

Title	Research Activities of JWRI
Author(s)	
Citation	Transactions of JWRI. 2024, 53, p. 1-33
Version Type	VoR
URL	https://hdl.handle.net/11094/100525
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

ISSN 0387-4508

TRANSACTIONS
OF
J W R I

Vol. 53

2024

JOINING AND WELDING RESEARCH INSTITUTE

OSAKA UNIVERSITY

JAPAN

Research Divisions and Researchers (December 2024)

Director	Dr. Fujii Hidetoshi	
1. Research Division of Materials Joining Process		
1) Energy Control of Processing		
Professor	Dr. TANAKA Manabu	Dr. ITO Kazuhiro
Associate Professor	Dr. KOMEN Hisaya	Dr. ABE Hiroya
Assistant Professor	Dr. TASHIRO Shinichi	Dr. KOZAWA Takahiro
Assistant Professor	Dr. WU Dongsheng	
Guest Professor	Dr. TANAKA Kazushi	
Guest Associate Professor	Dr. XU Bin	
Guest Researcher	Dr. FUJIYAMA Shoji	Dr. KIRIHARA Soshu
Guest Researcher	Dr. ISHIDA Kazuya	Dr. SPIRETT Fiona
2) Energy Transfer Dynamics		Dr. FUJIMOTO shinji
Professor	Dr. SETSUHARA Yuichi	
Associate Professor	Dr. TAKENAKA Kosuke	
Assistant Professor	Dr. TOKO Susumu	Dr. KONDOH Katsuyoshi
Guest Professor	Dr. ONO Kouichi	Dr. UMEDA Junko
Guest Professor	Dr. UCHIDA Giichiro	Dr. KARIYA Shota
3) Micro Joining		
Professor	Dr. NISHIKAWA Hiroshi	Dr. TSUKAMOTO Masahiro
Associate Professor	Dr. TATSUMI Hiroaki	Dr. SATO Yuji
Guest Professor	Dr. CHAN Yon Cheong	Dr. TAKENAKA Keisuke
Guest Professor	Dr. LIN Shih-Kang	
Guest Professor	Dr. WU Tzu-Chia	Dr. FUJII Hidetoshi
Guest Professor	Dr. TAKAHASHI Yasuo	Dr. NAKANO Takayoshi
Specially Appointed Researcher	Dr. NAOE Takuya	Dr. MURPHY B Anthony
Specially Appointed Researcher	Dr. GAO Runhua	Dr. GOODRIDGE Ruth
4) Laser Materials Processing		Dr. GOECKE Sven-Fritjof
Professor	Dr. TSUKAMOTO Masahiro	Dr. YAMAMOTO Motomichi
Associate Professor	Dr. SATO Yuji	
Assistant Professor	Dr. TAKENAKA Keisuke	
Guest Professor	Dr. KIKUCHI Yasushi	
Guest Associate Professor	Dr. NISHIO Masahiro	
Specially Appointed Researcher *	Ms. HIGASHINO Ritsuko	
Specially Appointed Researcher *	Mr. YOSHIDA Norio	
Specially Appointed Researcher	Mr. TOKUMOTO Junpei	
Specially Appointed Researcher *	Dr. MIZUGUCHI Yuta	
5) Advanced Engineering Science		
Guest Professor	Dr. HIGURASHI Eiji	Dr. TAKAHASHI Makoto
2. Research Division of Materials Joining Mechanism		
1) Welding Mechanism		
Professor	Dr. ITO Kazuhiro	Dr. UMEDA Junko
Associate Professor *	Dr. TAKAHASHI Makoto	Ms. KATSUMATA Mihoko
Assistant Professor	Dr. YAMAMOTO Hajime	Dr. HONG Seong Min
Assistant Professor	Dr. HONG Seong Min	Dr. SPIRETT Fiona
Specially Appointed Associate Professor	Dr. ZHAO Bingbing	Ms. UEHARA Kunika
Guest Professor	Dr. OGAWA Kazuhiro	
Guest Professor	Dr. SHARMA Abhay	
2) Joint Interface Structure and Formation Mechanism		
Professor	Dr. FUJII Hidetoshi	Dr. SERIZAWA Hisashi
Assistant Professor	Dr. YAMASHITA Takayuki	Dr. FUJITA Sakae
Assistant Professor	Dr. MIURA Takuya	Dr. CHIBA Koji
Specially Appointed Professor	Dr. USHIODA Kohsaku	Mr. KAWAHARA Atsushi
Specially Appointed Associate Professor	Dr. MORISADA Yoshiaki	Mr. SHOTRI Rishabh
Specially Appointed Associate Professor	Dr. CHEN Juan	
Specially Appointed Associate Professor	Dr. AOKI Yasuhiro	Dr. FUJII Hidetoshi
Specially Appointed Associate Professor	Dr. SHARMA Abhishek	Dr. ERA Tetsuo
Specially Appointed Assistant Professor	Dr. NAGIRA Tomoya	Dr. ASAII Satoru
Guest Professor	Mr. KAWAI Teruki	Ms. TAKEI Yuko
Guest Professor	Mr. MUKUDA Muneaki	Dr. KADOTA Keiji
Specially Appointed Researcher	Mr. KAMAI Masayoshi	Dr. TANAKA Manabu
Specially Appointed Researcher	Mr. OGURA Takuya	Dr. ITO Kazuhiro
3) Composite Materials Processing		Dr. TSUKAMOTO Masahiro
Professor	Dr. KONDOH Katsuyoshi	Dr. SETSUHARA Yuichi
Professor	Dr. UMEDA Junko	
Associate Professor	Dr. KARIYA Shota	
Guest Professor	Dr. MA Qian	
Guest Professor	Dr. YANG Yafeng	
Guest Professor	Dr. LI Shufeng	
Guest Professor	Dr. OZAKI Yukiko	
Specially Appointed Researcher	Ms. FUJII Hiroko	
Specially Appointed Researcher	Mr. MINAMITANI Ryoji	
Specially Appointed Researcher	Mr. HUANG Jeff	
Guest Researcher	Dr. SHITARA Kazuki	
3. Research Division of Materials Joining Assessment		
1) Joining Mechanics and Analyses		
Professor	Dr. MA Ninshu	Dr. FUJII Hidetoshi
Assistant Professor	Dr. WANG Qian	Dr. NISHIBATA Hitomi
Guest Professor	Dr. LU Fenggui	Dr. FUJIMOTO Hiroki
Specially Appointed Professor	Dr. NAKAO Kazushige	Dr. INOUE Hiroshige
Specially Appointed Assistant Professor	Dr. HUANG Wenjia	Ms. JOTOKU Kana
Specially Appointed Researcher	Mr. NARASAKI Kunio	Dr. INOUE Hiroshige
2) Joining Design and Structuring		Mr. OKADA Toru
Professor	Dr. MIKAMI Yoshiaki	Mr. WATANABE Koutarou
Assistant Professor	Dr. Zhou Hongchang	Mr. NOMOTO Masashi
3) Joining Metallurgical Evaluation		Mr. SHIMADA Naoaki
Professor	Dr. IKEDA Rinsei	Mr. ARAI Yuji
Associate Professor	Dr. KADOI Kota	Mr. TACHIBANA Hayato
		Dr. TANAKA Manabu
		Dr. ITO Kazuhiro
		Dr. MIKAMI Yoshiaki
		Dr. KADOI Kota
		Dr. SAIDA Kazuyoshi
		Dr. HIRATA Hiroyuki
		Dr. OGURA Tomo
		Dr. YAMASHITA Shotaro
4. Research Center for Additive Joining Application		
Center Director, Professor	1) Green Additive Manufacturing	Dr. FUJII Hidetoshi
Professor *	Professor *	Dr. ABE Hiroya
Assistant Professor *	Assistant Professor *	Dr. KOZAWA Takahiro
2) Lithographic Additive Manufacturing		
Professor	Dr. KIRIHARA Soshu	
Assistant Professor	Dr. SPIRETT Fiona	
Specially Appointed Professor	Dr. FUJIMOTO shinji	
3) Additive Manufacturing Mechanism		
Professor *	Dr. KONDOH Katsuyoshi	
Professor *	Dr. UMEDA Junko	
Associate Professor *	Dr. KARIYA Shota	
4) Laser Additive Manufacturing		
Professor *	Dr. TSUKAMOTO Masahiro	
Associate Professor *	Dr. SATO Yuji	
Assistant Professor *	Dr. TAKENAKA Keisuke	
5) Advanced Additive Manufacturing		
Professor *	Dr. FUJII Hidetoshi	
Professor *	Dr. NAKANO Takayoshi	
Guest Professor	Dr. MURPHY B Anthony	
Guest Professor	Dr. GOODRIDGE Ruth	
Guest Professor	Dr. GOECKE Sven-Fritjof	
Guest Professor	Dr. YAMAMOTO Motomichi	
5. Strategy Office for Promotion of Inter-Institute Collaborations		
Leader, Professor *	Dr. SETSUHARA Yuichi	
Professor	Dr. ABE Hiroya	
Associate Professor	Dr. HASHIMOTO Yoshihide	
Assistant Professor	Dr. MOKUDAI Takayuki	
Assistant Professor	Dr. KOZAWA Takahiro	
Assistant Professor	Dr. CANTON VITORIA Ruben	
Assistant Professor	Dr. ISSARIYAPAT Ammarueda	
6. Joint Interface Microstructure Characterization Room		
Associate Professor	Dr. TAKAHASHI Makoto	
7. Global D&I Promotion Office		
Professor *	Dr. UMEDA Junko	
Associate Professor	Ms. KATSUMATA Mihoko	
Assistant Professor *	Dr. HONG Seong Min	
Assistant Professor *	Dr. SPIRETT Fiona	
Technical Specialist *	Ms. UEHARA Kunika	
8. New Normal Manufacturing Consortium Office		
Professor	Dr. SERIZAWA Hisashi	
Guest Professor	Dr. FUJITA Sakae	
Guest Researcher	Dr. CHIBA Koji	
Guest Researcher	Mr. KAWAHARA Atsushi	
Specially Appointed Researcher	Mr. SHOTRI Rishabh	
9. DAIHEN Welding and Joining Research Alliance Laboratories		
Director, Professor *	Dr. FUJII Hidetoshi	
Vice Director, Guest Professor	Dr. ERA Tetsuo	
Specially Appointed Professor	Dr. ASAII Satoru	
Specially Appointed Assistant Professor	Ms. TAKEI Yuko	
Guest Associate Professor	Dr. KADOTA Keiji	
Professor *	Dr. TANAKA Manabu	
Professor *	Dr. ITO Kazuhiro	
Professor *	Dr. TSUKAMOTO Masahiro	
Professor *	Dr. SETSUHARA Yuichi	
10. Nippon Steel Future Manufacturing Research Alliance Laboratories		
Director, Professor *	Dr. FUJII Hidetoshi	
Vice Director, Guest Professor	Dr. NISHIBATA Hitomi	
Guest Professor	Dr. FUJIMOTO Hiroki	
Guest Professor	Dr. INOUE Hiroshige	
Specially Appointed Assistant Professor	Ms. JOTOKU Kana	
Guest Professor	Dr. INOUE Hiroshige	
Guest Researcher	Mr. OKADA Toru	
Guest Researcher	Mr. WATANABE Koutarou	
Guest Researcher	Mr. NOMOTO Masashi	
Guest Researcher	Mr. SHIMADA Naoaki	
Guest Researcher	Mr. ARAI Yuji	
Guest Researcher	Mr. TACHIBANA Hayato	
Professor *	Dr. TANAKA Manabu	
Professor *	Dr. ITO Kazuhiro	
Professor *	Dr. MIKAMI Yoshiaki	
Professor *	Dr. KADOI Kota	
Professor *	Dr. SAIDA Kazuyoshi	
Professor *	Dr. HIRATA Hiroyuki	
Professor *	Dr. OGURA Tomo	
Assistant Professor *	Dr. YAMASHITA Shotaro	
11. Honda-Osaka Univ. Joining Technology Monozukuri Research Alliance Laboratories		
Professor *	Dr. FUJII Hidetoshi	
Guest Professor	Mr. WATANABE Shinya	
Professor *	Dr. IKEDAI Rinsei	
Professor *	Dr. SERIZAWA Hisashi	
Specially Appointed Researcher	Dr. TOYODA Hiroki	
Guest Researcher	Mr. KAMIKURA Masanobu	
Guest Researcher	Mr. TAKAKI Sohei	
Guest Researcher	Mr. KOBAYASHI Haruhiko	

Specially Appointed Professor *	Dr. USHIODA Kohsaku
Specially Appointed Associate Professor *	Dr. MORISADA Yoshiaki
Specially Appointed Associate Professor *	Dr. AOKI Yasuhiro
Assistant Professor *	Dr. YAMASHITA Takayuki
Assistant Professor *	Dr. MIURA Takuwa
Specially Appointed Assistant Professor *	Dr. SHARMA Abhishek
Specially Appointed Researcher *	Dr. SHOTRI Rishabh
Specially Appointed Researcher *	Mr. KAMAI Masayoshi
Graduate School of Engineering, Associate Professor *	Dr. NOMURA Kazufumi

12. Osaka Fuji "Advanced Functional Processing" Joint Research Chair

Professor *	Dr. TSUKAMOTO Masahiro
guest Professor	Dr. ABE Nobuyuki
Associate Professor *	Dr. SATO Yuji
Specially Appointed Assistant Professor	Mr. HAYASHI Yoshihiko
Specially Appointed Assistant Professor	Mr. MIZUTANI Masami
Specially Appointed Researcher	Mr. IKEDA Keiichirou
Visiting Researcher	Dr. MORIMOTO Kento
Visiting Researcher	Mr. TATSUMI Yoshihiro

13. Global and Industrial Collaborative Research Center for Computational Welding Science (CCWS)

Leader, Professor *	Dr. MA Ninshu
Guest Professor	Dr. MURAKAWA Hidekazu
Guest Professor	Dr. Li Changjiu
Guest Professor	Dr. NAKAO Kazunari
Guest Professor	Dr. FUJIKUBO Masahiko
Guest Associate Professor	Dr. SHIBAHARA Masakazu
Guest Associate Professor	Dr. MIYAMOTO Kenji

14. Joining Technology Hub

Leader, Professor *	Dr. FUJII Hidetoshi
Professor *	Dr. TANAKA Manabu
Professor *	Dr. ITO Kazuhiro
Professor *	Dr. SERIZAWA Hisashi
Professor *	Dr. IKEDA Rinsei
Professor *	Dr. MA Ninshu
Professor *	Dr. TSUKAMOTO Masahiro
Professor *	Dr. MIKAMI Yoshiaki
Associate Professor *	Dr. SATO Yuji
Assistant Professor *	Dr. YAMASHITA Takayuki
Assistant Professor*	Dr. MIURA Takuwa
Specially Appointed Professor	Dr. USHIODA Kosaku
Specially Appointed Associate Professor *	Dr. MORISADA Yoshiaki
Specially Appointed Associate Professor *	Dr. AOKI Yasuhiro
Specially Appointed Associate Professor *	Dr. SHARMA Abhishek
Guest Professor *	Dr. HIROSE Akio
Graduate School of Engineering, Professor *	Dr. SAIDA Kazuyoshi
Graduate School of Engineering, Professor *	Dr. OHATA Mitsuji
Graduate School of Engineering, Professor *	Dr. SANO Tomokazu
Graduate School of Engineering, Associate Professor *	Dr. OGURA Tomo
Graduate School of Engineering, Associate Professor *	Dr. OGINO Yosuke
Graduate School of Engineering, Associate Professor *	Dr. NOMURA Kazufumi
Graduate School of Engineering, Assistant Professor *	Dr. MATSUDA Tomoki
Graduate School of Engineering, Assistant Professor *	Dr. SHOJI Hiroto

15. Co-Creation Consortium for Joining and Welding with Blue Diode Laser

Professor *	Dr. TSUKAMOTO Masahiro
Associate Professor *	Dr. SATO Yuji
Guest Professor	Dr. ABE Nobuyuki
Assistant Professor *	Dr. TAKENAKA Keisuke
Specially Appointed Researcher	Ms. HIGASHINO Ritsuko
Specially Appointed Researcher	Mr. YOSHIDA Norio
Specially Appointed Researcher	Dr. MIZUGUCHI Yuta

16. Industry Cooperation Office

Professor *	Dr. ITO Kazuhiro
Guest Professor	Dr. SUGA Tetsuo

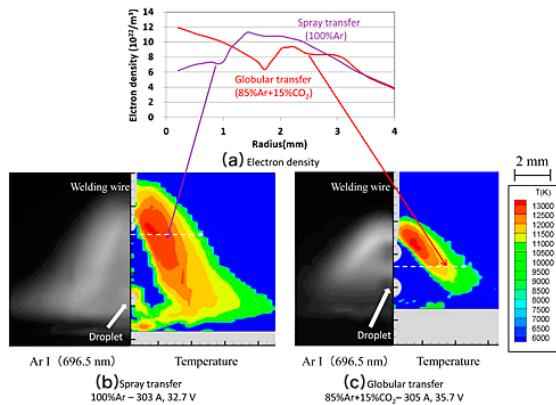
* Supplementary Assignment

Transactions of JWRI, Vol.53, 2024
CONTENTS

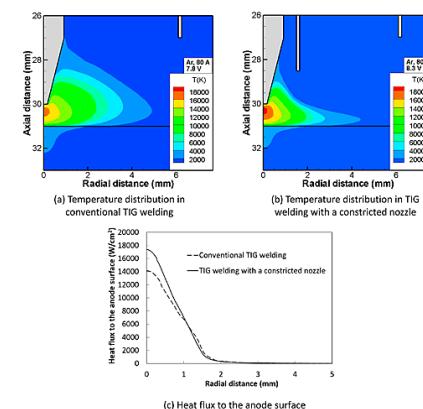
RESEARCH ACTIVITIES OF JWRI

Research Division of Materials Joining Process	
Dep. of Energy Control of Processing	1
Dep. of Energy Transfer Dynamics	2
Dep. of Micro Joining	3
Dep. of Laser Materials Processing	4
Research Division of Materials Joining Mechanism	
Dep. of Welding Mechanism	5
Dep. of Joint Interface Structure and Formation Mechanism	6
Dep. of Composite Materials Processing	7
Research Division of Materials Joining Assessment	
Dep. of Joining Mechanics and Analyses	8
Dep. of Joining Design and Structuring	9
Dep. of Joining Metallurgical Evaluation	10
Research Center for additive Joining Application(RAJA)	
Dep. of Green Additive Manufacturing	11
Dep. of Lithographic Additive Manufacturing	12
Dep. of Additive Manufacturing Mechanism	13
Dep. of Laser Additive Manufacturing	14
Strategy Office for Promotion of Inter-Institute Collaborations.....	15
Joint Interface Microstructure Characterization Room	16
Global D&I Promotion Office	17
New Normal Manufacturing Consortium Office	18
Osaka Fuji "Advanced Functional Processing" Joint Research Chair	19
CONTRIBUTION TO OTHER ORGANIZATIONS	20

Research Division of Materials Joining Process, Dep. of Energy Control of Processing


Research summary

The main research subject is the development of the high density energy source for processing advanced materials having special functions and properties. We undertake fundamental investigations of the properties of the high energy source interacting with materials, and we study advanced control techniques for optimizing the energy transport.


Major emphasis is placed on the generation, control and energy transport in arc plasmas, which are a high density energy source which have been applied to a variety of materials processing techniques such as welding, cutting, heating, high temperature processing, surface modification and the creation of powders.

Research subjects

- (1) Generation and control of thermal plasmas, and their application to welding and joining processes
- (2) Arc physics, molten pool behavior, and transport theory in fusion welding
- (3) Development of new arc electrodes based on the analysis of electrode-plasma interaction
- (4) Development of advanced high quality clean welding processes
- (5) Development of new generation welding and joining processes employing atmospheric pressure plasma
- (6) Control of arc discharge in lighting and electrical devices

Optical measurement of electron density and plasma temperature during spray transfer and globular transfer in gas metal arc welding process ((a) Electron density, (b) Spray transfer, (c) Globular transfer). An addition of CO_2 into shielding gas causes constriction of arc current toward the arc axis, which leads to globular transfer due to increase in arc pressure.

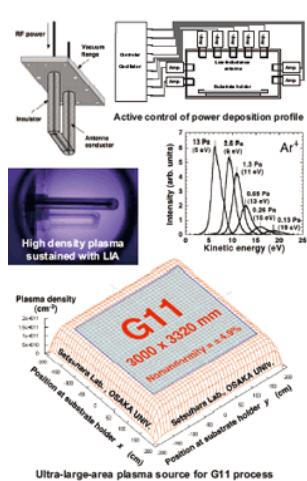
Numerical simulation on effects of constricted nozzle on arc phenomena in TIG welding process ((a) Temperature distribution in conventional TIG welding, (b) Temperature distribution in TIG welding with a constricted nozzle, (c) Heat flux to the anode surface). In TIG welding with a constricted nozzle, arc temperature increases due to constriction of arc. Consequently, larger heat flux to the anode surface is obtained compared with that of conventional TIG welding.

Major Papers

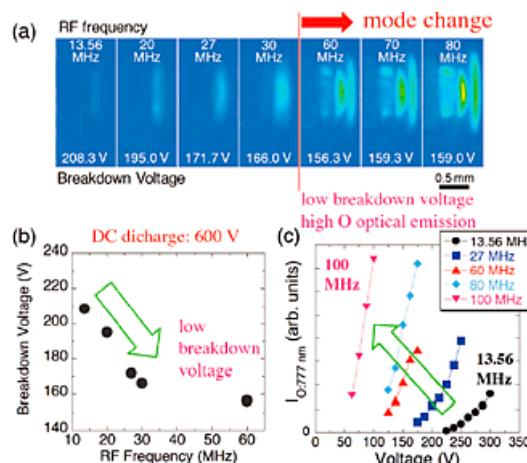
X. Xiao, C. Zhang, D. Wu, H. Komen, J. Gou, Y. Zhang, K. Zhang, S. Uchida, M. Tanaka, "Stabilising mechanism of cathode jet and droplet transfer in hybrid-laser-GMAW-based directed energy deposition of titanium alloy", *Virtual Phys. Prototyping*, 19 1(2024), 104029. [doi](#)

D. Wu, H. Komen, Y. Asai, M. Tanaka, A. Murata, "Arc micro-joining of Al and Cu foils", *Int. Commun. Heat Mass Transfer*, 156 (2024), 107681. [doi](#)

S. Tashiro, N.Q. Trish, K.D. Le, T. Suga, T. Kakizaki, K. Yamazaki, A.B. Murphy, A. Lersvanichkool, H.V. Bui, M. Tanaka, "Elucidation of droplet detachment mechanism in metal-cored arc welding", *J. Manuf. Process.*, 124(2024), 1583–1605. [doi](#)


S. Tashiro, "Interaction Mechanism of Arc, Keyhole, and Weld Pool in Keyhole Plasma Arc Welding: A Review", *materials*, 17(2024), 1348. [doi](#)

Research summary


Our research activities encompass works on development of process control technologies of surface and interface for advancement of materials joining science and processing technologies through creation of novel process-energy sources (plasmas and particle beams), and span the range of applications from to functionalization of materials to their process control. These research activities are based on fundamental studies on energy transfer dynamics involved in a variety of materials processing with process-energy sources.

Research subjects

- (1) Development of novel plasma sources and particle beams for advanced process technologies (CVD, PVD)
- (2) Development of novel large-area, low-damage and high-density plasma sources for advanced process control of functional materials
- (3) Development of novel large-area, low-damage and high-density plasma sources for advanced process control of functional materials
- (4) Creation of softmaterial processing science for development of advanced green nanotechnologies with inorganic/organic flexible hybrid structures
- (5) Studies on temporal and spatial control of discharge for development of innovative plasma sources for plasma medicine

Low-damage and ultra-large-area plasma source with multiple low inductance antenna modules

Development of innovative plasma source for plasma medicine
(a) ICCD images of atmospheric RF plasmas
(b) Frequency dependence of discharge breakdown voltage
(c) Frequency dependence of O optical emission intensity

Major Papers

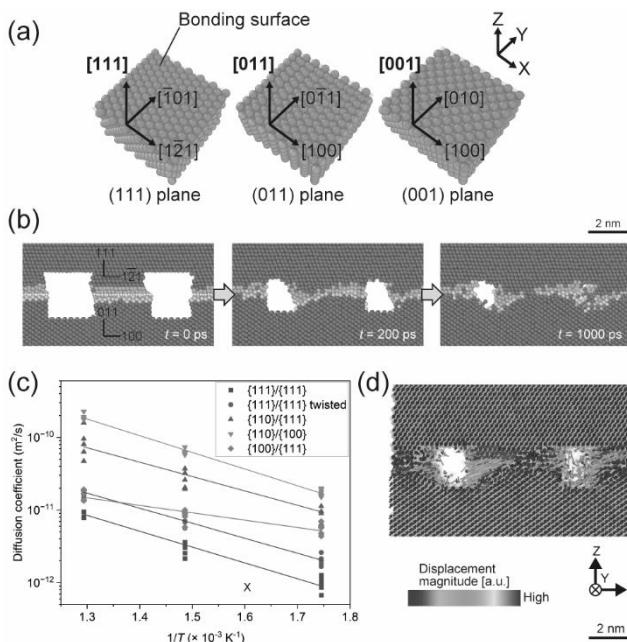
K. Takenaka, A. Jinda, S. Nakamoto, R. Koyari, S. Toko, G. Uchida, Y. Setsuhara, "Improving bonding strength by non-thermal atmospheric pressure plasma-assisted technology for A5052/PEEK direct joining", *Int. J. Adv. Manuf. Tech.* 130 (2024) 903–913. [doi](#)

K. Takenaka, A. Jinda, S. Nakamoto, R. Koyari, S. Toko, G. Uchida, Y. Setsuhara, "Influence of pre-treatment using non-thermal atmospheric pressure plasma jet on aluminum alloy A1050 to PEEK direct joining with hot-pressing process", *Int. J. Adv. Manuf. Tech.* 130 (2024) 1925–1933. [doi](#)

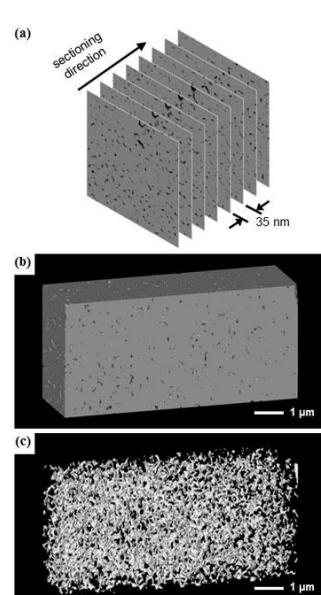
K. Takenaka, S. Nunomura, Y. Hayashi, H. Komatsu, S. Toko, H. Tampo, Y. Setsuhara "Stability and gap states of amorphous In-Ga-Zn-Ox thin film transistors: Impact of sputtering configuration and post-annealing on device performance", *Thin Solid Films*, 790 (2023) 140203. [doi](#)

K. Takenaka, H. Komatsu, T. Sagano, K. Ide, S. Toko, T. Katase, T. Kamiya, Y. Setsuhara, "Hydrogen-included Plasma-assisted Reactive Sputtering for Conductivity Control of Ultra-Wide Bandgap Amorphous Gallium Oxide" *Jpn. J. Appl. Phys.*, 63 (2024) 04SP65. [doi](#)

K. Takenaka, S. Nakamoto, R. Koyari, A. Jinda, S. Toko, G. Uchida, Y. Setsuhara, "Influence of pre-treatment with non-thermal atmospheric pressure plasma on bond strength of TP340 titanium-PEEK direct bonding" *Int. J. Adv. Manuf. Tech.* 134 (2024) 1637-1644. [doi](#)


Research Division of Materials Joining Process, Dep. of Micro Joining

Research summary


The main research objectives are for electronics packaging to develop advanced joint materials, to establish advanced micro joining processes, and to elucidate the mechanisms of the micro joining processes. Especially, the creation of the functional joint materials, the development of novel advanced micro processes by various energy sources, the understanding of interfacial behaviors in nano-/micro-scale, and the enhancement of the highly reliable joints based on the control of interfacial structure and performance are performed.

Research subjects

- (1) Development and evaluation of advanced micro joining process
- (2) Elucidation of micro joining phenomena and defect suppression
- (3) Control and analysis of microstructure at soldered interface
- (4) Development of low-temperature solder alloys contributing to the reduction of CO₂ emissions
- (5) Formation of high heat-resistance joint using three-dimensional nanostructure
- (6) Elucidation of interfacial bonding mechanisms through atomistic simulation
- (7) Macro-micro simulation for joint-property prediction

Molecular Dynamics (MD) simulation results on Cu-Cu bonding behavior:
(a) Bonding interfaces replicating various crystal orientations, (b) Void closure behavior at the interface, (c) Diffusion coefficients on the bonding interface with various orientations, (d) Atomic displacement vectors analysis.

Microstructure of sintered joint using Ag nanoparticle paste
(a) Serial sectioning of Ag sintered layer by FIB/SEM system
(b) Reconstructed 3D image of Ag sintered layer
(c) Reconstructed 3D pore distribution into Ag sintered layer

Major Papers

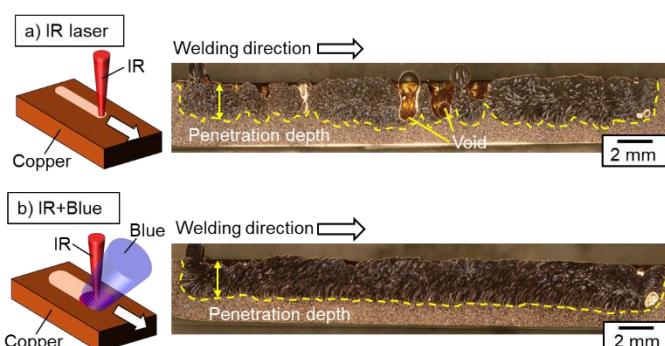
X. Liu, H. Tatsumi, J. Wang, Z. Jin, Z. Chen, H. Nishikawa, "Analysis of microstructures and fractures in Ag-In transient liquid phase bonded joints", Mater. Sci. Eng. A-Struct. Mater., 892, (2024), 146045. [doi](#)

X. Liu, F. Huo, J. Wang, H. Tatsumi, Z. Jin, Z. Chen, H. Nishikawa, "Interfacial reactions between In and Ag during solid liquid interdiffusion process", Surf. Interfaces, 45, (2024), 103844. [doi](#)

Hiroaki Tatsumi, S. Moon, M. Takahashi, T. Kozawa, E. Tsushima, H. Nishikawa, "Quasi-direct Cu-Si₃N₄ bonding using multi-layered active metal deposition for power-module substrate", Mater. Des., 238, (2024), 112637. [doi](#)

C. Wang, H. Tatsumi, L. Xu, T. Zhao, P. Zhu, R. Sun, H. Nishikawa, "Transparent Liquid Ag-Based Complex for the Facile Preparation of Robust Sintered Ag Joints in Power Devices", ACS Appl. Electron. Mater., 6, (2024), 1718. [doi](#)

W. Chuncheng, H. Tatsumi & H. Nishikawa, "Thermal decomposition temperature-dependent bonding performance of Ag nanostructures derived from metal-organic decomposition", J. Mater. [doi](#)


Research Division of Materials Joining Process, Dep. of Laser Materials Processing

Research summary

Fundamental studies are performed concerning welding, joining, cutting, surface modification and removal processing with laser beams, aimed at advanced fusion between laser science and production engineering. We focus on clarification of welding or joining mechanisms on the basis of the visualization of material processing phenomena with high-speed optical observation or X-ray transmission imaging techniques. Moreover, laser should be utilized with not only high thermal efficiency but also physicochemical effects induced by interaction between light and material. Thus we create innovative processes including laser direct joining of metal and plastic, put these processes to practical use and disseminate achievements of our research to the world.

Research subjects

- (1) Development and evaluation of joining and welding processes for the advanced functional materials
- (2) Development of additive manufacturing technologies with blue diode laser
- (3) Creation of new function by surface modification with laser
- (4) Fundamental studies on laser interaction with materials and fundamental studies of materials processing utilizing laser

Longitudinal section of welding bead with a) IR fiber laser and b) blue and IR hybrid laser

Clarification of laser welding phenomena with 16 kW disk laser

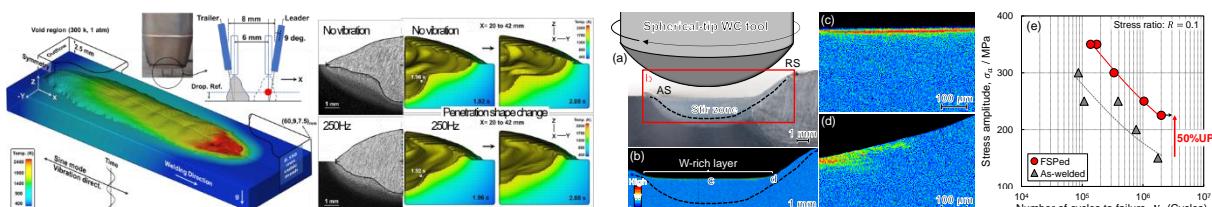
Major Papers

K. Takenaka, P. Chen, Y. Sato and M. Tsukamoto, "Formation of Periodic Nanostructures on Medical Polymer with Femtosecond Laser for Control of Cell Spreading", *J. Laser Micro Nanoeng.*, 19 3(2024). [doi](#)

T. Pasang, S. Fujio, P.-C. Lin, Y. Tao, M. Sudo, T. Kuendig, T. Kuendig, Y. Sato and M. Tsukamoto, "Weldability and Mechanical Properties of Pure Copper Foils Welded by Blue Diode Laser". *Materials*, 17 9(2024), 2140. [doi](#)

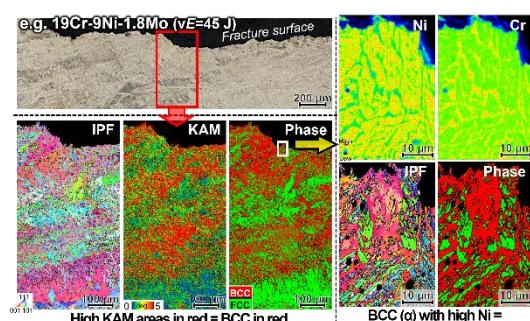
Fujio, Y. Sato, M. Sudo, K. Takenaka, K., T. Pasang, M. Tsukamoto, "Spatter reduction in deep penetration welding of pure copper using blue-IR hybrid laser", *Weld. World*, 68 (2024) 1515-1524. [doi](#)

10.2320/matertrans.MT-D2024002 K. Takenaka, M. Sudo, S. Fujio, M. Mizutani, Y. Sato, M. Tsukamoto, "Spectroscopic Analysis of Blue Diode Laser Induced Plume Generated by Welding of Pure Copper", *Mater. Trans.*, 66 (2024), 113-116. [doi](#)

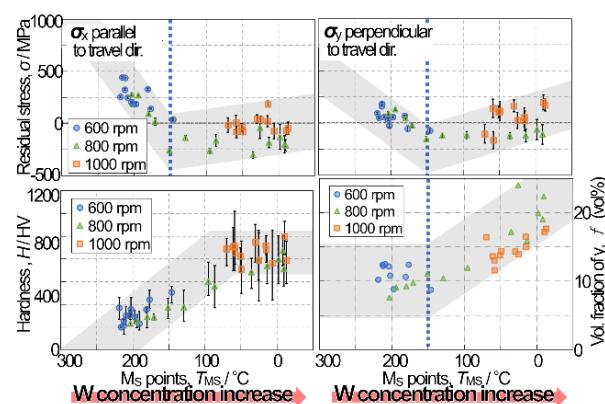

Research Division of Materials Joining Mechanism, Dep. of Welding Mechanism

Research summary

Mechanisms controlling the joint performance of structural and functional materials, which obtained by fusion welding, liquid-state/solid-state bonding, and solid-state bonding, are metallographically characterized to establish a scientific basis to produce joint materials featuring superior performance. The microstructures of the weld-deposited metal, the heat-affected zone of fusion-welded joints, and the interfacial region of solid-state bounded joint are thoroughly investigated utilizing various methods such as X-ray diffraction, electron-microscopy observation, elementary analysis, EBSP analysis, and numerical modeling and simulation. Formation processes of the microstructures and their relation to joint performance are discussed from the material scientific viewpoint.


Research subjects

- (1) Weld microstructure analyses of structural material such as steel
- (2) Bonding mechanism of solid-state joining of metals and ceramics, and its application to microstructural control
- (3) Application of welding and joining phenomena to development of advanced materials
- (4) Synthesis of new functional materials at welding and joining interface
- (5) Evaluation of the effect of microstructure on mechanical behavior of structural materials joints



Welding-time variation of penetration shape change in the simulated vibration assisted tandem-pulsed GMAW using the Flow-3D commercial software in the presence of sine-vibration parallel to the welding direction (250 Hz) and the surface tension active elements.

Geometry modification and W-rich layer formation for weld toe of high-strength low-alloy steel joints using friction stir processing (FSP) with spherical-tip WC tool, resulting in fatigue strength improvement.

Deformation induced phase transformation from FCC to BCC occurred in an impact test of δ -ferrite-containing γ stainless steel deposited metal at liquid N₂ temp., resulting in increasing ultralow-temp. toughening.

Dependence of residual stress on Ms in parallel and perpendicular directions to the FSP direction, hardness, and the volume fraction of the retained γ in the stir zone surface FSPed at tool rotational speeds of 600, 800, and 1000 rpm.

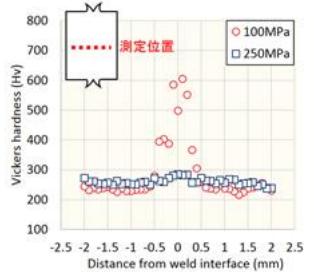
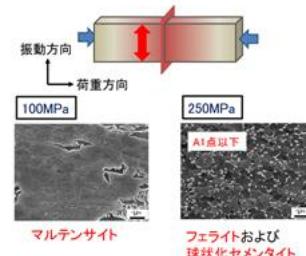
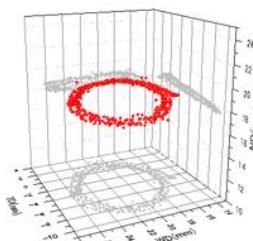
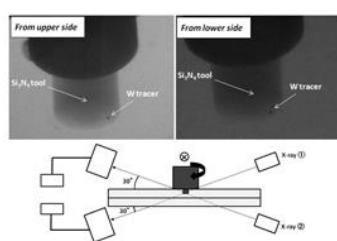
Major Papers

H. Yamamoto, Y. Yamamoto, K. Ito, Y. Mikami, "Compressive residual stress applied to a low-carbon steel surface alloyed with WC tool constituent elements according to friction stir processing", Mater. Des., 244, (2024), 113225. [doi](#)

M. Malekinia, H. Hamed Zargari, K. Ito, S. Hossein Nedjad, "Flux Enhancement with Titanium or Vanadium Oxides Addition for Superior Submerged Arc Welding of HSLA Steel Plates", J. Adv. Join. Process., 10, (2024), 100238. [doi](#)

A. Siyahrti, S. H. Nedjad, H. H. Zargari, K. Ito, "Medium-carbon dual-phase steels with spheroidized ferrite matrix", J. Mater. Res. Technol., 30, (2024), 4692-4701. [doi](#)

Research Division of Materials Joining Mechanism, Dep. of Joint Interface Structure and Formation Mechanism





Research summary

In this department, based on the elucidation of the various phenomena at the joint interfaces of ferrous, nonferrous, non-metal materials at both macroscopic and microscopic levels, the interface formation mechanisms during various joining processes are clarified to create new interface control methods.

In addition, novel welding and modification processes are developed, mainly based on fusion welding methods and friction welding methods such as the friction stir welding, rotary friction welding and linear friction welding methods, which is the core of the fundamental technologies having a great potential to produce new values. These developments are going to be used and focused simultaneously in our society in order to create a new research field and elevate the continuous growth of industrial competitiveness of our country.

Research subjects

- (1) Control of interface and elucidation of formation mechanism during friction welding (FSW, Friction welding, Linear friction welding)
- (2) Development of novel joining and modification processes
- (3) Elucidation of formation mechanism of weld interface and molten pool
- (4) Analysis of joint interface structure
- (5) Control of solid-liquid interface formation

Three-dimensional visualization of the material flow using a W tracer during the FSW.

SEM microstructures and Vickers hardness along the central axis of LFWed joints.

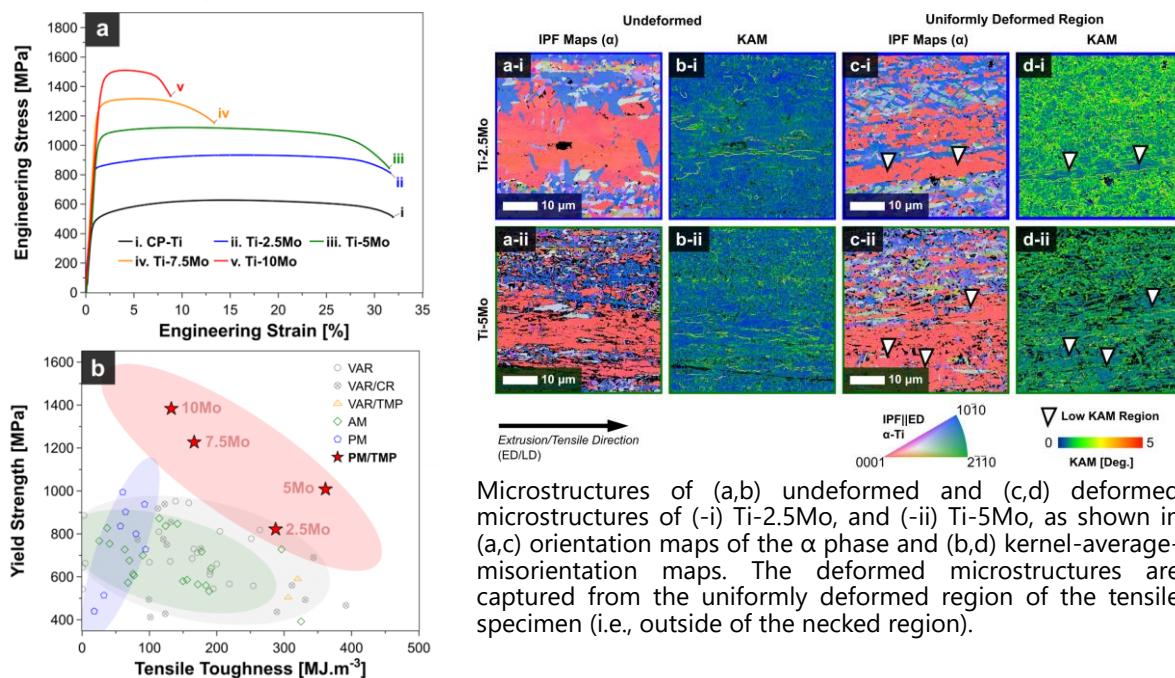
Major Papers

F. Khan, T. Miura, T. Ito, Y. Morisada, K. Ushioda, and H. Fujii, "Sound dissimilar linear friction welding of A7075-T6 Al and mild steel by simultaneous interfacial deformation using higher forging speed", *J. Manuf. Process.*, 109(2024), 512-523. [doi](#)

D. Ambrosio, Y. Morisada, K. Ushioda, and H. Fujii, "Asymmetry in microstructure and mechanical properties of FSWed joints using a hemispherical tool tilted towards the retreating side", *J. Manuf. Process.*, 119(2024), 32-45. [doi](#)

R. Shotri, T. Miura, P. Geng, Y. Morisada, K. Ushioda, and H. Fujii, "Probing joining mechanism of Ti6Al4V-SS316L steel rods in pressure-controlled joule-heat forge welding", *J. Manuf. Process. Technol.*, 326(2024), 118315. [doi](#)

T. Aibara, M. Kamai, Y. Morisada, K. Ushioda, T. Miyauchi, S. Hasegawa, and H. Fujii, "Cold spot joining of high-strength steel sheets", *J. Adv. Join. Process.*, 9(2024), 100179. [doi](#)


H. Miao, T. Yamashita, K. Ushioda, S. Tsutsumi, Y. Morisada, and H. Fujii, "Linear friction welding of T-Joints in low carbon steel: Effect of welding parameters on joint quality", *J. Adv. Join. Process.*, 10(2024), 100267. [doi](#)

Research summary

From a viewpoint of the energy saving and environmental problem solutions, the research fields of this department focus on both of the effective reuse of resources and energy including renewable ones and reduction of life hazardous materials and air pollutions. In particular, by controlling the interfacial mechanics and high-performance of materials, atomic/nano-scale composite materials and processing designs for the environmentally benign are established, and applied to innovative industrial development.

Research subjects

- (1) Powder based titanium materials with static and dynamic high-strength & ductility
- (2) Core-shell structured Ti-N composite powders via solid-gas reaction
- (3) Laser powder bed fusion titanium alloys strengthened by solid-solution and nano-dispersoids
- (4) Nano-carbon materials reinforced metal matrix composites via local interface mechanics
- (5) Direct bonding of plastic materials to metals by molecular structure and fine bubbles control

(a) Tensile curves of as-extruded (i) CP-Ti, (ii) Ti-2.5Mo, (iii) Ti-5Mo, (iv) Ti-7.5Mo, and (v) Ti-10Mo samples.
 (b) Yield strengths and tensile toughness in the present binary Ti-Mo alloys compared to reported properties in previous literatures by using various processes.

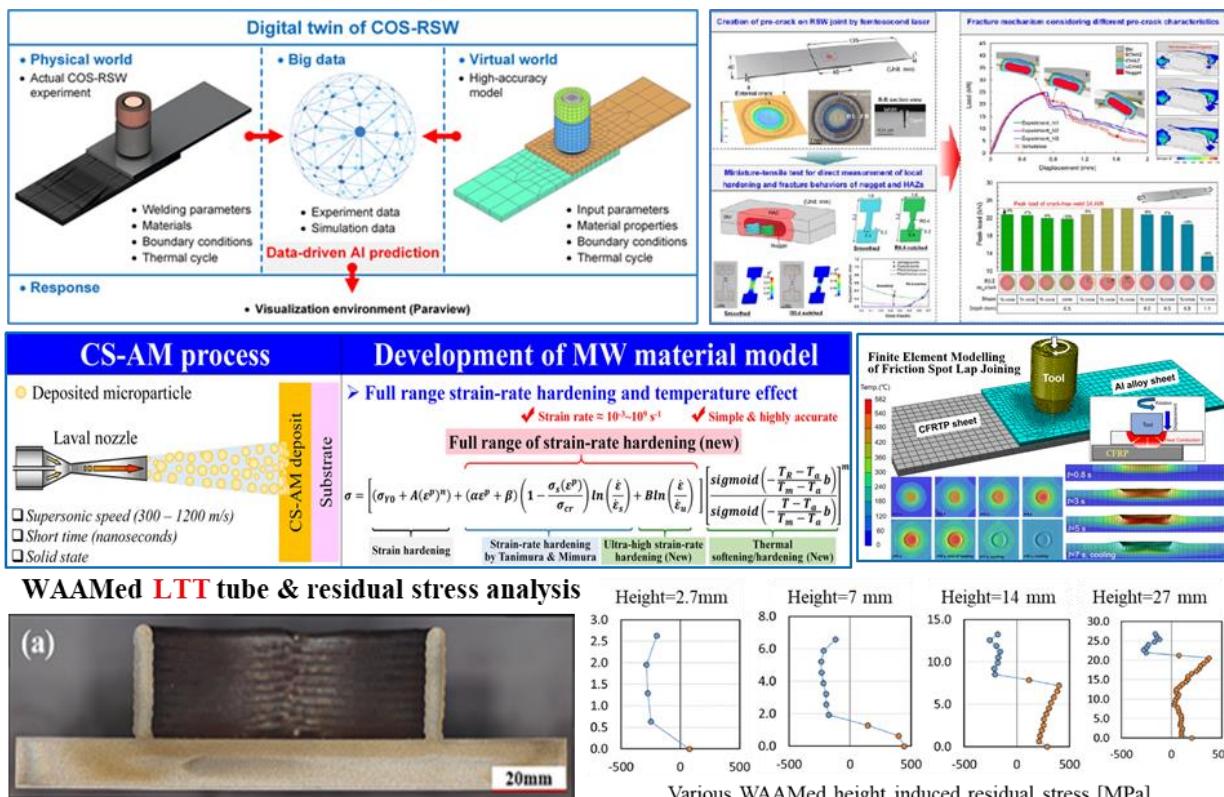
Major Papers

H. Yao, H. Wen, G. Li, N. Chen, K. Chen, K. Kondoh, X. Dong, H. Zhu, M. Wang, "Evolution of interfacial phases between Al alloy and high entropy alloy during annealing", Mater. Charact., 211 (2024) 113890. [doi](#)

S. Kariya, A. Issariyapat, A. Bahador, J. Umeda, J. Shen, K. Yamanaka, A. Chiba, K. Kondoh, "Novel tensile deformation mode in laser powder bed fusion prepared Ti-O alloy", Mater. Sci. Eng. A-Struct. Mater., 892 (2024) 146057. [doi](#)

L. Liu, S. Li, X. Zhang, S. Li, S. Wang, B. Li, L. Gao, H. Liu, D. Hui, D. Pan, S. Kariya, J. Umeda, K. Kondoh, "Synthesis mechanism of pelleted heterostructure Ti64-TiB composites via an interdiffusion and self-organization strategy based on powder metallurgy", Compos. Pt. B-Eng., 276 (2024) 111366. [doi](#)

X. Ye, Z. Heng, B. Chen, Q. Wei, J. Umeda, K. Kondoh, J. Shen, "An in-situ study of static recrystallization in Mg using high temperature EBSD", J. Magnes. Alloy., 12 (2024) 1419-1430. [doi](#)


Research Division of Materials Joining Assessment, Dep. of Joining Mechanics and Analyses

Research summary

Extended FEM and IGA for numerical modelling is a basis of the Artificial Intelligent (AI) and one of the most efficient approaches to look into various detail phenomena involved in joining & welding & additive manufacturing processes & structure sensing. In addition, assessment to residual stress/strain and strength of various types of joints between dissimilar materials is being studied through both the advanced measuring technology and numerical computational approaches.

Research subjects

- (1) Finite element analysis of nonlinear thermo-mechanical-metallurgical phenomena in multi-materials additive manufacturing, fusion welding and solid-state joining.
- (2) Artificial Intelligent (AI) and digital twin for full manufacturing processes including metal forming, joining, welding and assembling of structures.

Major Papers

N. Ma, Z. Feng, K. Hiraoka, T. Matsuzaki, "Compressive residual stresses in LTT elongated bead welded in all positions for fatigue crack prevention of boxing fillet joints", *J. Manuf. Process.*, 117, (2024), 82-94. [doi](#)

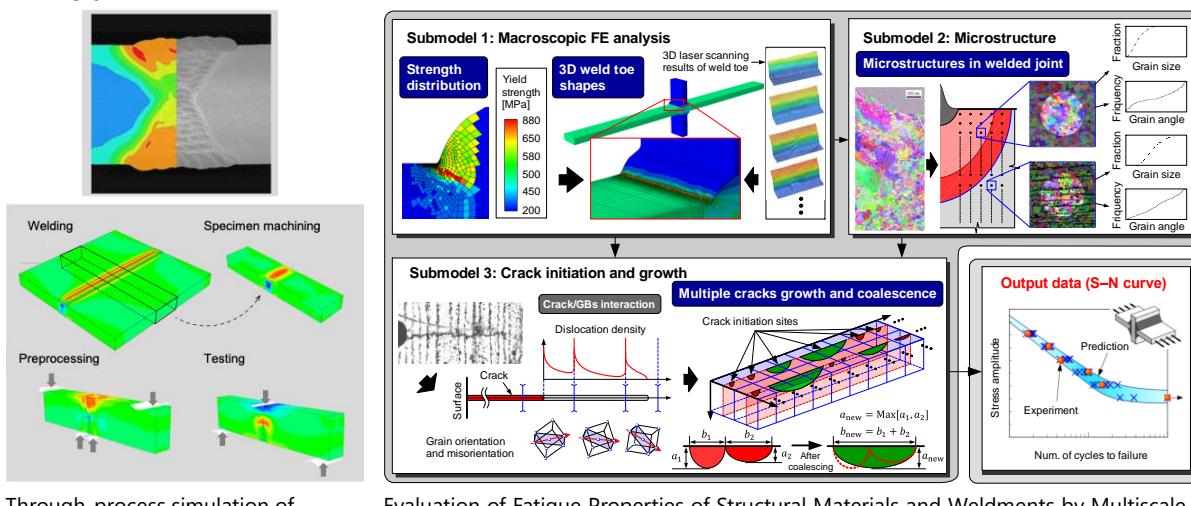
W. Huang, N. Ma, Q. Wang, K. Hiraoka, H. Komen, C. Shao, F. Lu, S. Kano, "Interpass temperature strategies for compressive residual stresses in cladding low-transformation-temperature material 16Cr8Ni via wire arc additive manufacturing", *Int. Commun. Heat Mass Transf.*, 157, (2024), 107777,1-15. [doi](#)

M. Tsutsumi, S. Yamagami, K. Narasaki, D. Watanuki, Y. Miyamoto and N. MA, "Measurement of Internal Residual Stress of Three-Directional Components and Estimation of Inherent Strain in Carburized Steel for Large Rolling Bearings by Combining the Contour Method and XRD Method", *Mater. Trans.*, 65, (2024) 9, 1099-1107. [doi](#)

Z. Yu, N. Ma, H. Lu, H. Yang, W. Liu, Y. Li, "Narrow gap GTAW defect detection and classification based on transfer learning of generative adversarial networks", *J. Manuf. Process.*, 131, (2024), 2350-2364. [doi](#)

P. Chaimano, N. Ma, K. Narasaki, T. Suga, S. Ren, H. Kato, "Electric-thermal-mechanics modeling for in-process phenomena during micro resistance spot welding spark plug of Pt and Inconel600", *J. Mater. Res. Technol-JMRT*, 30, (2024), 2630-2641. [doi](#)

Research Division of Materials Joining Assessment, Dep. of Joining Design and Structuring


Research summary

In this research division, the structural design and fabrication processes are considered in the following two aspects: the "through-process" and "trans-scale." The concept of "through-process" considers the time axis throughout the life cycle, from the design and construction process, such as welding and joining, to testing, service, repair, reinforcement, and maintenance. The concept of "trans-scale" considers spatial axes ranging from micro to macro, such as the microstructure of materials of welds, welding and joining components, and structures.

We research the evaluation of the performance and reliability of various structures at each of these stages and scales. In particular, the effects of thermal processing, represented by residual stresses and deformations, on the performance of welded and joined components and structures will be clarified from microscopic and macroscopic perspectives. Based on these findings, we will also develop a detailed and intelligent evaluation method. We aim to establish design engineering that contributes to advancing structuring processes such as welding and joining.

Research subjects

- (1) Development of evaluation methods for strength properties and reliability of structural members, welds and joints
- (2) Development of performance evaluation technique for welded structures in consideration of residual stress
- (3) Development of manufacturing process simulation technology for design applications
- (4) Development of damage evaluation method considering microscopic plastic deformation behavior of materials and welds
- (5) Evaluation of cracking characteristics considering the heterogeneity of structural materials and weld

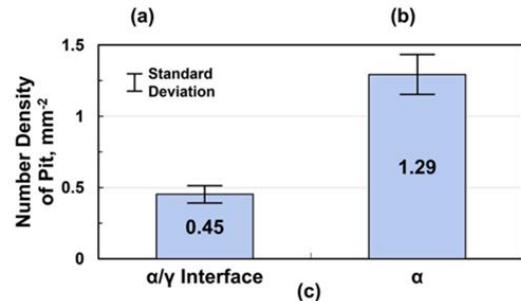
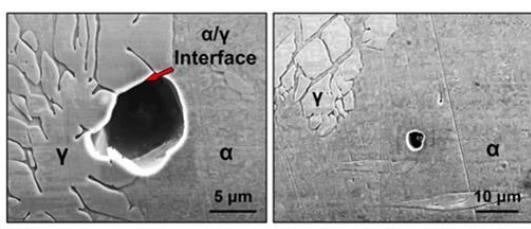
Through-process simulation of specimen machining, residual stress modification, and fracture toughness testing.

Evaluation of Fatigue Properties of Structural Materials and Weldments by Multiscale Modeling

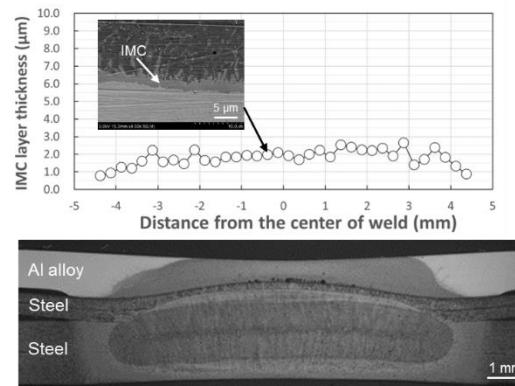
Major Papers

H. Zhou, M. Kinoshita, Y. Takashima, K. Shibanuma, "Multiscale modelling strategy for predicting fatigue performance of welded joints", 284 (2024), 109751. [doi](#)

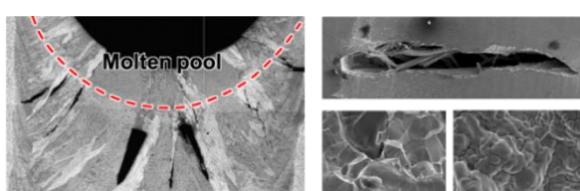
W. Jo, I. Woo, Y. Mikami, G. An, "Residual Stress Characteristics in Spot Weld Joints of High-Strength Steel: Influence of Welding Parameters", 14(2024), 11971. [doi](#)



Research Division of Materials Joining Assessment, Dep. of Joining Metallurgical Evaluation

Research summary


Development of innovative manufacturing technology is required to manufacture high-performance machine products and structures for the next generation. Department of Joining Metallurgical Evaluation conducts research and education for elucidation and control of the factors on weldment properties to create innovative and attractive techniques of welding & joining as a final aim. Specifically, our department is working on clarification of the characteristics of spot welds of dissimilar materials and spot welds using resistance heat generation. We are also working on elucidation of metallurgical phenomena such as solidification and transformation during welding and additive manufacturing, and on developing the control method for the microstructures and the properties of weldments.

Research subjects


- (1) Development of improvement technology of joint properties of various spot welds.
- (2) Reliability assessment of resistance spot welds.
- (3) Microstructural evolution during solidification and solid state in welds.
- (4) Hot cracking during welding and additive manufacturing process and the prediction technology.
- (5) Improvement of mechanical and corrosion properties of welds of stainless steels and Ni-based alloy by microstructure control.

Observation of pitting initiation in heat-affected zone by FESEM
(a) α/γ Interface and (b) α -ferrite, (c) Location of pitting initiation

Cross-sectional photo and IMC thickness distribution of weld interface of resistance spot weld of aluminum alloy sheet to high-strength steel sheet

Evaluation and analysis of hot cracking susceptibility test

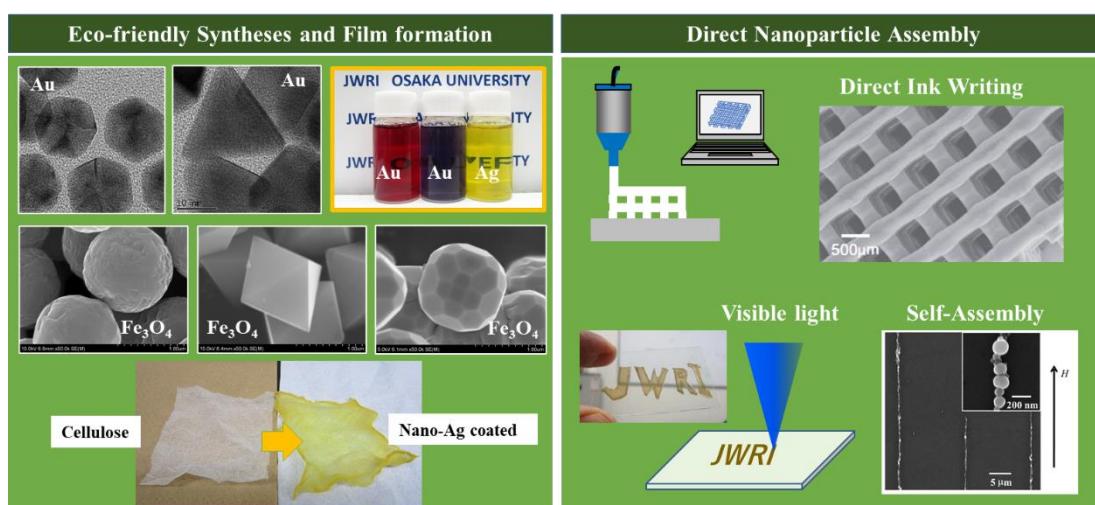
Major Papers

K. Kadoi, M. Kogure, H. Inoue, "Formation condition of lacy ferrite during solidification and subsequent transformation in austenitic stainless steels solidified with primary ferrite", Materials & Design 241 (2024), 112984. [doi](#)

K. Kadoi, Y. Matsumoto, H. Chiba, H. Inoue, "Solidification cracking susceptibility of alloy 718 during additive manufacturing and evaluating method", Journal of Materials Research and Technology 33 (2024), 6389-6396. [doi](#)

Y. Hou, K. Kadoi, "Effect of Ti, Al, and Mg addition on microstructure evolution in weld metal of stainless steel solidified with F and FA modes and the tensile property", Materials Science and Engineering: A (2024), 147190. [doi](#)

K. Kadoi, Y. Kanno, S. Aoki, H. Inoue, "Influence of MC Carbides on Pitting Corrosion Resistance of Weld Metal in Austenitic Stainless Steels", ISIJ INTERNATIONAL 64(9) (2024), 1450-1456. [doi](#)


T. Yamamoto, Y. Ogawa, M. Hayashi, K. Kadoi, D. Shiozawa, T. Sakagami, "Fatigue Limit Estimation Based on Dissipated Energy of Butt Laser-Welded Joints", Engineering Proceedings 51 (2024), 47. [doi](#)

Research summary

As environmental and energy problems become more serious on a global scale, we are working on research and development of material process technologies and environment-friendly materials that will greatly reduce the environmental load. We recently focus on inorganic nano- and micro-particles as building blocks for functional materials and devices, and we develop low-environmental load methodologies for their syntheses, film formation, bonding, integration, and 3D printing. Furthermore, we are proceeding with research and development of environment and energy related materials and devices using our new process technology.

Research subjects

- (1) Eco-friendly solution-based syntheses of nano- and micro-particles
- (2) Eco-friendly assemblies of nano- and micro-particles
- (3) Development of Environment friendly materials
- (4) Development of environmental monitoring devices

(Top) Reductant free synthesis of noble metal nanoparticles (NPs)

(Middle) Shape-controlled synthesis without any additives

(Bottom) Reductant-free coating of noble metal NPs

(Top) Direct Ink Writing of Nanoparticle-Ink

(Left-bottom) Visible-light induced patterning of metal NPs

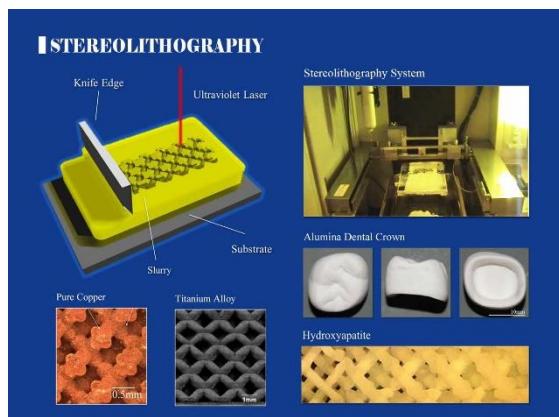
(Right-bottom) Self-assembly of magnetic NPs under magnetic field

Major Papers

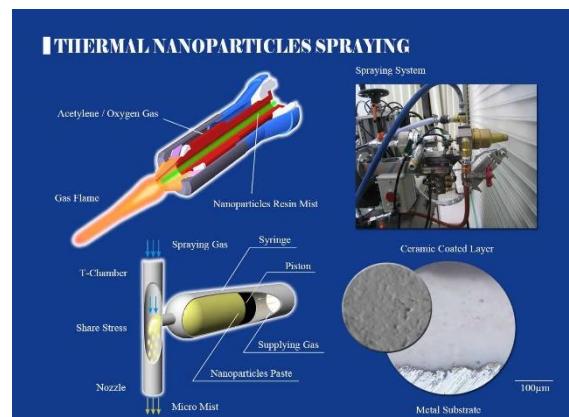
N. Kannari, Y. Yokota, K. Onoduka, A. Shimizu, K. Sato, H. Okazaki, S. Yamamoto and H. Abe "Effect of the Ca/P ratio of Ni-loaded hydroxyapatite on the catalytic decomposition of biomass tar at low temperatures", *Sustain. Energ. Fuels*, 8 (2024), 2850-2859. [doi](#)

Y. YAGI, K. YOSHIDA, T. KOZAWA, M. OSADA, H. ABE, "Defective multi-element hydroxides nanosheets for rapid removal of anionic organic dyes from water and oxygen evolution reaction", *J. Smart Process.*, 13(4), (2024), 200-204 [doi](#)

T. Kozawa, T. Hashiba, K. Fukuyama, H. Abe, S. Morita, M. Osada, M. Naito, "Beyond Fertilizers: NH₄ZnPO₄ for the Reversible Chemical Storage of Ammonia", *Adv. Mater. Interfaces*, 2400729 (2024). [doi](#)


Research Center for Additive Joining Application, Dep. of Lithographic Additive Manufacturing

Research summary


Additive Manufacturing (AM) was newly developed as novel process to create three dimensional (3D) structures through two dimensional (2D) layer laminations. Metal and ceramic nanoparticles were dispersed into resin paste to use for our original process. In lithography techniques, a high power laser beam was scanned on the spread paste for 2D layer drawing and 3D structure forming. In deposition techniques, the paste was introduced into high temperature plasma or gas flame for 2D cladding and 3D patterning. Created electric devices, biological implants and energy modules will contribute to sustainable development.

Research subjects

- (1) Stereolithographic Additive Manufacturing of Metal and Ceramic Parts Using Nanoparticles Pastes
- (2) Structural Fabrication of Photonic Crystals with Diamond Structures for Terahertz Wave Control
- (3) Modulation of Micro Porous Structures in Biological Ceramic Implants for Artificial Metabolism
- (4) Manufacturing of Micro Metal Lattices for Effective Controls of Heat Flow and Stress Distributions
- (5) Advance Development of Thermal Nanoparticles Spraying for Additive Manufacturing Technique
- (6) Fine Separator Formation in Solid Oxide Fuel Cells by Using Thermal Nanoparticles Spraying
- (7) Fine Ceramic Coating with Thermal Conductivity and Corrosion Resistance for Heat Exchanger Tubes
- (8) Layer Laminations by Fine Particles Spraying and Sintering to Create Functionally Graded Structures

Laser Scanning Stereolithography of Additive Manufacturing to Fabricate Bulky Metal and Ceramic Components with Micro Geometric Patterns

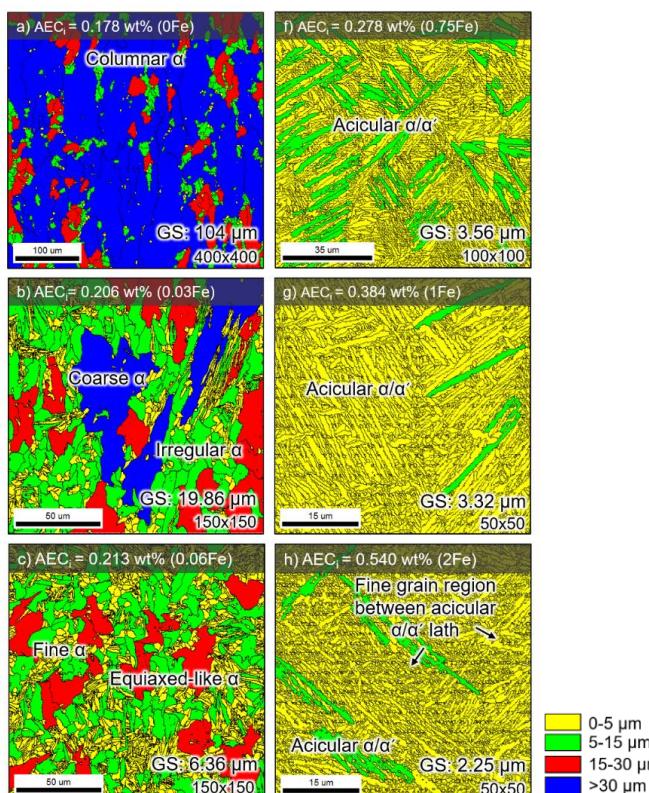
Thermal Spraying Using Fine Particle Pastes to Laminate Metal and Ceramic Coated Layers with Functional Nano/Micro Structures

Major Papers

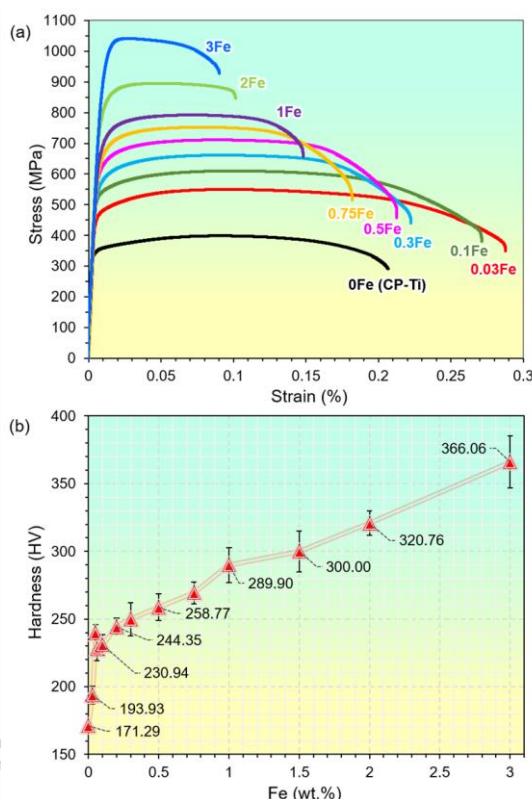
F. Spirrett, A. Oi, S. Kirihara, "Ceramic Stereolithography of $\text{Li}_7\text{La}_3\text{Zr}_2\text{O}_{12}$ Micro-Embossed Sheets for Solid Electrolyte Applications" *Ceramics*, 7(3), (2024), 1218-1226. [doi](#)

F. Spirrett, S. Kirihara, "Fabrication of Complex Lattices and Fractal Patterns by Additive Manufacturing" *J. Smart Process.*, 1, 3(4), (2024), 195-199.

K. Yoshihara, F. Spirrett, S. Kirihara, "Applications of Three-Dimensional Modeling Technology in Dentistry" *J. Smart Process.*, 13(4), (2024), 189-194.


Research Center for Additive Joining Application, Dep. of Additive Manufacturing Mechanism

Research summary


Laser powder bed fusion (L-PBF), one of additive manufacturing technologies, is based on a rapid solidification process, and enables to form ultra-fine microstructures and supersaturated solution of metal materials, which are effective to improve mechanical properties. This department focuses on clarification of both unique microstructures formation mechanism and their effect on the strength and ductility balance of L-PBF titanium alloys.

Research subjects

- (1) Formation mechanism of unique fine microstructures and orientations of L-PBF Ti alloys
- (2) High-strengthen metal matrix composites fabricated by L-PBF process
- (3) Strengthening mechanism of L-PBF Ti alloys – grain refining, solid solution and dispersions
- (4) Deformation behavior of Gyroid scaffolds L-PBF Ti-Zr alloy and its medical applications

Grain size map obtained by EBSD analysis for LPBF fabricated Ti-xFe alloys ($x = 0, 0.03, 0.06, 0.1, 0.2, 0.75, 1, 2, \text{ and } 3 \text{ wt\%}$). The numbers in bottom-right corner represent analysis scan area (in μm).

Variation in mechanical properties of LPBF fabricated Ti-xFe alloys: (a) depicts the tensile stress-strain curves, while (b) presents a plot of Vickers hardness versus Fe addition.

Major Papers

A. Issariyapat, J. Huang, S. Kariya, B. Chen, S. Li, J. Umeda, K. Yamanaka, A. Chiba, K. Kondoh, "Sustainable alloy design: Fe-enhanced Ti alloys for superior mechanical performance in additive manufacturing", *J. Alloy. Compd.*, 1010 (2024) 177767. [doi](#)

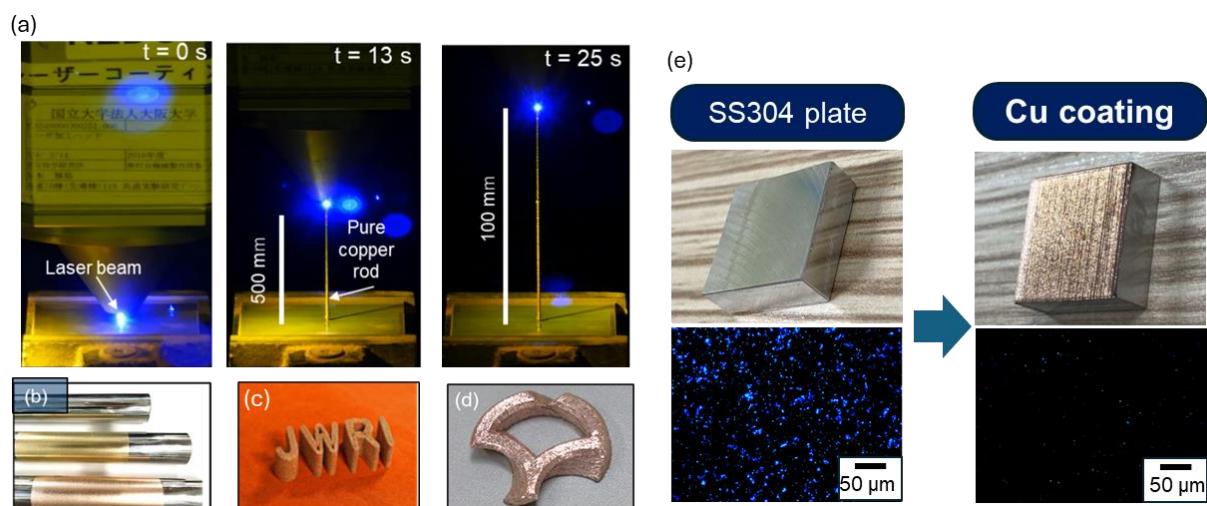
Y. Shigeta, N. Nomura, K. Kondoh, K. Uesugi, M. Hoshino, M. Aramaki, Y. Ozaki, "Use of X-ray CT Imaging to Quantitatively Analyze the Effects of the Pore Morphology on the Tensile Properties of CP-Ti L-PBF Materials", *ISIJ International*, 64 7 (2024) 1162–1171. [doi](#)

J. Wan, B. Chen, J. Shen, K. Kondoh, S. Liu, J. Li, "Improving the mechanical properties of laser powder bed fused AlSi10Mg alloys by eliminating the inevitable micro-voids via hot forging", *Rapid Prototyping J.*, 30 4 (2024) 621-632. [doi](#)

Research Center for Additive Joining Application, Dep. of Laser Additive Manufacturing

Research summary

In this department, fundamental studies on laser additive manufacturing (LAM) are performed and apparatuses for LAM are developed.


In particular, the apparatuses installed with high power blue diode lasers are also developed since those lasers enable stable and high efficient melting of metal materials such as copper.

Furthermore, in order to realize high-quality and high-speed LAM, we will experimentally and theoretically proceed with the analysis of the melting and solidification process of the material by laser irradiation.

Utilizing the obtained knowledge, we will work on the creation of innovative LAM processes and the development of equipment and promote their social implementation.

Research subjects

- (1) Development of additive manufacturing technologies with blue diode laser
- (2) Elucidation of laser interaction with metal powders for LAM
- (3) Creation of new function by laser metal deposition
- (4) Elucidation of melting and solidification phenomena in LAM process

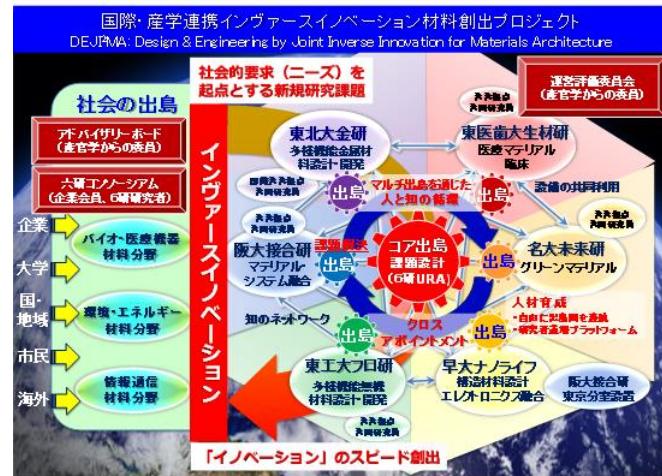
Additive manufacturing of copper using blue diode laser (a) 3D rod formation (b) Micro-coating of copper alloy (c) JWRI logo by L-PBF (d) Osaka University's school emblem by L-PBF (e) Antimicrobial effect of the pure copper coating by DED against S.aureus.

Major Papers

T. Yoshida, Y. Sato, K. Takenaka, P. Chen, H. Kanetaka, T. Mokudai, M. Tsukamoto, "Pure copper coating by multibeam directed energy deposition with blue lasers for antimicrobial effect", *J. Laser Appl.*, 36 4, (2024) 042035. [doi](#)

R. Matsuda, Y. Sato, K. Takenaka, M. Kusaba, M. Tsukamoto, "Improvement of layer fabrication efficiency and dilution rate for nickel based super alloy by multibeam directed-energy-deposition with blue diode lasers", *J. Laser Appl.* 36 4 (2024) 042046. [doi](#)

R. Ueda, Y. Sato, S. Srisawadi, D. Tanprayoon, B. Chayasombat, P. Promoppatum, M. Yoshida, M. Tsukamoto, "3D fabrication of nickel based alloys by powder bed fusion with blue diode laser", *J. Laser Appl.*, 36(2024) 042077. [doi](#)


A. Kapil, O.-C. Ozaner, Y. Sato, Y. Hayashi, K. Ikeda, T. Suga, M. Tsukamoto, S. Karabulut, M. Bilgin, A. Sharm, "Overcoming machining challenges in hybrid laser metal deposition of IN718 with heat-assisted minimum quantity lubrication", *Int. J. Adv. Manuf. Technol.*, 132 (2024), 5407-5424. [doi](#)

K. Yamamoto, R. Matsuda, K. Takenaka, Y. Sato, Y. Yamashita, A. Saikai, T. Yachi, M. Kusaba, M. Tsukamoto, "Experimental evaluation of a WC-Co alloy layer formation process by multibeam-type laser metal deposition with blue diode lasers", *J. Laser Appl.* 36, (2024), 012010. [doi](#)

Strategy Office for Promotion of Inter-Institute Collaborations

Research summary

"Strategy Office for Promotion of Inter-Institute Collaborations" has been established in JWRI as the headquarter to carry out the Project "Development of Inter-Institute Collaborations of 6 Research Institutes from 5 Universities for Strengthening Material Innovation Force", which has been supported by the Ministry of Education, Culture, Sports, Science and Technology since 2022. Through promotion of the inter-institute collaborations of the 6 research institutes from the 5 Universities (Joining and Welding Research Institute, Osaka University, Institute for Materials Research, Tohoku University, Institute of Integrated Research/Materials and Structures Laboratory, Institute of Science Tokyo, Institute of Materials and Systems for Sustainability, Nagoya University, Institute of Integrated Research/Laboratory of Biomaterials and Bioengineering, Institute of Science Tokyo, Research Organization for Nano & Life Innovation, Waseda University), the project has been carried out for acceleration of the problem-solving and the creation of innovations, which are based on social demands, and thus for strengthening material innovation force. The related research project "Design & Engineering by Joint Inverse Innovation for Materials Architecture (DEJ²MA Project)" has been carried out through the inter-institute cooperative research activities.

Research subjects

- (1) Environmental and Energy Materials
- (2) Biomedical and Healthcare Materials
- (3) Information and Communication Material

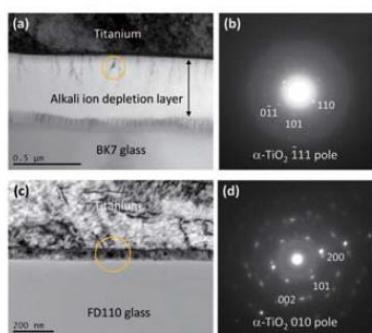
Major Papers

T. Mokudai, M. Kawada, D. Tadaki, A. Hirano-Iwata, H. Kanetaka, H. Fujimori, E. Takemoto, M. Niwano, "Radical generation and bactericidal activity of nanobubbles produced by ultrasonic irradiation of carbonated water," Ultrason. Sonochem., 103 (2024) 106809. [doi](#)

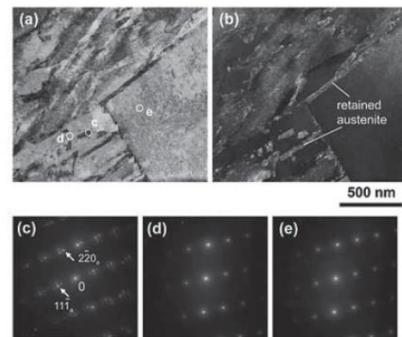
A. Issariyapat, J. Huang, S. Kariya, B. Chen, S. Li d, J. Umeda, K. Yamanaka, A. Chiba, K. Kondoh, "Sustainable alloy design: Fe-enhanced Ti alloys for superior mechanical performance in additive manufacturing", J. Alloy. Compd., 1010 (2024) 177767. [doi](#)

F. Li, K. Yoshida, N.-V Chuc, M. Osada, H. Abe, "Synthesis of High-Entropy Rare Earth (Y0.2 La0.2 Nd0.2 Sm0.2 Gd0.2) BO4 (B = Cr, Mo, W) Oxide Powders", J. Smart Process., 13 (2024) 205-209. [doi](#)

Joint Interface Microstructure Characterization Room


Research summary

In order to clarify the effect of material structure on the properties of joints joined by various methods and new materials made by applying joining technology, their microstructures are examined using a transmission electron microscope (TEM). TEM observation provides various information such as the crystal structure, chemical composition, properties and distribution of lattice defects in minute areas. We also support the preparation of specimens for TEM observation from difficult-to-process joint structures, etc., using various means such as focused ion beam (FIB) processing. In addition to TEM sample preparation, we develop methods for micromechanical testing of materials using FIB processing and apply them to strength evaluation of joint structures.


As a unique activity of the analysis room, we perform basic study on the bonding mechanism of anodic bonding, which is a method of bonding glass to conductors at relatively low temperatures, and develop new bonding methods and high-function bonding interfaces by applying that knowledges.

Research subjects

- (1) Microstructural analysis of various bonding interfaces and material structures
- (2) Fundamental research on the anodic bonding process of glass to various conductors
- (3) High functionalize of glass-to-glass anodic bonding interfaces
- (4) Development of new bonding methods that applies the principle of anodic bonding

Reaction products that grew at joint interfaces between titanium and optical glasses. The bright-field image of BK7 glass/titanium joint interface by transmission electron microscopy (a), Selected Area electron Diffraction (SAD) pattern taken from the area indicated by a circle in the image a (b), bright-field image of FD110 dense flint glass/titanium joint interface (c), and SAD pattern taken from the area indicated by a circle in the image c (d). These reaction products were found to consist of $\alpha\text{-TiO}_2$. However, those forms are strongly affected by types of glass.

Distribution of retained austenite in 980 MPa high-tensile steel. (a) Bright-field image, (b) dark-field image taken by 111 reflection from austenite indicated in the diffraction pattern in (c), and (c)-(e) selected-area electron diffraction patterns taken from positions indicated in the bright-field image in (a). Austenite appears bright between ferrite laths in the dark-field image.

Major Papers

M. Takahashi, "Multilayer Anodic Bonding", 30th Symposium on Microjoining and Assembly Technology in Electronics, held on 23-24 January in Yokohama, Japan, (2024).

Global Diversity and Inclusion Promotion Office

Summary

Global D&I (Diversity & Inclusion) Promotion Office promotes the development of an environment that maximizes the strengths of Joining and Welding Research Institute (JWRI) and all members by truly embracing diversity and respecting the individuality of each person, regardless of gender, nationality, age, cultural background, etc., in order to achieve the SDGs, which aim to realize a society where "no one is left behind". In response to the trend toward internationalization in academic research, JWRI will develop international joint industry-academia research based on the international network we have established to date. JWRI aims to develop competent human resources to face global challenges, to strive to stimulate innovation in joining science as the world-leading research in the field of welding and joining, and to realize the institute where diverse human resources can play an active role.

In FY 2024, major activity that Global D&I Promotion Office has worked on was for the actual commencement of the operation of the "Joining and Welding Research Institute HUST-UOsaka" which was established in January 2023 in Hanoi, Vietnam under collaboration with Hanoi University of Science and Technology. Also, by receiving the funding support from Japan International Cooperation Agency (JICA), the first Seminar and Exam for Welding Coordinator which is certified by Japan Welding Engineering Society was held in Hanoi. These activities, centered by HUST-UOsaka, are expected to contribute to further expanding and diversifying collaboration between the Southeast Asian region and JWRI.

Another activity was focused on diversifying human resources with regards to gender and global perspective in order to enhance outcomes for further diversity and inclusion within JWRI.

Activities

- (1) Increase Global Diversification: Strengthen International Collaboration Research; Operation of "Joining and Welding Research Institute HUST-OU"; Create and activate foundation of International Industry-Academia Collaboration; Increase number and quality of Welding Engineers in Vietnam and in Southeast Asia; Strengthening research collaborations with oversea institutes through various schemes; Foster friendly work environment at JWRI.
- (2) Increase Gender Diversification: Bring together students, faculty and staff from different roles and positions; Lecture at a science course for junior high school girls.

Table.1. List of activities and projects for Global Diversification (Extracted)

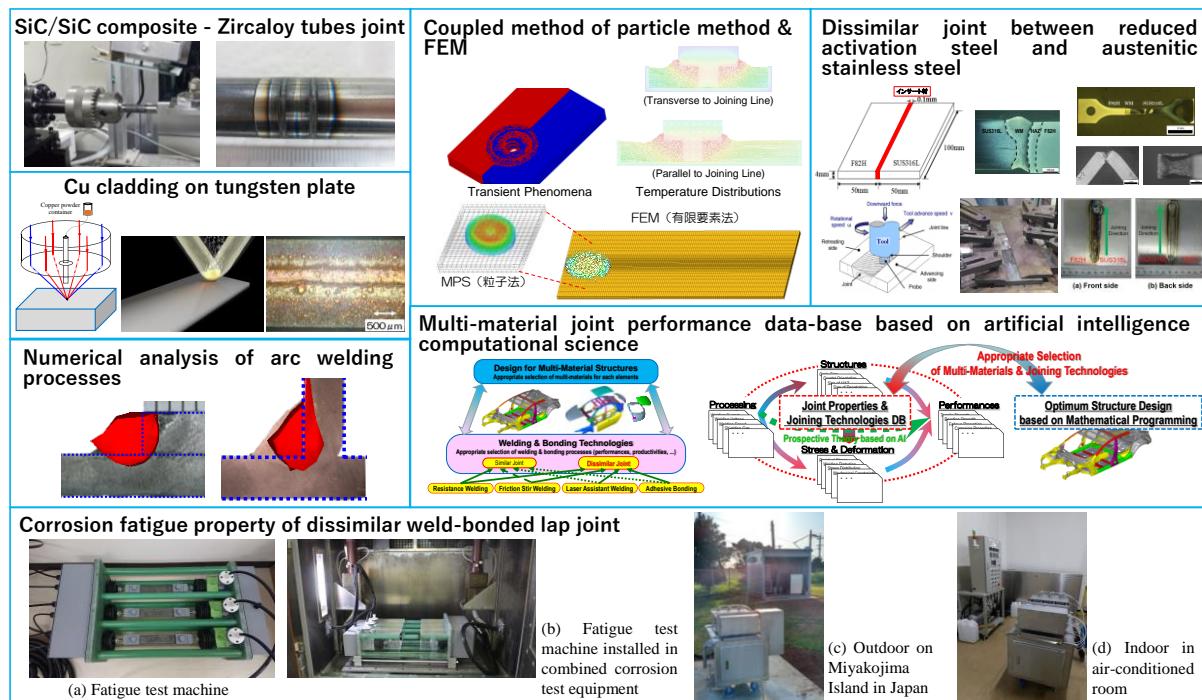
Name	Contents
Opening Ceremony of "Joining and Welding Research Institute HUST-UOsaka" (HUST-UOsaka)	Building re-construction completed and opening of the building and commencement of the operation of HUST-UOsaka was celebrated as the Opening Ceremony on 29 th November, 2024.
Vietnam Welding Research Club	Three Seminars were held: 1) April 26 th , 2024 in Hanoi, Hoa Lac High Tech Park 2) July 24 th , 2024 in Hanoi 3) November 29 th , 2024 in Hanoi
Welding Coordinator Training & Exam (Fund partially supported by JICA)	First Training and Exam in Vietnam held November 19-23, 2024. (Certification Approved by Japan Welding Engineering Society)
JST Sakura Science Exchange Program	Invited 8 students and researchers during Nov.14-Dec.4, 2024: 2 from Ghana, 1 from Egypt, 1 from Thailand, 2 from China, 2 from Vietnam.
JWRI D&I Café	"Enjoy Learning Japanese" for non-Japanese and "Easy Japanese" for Japanese were held on July 3 rd , 2024.

Welding Club: Seminar

Opening Ceremony

JWRI D&I cafe

Lecture junior high school girls


New Normal Manufacturing Consortium Office

Research summary

New Normal Manufacturing Consortium Office deals with not only basic researches for generating advanced materials but also developments & educations of their applied technologies in order to establish Material Innovation Strategy. As for the creation of advanced materials, new high-functional (environmentally) adaptive materials is developed by using the advanced processing technologies. In addition, in order to achieve "Carbon Neural 2050", optimum structural design is studied through the appropriate selection of multi-materials and joining technologies with the aid of Artificial Intelligence computational science.

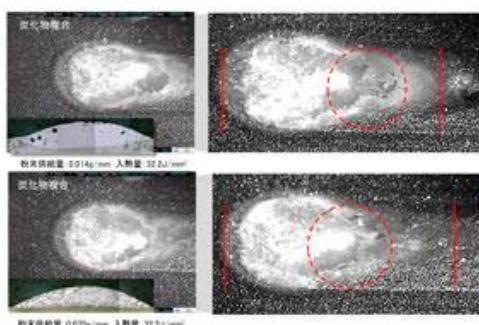
Research subjects

- (1) Development of advanced dissimilar materials joint technology by using high brightness laser beams
- (2) Computational analysis of friction stir processes by using coupled method between particle method and finite element method
- (3) Numerical analysis of arc welding processes by using three-dimensional, non-stationary thermal model
- (4) Creation of advanced joining technologies for innovative fusion reactor power generation system
- (5) Development of dissimilar materials joint performance data-base based on artificial intelligence computational science

Major Papers

H. Serizawa, "Research on Corrosion Fatigue Property of Steel/Aluminum Alloy Weld-Bonded Lap Joint in High Temperature and High Humidity", 77th Annual Assembly of Int. Inst. Welding (IIW), (2024), IIW Doc. III-2244-2024.

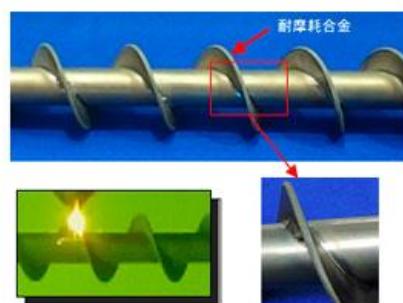
Osaka Fuji "Advanced Functional Processing" Joint Research Chairs

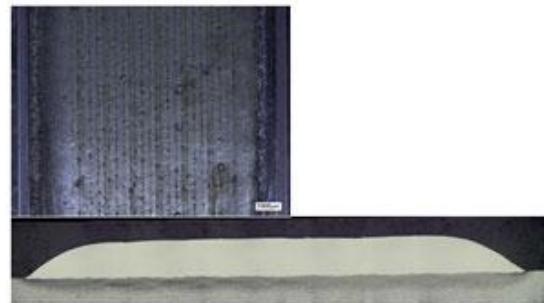

Research summary

This research chair aims to develop advanced functional processing techniques by combining laser processing technology and materials knowledge in JWRI and advanced functional manufacturing technologies of Osaka Fuji Corporation.


The main purpose is to develop the surface functioning of various materials by laser cladding method, low weldability materials. Finally, these fruits are applied to the next generation of manufacturing technology for various industrial fields.

Research subjects


- (1) Development of highly functional surface by laser cladding
- (2) Development of functional surfaces of small or thin parts
- (3) Development of hybrid technology of laser and conventional surfacing technologies
- (4) Fundamental research of laser additive manufacturing technology


Dynamic observation of molten pool behavior for analysis of blow holes formation using high-speed camera

Experimental apparatus for laser cladding

Example of laser cladding on edge of screw

Wide, flat cladding layer which was provided by beam control

Major Papers

M. Wahba, M. Mizutani, S. Katayama, "Multi-pass laser welding with cut-wire particles of 50mm thick steel plates", J. Alloy Metall. Syst., 8 (2024) 100125.

[doi](#)

CONTRIBUTIONS TO OTHER ORGANIZATIONS

(January 2024 ~ December 2024)

[Physics, Processes, Instruments & Measurements]

J. XIN, F. LI, D. WU, C. SHEN, H. KOMEN, M. TANAKA and X. HUA

The Mechanism of Element Inhomogeneity in TW-DED-arc Fabricated γ -TiAl Alloy
Weld. World, (2024), 1-16.

X. XIAO, D. WU, H. KOMEN, L. MENG, W. ZHANG, P. ZHAO, S. TASHIRO, A.-B. MURPHY and M. TANAKA

Influencing Mechanisms of Melt Behavior on Metal Vapor Characteristic and Columnar Grain Formation in Wire-Arc Directed Energy Deposition of Titanium Alloy
Addit. Manuf., 82 (2024), 104029.

Y. WANG, J. CHEN, M. CHEN, H. SU, R. ZONG, D. WU, H. KOMEN, M. TANAKA and C. WU

A Comparative Study on Microstructure and Mechanical Properties of Wire-Arc Directed Energy Deposited Al-Zn-Mg-Cu Alloy Based on the Cold Metal Transfer Technology
J. Mater. Res. Technol-JMRT, 30 (2024), 397-415.

S. TOMITA, J. YOSHIKAWA, M. SUGIMOTO, H. KOMEN and M. SHIGETA

SPH Simulation of Molten Metal Flow Modeling Lava Flow Phenomena with Solidification
Dynam., 4, 2 (2024), 287-302.

D. WU, H. KOMEN, Y. ASAI, M. TANAKA and A. MURATA

Arc Micro-Joining of Al and Cu Foils
Int. Commun. Heat Mass Transf., 156 (2024), 107681.

X. XIAO, C. ZHANG, D. WU, H. KOMEN, J. GOU, Y. ZHANG, K. ZHANG, S. UCHIDA and M. TANAKA

Stabilising Mechanism of Cathode Jet and Droplet Transfer in Hybrid-Laser-GMAW-Based Directed Energy Deposition of Titanium Alloy
Virtual Phys. Prototyp., 19 (2024), 2384659.

T. YUJI, S. TASHIRO, H. KINOSHITA, K. YASUI, T. BOUNO,

Z. WU, D. WU, W. POONTHONG, S.-A. RAHMAN,

S.-B. MAMAT and M. TANAKA

An Investigation on Plasma-MIG Hybrid Welding Process of Thick Plate Aluminum
J. Adv. Join. Process., 9 (2024), 100188.

S. TASHIRO

Interaction Mechanism of Arc, Keyhole, and Weld Pool in Keyhole Plasma Arc Welding: A Review
Materials, 17 (2024), 1348(24pp).

K. ISHIDA, S. TASHIRO, K. NOMURA, D. WU, A.-B. MURPHY, T. YUJI and M. TANAKA

Effect of Current Waveform in MIG Arc on Weld Bead Formation in Plasma-MIG Hybrid Welding
Int. J. Adv. Manuf. Technol., (2024).

X. WANG, J. ZHANG, S. TASHIRO and M. TANAKA

Study of Molten Pool Dynamics in Keyhole TIG Welding by Numerical Modelling
J. Manufacturing Processes, 119 (2024), 827-841.

N.-Q. TRINH, S. TASHIRO, K.-D. LE, T. SUGA, T. KAKIZAKI, K. YAMAZAKI, A. LERSVANICHKOOL, A.-B. MURPHY, H.-V. BUI and M. TANAKA

Eligible CO₂ Content in Ar-CO₂ Mixture Shielding Gas for Improving Metal Transfer in Metal-Cored Arc Welding
Int. J. Heat Mass Transf., 231 (2024), 125803.

N.-Q. TRINH, K.-D. LE, S. TASHIRO, T. SUGA, S. SASAKURA, K. FUKUDA, A.-B. MURPHY, H.-V. BUI and M. TANAKA

Optimization of Metal Transfer in Rutile Flux-Cored Arc Welding through Controlled CO₂ Concentration in Argon-CO₂ Shielding Gas
J. Manufacturing Processes, 124 (2024), 590-603.

S.-A.-A. RAHMAN, S. MAMAT, M.-I. AHMAD,

N. MUNGKUNG, T. YUJI, S. TASHIRO and M. TANAKA

Study on Intermetallic Compound (IMC) in Dissimilar Joining of Steel and Aluminum (Fe-Al) - a Review Paper
Weld. World, (2024).

S. TASHIRO, K. ISHIDA, K. NOMURA, D. WU, A.-B. MURPHY, T. YUJI and M. TANAKA

Effect of Current Waveform in MIG Arc on Weld Bead Formation in Plasma-MIG Hybrid Welding
IIW Annual Assembly, 2024 (USB), (2024), Doc. XII-2701-2024.

Q.-N. TRINH, S. TASHIRO, T. SUGA, H. YAMAOKA, K. INOSE, K. WATANABE, K. HYOMA, Y. TANABE, V.-H. BUI and M. TANAKA

Effect of Oxygen in Shielding Gas on Weldability in Plasma-GMA Hybrid Welding Process of High-Tensile Strength Steel
Int. J. Adv. Manuf. Technol., (2024).

J. LIU, F. JIANG, S. TASHIRO, S. CHEN, M. TANAKA, C. ZHANG, B. XU and G. ZHANG
 The Mechanism of Dual-Stagnation Points Flow Phenomenon in Keyhole Plasma Arc Melt Pool and Corresponding Control Strategy
J. Manufacturing Processes, 125 (2024), 473-488.

S. TASHIRO, N.-Q. TRINH, K.-D. LE, T. SUGA, T. KAKIZAKI, K. YAMAZAKI, A.-B. MURPHY, A. LERSVANICHKOOL, H.-V. BUI and M. TANAKA
 Elucidation of Droplet Detachment Mechanism in Metal-Cored Arc Welding
J. Manufacturing Processes, 124 (2024), 1583-1605.

K. TAKENAKA, A. JINDA, S. NAKAMOTO, R. KOYARI, S. TOKO, G. UCHIDA and Y. SETSUHARA
 Influence of Pre-Treatment with Non-Thermal Atmospheric Pressure Plasma on Bond Strength of TP340 Titanium-PEEK Direct Bonding
Int. J. Adv. Manuf. Technol., 130 (2024), 1925-1933.

K. TAKENAKA, A. JINDA, S. NAKAMOTO, R. KOYARI, S. TOKO, G. UCHIDA and Y. SETSUHARA
 Improving Bonding Strength by Non-Thermal Atmospheric Pressure Plasma-Assisted Technology for A5052/PEEK Direct Joining
Int. J. Adv. Manuf. Technol., 130 (2024), 903-913.

K. TAKENAKA, S. NUNOMURA, Y. HAYASHI, H. KOMATSU, S. TOKO, H. TAMPO and Y. SETSUHARA
 Stability and Gap States of Amorphous In-Ga-Zn-Ox Thin Film Transistors: Impact of Sputtering Configuration and Post-Annealing on Device Performance
Thin Solid Films, 790 (2024), 140203/1-140203/8.

K. TAKENAKA, H. KOMATSU, T. SAGANO, K. IDE, S. TOKO, T. KATASE, T. KAMIYA and Y. SETSUHARA
 Hydrogen-included Plasma-Assisted Reactive Sputtering for Conductivity Control of Ultra-Wide Bandgap Amorphous Gallium Oxide
Jpn. J. Appl. Phys., 63, 4 (2024), 04SP65/1-04SP65/5.

K. TAKENAKA, S. NAKAMOTO, R. KOYARI, A. JINDA, S. TOKO, G. UCHIDA and Y. SETSUHARA
 Influence of Pre-Treatment with Non-Thermal Atmospheric Pressure Plasma on Bond Strength of TP340 Titanium-PEEK Direct Bonding
Int. J. Adv. Manuf. Technol., 134 (2024), 1637-1644.

S. TOKO, T. OKUMURA, K. KAMATAKI, K. TAKENAKA, K. KOGA, M. SHIRATANI and Y. SETSUHARA
 Improving the Efficiency of CO₂ Methanation Using a Combination of Plasma and Molecular Sieves
Results in Surf. Interfaces, 14 (2024), 100204.

S. HOMMA, M. SHIMA, Y. TAKANO, T. WATANABE, M. FUKUDA, T. IMOTO and H. NISHIKAWA
 Effect of Ar and N₂ Plasma Etching on Adhesion between Mold Resin and Sputtered Cu in Semiconductor Electromagnetic Shielding
J. Adhes. Sci. Technol., 38, 6 (2024), 815-838.

T. WANG, K. YASUDA and H. NISHIKAWA
 Design of Rose Thorn Biomimetic Micro-Protrusion for Metals and CFRTP Easily Disassembled Joining
Eng. Res. Express, 6, 2 (2024), 25512.

C. YANG, Y. LIU, H. NISHIKAWA and S. LIN
 Reducing Anisotropy of Rhombohedral Bi-rich Phase for High-Performance Ag-alloyed Sn-Bi Low-Temperature Solders
J. Mater. Res. Technol-JMRT, 30 (2024), 16-24.

H. NISHIKAWA, Y. HIRATA, S. ZHOU, C. YANG and S. LIN
 Effect of Minor Element Addition on Mechanical Properties and Microstructure of Sn-Bi Alloys
Proc. 10th IEEE Electronics System-Integration Technology Conf., (2024), MIP4_3.

S. HOMMA, D. OKADA, A. SAWANOBORI, S. YAMAMOTO and H. NISHIKAWA
 Quantification of Adhesion Strength and Mechanism of Adhesion Degradation between Sputtered SUS304 and Mold Resin in Electromagnetic Wave Shield Packages
Proc. 10th IEEE Electronics System-Integration Technology Conf., (2024), MIP4_2.

H. TATSUMI, S. MOON, M. TAKAHASHI, T. KOZAWA, E. TSUSHIMA and H. NISHIKAWA
 Quasi-Direct Cu-Si₃N₄ Bonding Using Multi-layered Active Metal Deposition for Power-Module Substrate
Mater. Des., 238 (2024), 112637.

C. WANG, H. TATSUMI, L. XU, T. ZHAO, P. ZHU, R. SUN and H. NISHIKAWA
 Transparent Liquid Ag-Based Complex for the Facile Preparation of Robust Sintered Ag Joints in Power Devices
ACS Appl. Electron. Mater., 6 (2024), 1718-1728.

X. LIU, H. TATSUMI and H. NISHIKAWA
 A Comparative Numerical Study of Thermos-Mechanical Behavior among Various IMC Joints under Thermal Cycling Condition
J. Smart Process., 13, 2 (2024), 83-89.

H. TATSUMI
 Molecular Dynamics Simulations of Solid-State Bonding Behavior for Electronics Packaging
J. Japan Welding Soc., 93, 3 (2024), 149-153 (in Japanese).

T. KOBAYASHI, H. TATSUMI, K. YAMAZAKI, R. OKASHITA and I. SHOJI
 Evaluation of Fatigue Properties of Metal/CFRTP Joints Using Cu-Ni Alloy Electroplating Film
J. Jpn. Inst. Copper, 63, 1 (2024), 176-179 (in Japanese).

P. ZHANG, S. XUE, L. LIU, J. WANG, H. TATSUMI and H. NISHIKAWA
 Study on Thermal Cycling Reliability of Epoxy-Enhanced SAC305 Solder Joint
Polymers, 16 (2024), 2597.

S. ICHIMARU, T. NAKAGAWA, N. NEMOTO, K. SUGANUMA, H. TATSUMI and H. NISHIKAWA
 Study of the Characteristics and Growth of Tin Whiskers in Orbit
Microelectronics Reliability, 162 (2024), 115523.

M. TSUKAMOTO
 Research and Development of Welding and Joining Technology with Advanced Lasers
J. Japan Welding Soc., 93, 2 (2024), 28-31 (in Japanese).

B. CHAYASOMBAT, P. PROMOPPATUM, S. SRISAWADI, D. TANPRAYOON, K. TAPRACHAROEN, B. TUMMAKE, M. IHAMA, Y. MIZUGUCHI, Y. SATO, T. SUGA, M. TSUKAMOTO and O.-L.-A. HARRYSSON
 Single Track Formation of TiC Reinforced Inconel 718 Metal Matrix Composites Using Selective Laser Melting Process
Int. J. Adv. Manuf. Technol., (2024).

S. FUJIO, Y. SATO, M. SUDO, K. TAKENAKA, K. TOJO, T. PASANG and M. TSUKAMOTO
 Spatter Reduction in Deep Penetration Welding of Pure Copper Using Blue-IR Hybrid Laser
Weld. World, (2024).

R. HIGASHINO, Y. SATO, K. TAKENAKA, N. ABE and M. TSUKAMOTO
 Influence of Zinc Content Variation of Cu-Zn Alloy Powder on Film Formation by the Method of Multi-Beam Laser Metal Deposition Using Blue Diode Lasers
Proc. SPIE, Laser 3D Manufacturing XI, 12876 (2024), 128760N-1-128760N-5.

A. KAPIL, O.-C. OZANER, Y. SATO, Y. HAYASHI, K. IKEDA, T. SUGA, M. TSUKAMOTO, S. KARABULUT, M. BILGIN and A. SHARM
 Overcoming Machining Challenges in Hybrid Laser Metal Deposition of IN718 with Heat-Assisted Minimum Quantity Lubrication
Int. J. Adv. Manuf. Technol., (2024).

T. PASANG, S. FUJIO, P. LIN, Y. TAO, M. SUDO, T. KUENDIG, Y. SATO and M. TSUKAMOTO
 Weldability and Mechanical Properties of Pure Copper Foils Welded by Blue Diode Laser
Materials, 17, 9 (2024), 214.

K. MORIMOTO, Y. SATO, K. TAKENAKA, Y. HAYASHI, Y. TATSUMI, N. ABE and M. TSUKAMOTO
 Study of Pure Copper Layer Formation with a Multi-Beam Laser Cladding System in Flight Powder Melting Conditions
J. Smart Process., 13, 3 (2024), 135-144 (in Japanese).

J. VOLPP, Y. SATO, M. TSUKAMOTO, L. RATHMANN, M. MÖLLER, S.-J. CLARK, K. FEZZAA, T. RADEL and K. KLINGBEIL
 The Surface Tension of Boiling Steel Surfaces
Results Mater., 22 (2024), 100583.

Y. SATO, R. HIGASHINO, K. TAKENAKA and M. TSUKAMOTO
 Effect of Zinc Content on Copper Layer Formation by Multi-Beam Laser Metal Deposition Using Blue Diode Lasers
J. Jpn. Inst. Copper, 63, 1 (2024), 226-230 (in Japanese).

R. UEDA, Y. SATO, S. SRISAWADI, D. TANPRAYOON, B. CHAYASOMBAT, P. PROMOPPATUM, M. YOSHIDA and M. TSUKAMOTO
 3D Fabrication of Nickel Based Alloys by Powder Bed Fusion with Blue Diode Laser
Journal of Laser Applications, 36, 4 (2024), 42077.

T. YOSHIDA, Y. SATO, K. TAKENAKA, P. CHEN, H. KANETAKA, T. MOKUDAI and M. TSUKAMOTO

Pure Copper Coating by Multibeam Directed Energy Deposition with Blue Lasers for Antimicrobial Effect

Journal of Laser Applications, 36, 4 (2024), 42035.

R. MATSUDA, Y. SATO, K. TAKENAKA, M. KUSABA and M. TSUKAMOTO

Improvement of Layer Fabrication Efficiency and Dilution Rate for Nickel Based Super Alloy by Multibeam Directed-Energy-Deposition with Blue Diode Lasers

Journal of Laser Applications, 36, 4 (2024), 42046.

S. YOSHIDA, M. MIZUTANI, K. TAKENAKA, Y. SATO and M. TSUKAMOTO

Formation of a Low-Dilution Pure Copper Layer by Wire-Based Laser Metal Deposition with Blue Diode Laser

Proc. SPIE, Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XXIX, 12872 (2024), 128720F-1-128720F-7.

S. FUJIO, T. YOSHIDA, K. YAMAMOTO, K. TAKENAKA, Y. SATO, K. MORIMOTO and M. TSUKAMOTO

Pure Copper Layer Coating with Multi Beam Laser Metal Deposition System with Blue Diode Laser

Proc. SPIE, Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XXIX, 12872 (2024), 128720G-1-128720G-6.

K. TAKENAKA, M. SUDO, S. HUJIO, M. MIZUTANI, Y. SATO and M. TSUKAMOTO

Spectroscopic Analysis of Blue Diode Laser Induced Plume Generated by Welding of Pure Copper

J. Jpn. Inst. Copper, 63, 1 (2024), 171-175 (in Japanese).

K. TAKENAKA, P. CHEN, Y. SATO and M. TSUKAMOTO

Formation of Femtosecond Laser Induced Periodic Surface Structures on Medical Polymer for Control of Cell Behaviour

Proc. LPM2024, (2024), 24-038.

H. MIAO, T. YAMASHITA, K. USHIODA, S. TSUTSUMI, Y. MORISADA and H. FUJII

Linear Friction Welding of T-Joints in Low Carbon Steel: Effect of Welding Parameters on Joint Quality

J. Adv. Join. Process., 10 (2024), 100267.

T. OMAE, T. YAMADA, D. FUJIKAKE, T. KOZAWA and G. UCHIDA

Development of Nanostructured Ge/C Anodes with a Multistacking Layer Fabricated via Ar High-Pressure Sputtering for High-Capacity Li⁺-ion Batteries

Appl. Phys. Express, 17 (2024), 26001.

J. HUEBNER, T. KOZAWA, A. KONDO, K. FUKUYAMA and M. NAITO

Mechano-chemical Hydrothermal Synthesis of NH₄NiPO₄-H₂O and Its Transformation to LiNiPO₄ Adv. Powder Technol., 35 (2024), 104375.

[Materials, Metallurgy & Weldability]

R.-V. CANTON and R. KITAURA

Insulating 6,6-Phenyl-C61-butyric Acid Methyl Ester on Transition-Metal Dichalcogenides: Impact of the Hybrid Materials on the Optical and Electrical Properties

Chem. -Eur. J., 30, 21 (2024).

R.-V. CANTON, K. ANTONIA, T. EFSTATHIOS, H. NIKOLAOS, G. ANGELIKI, P. ANASTASIA, S. KOSTAS, B. NIKOS,

S. DIONYSIOS, C.-V. GEORGIOS and T. NIKOS

Covalent Post-Functionalization of Kevlar with Graphene Oxide-Melamine for UV-light Protection and Antibacterial Properties

Mater. Today Chem., 37 (2024), 102041.

A. KARAM, R.-V. CANTON, K. ANDREAS, C. NIKOS and T. NIKOS

Tether-directed Regioselective Synthesis of New Cis-2' Azafullerene Bisadducts

Carbon, 228 (2024), 119377.

Y. MIYANO, H. WASHIYA, H. SATO, Y. AOKI, M. KIMURA and K. USHIODA, H. FUJII

Friction Stir Welding of 1.4 GPa-Grade Tempered Martensitic Steel

ISIJ Int., 64, 12 (2024), 1795-1803.

M. MATSUSHITA, D. YAMAGISHI, K. , R. IKEDA and H. FUJII

Development of High Speed Welding Technology for Advanced High Strength Steel Sheets Applying Pre-Heating Process to Double-Sided Friction Stir Welding

Q. J. Jpn. Weld. Soc., 42, 4 (2024), 167-178 (in Japanese).

J. SUN, Z. LI, D. WU, H. KOMEN, M. TANAKA, J. VOLPP, G. LUO, Y. ZHANG, N. MA, W. JIAO and K. FENG
High-speed Laser-Directed Energy Deposition of Crack-Free Wear-Resistant and Anti-Corrosive Al/Cu Bimetal Components
Virtual Phys. Prototyp., 20 (2024), e2438885.

X. LIU, H. TATSUMI, J. WANG, Z. JIN, Z. CHEN and H. NISHIKAWA
Analysis of Microstructures and Fractures in Ag-In Transient Liquid Phase Bonded Joints
Mater. Sci. Eng. A., 892 (2024), 146045.

X. LIU, F. HUO, J. WANG, H. TATSUMI, Z. JIN, Z. CHEN and H. NISHIKAWA
Interfacial Reactions between In and Ag during Solid Liquid Interdiffusion Process
Surf. Interfaces, 45 (2024), 103844.

I. SAKAMOTO, D. JEONG, H. TATSUMI and H. NISHIKAWA
Joint Strength of Transient Liquid Phase Bonding Using Cu-SAC Molded Sheet
Proc. 2024 Int. Conf. on Electronics Packaging (ICEP2024), (2024), 41-42.

H. TATSUMI, H. ISONO, K. HIRASE, T. IDE and H. NISHIKAWA
Low Thermal Resistance Joint Using Lotus-type Cu/Solder Composite
Proc. 2024 Int. Conf. on Electronics Packaging (ICEP2024), (2024), 51-52.

C. WANG, H. TATSUMI and H. NISHIKAWA
Ag Sintered Joints on ENIG Cu Substrates by an Ag-based Complex
Proc. 2024 Int. Conf. on Electronics Packaging (ICEP2024), (2024), 95-96.

S. NITTA, H. TATSUMI and H. NISHIKAWA
Creep Behavior of Low-temperature Sn-In Solder Using Nanoindentation Test
Proc. IEEE Int. 3D Systems Integration Conf. (3DIC 2024), (2024).

C. WANG, H. TATSUMI, H. KOTADIA and H. NISHIKAWA
Substrate-Dependent Sintering Mechanism of Ag Nanostructures Derived from Ag-Based Complex
ACS Appl. Electron. Mater., 6 (2024), 7360.

C. WANG, H. TATSUMI and H. NISHIKAWA
Thermal Decomposition Temperature Dependent Bonding Performance of Ag Nanostructures Derived from Metal-Organic Decomposition
J. Mater. Sci., 59 (2024), 19038.

W. WANG, S. CHERNG, Y. HUANG, R. GAO, H. TATSUMI, H. NISHIKAWA and C. CHEN
Low-temperature Soldering Using Sn/Bi Electrodeposited Bilayer
Mater. Sci. Semicond. Process, 186 (2024), 109056.

I. SAKAMOTO, D. JEONG, H. TATSUMI and H. NISHIKAWA
Microstructure and Bonding Properties of Transient Liquid-Phase Bonding Using Cu-SnAgCu Molded Sheets by High Pressure Powder Compression
J. Electronic Mater., (2024).

A. SIYAHТИRI, S.-H. NEDJAD, H.-H. ZARGARI and K. ITO
Medium-carbon Dual-Phase Steels with Spheroidized Ferrite Matrix
J. Mater. Res. Technol-JMRT, 30 (2024), 4692-4701.

M. MALEKINIA, H.-H. ZARGARI, K. ITO and S.-H. NEDJAD
Flux Enhancement with Titanium or Vanadium Oxides Addition for Superior Submerged Arc Welding of HSLA Steel Plates
J. Adv. Join. Process., 10 (2024), 100238.

M. TAKAHASHI
Multilayer Anodic Bonding
30th Symp. on "Microjoining and Assembly Technology in Electronics", (2024), 218-223 (in Japanese).

H. YAMAMOTO, Y. YAMAMOTO, K. ITO and Y. MIKAMI
Compressive Residual Stress Applied to a Low-Carbon Steel Surface Alloyed with WC Tool Constituent Elements According to Friction Stir Processing
Mater. Des., 244 (2024), 113225.

Y. AOKI, K. USHIODA and H. FUJII
Effect of Applied Pressure on Microstructure and Hardness of Linear Friction Welded Martensitic Steel
ISIJ Int., 64, 2 (2024), 372-380.

Z. WU, K. USHIODA, H. LIU, Y. LI and H. FUJII
 Effect of V and Mn Addition on the HAZ Softening and Tensile Properties of Friction Stir Welded Martensitic Steel
Mater. Sci. Eng. A., 903 (2024), 146602.

M. HAYASHI, I. FUJITA, T. ITADANI, J. ARAKAWA, Y. AOKI, H. FUJII, H. AKEBONO and A. SUGETA
 Relationship between Weld Rip Diameter and Fatigue Fracture Mode for Friction Stir Spot Welded Tension-Peel Joints
Fatigue Fract. Eng. Mater. Struct., 47, 6 (2024), 2127-2138.

R. SUZUKI, T. IKEDA, K. FUJIWARA, K. MITA, Y. HANGAI, H. FUJII and S. KOBAYASHI
 Fundamental Aspects of Wire Arc Additive Manufacturing for Aluminum Foams
Mater. Trans., 65, 6 (2024), 672-676.

H. FUJII, M. IYOTA, T. OGURA, M. KIMURA, T. SATSUTA, T. YASUI and T. IKESHOJI
 Committee of Joining and Materials Processing for Light Structures
J. Jpn. Weld. Soc., 93, 5 (2024), 313-323 (in Japanese).

H. FUJII
 Exploration of No-transformation Joining without Hardening and Softening
Ferrum, 29, 8 (2024), 516-522 (in Japanese).

K.-M. KWON, H.-J. KIM, H. FUJII, J.-S. KIM, J.-K. KIM, J.-W. CHOI, S.-J. LEE
 Comparative Study on Mechanism of Hydrogen Embrittlement of Fe-18Mn-0.6C Twinning-Induced Plasticity (TWIP) Steel Subjected to Friction-Stir Welding (FSW) and Tungsten Inert-Gas (TIG) Welding
Mater. Sci. Eng. A., 910 (2024), 146836.

W. ZHANG, K. WANG, X. QI, H. LIU, A. LI, H. DING, H. FUJII and W. LIU
 Superplastic Behavior of a Metastable B-Type Ti Alloy Governed by Grain Size: Microstructure Evolution and Underlying Deformation Mechanism
Mater. Sci. Eng. A., 915 (2024), 147212.

H.-N. CHOI, J.-W. CHOI, H. KANG, H. FUJII and S.-J. LEE
 Effect of Stacking-Fault Energy on Dynamic Recrystallization, Textural Evolution, and Strengthening Mechanism of Fe-Mn Based Twinning-Induced Plasticity (TWIP) Steels during Friction-Stir Welding
J. Adv. Join. Process., 10 (2024), 100236.

J.-H. KIM, D.-I. KIM, J.-Y. LEE, H. FUJII, J.-H. KANG, I.-J. PARK, H. KANG, J.-H. SHIN and S.-J. LEE
 Strengthening Mechanism of Friction-Stir Welded Fe-17Mn Alloy
J. Alloy. Compd., 1005 (2024), 175842.

K. SHIMIZU, S. NAKAYAMA, H. SHOJI, T. KAWAKUBO, T. NAGIRA, M. OHATA and H. FUJII
 Significance of Fracture Toughness for Linear Friction Welded Joint of Weathering Steel
Weld. World, (2024).

T. AIBARA, M. KAMAI, Y. MORISADA, K. USHIODA and H. FUJII
 Formation Mechanism of Joint Interface in Cold Spot Joining Method and Its Joint Properties
Tetsu To Hagane-J. Iron Steel Inst. Jpn., 110 (2024), 1-14.

D. AMBROSIO, Y. MORISADA, K. USHIODA and H. FUJII
 Extremely Thin Intermetallic Layer in Dissimilar AA6061-T6 and Mild Steel Friction Stir Lap Welding Using a Hemispherical Tool
Sci. Rep., 9 (2024).

M. MUKUDA, A. NOGUCHI, Y. MORISADA and H. FUJII
 Development of Friction Stir Welding Method Using a Tilted Spherical Tool
Sci. Technol. Weld. Joining, 29, 2 (2024), 81-88.

D. AMBROSIO, A. SHARMA, M. MUKUDA, Y. MORISADA and H. FUJII
 Feasibility of Friction Stir Welding Using a Hemispherical Tool Tilted Towards the Retreating Side
J. Adv. Join. Process., 9 (2024).

T. AIBARA, M. KAMAI, Y. MORISADA, K. USHIODA, T. MIYAUCHI, S. HASEGAWA and H. FUJII
 Cold Spot Joining of High-Strength Steel Sheets
J. Adv. Join. Process., 9 (2024).

T. ITO, M. KAMAI, Y. MORISADA and H. FUJII
 Linear Friction Welding of Light Metals and Carbon Fiber-Reinforced Plastics
Sci. Technol. Weld. Joining, 29, 3 (2024), 162-171.

A. SHARMA, Y. MORISADA, K. USHIODA and H. FUJII
 Elucidation of the Factors Controlling Interface Decohesion and Particle Fracture in a Friction Stir Alloyed Al-Fe Alloy System
Mater., 34 (2024), 1-12.

T. AIBARA, Y. MORISADA, K. USHIODA, T. MIYAUNCHI, S. HASEGAWA and H. FUJII
Cold Spot Joining of Galvannealed DP780 Mpa Steel Sheets
Tetsu To Hagane-J. Iron Steel Inst. Jpn., 110, 5 (2024), 414-425 (in Japanese).

D. AMBROSIO, Y. MORISADA, K. USHIODA and H. FUJII
Asymmetry in Microstructure and Mechanical Properties of FSWed Joints Using a Hemispherical Tool Tilted Towards the Retreating Side
J. Manufacturing Processes, 119 (2024), 32-45.

Y. HANGAI, T. TAKAGI, T. ISHIGAI, Y. TOMITA, S. NISHIDA, R. SUZUKI, Y. MORISADA and H. FUJII
Easy Disassembly of Steel/aluminum Joint by Foaming of Aluminum Part with Foaming Agent Sheet
Int. J. Adv. Manuf. Technol., 133 (2024), 409-416.

K. FUNAKI, Y. MORISADA, K. HASEGAWA, T. FUKASAWA, Y. ABE and H. FUJII
Elucidation of Tool Wear Phenomenon in FSW Using Silicon Nitride Tool
Weld. Int., 38, 7 (2024), 500-510.

J.-W. CHOI, H. TSURUYAMA, R. HINO, Y. AOKI, Y. MORISADA, H. FUJII and S.-J. LEE
Dissimilar Linear Friction Welding of AZ31 Magnesium Alloy and AA5052-H34 Aluminum Alloy
Mater., 36 (2024), 102160.

P. DARAM, Y. MORISADA, T. OGURA, M. KUSANO, J. YU, M. FUKUDA, H. FUJII, S. KURODA and M. WATANABE
Development of Tungsten Repair Technology by Atmospheric Plasma Spraying of Tungsten and Friction Stir Processing
J. Thermal Spray Technol., 33 (2024), 1840-1850.

Y. MORISADA and H. FUJII
Changes Abd Transitions in FSW Research and Technology at Joining and Welding Research Institute, Osaka University
J. Light Metal Weld., 62, 10 (2024), 474-478 (in Japanese).

M. MORI, T. BAN, H. TAKEUCHI, Y. MORISADA and H. FUJII
Friction Stir Welding of Thick Steel Plate Using Silicon Nitride Tool
ISIJ Int., 64, 11 (2024), 1699-1704.

T. YAMASHITA, S. HARJO, T. KAWASAKI, S. MOROOKA, W. GONG, H. FUJII and Y. TOMOTA
Martensitic Transformation Behavior of Fe-Ni-C Alloys Monitored by In-situ Neutron Diffraction during Cryogenic Cooling
ISIJ Int., 64, 2 (2024), 192-201.

H. MIAO, T. YAMASHITA, S. TSUTSUMI, Y. MORISADA and H. FUJII
Multiple Analyses of Factors Influencing Fatigue Life of Linear Friction Welded Low Carbon Steel
J. Adv. Join. Process., 9 (2024), 100201.

M. KOYAMA, T. YAMASHITA, S. MOROOKA, Z. YANG, R.-S. VARANASI, T. HOJO, T. KAWASAKI and S. HARJO
Hierarchical Deformation Heterogeneity during Lüders Band Propagation in an Fe-5Mn-0.1C Medium Mn Steel Clarified Through in Situ Scanning Electron Microscopy
Tetsu To Hagane-J. Iron Steel Inst. Jpn., 110, 3 (2024), 205-216 (in Japanese).

T. YAMASHITA, S. MOROOKA, W. GONG, T. KAWASAKI, S. HARJO, T. HOJO, Y. OKITSU and H. FUJII
Role of Retained Austenite and Deformation Induced Martensite in 0.15C-5Mn Steel Monitored By in-Situ Neutron Diffraction Measurement during Tensile Deformation
Tetsu To Hagane-J. Iron Steel Inst. Jpn., 110, 3 (2024), 241-251 (in Japanese).

T. NAGIRA, H. KITANO, T. KIMURA, F. YOSHINAKA, S. TAKAMORI, T. SAWAGUCHI, T. YAMASHITA, Y. AOKI, H. FUJII, A. TAKEUCHI and M. UESUGI
In-situ Observation of Solidification Behaviors of Fe-Mn-Cr-Ni-Si Alloy during TIG Melt-Run Welding Using Synchrotron Radiation X-ray
Mater. Charact., 214 (2024), 114093.

H. KITANO, T. NAGIRA, F. YOSHINAKA, T. SAWAGUCHI, T. YAMASHITA, Y. AOKI and H. FUJII
Development of a Method to Evaluate Strain in Weld Solidification Using In-Situ Observations with High-Brightness Synchrotron X-rays
Sci. Technol. Adv. Mater., online (2024).

F. KHAN, T. MIURA, T. ITO, Y. MORISADA, K. USHIODA and H. FUJII
Sound Dissimilar Linear Friction Welding of A7075-T6 Al and Mild Steel by Simultaneous Interfacial Deformation Using Higher Forging Speed
J. Manufacturing Processes, 109 (2024), 512-523.

R. SHOTRI, T. MIURA, P. GENG, Y. MORISADA, K. USHIODA and H. FUJII
 Probing Joining Mechanism of Ti6Al4V - SS316L Steel Rods in Pressure-Controlled Joule-Heat Forge Welding
J. Mater. Process. Technol., 326 (2024).

J. CHEN, T. MIURA, K. USHIODA and H. FUJII
 Effects of Microstructure and Phosphorus Segregation on Tensile Properties of Friction Stir Welded High Phosphorus Weathering Steel
Mater. Sci. Eng. A., 916 (2024), 147315.

A. SHARMA, T. MIURA, Y. MORISADA, K. USHIODA, S. SINGH and H. FUJII
 Friction Stir Welding of Haynes 282 Ni Superalloy by Using a Novel Hemispherical Tool
Sci. Rep., 14(1), 27826 (2024).

X.-F. GUO, L. JIA, Z.-L. LU, H. XIE and K. KONDOH
 Mechanical and Tribological Property of Cu/CrB2 Composites under Dry Sliding Condition
Mater. Sci. Technol., 0 (2024).

S.-X. WANG, S.-F. LI, X.-M. GAN, R.-D.-K. MISRA, R. ZHENG, K. KONDOH and Y.-F. YANG
 Insights into the Microstructural Design of High-Performance Ti Alloys for Laser Powder Bed Fusion by Tailoring Columnar Prior- B Grains and A-Ti Morphology
J. Mater. Sci. Technol., 187 (2024), 156-168.

K. RATANAPONGPIEN, A. KHANTACHAWANA and K. KONDOH
 Effect of Laser Scanning Speed and Fine Shot Peening on Pore Characteristics, Hardness, and Residual Stress of Ti-6Al-4V Fabricated by Laser Powder Bed Fusion
metals, 14, 2 (2024), 250.

J. WAN, B. CHEN, J. SHEN, K. KONDOH, S. LIU and J. LI
 Improving the Mechanical Properties of Laser Powder Bed Fused AlSi10Mg Alloys by Eliminating the Inevitable Micro-Voids via Hot Forging
Rapid Prototyping J., 1009 (2024), 177003.

H. YAO, H. WEN, G. LI, N. CHEN, K. CHEN, K. KONDOH, X. DONG, H. ZHU and M. WANG
 Evolution of Interfacial Phases between Al Alloy and High Entropy Alloy during Annealing
Mater. Charact., 211 (2024), 113890.

Y. SHIGETA, N. NOMURA, K. KONDOH, K. UESUGI, M. HOSHINO, M. ARAMAKI and Y. OZAKI
 Use of X-ray CT Imaging to Quantitatively Analyze the Effects of the Pore Morphology on the Tensile Properties of CP-Ti L-PBF Materials
ISIJ Int., 64, 7 (2024), 1-10.

M.-H. HOU, L. JIA, R. HUANG, C.-W. LI, Z.-Q. SHI, J. CUI, Z.-L. LU and K. KONDOH
 First-principle and Experimental Investigation into the Interfacial Characters of Ti-doped ZTA and High Chromium Cast Iron
Ceram. Int., 50, 22 (2024), 45289-45299.

H. GENG, B. CHEN, I. CAO, J. WAN, J. SHEN, K. KONDOH and J. LI
 Aging Behavior, Microstructure and Mechanical Properties of Al-Cu-Mg Alloy Matrix Composites Reinforced with Carbon Nanotubes
Mater. Sci. Eng. A., 915 (2024), 147174.

Y.-N. ZHANG, L. JIA, Y.-X. ZHOU, Z.-L. LU and K. KONDOH
 Research Progress in Carbon Nanotube Reinforced Copper Matrix Composites Prepared by Powder Metallurgy
J. Central South Univ., 55, 8 (2024), 3165-3179.

G. LI, H. YAO, B. FU, K. CHEN, K. KONDOH, N. CHEN and M. WANG
 Robust Interfacial Bonding Achieved via Phase Separation Induced by Enhanced Al Diffusion during AZ31/high-entropy Alloy Friction Stir Welding
J. Magnes. Alloy., (2024).

J. HUANG, A. BAHADOR and K. KONDOH
 Microstructure Development and Strengthening Behaviour in Hot-Extruded Ti-Mo Alloys with Exceptional Strength-Ductility Balance
J. Alloy. Compd., 1010 (2024), 177195.

Y. ZHANG, L. JIA, J. LI, Z. LU and K. KONDOH
 Regulation of Reinforced Phases and Its Influence on the Properties of (Ni2B+C)/Cu Composite by Heat and Mechanical Treatments
Mater. Today Commun., 41 (2024), 110787.

X. YE, Z. HENG, B. CHEN, Q. WEI, J. UMEDA and K. KONDOH
 An In-Situ Study of Static Recrystallization in Mg Using High Temperature EBSD
J. Magnes. Alloy., 12, 4 (2024), 1419-1430.

S. KARIYA, E. ICHIKAWA, T. TERAMAE, S. LI, X. LI, K. KONDOH and J. UMEDA
 Microstructure and Strengthening Mechanism of Powder Metallurgy Extruded Titanium Alloys with Carbon Solid Solution
J. Jpn. Soc. Powder Powder Metal., 71, 10 (2024), 517-523 (in Japanese).

S. KARIYA, K. NAGATA, J. UMEDA, B. CHEN, J. SHEN, S. LI and K. KONDOH
 Strengthening Mechanism of Ti-Zr Sintered Alloys with Sc Addition
J. Jpn. Soc. Powder Powder Metal., 71, 10 (2024), 482-491 (in Japanese).

S. KARIYA, Y. HAYASHI, A. ISSARIYAPAT, J. UMEDA, S. MOON, B. CHEN, S. LI and K. KONDOH
 Microstructures Formation and Strengthening Mechanism of Ultra-Rapidly Solidified Powder Metallurgy Ti-Si Alloys via Hot Rolling Process
J. Jpn. Soc. Powder Powder Metal., 71, 10 (2024), 499-509 (in Japanese).

S. KARIYA, A. ISSARIYAPAT, A. BAHADOR, M. QIAN, J. UMEDA and K. KONDOH
 Microstructure and Strengthening Mechanism of Fe-Supersaturated A Titanium Alloy Produced by Laser Powder Bed Fusion
J. Jpn. Soc. Powder Powder Metal., 71, 12 (2024), 686-692 (in Japanese).

L. LIU, S. LI, X. ZHANG, S. LI, S. WANG, B. LI, L. GAO, H. LIU, D. HUI, D. PAN, S. KARIYA, J. UMEDA and K. KONDOH
 Synthesis Mechanism of Pelleted Heterostructure Ti64-TiB Composites via an Interdiffusion and Self-Organization Strategy Based on Powder Metallurgy
Compos. Pt. B-Eng., 276 (2024), 111366.

S. KARIYA, E. ICHIKAWA, A. ISSARIYAPAT, J. UMEDA, B. CHEN, A. BAHADOR and K. KONDOH
 Carbon Solid Solution Effect on Microstructures of Laser Powder Bed Fusion Prepared Ti Alloys
J. Jpn. Soc. Powder Powder Metal., 71, 10 (2024), 474-481 (in Japanese).

S. KARIYA, T. TANAKA, J. UMEDA, Y. YANG, S. LI, A. KHANTACHAWANA, A. BAHADOR and K. KONDOH
 Microstructural Formation Mechanism of A+ β Dual Phase Ti-Fe Sintered Alloys via Hot Rolling Process
J. Jpn. Soc. Powder Powder Metal., 71, 10 (2024), 510-516 (in Japanese).

S. MIYAMOTO, S. KARIYA, J. UMEDA, B. CHEN, J. SHEN, S. LI, A.-N. ALHAZAA and K. KONDOH
 Strengthening Mechanism of Powder Metallurgy Hot-rolled Ti-Zr-TiC Composites
J. Jpn. Soc. Powder Powder Metal., 71, 10 (2024), 492-498 (in Japanese).

S. ABOLKASSEM, A. ELSAYED, S. KARIYA, J. UMEDA and K. KONDOH
 Microstructure, Mechanical, and Magnetic Properties of Powder Metallurgy FeCoNiSi-Cu, FeCoNiSi-Mn, and FeCoNiSi-Ti Equiatomic HEAs Manufactured by Spark Plasma Sintering
J. Mater. Res. Technol-JMRT, 33 (2024), 9426-9438.

P. GENG, H. MA, P. ZHAO, N. MA, T. MIURA and H. FUJII
 Effect of Tool Revolutionary Pitch on Heat Transfer and Material Flow in Al/steel Friction Stir Lap Welding
J. Mater. Process. Technol., 325 (2024).

D. SHU, L. ZHAO, D. WU, Y. GUO, Z. ZHANG and N. MA
 Laser-Directed Energy Deposition of Ti-Mo Biomaterials
Weld. J., 24 (2024), 275-282.

Y. GUO, D. WU, Y. CHEN, L. WANG, Y. CHI, K. FENG, Z. LI and N. MA
 Laser-directed Energy Deposition of Low-Carbon, Low-Temperature Ultra-Fine Bainitic Multi-Physical Modeling, Microstructure and Performance Studies
J. Manufacturing Processes, 125 (2024), 552-565.

W. ZHENG, D. ZHANG, D. WU, N. MA and W. WU
 Microstructural Evolution and Strengthening Mechanism of TC4/ZTA Composites Fabricated by Laser-Directed Energy Deposition
J. Alloy. Compd., 1008 (2024), 176565.

W. LI, P. GENG, N. MA, H. FUJII and H. MA
 Effect of Tool Shoulder Geometry on Lapped Al/CFRTP Hybrid Joint Structure and Strength Made by Pinless Friction Spot Joining
J. Mater. Res. Technol-JMRT, 33 (2024), 2183-2198.

T. YAMAMOTO, Y. OGAWA, M. HAYASHI, K. KADOI, D. SHIOZAWA and T. SAKAGAMI
 Fatigue Limit Estimation Based on Dissipated Energy of Butt Laser-Welded Joints
Eng. Proc., 51, 47 (2024).

K. KADOI, M. KOGURE and H. INOUE
 Formation Condition of Lacy Ferrite during Solidification and Subsequent Transformation in Austenitic Stainless Steels Solidified with Primary Ferrite
Mater. Des., 241 (2024), 112984.

K. KADOI, Y. KANNO, S. AOKI and H. INOUE
 Influence of MC Carbides on Pitting Corrosion Resistance of Weld Metal in Austenitic Stainless Steels
ISIJ Int., 64, 9 (2024), 1450-1456.

K. KADOI, Y. MATSUMOTO, H. CHIBA and H. INOUE
 Solidification Cracking Susceptibility of Alloy 718 during Additive Manufacturing and Evaluating Method
J. Mater. Res. Technol-JMRT, 33 (2024), 6389-6396.

Y. HOU and K. KADOI
 Effect of Ti, Al, and Mg Addition on Microstructure Evolution in Weld Metal of Stainless Steel Solidified with F and FA Modes and the Tensile Property
Mater. Sci. Eng. A., 951 (2024), 147190.

K. YOSHIHARA, F. SPIRRETT and S. KIRIHARA
 Applications of Three-Dimensional Modeling Technology in Dentistry
J. Smart Process., 13, 4 (2024), 189-194 (in Japanese).

F. SPIRRETT and S. KIRIHARA
 Fabrication of Complex Lattices and Fractal Patterns by Additive Manufacturing
J. Smart Process., 13, 4 (2024), 195-199.

F. SPIRRETT, A. OI and S. KIRIHARA
 Ceramic Stereolithography of Li₇La₃Zr₂O₁₂ Micro-Embossed Sheets for Solid Electrolyte Applications
Ceram. 2024, 7, 3 (2024), 1218-1226.

F. SPIRRETT and S. KIRIHARA
 Precision Moulding of Ceramic Parts by Ultraviolet Laser Stereolithography
Bulletin Jpn. Elec. Mat. Soc., 55 (2024), 17-21 (in Japanese).

F. LI, K. YOSHIDA, N.-V. CHUC, M. OSADAC and H. ABE
 Understanding the Role of Solvents in Bottom-Up Synthesis of Multi-Element Hydroxides
RSC Adv., 13 (2024), 75-82.

N. KANNARI, Y. YOKOTA, K. ONODUKA, A. SHIMIZU, K. SATO, H. OKAZAKI, S. YAMAMOTO and H. ABE
 Effect of the Ca/P Ratio of Ni-loaded Hydroxyapatite on the Catalytic Decomposition of Biomass Tar at Low Temperatures
Sustain. Energ. Fuels, 8 (2024), 2850-2859.

Y. SHI, H. LI, H. TSUNEMATSU, H. OZEKI, K. KANO, E. YAMAMOTO, M. KOBAYASHI, H. ABE, C. CHEN and M. OSADA
 Ultrafast 2D Nanosheet Assembly via Spontaneous Spreading Phenomenon
Small, 2403915 (2024), 1-12.

C.-T. THANH, N.-T. HUYEN, P.-V. TRINH, N.-V. TU, V.-T. THU, V.-C. TU, D.-N. NHIEM, P.-T. BINH, N.-N. ANH, V.-X. HOA, P.-N. MINH, H. ABE and N.-V. CHUC
 3D Bloom-Like GrNFs/DWCNTs-CeO₂NPs Porous Film for Development of Electrochemical Malathion Sensor
Diam. Relat. Mat., 152 (2024), 111889.

T. MOKUDAI, S. NAKAGAWA, H. KANETAKA, K. ODA, H. ABE and Y. NIWANO
 Radical Scavenging Capacity and In Vitro Cytoprotective Effects of Great Salt Lake-Derived Processed Mineral Water
Antioxidants, 13, 10 (2024), 1266.

Y. YAGI, K. YOSHIDA, T. KOZAWA, M. OSADA and H. ABE
 Synthesis of Gold Nanoparticles Using Au(OH)₃ as a Precursor in Aqueous Media
J. Smart Process., 13, 4 (2024), 200-204.

T. KOZAWA, T. HASHIBA, K. FUKUYAMA, H. ABE, S. MORITA, M. OSADA and M. NAITO
 Beyond Fertilizers: NH₄ZnPO₄ for the Reversible Chemical Storage of Ammonia
Adv. Mater. Interfaces, 2400729 (2024).

J. HUANG, A. ISSARIYAPAT, S. KARIYA, J. UMEDA and K. KONDOH
 Cost Effective In-Situ Alloying of Ti-Fe via Laser Powder Bed Fusion
Int. J. Powder Metall., 59, 4 (2024), 19.

A. ISSARIYAPAT, J. HUANG, S. KARIYA, B. CHEN, S. LI, J. UMEDA, K. YAMANAKA, A. CHIBA and K. KONDOH
 Sustainable Alloy Design: Fe-enhanced Ti Alloys for Superior Mechanical Performance in Additive Manufacturing
J. Alloy. Compd., 1010 (2024), 177767.

F. LI, K. YOSHIDA, N.-V. CHUC, M. OSADA and H. ABE
Synthesis of High-Entropy Rare Earth (Y0.2La0.2Nd0.2Sm0.2Gd0.2) BO₄ (B = Cr, Mo, W) Oxide Powders
J. Smart Process., 13, 4 (2024), 205-209.

M.-Z.-M. JAMIL, M.-S.-M. ISA, S. RAJA, M.-R.-B. MUHAMAD, F. YUSOF, H.-K. HASNAN, M.-F. JAMALUDIN, Z. BRYTAN, H. LIU, T. SUGA, Y. MORISADA and H. FUJII
Friction Stir Alloying AZ61 Magnesium Alloy and Mild Steel with Zn-CNT Additive
Trans. Indian Inst. Met., 77 (2024), 435-443.

[Mechanics, Strength & Structural Design]

M. KOYAMA, T. YAMASHITA, S. MOROOKA, T. SAWAGUCHI, Z. YANG, T. HOJO, T. KAWASAKI and S. HARJO
Microstructure and Plasticity Evolution During Lüders Deformation in an Fe-5Mn-0.1C Medium-Mn Steel
Tetsu To Hagane-J. Iron Steel Inst. Jpn., 110, 3 (2024), 197-204 (in Japanese).

R. TORAMOTO, T. YAMASHITA, K. USHIOKA, T. OMURA and H. FUJII
Hydrogen Embrittlement Susceptibility of Linear Friction Welded Medium Carbon Steel Joints
ISIJ Int., 64, 7 (2024), 1185-1196.

T. YAMASHITA, S. MOROOKA, W. GONG, T. KAWASAKI, S. HARJO, T. HOJO, Y. OKITSU and H. FUJII
Role of Retained Austenite and Deformation-Induced Martensite in 0.15C-5Mn Steel Monitored by In-Situ Neutron Diffraction Measurement during Tensile Deformation
ISIJ Int., 64, 14 (2024), 2051-2060.

X. ZHANG, X. LI, J. WANG, L. LIU, S. LI, B. LI, X. HOU, J. GAO, S. KARIYA, J. UMEDA, K. KONDOH and S. LI
Synthesis Mechanism and Interface Contribution Towards the Strengthening Effect of In-Situ Ti₅Si₃ Reinforced Al Matrix Composites
Mater. Sci. Eng. A., 918 (2024), 147427.

Z. HU, D. ZHANG, D. WU, X. ZHENG, J. SUN, P. GENG and N. MA
Enhanced Mechanical Properties of Fe-based Hardfacing Alloy with Al Additions Fabricated by Laser Cladding
Surf. Coat. Technol., 478, 130447 (2024), 1-13.

D. WU, Y. LI, T. SUN, G. HE, Q. HUO, N. MA and Y. YE
High-speed Synchrotron X-Ray Imaging and Multi-Physics Modeling of Molten Pool and Gas Dynamics in Laser Additive Manufacturing of a Medium-Entropy Alloy
Weld. World, 2024, s40194-023-01673-6 (2024), 1-9.

H. HUANG, N. MA, K. KADO, S. RASHED, K. NARASAKI, Y. AGANO, N. TANAKA and W. MAO
Development of Gouging Heat Source Model and Numerical Analysis of Gouging/welding Heat Effects
J. Manufacturing Processes, 110 (2024), 101-113.

S. BAEK, J. KIM, T. KWAK, T. LEE, H.-C. LEE, C. CHEN, P. GENG, N. MA, S. LEE and D. KIM
Al Heat Affected Zone-Less Resistance Element Welded Lap Joints of Al Alloy and 1 GPa Class Steel: Transition of Microstructure and Fracture with Heat Transfer
J. Mater. Res. Technol-JMRT, 28 (2024), 3541-3565.

S. REN, H. CHEN, N. MA, W. LI, S. SAEKI, Y. IWAMOTO and J. YANG
Coaxial One-Side Resistance Spot Welding for Cross-Lap Joints of Al5052 and CFRP: Thermal Process and Strength Evaluation
J. Mater. Res. Technol-JMRT, 28 (2024), 1032-1043.

R. NISHIMURA and N. MA
Measuring Mechanical Properties in Simulated HAZ and Fracture Prediction Model for CMT Arc-Welded Joints of Ultra-High-Strength Steel
J. Manufacturing Processes, 55, 1 (2024), 63-68.

D. KIM, S. BAEK, H.-C. LEE, P. GENG, N. MA, M. NISHIJIMA, C. CHEN, S.-J. LEE, S. KATSUAKI and P. HAO
Toward Defect-Less and Minimized Work-Hardening Loss Implementation of Al Alloy/high-Purity Cu Dissimilar Lap Joints by Refill Friction Stir Spot Welding for Battery Tab-To-Busbar Applications
Mater. Sci. Eng. A., 892, 146089 (2024), 1-22.

W. LI, P. GENG, N. MA and C. CHEN
Effect of Thermal-Mechanical Conditions on Strength of Silanized Al Alloy/CFRTP Hybrid Joint Made by Thinning Controlled Hot Pressing
Mater. Today Commun., 38 (2024), 108507.

S. REN, H. CHEN, N. MA, J. CHEN, S. SAEKI, Y. IWAMOTO and J. YANG
Investigation of the Fracture Behaviour of Al-CFRP Cross-Lap Joint Fabricated by Coaxial One-Side Resistance Spot Welding
Polymers, 16, 6 (2024), 738.

P. CHAIMANO, N. MA, K. NARASAKI, T. SUGA, S. REN and H. KATO
Electric-thermal-mechanics Modeling for In-Process Phenomena during Micro Resistance Spot Welding Spark Plug of Pt and Inconel600
J. Mater. Res. Technol-JMRT, 30 (2024), 2630-4885.

M. TSUTSUMI, D. WATANUKI, Y. MIYAMOTO and N. MA
Basic Study on Evaluation Method for Fatigue Crack Initiation and Propagation in Carburized Steel for Large Rolling Bearings Considering Residual Stress in Three Directions
JSMS, 2024 (2024), 1-8.

N. MA, Z. FENG, K. HIRAKA and T. MATSUZAKI
Compressive Residual Stresses in LTT Elongated Bead Welded in All Positions for Fatigue Crack Prevention of Boxing Fillet Joints
J. Manufacturing Processes, 117 (2024), 82-94.

Y. KITANI, K. IKUSHIMA, M. ARAI, H. NISHIDA, N. MA and M. SHIBAHARA
Creep Fatigue Prediction of Pipe Joints under Complex Bending-Torsional Loading Using Large-Scale Nonlinear Structural Analysis
Quartely J. Jpn. Weld. Soc., 42, 2 (2024), 78-88.

K. SONG, L. XU, L. ZHAO, Y. HAN, N. MA, K. WANG, Z. MA and Y. LIU
Effect of Loading Modes on Uniaxial Creep-Fatigue Deformation: a Dislocation Based Viscoplastic Constitutive Model
Int. J. Plast., 179, 104038 (2024), 1-13.

L. FEI, P. ZHANG, C. CHEN, Z. ZHENG, J. LI, S. ZHAO and N. MA
Strategies of Reducing the Heat-Affected Zone in Mg/Steel Resistance Riveting Welding Joints for Improving Joint Quality
J. Manufacturing Processes, 124 (2024), 1316-1329.

Y. GE, A. YANG, Z. CHANG, N. MA and Q. WANG
Enhancing Reliability in Laser Powder Bed Fusion through Substrate Modification: Microstructure, Mechanical Properties and Residual Stress
Opt. Laser Technol., 181 (2024), 111612.

Z. CHEN, Y. LIU, P. WANG, H. QIAN and N. MA
Mechanism Clarification and Mitigation Measures of Radial Deformation Induced by Girth Welding of Thin-Walled Pipes
J. Mater. Res. Technol-JMRT, 32 (2024), 2638-2650.

Y. XU, X. QIU, S. WANG, F. HUO, Y. SU, L. XU, N. MA, C. CHEN and K. SUGANUMA
Enhancing Thermal-Mechanical Performance of Micron Ag/ZrW₂O₈ Nanorod Die-Attach Paste with Low Thermal Expansion
J. Alloy. Compd, 996, 174874 (2024), 1-15.

M. TSUTSUMI, S. YAMAGAMI, K. NARASAKI, D. WATANUKI, Y. MIYAMOTO and N. MA
Measurement of Internal Residual Stress of Three-Directional Components and Estimation of Inherent Strain in Carburized Steel for Large Rolling Bearings by Combining the Contour Method and XRD Method
Mater. Trans., 65, 9 (2024), 1099-1107.

S. LEE, S. BAEK, S.-J. LEE, C. CHEN, M. NISHIJIMA, K. SUGANUMA, H. UTSUNOMIYA, N. MA, H.-Y. YU and D. KIM
Driving Forces of Solid-State Cu-to-Cu Direct Bonding Suppressing the Work-Hardening Loss by Refill Friction Stir Spot Welding
Mater. Sci. Eng. A., 915, 147178 (2024), 1-22.

D. SHU, L. ZHAO, D. WU, Y. GUO, Z. ZHANG and N. MA
Laser-Directed Energy Deposition of Ti-Mo Biomaterials: Influencing Mechanisms of Molybdenum on Microstructure and Performance
Weld. J., 2024, 9 (2024), 175s-182s.

W. HUANG, N. MA, Q. WANG, K. HIRAKA, H. KOMEN, C. SHAO, F. LU and S. KANO
 Interpass Temperature Strategies for Compressive Residual Stresses in Cladding Low-Transformation-Temperature Material 16Cr8Ni via Wire Arc Additive Manufacturing
Int. Commun. Heat Mass Transf., 157 (2024), 107777.

Z. YAO, M. OMIYA, N. MA, P. GENG and Q. WANG
 Local Shear Fracture Properties in Heat-Affected Zone of Resistance Spot-Welded Advanced High-Strength Steel
J. Mater. Res. Technol-JMRT, 32 (2024), 2200-2213.

M. HE, Q. WANG, Y. HE, J. WANG, N. MA and Y. WANG
 Effects of Ultrasonic Vibration on Residual Stress Distribution and Local Mechanical Properties of AA6061/Ti6Al4V Dissimilar Joints by Resistance Spot Welding
J. Mater. Res. Technol-JMRT, 33 (2024), 1322-1333.

Y. OHNISHI, K. SATO, N. MA, K. NARASAKI and K. YASUDA
 Measurement of Material Properties at Heating-Cooling for Residual Stress Analysis in Arc Welded Lap Joints of High Strength Steel Sheets
Trans. Soc. Automot. Eng. Jpn., 55, 5 (2024), 999-1004.

C. ZHANG, H. ZHAN, X. ZHOU and N. MA
 An Improved Model for Prediction of Critical Velocity of Cold-Spray by First-Principles Calculations
Coatings, 14, 141226 (2024), 1-11.

S. ZHAO, X. NAI, H. CHEN, P. WANG, Q. WANG, Y. LIU, P. WANG and W. LI
 Role of Nb Elements in SiCf/SiC/(CoFeNiCrMn)100-xNb_x/GH536 Brazed Joints: Joint Residual Stress Transfer and Pinning of Dislocations
Mater. Sci. Eng. A., 891 (2024), 145914.

P. WANG, W. LIU, J. LI, W. SHI, Z. LIU, S. ZHAO, X. NAI, H. CHEN, Q. WANG and W. LI
 Unrevealing the Wetting Behavior and Mechanism of AgCuTi Filler on Negative Thermal Expansion Sc₂W₃O₁₂ Materials: Experiments and First-principles Calculations
Appl. Surf. Sci., 652 (2024), 159257.

Q. WANG, Y. GE, J. CHEN, T. SUZUKI, Y. SAGISAKA and N. MA
 Unraveling Residual Stress Distribution Characteristics of 6061-T6 Aluminum Alloy Induced by Laser Shock Peening
Materials, 17, 14 (2024), 3484.

Y. MIKAMI and S. OKANO
 Weld Heat Conduction and Its Mechanical Effects
J. Japan Welding Soc., 93, 4 (2024), 234-242 (in Japanese).

H. ZHOU, M. KINEUCHI, Y. TAKASHIMA and K. SHIBANUMA
 Multiscale Modelling Strategy for Predicting Fatigue Performance of Welded Joints
Int. J. Mech. Sci., 284 (2024), 109751.

H. SERIZAWA
 Research on Corrosion Fatigue Property of Steel/Aluminum Alloy Weld-Bonded Lap Joint in High Temperature and High Humidity
 77th Annual Assembly of Int. Inst. Welding (IIW), (2024), IIW Doc. III-2244-2024.

[Others]

T. MOKUDAI, M. KAWADA, D. TADAKI, A. HIRANO-IWATA, H. KANETAKA, H. FUJIMORI, E. TAKEMOTO and M. NIWANO
 Radical Generation and Bactericidal Activity of Nanobubbles Produced by Ultrasonic Irradiation of Carbonated Water
Ultrason. Sonochem., 103 (2024), 106809.

P. SUNG, T. YOKOI, M. SHIMABUKURO, T. MOKUDAI and M. KAWASHITA
 Apatite-Forming Ability and Visible Light-Enhanced Antibacterial Activity of CuO-Supported TiO₂ Formed on Titanium by Chemical and Thermal Treatments
J. Func. Biomater., 15, 5 (2024), 114.

T. MOKUDAI, S. NAKAGAWA, H. KANETAKA, K. ODA, H. ABE
and Y. NIWANO

Radical Scavenging Capacity and In Vitro
Cytoprotective Effects of Great Salt Lake-Derived
Processed Mineral Water
Antioxidants, 13, 10 (2024), 1226.

T. YOSHIDA, Y. SATO, K. TAKENAKA, P. CHEN, H. KANETAKA,
T. MOKUDAI and M. TSUKAMOTO

Pure Copper Coating by Multibeam Directed
Energy Deposition with Blue Lasers for
Antimicrobial Effect
J. Laser Appl., 36, 4 (2024), 42035.

L. CHANG, P. CHEN, T. MOKUDAI, M. KAWASHITA,
I. MIZOGUCHI and H. KANETAKA

Enhancing Titanium Osteoconductivity by Alkali-
Hot Water Treatment
ACS Omega, 9, 44 (2024), 44568-22576.J. Japan

Joining and Welding Research Institute,
Osaka University, Japan

11-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
Telephone +81-6(6879)8678
Facsimile +81-6(6879)8689
Web Site <https://www.jwri.osaka-u.ac.jp/>