i) so that BP<!>*M(p\ v{iy Ό{*)& J®XJ^+1J, we find that

Then, for degree reasons, dr

s*(as) = 0 for all r and s as well as ^ , ^ = 0 for all
r>j2. Since BP<2>*M(p\ υ{i, ϋ ίήsZ/p 1 '^ , v2]l(v{ι, vJ

22), we get:

0 , i

The first case tells us that dr

s_r,^=0 for s<j2 (i.e. no multiple of as is in the ima-
ge of a differential when s<j2), while the second case coupled with the fact that
^5:.*"0 ft>r r>j2 tells us that dJ

0%(β0) = \aj2 where λ generates Z/p\ Finally,
by Theorem 4.5 we have



580 D. ARLETTAZ AND J. KLIPPENSTEIN

I .fl

Therefore, we must have (p+l)j2+l>ji—l, i.e., j2>^~. in a constructible
ί+1
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