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0. Introduction

Throughout this paper we work in the piecewise-linear category, consisting
of simplicial complexes and piecewise-linear maps. By (PcC M) we denote a
pair of complexes such that M has an arbitrary but fixed orientation if M is
orientable and P is embedded as a subcomplex in M. K denotes a set of all
connected finite 1-dimensional complexes. Then, for K & K we will call (K c S?)
a linear graph, or simply graph, in a 3—-dimensional sphere S°.

The purpose of the paper is to classify {(K < S°)| K= K} by an equivalence
relation, which we will call a neighborhood-congruence. We will introduce a
operation \ of composition in {(KCS°)|K€K} so that neighborhood-
congruence classes of graphs form a commutative semi-group, and give the
following as generalization of knots [14] and links [8].

Theorem 3.12. In the semi-group of all neighborhood-congruence classes of
linear graphs, factorization is unique.

As an immediate application we can discribe socalled knotted solid tori of
genus 7 in the 3—sphere S°.

1. Definitions and notations

Throughout the paper, dM and 9M denote the boundary and the interior
of a manifold M, respectively. For a pair (PC M), by N(P; M) we denote a
regular neighborhood of P in M, that is, we construct its second derived and take
the closed star of P, see [9] and [12]. For any non-negative integer n, K{n)
denotes a set of all connected finite 1-dim. complexes whose 1-dim. Betti
number is 7.

First let us explain an usual equivalence of pairs, see [2], [6].

1.1. DrriNiTION. Two pairs (PCM) and (P'CM’) are congruent iff
there is a homeomorphism A:M—M’ such that A(P)=P’ and A is orientation
preserving if M is oriented.
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Then it is trivial that the relation of congruence is an equivalence relation.
We denote a congruence class of (Pc M) by <PC M), so (PCM)is a re-
presentative of (PC M. In particular, congruent graphs are said to be of the
same type, and each congruence class of graphs is a graph type. A graph type
of (K §°) is denoted by =<K S*>.

Note: 'Two concepts of a graph and a graph type are essentially different.
But little distinction will be drawn between them. In the following, sometimes
one representative (i.e. graph) is convenient, sometimes another.

Next, we will give another equivalence, which is stated in §0.

1.2. DrrINITION. Two pairs (PCM) and (P'CM’) are neighborhood-

congruent (abbreviated by N-congruent), denoted by (Pc M) (P’ DM’), iff
(N(P; M)c M) and (N(P’'; M’)c M’) are congruent.

Note that if (PC M) and (P’C M’) are congruent, then (PCM)L(P' c
M’). So, the N-congruence can be defined for congruence classes of pairs, and

sometimes we denote (PC M >1« P cM>.

By the uniqueness of regular neighborhoods [9, Th. 2] and [13, Th. 1], the
above definition does not depend upon the triangulations of M and M’, and
the regular neighborhoods N(P; M) and N(P’; M’). So, the relation of N-
congruence is an equivalence relation, and we denote a /N-congruence class of
(PcM) (or <PCM)) by [PcM]. In particular, N-congruence classes of
graphs are said to be the same N-graph type, and a N-graph type of (K S?)
(or =<K 8%) will be denoted by A=[Kc.S?].

1.3. RemMarRk. By using an isotopy of pairs (Pc M), (P’"cM’) and (N
(P; Myc M), (N(P'; M')cM’), we can introduce the similar equivalence
relations of 1.1 and 1.2, respectively, see [7], [9, p. 727]. But since an orien-
tation preserving homeomorphism of S* onto itself is isotopic to the identity,
for pairs (PCS®) the classification problems by the isotopy are the same as
that by the orientation preserving homeomorphism.

For future reference we record the followings.

1.4. Let (KCS®) be a graph. Then, N(K; S°) is a solid torus® T, of genus
n provided that K e K(n).

1.5. If K, K'eKand (Kc S*)~L (K'C S%), then K, K' € K(n) for some n.
1.6. Let (T,C S°) be a solid torus of genus n in S°. Suppose that K(C S®)
and K' (CS°) are spines® of T,, then (KCS%)-L (K'CS).

To characterize the IN-graph types, it is convenient to introduce special

1) Henkelkorper vom Geschlechte n, see [16], p. 219.
2) See [9], pp. 726-7.
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linear graphs.

1.7. n-leafed rose. Let C(n) be a subset of K(n) whose elements are
homeomorphic to the union of # topological circles Si, -+, Si and a n-forest Q
joined as illustrated in Fig. 1. Especially, C(0) is considered to be one point

Si
O @,
N 1
GQ Q 52 @ @,
[0)
O O
O | A
Q
Si )

Fig. 1

. For brebity, we denote the vertices of Q by o, w,, ***, , as shown in
Fig. 1, and especially call the point » (and its image)thenode. Let C=\/,>,
C(n). Of course, C(n)C K(n) and C C K, and therefore, {(CcS%)|CeC} C
{(KcS*)|KeK}. For CeC(n), we will call a graph (Cc S®) a n-leafed rose,
or simply rose, and a graph type §=<{CC S°)> a rose type, and a N-graph type
O©=[C c S?] a N-rose type.

1.8. Knotted Solid Tori. Let T(n) be a set of solid tori of genus 7, and
let T=\/u>T(n). For T'e T, a congruence class 7=<{T'C S*) of (T'c.S®) will
be called a knot type of a solid torus. Note that two solid tori (7' S°) and
(T'c S®) are congruent if and only if (T'cS?) and (7" S?) are N-congruent.

Since each (T'CS?) of genus n has a n-leafed rose C(C S°) as its spine,
we have the followings as consequences of 1.4, 1.5 and 1.6:

1.9. Proposition. For any A=[KCS®), there is a representative 0=
CcS%.

1.10. Proposition. There are set identifications

(A=[KcS] KeK}={0=[CcS] CeC)
= {r=<(TcS>|TeT}.

2. Knotting-genus of N-graph type

In this section we will introduce the knotting-genus of a N-graph type as
generalization of genera of knots [15] and links.

2.1. Spanning-surface for a link. Let L=(SiU---USscCS®) be a (non-
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oriented) link with #» components, that is, L is an union of mutually disjoint
(non-oriented) 1-spheres S}, -:+, S in S°. Let F,, -+, F, be mutually disjoint
orientable surfaces in S°®. 'Then, a system of surfaces F,=F, U --- UF,, is said to

be a spanning-surface for L, or L bounds a system of surfaces F,=F,U - UF,
iff

(i) 8F,={0F,U - UBF}={S} U--U S},
(if) every component of F; has non-void boundary, and

(iii) there are mutually disjoint « 3-cells Q,, -+, Q, in S* such that §Q;
DF;, i=1, -+, u.

Since Seifert’s construction [15] of a surface spanning a given knot can be
readily extended to a link, a spanning-surface for L always exists. Condition
(iii) cannot be removed, as can be seen by the boundary links [6].

To a spanning-surface F,=F,U-.- UF, for L, we associate a pair (4, v)E

N*X N* of non-negative integers, where® p=>" g(F;). On the other hand,
i=1
we define a total order < (or >) in {(u, v)} (C N* X N*) as follows:

(2.2) (u,0) < (W, V') if u>u or if u=u' and v<<v'.
Then, for a link L=(S1U.-- US> S®) we can define an invariant (u, )
as follows:

2.3. DEeFINITION. L is of knotting-genus (u, v) iff there exists a spanning-
surface F; for L with (u, v), and for any spanning-surface F; for L with («/, v'),
(1, D) <@, V).

Since 1 <u<n and 0<v< oo, it is clear that the knotting-genus (u, v) is an
invariant of a link type.

Using the spanning-surface and knotting-genus for a link, we will define a
spanning-surface and knotting-genus for a rose type as follows:

2.4. Spanning-surface for a rose type. Let §={CC S*) be a n-leafed rose
type and (CC.S®) be a representative of §. Let F,=F,U--- UF, be a system
of orientable surfaces in S®. F, is said to be a spanning-surface for 6, iff F,
satisfies the conditions (i), (ii) in 2.1 for a non-oriented link L =(C—Qc S?) and
additional conditions below:

(i)’ there are u 3—cells Q,, -+, O, in S®such that 90,DF; 30;N C=0Q;
N Q=0 and O;N Q,;=00,U00,=w for i jand ¢, j=1,..-, u.
(iV) FonﬂzaFoﬂ Q:CU]U'”UCO”-

Since the n-forest Q) is contractible in S°, we may assume that there is a
regular projection & of a rose C in a suitably chosen 2-sphere S} in S° in the

3) g(F) denotes the genus of 2-manifold F.
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sense of knot theory, such that P(Q) has no crossing. So, the existence of a
spanning-surface for 4 is easily derived from 2.1.

To a spanning-surface F, for 6, we associate a pair (u, v) EN* X N* of
non-negative integers in the same way as a spanning-surface for a link. Moreover
we define a total order <(or > ) in {(, )} (C N* X N*) by (2.2) and define the
knotting-genus of a n-leafed rose @ as follows:

2.5. DEeFINITION. A n-leafed rose type @ is of knotting-genus (u, v), iff
there exists a spanning-surface F, for § with (#, v), and for any spanning-
surface Fj§ for 8 with (v, v'), (u, v) < (W, v'). Especially, 0-leafed rose is
considered to be of knotting-genus (0, 0).

Note that if the knotting-genus of a n-leafed rose type §=<{CCS*> is
(u, v), then u<n and v>g(C—Qc S°) where g(C—Qc S°) is a genus of link
(C—Qc S?), see [15].

By virtue of 2.5, we have the followings:

2.6. DrerINITION. A N-rose type © of §=<{Cc S>> is of knotting-genus
(u, v), iff there is a representative ® of 6 of knotting-genus (u, v), and for any
representative 8’ of © of knotting-genus (¢, v’), (u, v)<(«/, v').

2.7. DrriniTioN. The knotting-genera of a N-graph type A and a
knot type of solid torus 7 are defined by the set identifications of 1.10. That
is, A is of knotting-genus (u, v) iff © is of knotting-genus (%, v) and A=[Cc S’]

g@?@@

(K,cS? (C,c S
@ ]
(K,c S3) (C,c %)

Fig. 2
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for any representative (CCS°) of ®, and 7 is of knotting-genus (u, v) iff ® is of
knotting-genus (x, v) and 7=<{N(C; S°)cS°®)> for any representative (CC S®)
of 8.

2.8. Remarx. (1) For a graph (Kc.S®), we may define a spanning-
surface, therefore the knotting-genus, directly by using a system of some kinds
of surfaces in the similar way as 2.1 and 2.4. (2) Let F, be a spanning-surface
for §={CcS*>. Then, F,NON(C; S°) consists of mutually disjoint # simple
loops, say b,, -+, b,, on ON(C; S®). In particular, b,,--+, b, together generate
the first integral homology group H,(N(C; S°), Z).

2.9. ExamprLes. We now list five examples of graphs. In Fig. 2, <C,
c.S® is of knotting-genus (2, 0), <C,c S*> of (1, 0) and <C,cS*> of (1, 1).
Particularly, any two of them are different graph type, but all of them are same
N-graph type. So, [C;c S®]=[K;c 5] is of knotting-genus (2, 0), 7=0, 1, 2 and
j=12.

3. Unique decomposition theorem of N-graph type

In view of Definitions 2.5, 2.6 and 2.7, we have the following:

3.1. DEerINITION. A rose type 0 is prime iff 6 is of knotting-genus (1, *).
And a N-rose type © (resp. a N-graph type A resp. a knot type of solid torus 7) is
prime iff © (resp. A resp. 7) is of knotting-genus (1, ).

By the above definition, we have immediately the following:

3.2. Proposition. Any {CcS*, [CcS®], [KCS] and <TcS°) are
prime provided that C=C(1), KeK(1) and T T(1).

3.3. Composition. If graph types A,=<K,cS®> and r\,=<{K,cS°
are represented in a 3-sphere S® on opposite sides of a 2-sphere S§ and have
one point o= S% in common, then we have a new graph type represented by
a graph (K, UK,c S°). We will call the new graph type the composition of \,
and 2, and denote it by A, \V A, (see for knots [14], [5, §7], for links [8] and
generally [7]). The composition of knot type of solid tori 7,=<T,cS*> and
7,=<{T,c S* can be defined in the similar way as graph types, that is, the
composition T,\/7, of 7, and 7, is the knot type of solid torus (T, U T,C S°),
where T, and T, are represented in a S° on opposite side of a 2-sphere S§ and
have a disk D=0T,N 07T, S¢ in common.

While, it is easily known that in general the composition of X, and A, is
not uniquely determined. So, for rose types we give the following definition:
the composition 6,\/ 0, of 6,=<{C,c S*> and 6,-=<C,c S*> is the rose type of
(C,UC,c S%), where C, and C, are represented in a S° on opposite side of a
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2-sphere S? and have a common point o= C,N C, which is the nodes of Q,
cC, and Q,cC,. Then, we have:

3.4. Proposition. In the set of all rose types {§=<Cc S*>|CC}, the
composition \/ is well-defined, and moreover associative and commutative. Especial-
ly, 6,={wc S*> is an unit. Thus, {§={CcS*>|CC} forms a commutative
semi-group under the operation \/ .

3.5. Corollary. We define the composition ®, \/ ©, of two N-rose type
8, and ©, by the N-rose type of the composition 0,\ 0, of any representatives 0, of
©, and 0, of ®,. Then the composition \/ is well-defined in {©=[C C S°]|C<C}.
Therefore, from 1.10 (or 1.9) we obtain at once the

3.6. Corollary. (1) The composition \/ is well-defined in {T=<{T C S*)
|Te T}.

(2) We define the composition AN/ A, of two N-graph types A, and A, by
the N-graph type of any composition N, \/ \, of any representatives \, of A, and
A, of A,. Then, the composition \/ is well-defined in {A=[KcC S°]|KEK}.

We can now formulate our main theorem.

3.7. Theorem. In the semi-group {§=<CC S*>|C<C}, factorization is
unique. That is, every 0={CC S*> is decomposable in an unique way into prime

01 = <C1CS3>) Ty 0u = <CuCS3>-

The existence of such a decomposition can be proved easily from 2.5(2.4),
3.1, 3.2 and the following:

3.8. Proposition. Let (u, v), (u,, v,) and (u,, v,) be the knotting-genera of
0, 0, and 0,, respectively. Suppose that

0=",V8e,.
Then, (u, v)=(u,+u, v,+9,).

Proof. From Definition 2.5, it is obvious that (u, v) <(u,+u,, v,+7v,). So
we must show that (u, v)>(u,+u,, v,49,).

Let (C,c S?) and (C,C S®) be representatives of 6, and 8,, respectively, in a
3-sphere S® such that C,N C,=w, the nodes of O,C C, and Q,CC,, and (C,U
C,C 8% is a representative of 9. And let S be a 2-sphere in S° separating
C, from C,. If F, is a spanning-surface for §=6,\/§,, then the intersection of
F, and S% consists of a finite number of simple loops in 9F,. These loops
can be capped to produce surfaces F, and F, spanning C, and C, respectively.
Thus, if F¢, F¢, and F, be with (4, v1), (43, »3) and (u, v), respectively,
clearly u{+uj>u and v{+v;<v, thereby showing that (u, v)>(u,+u,, v,+9,).
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The uniqueness of the decomposition will clearly follow from the next
lemma:

39. Lemma. If 6, \V 0, has 0 as a prime component, then either 0,
or 0, has @ as a prime component.

Proof. To prove this, we start with a rose (C, U C,C S°) representing 6,
V 6, and a 2-sphere S} that cut it in one point » separating 6, from 6,. Since
0 is a component of §, \V 0,, there exists a 3—cell O in S® such that 30 N (C, U C,)
=o and ON(C,UC,) is a representative of §. If S§N00=w, we can easily
take a 3—cell Q, (or Q,) in S*so that 0,N 0=00,N 80 =wand 9Q,NC, = 0 (or
0,N0=00,N30=w and 9Q,N C,+0), and so we are finished. If not, S§
N9Q consists of a finite number of disjoint simple loops ¢,, :**, ¢,, and a finite
number of simple loops d, --+, d. such that d;Nd;=o for i%jand 7, j=1, -, p.
Let A(c,), -+, A(c,) be disks on 80 bounded by ¢, -+, ¢,, respectively, such that
A(c)Pw, i=1 .-, v.

Let ¢, be a minimal, i.e. there is no other ¢; in A(c;). Let B(c,) be a disk
on S3 bounded by ¢, such that B(c,)®w». Then,a2-sphere A(c,) U B(c,) bounds
a 3—cell Of in S*. Since A(c,)N(C,UC,)=0=B(c,)N(C,UC,), OiN(C,UC))
=0. Then we have a new 2-sphere S§—B(c,) U A(¢,) that cuts (C, U C,C .S°) in
one point » separating 6, from 6,, and again denote this 2-sphere by S§. We
may deform S3 into general position in S® so that

SsnoQce U Ue,Udi U+ Udy.

By the repetition of the procedure we can get rid of all intersections c,,
--- ¢, of S§N00O.

Now, we will consider d, U -+ Ud.c S§N0Q. First, we may assume that
at least one of d,, ---, d,, say d,, bounds a disk B(d,) on S§ such that B(d,) does
not contain any other d;. Let A(d,) and A’(d,) be disks on S§ bounded by d,.
Then we have two 2-spheres S,=A4(d,) U B(d,) and S,/=A4'(d,) U B(d,) in S°.
We may deform S, and S, into general position in S° so that S,NS/=w. It
will be noticed that S, and S,” decompose one of (C,c S?% and (C,C S?) into
two roses, one of them may be the trivial rose (o S®), and

00N (S, US))=d,U--Udyu.

Repeating the procedure, we have 2y 2-spheres S,, S,’, -+, Su, S.” in S°
having the one point & in common. It should be noted that these 2-spheres
decompose (C,C S?) and (C,C S?) into severvl roses, and

00N (S, US,/U--USuUS)) = ow.

Since @ is prime, we can take a new 3-cell, again denote it by O, in S*® such that

ON(S,US, U+ USuUS,) = 080
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and QN (C,UC,) is a representative of §. Thus, we can conclude that @ is one
of prime components of 6, or 6,.

From Definitions 2.6, 2.7 and 3.1, we have the followings, whose proofs
are the same as that of 3.8 and 3.9 except for obvious modifications.

3.10. Proposition 3.8 remains valid if © (or A or T) is substituted for 6.
3.11. Lemma 3.9 remains valid if ® (or A or ) is substituted for 6.

Thus, as an immediate consequence of 3.5, 3.6 and the above 3.10, 3.11,
we have the main theorem in §0.

3.12. Theorem. In the every semigroup {©=[CCS’]|CeC}, {A=
[Kc S*||Ke K} and {r={Tc S*>| T € T}, factorization is unique.

4. Elementary ideals of a N-graph type

As generalization of the Alexander polynomial of knot [1], R.H. Fox [4]
defined a sequence of elementary ideals, see [2, Chap. VII], and a sequence of
polynomials, see [2, Chap. VIII], of a finitely presented group G. And S.
Kinoshita [10], [11] discussed the Alexander polynomials of graphs. In this
section, we will explain the Alexander matrix and the elementary ideals of
linear groups. As in §3, the notions of roses and rose types are useful.

4.1.  Presentation of a group =,(S°—C). Now let P be a regular projection
of a rose CCS® in a suitably chosen 2-sphere S§ in S? in the sense of knot
theory. Especially we may assume that P(Q) has no crossing and P(Q)N <P
(Siu--USy)=w,U-Uw, We give a suitable orientation for each S}, -+,
Sa.  Then, by using this projection and the orientation, we can obtain a Wirtinger
presentation of the group z,(S*—C). Letr beanumber of the crossing points of
P(S1U---USs). Then actually the presentation consists of 747z generators
X corresponding to the overpasses of P(SiU--*USs)—(w, U+ Uw,) and r+1
defining relations R corresponding to the 7 crossing points and Q. The relation
corresponding to a crossing point is the form

g -1 —8 ___
x; x5 x7h a7t =1
and the relation corresponding to Q is the form
—1 —1 -1 __
X1 Xg "XgXg ™ *tt Xop_1Xon = 1,

where x; are the generators corresponding to the overpasses of Fig. 3.

While, it is easily checked that one of the r relations corresponding to the
crossing points is a consequence of the other r—1 and the relation corresponding
to Q. Since, for every non-split link L with # components, its link group
7,(S*—L) has deficiency 1, we can easily derived that:



384 S. Suzuki

Xit1

Fig. 3

4.2. For a n-leafed rose (C C S°), the fundamental group =,(S°’—C) has de-
ficiency n.

Of course, we can have a Wirtinger presentation of a group 7,(S°—K) of a
graph (K C .S°) as the same way as a rose, see [5, §5], [10].

On the other hand, since 7z,(S°—C)=z(S°—N(C; S?)), for any N-
congruent roses (C C S®) and (C'C S°), 7,(S°*—C)==n,(S°—C’). More generally,
from 1.9 and 4.2 we have:

4.3. The fundamental group n,(S°—K)is a N-congruent invariant of a graph
type A=<{KC S*>, and it has deficiency n if K = K(n).

In view of 4.3, for a N-graph type A=[KC S°] (resp. a N-rose type ©=
[Cc S?%)), we denote z,(S°—K) (resp. 7,(S°—C)) by G(A) (resp. G(8)), and call
it a N-graph group (resp. a N-rose group). From the unique decomposition
theorem 3.12, we have:

4.4. Proposition. Suppose that A is of knotting-genus (u, v). Then
G(A)=G(A,)*---*xG(\,), that is G(A) is a non-trivial free product of not finite
groups G(A,), +--, G(A,), where each G(A;) is a N-graph group of a prime N-
graph type, i=1, -+, u.

4.5. Corollary. Suppose that K< K(n) and A=[KC S°] is of knotting-
genus (n, v). Then G(A) is a non-trivial free product of n knot groups G,, -+, G,.

4.6. Elementary Ideals of a N-graph Type. Let Z[t] is the infinite cyclic,
multiplicative group generated by ¢, and let F[X] be the free group freely gener-
ated by X={x,, -**, x,,,}. Then, the homomorphism r(x;)=t, i=1, ---, n-tr,
has an unique linear extension to a homomorphism +r: JF[X]— JZ[{] of the
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integral group ring [3]. Using a Wirtinger presentation (X | R)=(x,, ***, Xp1,|7,,
ey 7,y §2) Of 4.1, we have a matrix

87’; ¥

0x;

A = [a,. | = J

lla I 00

Ox
or;

over JZ[t], where [9x,| is the matrix of free derivatives [3]. We call 4 an

a0
Ox

Alexander matrix of the Wirtinger presentation (X | R)of G(8) = =,(S*—C) (or
G(A)=m,(S’—K)). It can be shown that

For an arbitary integer d, an ideal E, of JZ[¢] generated by the determinants
of all (n+r—d) X (n+r—d) minors of A will be called the d** elementary ideal
of the Wirtinger presentation (X | R).

The Alexander matrix and the d*# elementary ideal are not invariants of the
abstract group =,(S*—K). Nevertheless, from (4.6) of [2, p. 107] and the
above 4.3, it can be shown that:

4.7. The Alexander matrix and the sequence of elementary ideals are invariants

of a graph type and of a N-graph type.
Moreover, from 4.3 we claim:

48. Let KeK(n) and A=[KCS®]. Then, if 0<d<n elementary ideals
E,(A) are all equal to 0, see [10, Th. 1]. And, in general, the n'* elementary
ideal E,(A) is not trivial.

But E,(A) is not principal, in general. According to S. Kinoshita [10] and
R.H. Crowell-R.H. Fox [2, Chap. VIII], we note the following:

4.9. The d* Alexander polynomial A(t) is the generator of the smallest
principal ideal containing the d** elementary ideal E,.

From 4.4, we have:

4.10. The Alexander matrix A(A) of a Wirtinger presentation of = (S°—K)
is the form
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A) 0
A(N) = AR - |,
0 s A

where A(A;) is the Alexander matrix of a prime N-graph type A;, i=1, -, u.
In particular, as a direct consequence of 4.5, we have:

4.11. Theorem. Suppose that K= K(n) and A=[KC S°] is of knotting-
genus (n, v). Then, the n'* elementary ideal E,(A\) is principal and its generator
must be a product polynomial A™(t)=Ag(t) -~ Asi(t) of n knot Alexander
polynomials Agi(t), -+, Asi(t).

5. Existence of non-trivial prime N-graph types

Since for any #, there is a non-split link L with # components, we have:

5.1. Theorem. For any n, there exists a prime n-leafed rose type.

In this section, we will prove the following:

5.2. Theorem. For C< C(2), there exists a prime N-rose type ©=[CC S?].
So, for K€ K(2) and T € T(2), there exist prime A=[K C S°] and 1={T c S*).

Proof. In order to prove, we give the following 2-leafed rose (C'c S°) in
Fig.4. A Wirtinger presentation in which «; and y; correspond to the overpasses
shown in Fig. 4 is the following:
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Xyy Xy X3y @ XXy = X35, @ X3Xs = XXy,

@ XX, == XpXs, @ Ys¥3s = Y3y
xu‘ x5,
® YiVs = YVeYss ©® ¥ = Vs ’
@ YeYV2 = Y2 sy ® %, Y, =y,
NV Vs Ve @ VX, = X, Y, @ xnx;l = yzyfl

Y Vo Vi

Any one of the relations O, @), -*+, (9 is a consequence of the other nine, we
may drop (8.

Substituting @ x,=xx,x5' in @ and @), @ y.=y,y,¥3' in @), and @
y.=x3'yx, in ®, we obtain

’ ’
Xyy Xy @ Xy X5X, = X5XyXs @ X XpXs = XpX5Xs)
— ’ -1 __ -1
X4y Xsy @ YV3YVs = YsYa @ YD1 Ys ™ = Yo VsY2 ™
/ _— -1 __ -1
Y Vo ® X, V3%, = V3%, X5, @ X1 X2 " = Y, )1
Y Vs

Substitutions of @' x,=xxxxz'%3! in @, @ x,=x,x20x5 %z in @,
and @)’ y5=y§1y3y1y3_'ly2 in (8 yield

; ’” —1 — =1
Xy X | ©7 ¥205Y2 s = Y31 Y5 Vs
" —1,,—1 — —1,—1
Yis Yo B 2,20,20,05 X7 Y XpXiXy == YooK XpX5 Xy XXX,

/ 11,1 __ -1
Vs O wxxxzaglxrt = Y, 1

From this Wirtinger presentation, we obtain the Alexander matrix

Xy X5 4 Y. Ys
0 0 £f—t 1-2t —£4+3t—1
A= | t-=284+32-2t+1 —t*+22—38°+t¢ 0 0 t—1
—t2+1—1 —t+1 1 —1 0

We can reduce A4 to an equivalent matrix* of simpler form

X2 X5 el Y2 Vs
0 0 t—t t?—3t+1 0
A~ | 1—¢ — 428384+t 0 0 0
0 tP—t+1 1 0 0

4) The equivalence of matrixes is Fox’s equivalence [3], [4], see [2, Chap. VII].
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Xy X5 N Y. Ys
0 —(—t41) (£°—1) 0 #—3t41 0
~ | 1—t — 28— 3%+t 0 0 0
0 t—t+1 1 0 0
xz xS y2 y3
0 t1—f)(F—t+1) £-3t+1 0
1—t¢ —1 0 0
~ | £=3t41  @—1pE—t+1) 0 ”

Thus, the 2" elementary ideal E, is generated by two polynomials (£*—3t+1)
and (¢—1)*(#*—t+1), which are relatively prime in JZ[t], integral group ring.

So, E, is not principal, and by Theorem 4.11 §={Cc S*)> and @=[CcC §°] are
prime.

5.3. Remark. I think, for any C = C(n) a prime N-rose type ©=[Cc S?]
may be constructed as the same way as the case n=2.

5.4. REMaRk. Consider the following 2-leafed rose (CcS°) in Fig. 5.

Then, a Wirtinger presentation of the group z,(S*—C) can be simplified to
give

- -1
Xsxoxg ! Xglryxg

Xs

X 1xsxy
X
x, e,

Q
Fig. 5

Xiy Xp X, X5Xy = X5XpX5y XeXyXg == X4 XX

) ““ 1 1 1 1

X3y X, X3XgX3 XsXoXs ~ = XsgXoX5 Xg X, Xg,

-1 —1
X5y Xg X\ X2 & = X3 X,



LINEAR GRAPHS IN 3-SPHERE 389

and its Alexander matrix is follows:

1 £t 0 0 —£ie1 0
0 0 1 0 P41
0 £—t  1—t —1 —p12—1 1
1 -1 t 0 0

~| =41 0 0 “ .

Thus, its 2" elementary ideal E, is principal generated by the 2" Alexander
polynomial A®=¢—¢+1. But §=<{CcS*> and ®=[C C S*] may be prime.

In the remainder of this section, we shall give examples of linear graphs,
which will seem to be of interest to some readers.

5.5. ExampLE. The first example is the following Fig. 6.
Corresponding to the overpasses shown in Fig. 6, a presentation of z,(S°—C)
can be simplified to give

( ) . [ —

2
N
Xy J

Y2

Fig. 6
—1,, A—1,—1
X,y X A oxysxz iyt =1,
S—— —1,-1 -1,,-1
Y5 Y2 YVas Vs Vs | X1 N1¥%1 Y2 @ = 1, 2wy =1,
—1,,—-1 ___ -1,—1 ___
2’1, 22’ 23, zl y2y4y3 y4 - 1, y4zay4 R = 1,

-1,.,—1 —-1,-1
yx vkt =1, xzarizt =1,

—1,, a—14,—=1 __ —1, o—1,-1 __
zz,y«azz yzys yz - ly ylysyl zlz4 21 = 1’

—1, o—1 —1,,—1,, o—1
VaXo V7 Rp33 Y XT Y5 B3t =1
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Since the last relation is a consequence of the others, and may be discarded.
As a result we may drop the 10 row of the matrix and obtain

X, X, Y & Y, R Vs %y Ve R Vs

t —t —-11 0 0 0 0 0 0 O

1—¢ 0 t 0—-1 0 O O 0 0 O

t—1 0 0O —+ 0 1 0 0 0 0 O

0 0 0o 0 1 0 —t 0 ¢t=10 O

A~ 0 O o 0 0 -1 0 ¢ 1—t 0 O
t—1 0 o 0 0 0 1 0 —t 0 O

1—¢ 0 0o 0 0 0 0 —1 0 ¢t O

0 O 0 0¢t-11—0 O ¢t O —t

0O 0 1—-tt-10 O O O O —t t

It is easily checked that the operations in the following reduction of 4 to an
equivalent matrix of simpler form.

X & % %Y, 2
—t 1 0 0
0 —1 t 0
0 0 —1 —¢

0

0
A~

0

0 ¢—1 1—¢ 0 t

o O o ©

~ | —#122—2 0 o ”

Hence, the 2" elementary ideal E, is principal; E, generated by the 2"
Alexander polynomial A®=—#*4-2t—2. Since A® is not a reciprocal
polynomial, by H. Seifert [15], see [2, Chap. IX], A® is not a knot Alexander
polynomial. So, by Theorem 4.11 the rose type § =(CcC S*> and the N-rose
type ©=[C cC S°] are prime.

5.6. ExampLE. (Figure 7). We obtain for the group =,(S°—C) a pre-
sentation

/ —-1,,—1 -1 __ -1 -1 -1 ___

Xy Xgy | YoV X1 Y1 %Y1 = 1) 21X Y1 B0 YiX1T = 1’
—1 —1,,—1 —1 —1

Yor Yi» | Ro¥i%0 Y021 Yo =1, x,95 207" = 1,

—1, =1 -1
R0y 2 X, Y1 Xz 3T Y, =1
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Yo

Fig. 7

Since the last relation is a consequence of the others, we obtain the Alexander
matrix

Xy Xy yo <o yl 2
1—¢t 0 1 0 =2 0
t—1 0 0 —1 1—¢t 1
A~
0 0 t—11—¢ t —t
—1 1 —1 1 0 0
Xy Yo 2 N <

1—¢ 1 0 0 0
~ | t—1 0 —1 0 1
0 t—1 1—¢t 0 —t¢

~|20—1 0 0“.

Hence, the 2" elementary ideal E, is principal, and its generator is the 2™
Alexander polynomial A®=2¢—1. By the same reason, the rose type 6=
{Cc S*> and the N-rose type @=[CC S°] are prime.

5.7. ExampLE. (Figure 8). This example generalizes Example 5.6. K€ K
(n+1) and K has # nodes.
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S
Yon1

[______
“aae1 Yy ol ‘?‘

Z3 oo
“3n-2

Inop2} .

( Yoy cn-vz] U

-
<2 T
17 ==
. .

= e |

Ny e
«

£

-

coe z
i

Punin

L

Srn1

Fig. 8

A presentation in which ¥;, y;; and ;; correspond to the overpasses shown
in Fig. 8 is the following:

X; . 1Si£n, R,’, Yi: Zh Oi’ Qi’
yij: ISiSn, 1£j.<_n+1) Yij’ Zij: ’
2 1<i<n, 1<j<n 1<i<n, 1<j<n—2

. -1 -1 -1 —1,-1 \__
R; : (yi.n+1zi.1y£-n+l)zt.lyi.lyt.n+lzt.n(yi.n+xyt.lyz.n+1)—1;
=1, -, n,
- -1 —1 -1__
Y;: (yi-Hl—lm-l-l.yi.n—lyi+n—1.n+1) Y;(xnn_lyi,nx.-“_l)Y. =1,
a1 -1 o=l
Y;*—y¢+l,n_lzi+1,n_1yi+z.n_2zi+z,n..2' Yitn-1,1%i+n-1,15
i=1, -+, n; indices are integers mod 7,
. -1 —1 -1 -1__
Z; : (xc+n—1zi.nxi+n-1)Zi(yt+n_1,n+1zt.n-—1yi+n_1,n+1)Z¢ =1,
-1 -1 -1
Z;=zt+n—1.1yi+n-1z¢+n—2,2yi+n—z,2'"zt+1,n_1yi+1.n_n
1=1, -+, n; indices are integers mod 7,
. -1 e
0,' . O,'yg,n-»-lot yi,n—‘l’
-1 -1 -1
Oi—zt+n—1.xy,-+n_1.1z¢+n—z,zy,~+n-2.z-'-z¢+1.n_1y,~+1.n_1,
i=1, -+, n; indices are integers mod 7,

X -1 -1 -1 —-1_-1__
Q; YinXitn1YenZinYim1Y0.18i0 Y tme1¥s 2on=1,
=1, s, n,
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and
Y,;: y.-.,-y.-+,-.,.+xy?.§+1y7+1,-.,.+1=1,
i=1, .--, n and j=1, -+, n—2; i+}j are integers mod 7,
Z:: YirjonirRisjn1Yie iR y=1,
i=1, -+, n and j=1, -+, n—2; i+j are integers mod 7,

see Fig. 9.

0;
Yivn—1,ni1
Y Yima1
Yin-1 Yivtn-a
Zin-1 QL1
Yirtn-1 Yiv2n-2
Zit1n-1 2it2.n-2

Y.

ikn—3.n-1

Yiin-3.3

2iyn-3.3

Yitn-2.2
F4

Yitn-3.3
2i4n-3.3

Yitn-22
z

i+n—-2,2 itn—-2,2
Yitn-1.1 Yign-1.1
Zipn-1.1 Zikn-1,1
in

Yin

Xign

The Alexander matrix A4 of the presentation can be written down. Es-
pecially, we have the following equivalent matrix of simpler form
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—t"—t+1 —"—t+1 ==t e —t"—t+1  —t"—t4+1 0 e 0.
t"—t"1 4t t—1 Ht—-1) e "3 —1) Y (—1) 0 e 0
" et—1) t"—1"14¢ t—1 e " Ae—1) " 3(e—1) 0 e 0
t"3e—1) " —1) "l s t"5@—1)  "@E-1) 0 e 0
t(t—1) t3(¢—1) Be—1) e t"—t"- 14t t—1 0 e 0
* t—1 t(t—1) 2(t—1) e " 2(t—1) "l ok e *
Fig. 10

That the only first # Xz minor determinant is not equal to 0 may be seen by
We conclude that the (n4 1) elementary ideal is princiapl and

setting £=1.
its (n41)** Alexander polynomial A®*® contains —#"—¢--1 as a factor.

Note

Fig. 11




LINEAR GRAPHS IN 3-SPHERE 395

that for any n, —#"—#+1 can not be a knot Alexander polynomial.

Sliding the each node of K in Fig. 8 along the center circle (see Fig. 11
which shows the case n=4), we have a (n-+1)-leafed rose (C c S®), whose group
presentation and the Alexander matrix are the same of (K S?%. But we can
not conclude that the rose type =<(Cc S*> and the N-rose type 8=[CC S°]
are prime by the methods developed in the last two sections. The rose type 6=
{Cc 8% can, however, be shown to be prime by the followmg Theorem 5.8
and the Examples 5.6 and 5.7.

Let C=C(n) and C’ be a subcomplex of C.  Then, (C’'c S°) is said to be a
subrose of a rose (Cc S*) iff C’=C. Especially, a subrose (C’'c S®) of (C< S?)
is proper iff C’'e C(m), C= C(n) and m<n.

5.8. Theorem. Suppose that C=C(n) and n>3. For a rose type 0=
{Cc 8% to be prime, it is sufficient that ¢ ={C’'C .S*)> is prime for every proper
subrose (C'C S®) of (C S®) such that C'< C(2).
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