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0. Introduction

Throughout this paper we work in the piecewise-linear category, consisting
of simplicial complexes and piecewise-linear maps. By (PcM) we denote a
pair of complexes such that M has an arbitrary but fixed orientation if M is
orientable and P is embedded as a subcomplex in M. K denotes a set of all
connected finite 1-dimensional complexes. Then, for K^Kwe will call (KaS3)
a linear graph, or simply graph, in a 3-dimensional sphere S3.

The purpose of the paper is to classify {(KaS3)| K^K} by an equivalence
relation, which we will call a neighborhood-congruence. We will introduce a
operation V of composition in {(KaS3)\K£ΞK} so that neighborhood-
congruence classes of graphs form a commutative semi-group, and give the
following as generalization of knots [14] and links [8].

Theorem 3.12. In the semi-group of all neighborhood-congruence classes of

linear graphs, factorization is unique.

As an immediate application we can discribe socalled knotted solid tori of
genus n in the 3-sphere S3.

1. Definitions and notations

Throughout the paper, dM and -9M denote the boundary and the interior
of a manifold M, respectively. For a pair (PdM)y by N(P; M) we denote a
regular neighborhood of P in M, that is, we construct its second derived and take
the closed star of P, see [9] and [12]. For any non-negative integer ny K(n)
denotes a set of all connected finite 1-dim. complexes whose 1-dim. Betti
number is n.

First let us explain an usual equivalence of pairs, see [2], [6].

1.1. DEFINITION. TWO pairs (PcM) and (P'cM') are congruent iff
there is a homeomorphism h\M-^Mf such that h(P)=P' and h is orientation
preserving if M is oriented.
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Then it is trivial that the relation of congruence is an equivalence relation.

We denote a congruence class of ( P c M ) by <PcM>, so ( P c M ) is a re-

presentative of ζPaMy. In particular, congruent graphs are said to be of the

same type, and each congruence class of graphs is a graph type. A graph type

of (KaS3) is denoted by λ = < ί c S 3 > .

Note: Two concepts of a graph and a graph type are essentially different.

But little distinction will be drawn between them. In the following, sometimes

one representative (i.e. graph) is convenient, sometimes another.

Next, we will give another equivalence, which is stated in §0.

1.2. DEFINITION. TWO pairs ( P c M ) and (P 'cM') are neighborhood-

congruent (abbreviated by N-congruent), denoted by ( P c M ) ~ ( P ' Z ) M ' ) , iff

(N(P; M)cM) and (N{P' , M')cM') are congruent.

Note that if (PdM) and (P 'cM') are congruent, then ( P c M ) - ( P ' c

M'). So, the iV-congruence can be defined for congruence classes of pairs, and

sometimes we denote < P c M > ~ < P ' c M ' > .

By the uniqueness of regular neighborhoods [9, Th. 2] and [13, Th. 1], the

above definition does not depend upon the triangulations of M and M', and

the regular neighborhoods N(P; M) and N(P'\ M'). So, the relation of N-

congruence is an equivalence relation, and we denote a JV-congruence class of

(PaM) (or < P c M » by [PczM]. In particular, iV-congruence classes of

graphs are said to be the same N-graph type, and a iV-graph type of (KaS3)

(or λ = < X c 5 3 » will be denoted by Λ - [ ί c S 3 ] .

1.3. REMARK. By using an isotopy of pairs (PcM), (P 'cM') and (N

(P; M)cM), (N(P'; M')cM'), we can introduce the similar equivalence

relations of 1.1 and 1.2, respectively, see [7], [9, p. 727]. But since an orien-

tation preserving homeomorphism of *S3 onto itself is isotopic to the identity,

for pairs ( P c £ 3 ) the classification problems by the isotopy are the same as

that by the orientation preserving homeomorphism.

For future reference we record the followings.

1.4. Let (Kd Sz) be a graph. Then, N(K; S3) is a solid torus'* Tn of genus

n provided that K^K(n).

1.5. If K, K'fςΞKand(KaS3)^(K''<zS*),then K,K'fEΞK{n) forsomen.

1.6. Let (TnaS3) be a solid torus of genus n in S3. Suppose that K(czS3)

and Kr (cS 3 ) are spines^ of Tn, then (KdS3)^(K'dS3).

To characterize the iV-graph types, it is convenient to introduce special

1) Henkelkδrper vom Geschlechte n, see [16], p. 219.
2) See [9], pp. 726-7.
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linear graphs.

1.7. n-leafed rose. Let C(n) be a subset of K(n) whose elements are
homeomorphic to the union of n topological circles S\, ••-, S^ and a w-forest Ω
joined as illustrated in Fig. 1. Especially, C(0) is considered to be one point

-o
o

Fig. 1

ω. For brebity, we denote the vertices of Ω by ω, ωly •••, ωn as shown in
Fig. 1, and especially call the point ω (and its image) the node. Let C=\Jn^0

C{n). Of course, C(n)<zK(n) and CdKy and therefore, {(CcS 3) | CGΞC} C

{(J fcS 3 ) | ] fG^} . For CeC(ιi), we will call a graph ( C c S 3 ) a n-feύ/erf rose,
or simply rose, and a graph type θ=(Cc:S3y a, rose type, and a Λf-graph type
θ = [ C c S 3 ] a iV-ίw ί)̂ >£.

1.8. Knotted Solid Tori. Let ^(w) be a set of solid tori of genus n, and
let T=\Jn^T{n). For Γ G Γ, a congruence class τ=<TdS3y of (TcS3) will
be called a &m>£ type of a solid torus. Note that two solid tori (TαS3) and
( Γ ' c S 3 ) are congruent if and only if (TcS3) and ( Γ ' c S 3 ) are iV-congruent.

Since each (TαS3) of genus n has a w-leafed rose C(c£ 3 ) as its spine,
we have the followings as consequences of 1.4, 1.5 and 1.6:

1.9. Proposition. For any there is a representative θ=

1.10. Proposition. There are set identifications

{A=[KaS3]\KtEK} = {θ= [CaS3]\CeΞC}

2. Knotting-genus of N-graph type

In this section we will introduce the knotting-genus of a iV-graph type as
generalization of genera of knots [15] and links.

2.1. Spanning-surface for a link. Let L=(S\ U ••• U^JcS 3 ) be a (non-
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oriented) link with n components, that is, L is an union of mutually disjoint
(non-oriented) 1-spheres S\, , 51 in S3. Let FXJ •••, FM be mutually disjoint
orientable surfaces in £ 3 . Then, a system of surfaces FL=F1 Ό -•• ΌFuis said to
be a spanning-surface for L, or L bounds a system of surfaces FL=Ft \J"*\JFU

iff

(i) QFL={dF^ -. U9^J = {5Ϊ U - U 51},
(ii) every component of FL has non-void boundary, and

(iii) there are mutually disjoint u 3-cells Qly •--, Qu in Sz such that
i=l, - , ι ι .

Since Seifert's construction [15] of a surface spanning a given knot can be
readily extended to a link, a spanning-surface for L always exists. Condition
(iii) cannot be removed, as can be seen by the boundary links [6].

To a spanning-surface FL=Fλ U U ^ for L, we associate a pair (u, V)^

N*XN* of non-negative integers, where3) tf = Σ £(•?*)• ®n t n e o t n e r hand,

we define a total order < (or > ) in {(w, «;)} ( c iV*XiV*) as follows:

(2.2) (M, ©) < (u', v') ifu>u' or if u=u' and v<v'.
Then, for a link L = ( 5 ϊ l ) U 5 i c 5 3 ) we can define an invariant (w, v)

as follows:

2.3. DEFINITION. L is of knotting-genus (u> v) iff there exists a spanning-
surface FL for L with (u, v), and for any spanning-surface F'L for L with (z/, ̂ ) ,

Since \<u<n and 0<^<oo, it is clear that the knotting-genus (u9 υ) is an
invariant of a link type.

Using the spanning-surface and knotting-genus for a link, we will define a
spanning-surface and knotting-genus for a rose type as follows:

2.4. Spanning-surface for a rose type. Let θ=<CaS3> be a /z-leafed rose
type and (CcS3) be a representative of (9. Let FΘ=F1 (J ••• U-F* be a system
of orientable surfaces in S3. i^ is said to be a spanning-surface for 0, iff i^
satisfies the conditions (i), (ii) in 2.1 for a non-oriented link L = (C—Ωc53) and
additional conditions below:

(iii)' there are u 3-cells £?!, — ,£?„ in 53such that ΰQ^Fg dQ{f] C=dQ{

Π Ω - ω and Q.Γ\Q ~dQi\}dQ ~ω for /Φ j and /,y=l,..., w.
(iv) F β n Ω = 9 F β n Ω = ω 1 U —Uω n .

Since the n-forest Ω is contractible in *S3, we may assume that there is a
regular projection 3> of a rose C in a suitably chosen 2-sphere So in 53, in the

denotes the genus of 2-manifold F.
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sense of knot theory, such that $>(&) has no crossing. So, the existence of a
spanning-surface for θ is easily derived from 2.1.

To a spanning-surface Fθ for θy we associate a pair (uy v) e iV* X iV* of
non-negative integers in the same way as a spanning-surface for a link. Moreover
we define a total order <(or > ) in {(uy v)} (ciV* XiV*) by (2.2) and define the
knotting-genus of a w-leafed rose # as follows:

2.5. DEFINITION. A /z-leafed rose type θ is of knotting-genus («, ^), iff
there exists a spanning-surface Fθ for 0 with (z/, v), and for any spanning-
surface FQ for 0 with («', υ')y (uy v) < (uf, vf). Especially, 0-leafed rose is
considered to be of knotting-genus (0, 0).

Note that if the knotting-genus of a w-leafed rose type θ=ζCaS*y is

(w, v)y then u<n and v>g(C—Ωc53) where ^ ( C - Ω c S 3 ) is a genus of link

By virtue of 2.5, we have the followings:

2.6. DEFINITION. A JV-rose type Θ of ί = ( C c S 3 > is of knotting-genus
(uy v)y iff there is a representative Θ of θ of knotting-genus (uy v)y and for any
representative ff of Θ of knotting-genus (uf

y v')y (uy v)<(u\ v').

2.7. DEFINITION. The knotting-genera of a JV-graph type Λ and a
knot type of solid torus τ are defined by the set identifications of 1.10. That
is, Λ is of knotting-genus (uy v) iff Θ is of knotting-genus (uy v) and Λ = [ C c 5 3 ]

(C2cS3)
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for any representative (CaS3) of Θ, and T is of knotting-genus (u, v) iff θ is of

knotting-genus (w, v) and τ = <7V(C; 5 3 )c5 3 > for any representative (CaS3)

o f θ .

2.8. REMARK. (1) For a graph (^c*S3), we may define a spanning-

surface, therefore the knotting-genus, directly by using a system of some kinds

of surfaces in the similar way as 2.1 and 2.4. (2) Let Fθ be a spanning-surface

for (9=<Cc5'3>. Then, FθΓϊdN(C; S3) consists of mutually disjoint n simple

loops, say b19 •••, bn, on dN(C; S3). In particular, bly~ , bn together generate

the first integral homology group H^NζC; S3), Z).

2.9. EXAMPLES. We now list five examples of graphs. In Fig. 2, <C0

c 5 3 > is of knotting-genus (2, 0), <C 1 c5 3 > of (1, 0) and <C2aS3> of (1, 1).

Particularly, any two of them are different graph type, but all of them are same

iV-graph type. So, [ Q c 5 3 ] = [ i^ y c5 3 ] is of knotting-genus (2, 0), i=0, 1, 2 and

.7=1,2.

3. Unique decomposition theorem of N-graph type

In view of Definitions 2.5, 2.6 and 2.7, we have the following:

3.1. DEFINITION. A rose type θ is prime iff θ is of knotting-genus (1, *).

And a iV-rose type Θ (resp. a iV-graph type Λ resp. a knot type of solid torus T) is

prime iff Θ (resp. Λ resp. T) is of knotting-genus (1, *).

By the above definition, we have immediately the following:

3.2. Proposition. Any <CdS3>, [CcS 3], [KczS3] and <TcS3> are

prime provided that C G C ( 1 ) , X ε ϊ ( l ) and T<= Γ(l).

3.3. Composition. If graph types λ 1=<ϋΓ 1cS 3> and X2=<

are represented in a 3-sphere S3 on opposite sides of a 2-sphere SI and have

one point ωGSo in common, then we have a new graph type represented by

a graph (Kλ {jK2aS3). We will call the new graph type the composition of λj

and λ2, and denote it by λx V λ2, (see for knots [14], [5, §7], for links [8] and

generally [7]). The composition of knot type of solid tori τ1=z(T1c:S3y and

τ 2 = <Γ 2 c S3y can be defined in the similar way as graph types, that is, the

composition τ1\/τ2 of τx and τ2 is the knot type of solid torus (Tί U T2dS3)y

where Tλ and T2 are represented in a S3 on opposite side of a 2-sphere SI and

have a disk D=dT1ΠdT2ciSS in common.

While, it is easily known that in general the composition of \ and λ2 is

not uniquely determined. So, for rose types we give the following definition:

the composition ^ V ^ of θ1=ζC1 cS 3 > and (92=<C2c S3> is the rose type of

(C1{jC2aS3)> where Cx and C2 are represented in a S3 on opposite side of a
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2-sρhere Sξ and have a common point ω = C1Γ\C2 which is the nodes of Ωx

CCx and Ω2CC2. Then, we have:

3.4. Proposition. In the set of all rose types {0=<CcS 3 >| C^C}> the
composition V is well-defined, and moreover associative and commutative. Especial-
lyy θo=ζωdS5y is an unit. Thus, {0=<CcS 3 >| C G C } forms a commutative
semi-group under the operation V.

3.5. Corollary. We define the composition Θx V Θ2 of two N-rose type
θj and θ2 by the N-rose type of the composition θx V θ2 of any representatives θ1 of
θ x and θ2 of θ 2 . Then the composition V is well-defined in {Θ= [Cc S3] \ C <= C}.

Therefore, from 1.10 (or 1.9) we obtain at once the

3.6. Corollary. (1) The composition V is well-defined in {τ=
T).

(2) We define the composition AjVA2 of two N-graph types At and Λ2 by
the N-graph type of any composition X1 V λ2 of any representatives λx of A1 and
λ2 of Λ2. Then, the composition V is well-defined in {A=[KciS3]\K<=K}.

We can now formulate our main theorem.

3.7. Theorem. In the semi-group {0=<Cc5 3 >| C e C } , factorization is
unique. That is, every 0 = < C c S 3 > is decomposable in an unique way into prime

The existence of such a decomposition can be proved easily from 2.5(2.4),
3.1, 3.2 and the following:

3.8. Proposition. Let (u, v)> (uly vx) and (u2J v2) be the knotting-genera of

θ, θ1 and θ2y respectively. Suppose that

Then, (u, v)=(u1+u2y v1+v2).

Proof. From Definition 2.5, it is obvious that (w, v) <{ux-\-u2, vλ-]-v2). So
we must show that (w, v)>{uι-]rU^ v^v^.

Let (CjCS3) and (C2dS3) be representatives of θ1 and θ29 respectively, in a
3-sphere S3 such that Cx Π C2=ω, the nodes of ^ c Cx and Ω 2 c C2, and {Cx U
C 2 cS 3 ) is a representative of Q. And let SI be a 2-sρhere in 5 3 separating
Q from C2. If Fθ is a spanning-surface for θ^θ^θ^ then the intersection of
Fθ and SI consists of a finite number of simple loops in ΌFΘ. These loops
can be capped to produce surfaces FCl and FCz spanning Cx and C2 respectively.
Thus, if FCl, FCz and Fθ be with (u[, v{), (u'2y v'2) and (u, v), respectively,
clearly uΊ+u'2>u and v[+Vz<v, thereby showing that (#, v)>(u1

JrU2J v^
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The uniqueness of the decomposition will clearly follow from the next
lemma:

3.9. Lemma. If θ1 V θ2 has θ as a prime component, then either θ1

or θ2 has θ as a prime component.

Proof. To prove this, we start with a rose (C1[jC2(zS3) representing θ1

V θ2 and a 2-sphere SI that cut it in one point ω separating θx from θ2. Since
θ is a component of θλ V θ2, there exists a 3-cell Q in S3 such that dQ Π (Ct U C2)
— ω and QΓ^CjUQ) is a representative of θ. If SoPidQ—ω, we can easily
take a 3-cell Q, (or £2) in S3 so that QL Π 5 = 3 0 ! Π dQ =ω and ^ Π Cx φ 0 (or
ρ 2 n ρ = 8 ρ 2 n θ 0 = ω and #ρ 2 ίΊC 2 Φ0), and so we are finished. If not, SI
ΠdQ consists of a finite number of disjoint simple loops c19 •••, £v, and a finite
number of simple loops d1 •••, Jμ such that diΓ\dj=ω for /Φ^ and i9j=l, •••, μ.
Let ^4(^), •••, ^3(cv) be disks on 30 bounded by c19 •••, cv, respectively, such that

Let ^ be a minimal, i.e. there is no other c{ in ^ ( ^ ) . Let B{c^) be a disk
on S\ bounded by cx such that B{c^)^ω. Then, a 2-sphere A{cλ) U ^ q ) bounds
a 3-cell 0ί in 53. Since A(cτ) Π (Q U C2)=0=B(c1) Π (Q U Ca), Q{ Π (C, U C2)
= 0 . Then we have a new 2-sρhere Sl—Bfa) U -4(^) that cuts (Cx U C2C S3) in
one point ω separating θ1 from ^2, and again denote this 2-sphere by SJ. We
may deform 5§ into general position in S3 so that

By the repetition of the procedure we can get rid of all intersections ciy

Now, we will consider ^ U •" UdμcSlf)dQ. First, we may assume that
at least one of d19 •••, dμy say dly bounds a disk B(d1) on S* such that B(d1) does
not contain any other d{. Let A(d1) and A\d^) be disks on S\ bounded by dλ.
Then we have two 2-spheres S1=A(dί)\jB(d1) and S1

f=A\dΎ)\jB{d1) in S3.
We may deform Sγ and St' into general position in S3 so that S^Π 5 / = ω . It
will be noticed that S1 and 5 / decompose one of (CΊcS 3) and (C 2 cS 3 ) into
two roses, one of them may be the trivial rose (ωC*S3), and

Repeating the procedure, we have 2μ 2-spheres S19 S/, •••, Sμ, S/ in S3

having the one point ω in common. It should be noted that these 2-spheres
decompose (CjdS 3) and (C2dS3) into severvl roses, and

3ρ n (SΊ u 5/ u — u 5 μ u s/) = ω.

Since θ is prime, we can take a new 3-cell, again denote it by O, in S3 such that

ρn(s1us1

/u uSμUSμ

/) =
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and Q Π (C1 U C2) is a representative of θ. Thus, we can conclude that θ is one
of prime components of θx or θ2.

From Definitions 2.6, 2.7 and 3.1, we have the followings, whose proofs
are the same as that of 3.8 and 3.9 except for obvious modifications.

3.10. Proposition 3.8 remains valid if Θ (or A or r) is substituted for θ.

3.11. Lemma 3.9 remains valid if Θ (or Λ or τ) is substituted for θ.

Thus, as an immediate consequence of 3.5, 3.6 and the above 3.10, 3.11,
we have the main theorem in §0.

3.12. Theorem. In the every semigroup {Θ=[CcS 3 ] | C<=C}y {A=
[KaS3]\K<=K} and { τ=<ΓcS 3 >| Γ G T) , factorization is unique.

4. Elementary ideals of a N-graph type

As generalization of the Alexander polynomial of knot [1], R.H. Fox [4]
defined a sequence of elementary ideals, see [2, Chap. VII], and a sequence of
polynomials, see [2, Chap. VIII], of a finitely presented group G. And S.
Kinoshita [10], [11] discussed the Alexander polynomials of graphs. In this
section, we will explain the Alexander matrix and the elementary ideals of
linear groups. As in §3, the notions of roses and rose types are useful.

4.1. Presentation of a group π^S3—C). Now let j? be a regular projection
of a rose C c S 3 in a suitably chosen 2-sphere SI in S3, in the sense of knot
theory. Especially we may assume that £P(Ω) has no crossing and i?(Ω) Π £P
(S\ U ••• [jSl)=ω1 U ••• LJωΛ. We give a suitable orientation for each Si, •••,
SI. Then, by using this projection and the orientation, we can obtain a Wirtinger
presentation of the group πλ(S3— C). Let r be a number of the crossing points of
3*(S\ U ••• U SI). Then actually the presentation consists of r-\-n generators
X corresponding to the overpasses of £P (S\ U U SJ)—(ω1 U U ωw) and r-\-1
defining relations R corresponding to the r crossing points and Ω. The relation
corresponding to a crossing point is the form

X; Xj Xi + l Xj = 1

and the relation corresponding to Ω is the form

2

where x{ are the generators corresponding to the overpasses of Fig. 3.
While, it is easily checked that one of the r relations corresponding to the
crossing points is a consequence of the other r— 1 and the relation corresponding
to Ω. Since, for every non-split link L with n components, its link group
^(S3—L) has deficiency 1, we can easily derived that:
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I
I
\

Fig. 3

4.2. For a n-leafed rose (CdS3), the fundamental group πλ(S3—C) has de-

ficiency n.

Of course, we can have a Wirtinger presentation of a group ^(S3—K) of a

graph (K^S3) as the same way as a rose, see [5, §5], [10].

On the other hand, since ^(S3-C)^^(S3-N(C; S3)), for any N-

congruent roses (CdS3) and (C'dS3), ^(S3—C)^^(S3—C). More generally,

from 1.9 and 4.2 we have:

4.3. The fundamental group π^S3—!^) is a N-congruent invariant of a graph

type λ = < ί c S 3 > , and it has deficiency n if K^K(ή).

In view of 4.3, for a iV-graph type A=[KczS3] (resp. a iV-rose type Θ =

[CcS 3]), we denote ^(S3-K) (resp. ^ ( 5 3 - C ) ) by G(Λ) (resp. G(Θ)),and call

it a -ZV-graph group (resp. a iV-rose group). From the unique decomposition

theorem 3.12, we have:

4.4. Proposition. Suppose that Λ is of knotting-genus (uy v). Then

G(Λ)^G(Λ 1 )* *G(ΛM), that is G(Λ) is a non-trivial free product of not finite

groups G(Λj), •••, G(ΛM), where each G(Aj) is a N-graph group of a prime N-

graph type, i=ly •••, u.

4.5. Corollary. Suppose that K^K(ή) and A=[KaS3] is of knotting-

genus (n> v). Then G(Λ) is a non-trivial free product of n knot groups Gu •••, Gn.

4.6. Elementary Ideals of a N-graph Type. Let Z[t] is the infinite cyclic,

multiplicative group generated by t, and let F[X] be the free group freely gener-

ated by X={x19 •••, xn+r}. Then, the homomorphism ψ^χi)=t, ί = l , •••, n+r9

has an unique linear extension to a homomorphism ψ: JF[X]-> JZ[t] of the
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integral group ring [3]. Using a Wirtinger presentation (X\ R)=(x1, •••, xn+r \ r19

'"> rr-i> Ω) of 4.1, we have a matrix

over JZ[t], where dx A is the matrix of free derivatives [3]. We call A an

9Ω,

Alexander matrix of the Wirtinger presentation (X\ R)of G(θ) = ^(S3—C) (or
G(X)=^(S3—K)). It can be shown that

r + n

2 a.. = 0, i = 1, •••, n-{-r.

For an arbitary integer d> an ideal Ed of JZ[t] generated by the determinants
of all (n-\-r—d)x(n-\-r—d) minors of A will be called the dth elementary ideal
of the Wirtinger presentation {X\ R).

The Alexander matrix and the dth elementary ideal are not invariants of the
abstract group π^S3—K). Nevertheless, from (4.6) of [2, p. 107] and the
above 4.3, it can be shown that:

4.7. The Alexander matrix and the sequence of elementary ideals are invariants
of a graph type and of a N-graph type.

Moreover, from 4.3 we claim:

4.8. Let K<=K(n) and A=[KcS3]. Then, if 0<d<n elementary ideals
Ed(A) are all equal to 0, see [10, Th. 1]. And, in general, the nth elementary
ideal En(A) is not trivial.

But En(A) is not principal, in general. According to S. Kinoshita [10] and

R.H. Crowell-R.H. Fox [2, Chap. VIII], we note the following:

4.9. The dth Alexander polynomial Δc<°(£) is the generator of the smallest

principal ideal containing the dth elementary ideal Ed.

From 4.4, we have:

4.10. The Alexander matrix A{A) of a Wirtinger presentation of πλ{S3—K)

is the form
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A(A) =

0

where A(Ai) is the Alexander matrix of a prime N-graph type Λ, , ι = l , •••, u.

In particular, as a direct consequence of 4.5, we have:

4.11. Theorem. Suppose that K^K{n) and A=[KdS3] is of knotting-

genus (n, v). Then, the nth elementary ideal En(A) is principal and its generator

must be a product polynomial Acn^(t)=As\(t) ••• Δsi(ί) of n knot Alexander

polynomials Δ s i ( ί ) , •••, Δ s i ( ί ) .

5. Existence of non-trivial prime N-graph types

Since for any n, there is a non-split link L with n components, we have:

5.1. Theorem. For any n, there exists a prime n-leafed rose type.

In this section, we will prove the following:

5.2. Theorem. For C<= C(2), there exists a prime N-rose type Θ = [ C c S 3 ] .
So, for K<=K(2) and Γ E T{2\ there exist prime A=[KaS3] andτ=ζTczS3>.

Proof. In order to prove, we give the following 2-leafed rose (CaS3) in
Fig. 4. A Wirtinger presentation in which x{ and yj correspond to the overpasses
shown in Fig. 4 is the following:

Fig. 4
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(1) XλX3 #3^5 > (2)

® ^4*2 = *2*3> ©

3̂ 4 = ^^4 © χ&1 = y2yΐι

Any one of the relations ® , (2), •••, (9) is a consequence of the other nine, we
may drop (5).

Substituting © x3=x5x2xϊι in ® and © , © ^ 6 =y 3 ^i3 '3 L in ® , and @
JV4=^41J;3^4 in ® , we obtain

x4>

\y3

j \5^ X4X2X5 ^ 2 5 2>

©
v/ fc\\ —1 —1

Substitutions of (T)' xί=^x5x2xs,

and © ' y^—yl}yzyλyzλy2 in © yield
in @, Xg^s1^1 i n . ® ' ,

@ ' x5x2x5X2 ^ 5 ̂ i " 1 = y2yϊx

From this Wirtinger presentation, we obtain the Alexander matrix

A =

0

ί4—

*5 JΊ ^ 2 ^ 3

0 f-t l-2t -f+3t-ί

-t*+2f-3f+t 0 0 t-ί

f-t+ί 1 - 1 0—ί + ί — 1

We can reduce A to an equivalent matrix43 of simpler form

A~

0

1-ί

0

0

— ί 4 + 2 ί 3 — 3 ί 2 - f

f-t+1

f-t

•t 0

1

f—3ί+l
0

0

0

0

0

4) The equivalence of matrixes is Fox's equivalence [3], [4], see [2, Chap. VII].
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0

1-ί

0

0

1- ί
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x5

-(f-t+l) (f-t)

_f+2f-3f+t

f-t+l

t(l-t) (f-t+l)

- 1

0 f

0

1

f-3t+l

0

y*
-3ί+l

0

0

0

0

y3

0

0

0

0

Thus, the 2"d elementary ideal E2 is generated by two polynomials (f—3ί+1)
and (t— \)\f—1-\-\), which are relatively prime in JZ[i], integral group ring.
So, E2 is not principal, and by Theorem 4.11 0 = < C c S 3 > and θ = [ C c S 3 ] are
prime.

5.3. REMARK. I think, for any C^C(n) a prime TV-rose type θ = [ C c 5 3 ]
may be constructed as the same way as the case n=2.

5.4. REMARK. Consider the following 2-leafed rose (C(zS3) in Fig. 5.

Then, a Wirtinger presentation of the group π^S3—C) can be simplified to

give

X19

x3,

x2

mm τ
x4

x6

1 v^ZL^O '

X X Xs1^

XτX2l =

Ω

Fig. 5

•• XslX4

x x~ιx

XXX

-\x J

/
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and its Alexander matrix is follows:

1 f-t

0 0

0 f-t

1 -1

0 0

-f ί-1

ί-t -1

t —t

-f+t-l 0

0 f-t+\

-f+2t-l 1

0 0

f-t+ί 0 0 .

Thus, its 2nd elementary ideal E2 is principal generated by the 2nd Alexander
polynomial Am=f-t+l. But θ=ζCczS3y and Θ = [ C c 5 2 ] may be prime.

In the remainder of this section, we shall give examples of linear graphs,
which will seem to be of interest to some readers.

5.5. EXAMPLE. The first example is the following Fig. 6.
Corresponding to the overpasses shown in Fig. 6, a presentation of π^S'— C)
can be simplified to give

Fig. 6

z^x^x^yT1 = 1,

x^x^yϊ1 = 1, z.x^xϊ1 = 1,

ΛJ^Ϊ" 1)^ 1 = i, y^yϊ1^1 = l,
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Since the last relation is a consequence of the others, and may be discarded.
As a result we may drop the 1(P row of the matrix and obtain

JΊ #2 y* #4 J>5

ί

1-ί

ί - 1

0

0

ί - 1

1-ί

0

0

— ί

0

0

0

0

0

0

0

0

— 1

ί

0

0

0

0

0

0

1 - ί

1

0

— ί

0

0

0

0

0

ί - 1

0

- 1

0

1

0

0

0

ί - 1

0

0

0

1

0

- 1

0

0

1- ί

0

0

0

0

— ί

0

1

0

0

0

0

0

0

0

ί

0

- 1

0

0

0

0

0

ί - 1

1-ί

— ί

0

ί

0

0

0

0

0

0

0

ί

0

— ί

0

0

0

0

0

0

0

— ί

ί

It is easily checked that the operations in the following reduction of A to an
equivalent matrix of simpler form.

X,

0

0

0

0

— ί

0

0

ί - 1

z2

1

- 1

0

1- ί

ί2+2ί-2 0

0

ί

i

0

0

y*
0

0

— ί

ί

•

0

0

0

0

Hence, the 2nd elementary ideal E2 is principal; E2 generated by the 2nd

Alexander polynomial AC2:>= — f-}-2t—2. Since Δc2) is not a reciprocal
polynomial, by H. Seifert [15], see [2, Chap. IX], Δc2) is not a knot Alexander
polynomial. So, by Theorem 4.11 the rose type 0 = ( C c 5 3 > and the iV-rose
type θ = [ C c S 3 ] are prime.

5.6. EXAMPLE. (Figure 7). We obtain for the group π^S3— C) a pre-
sentation
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LJ

"1 1

Λ

Fig. 7

Since the last relation is a consequence of the others, we obtain the Alexander
matrix

1 —ί 0 1 0 t-2 0

t-\ 0 0 - 1 \-t 1

0 0 t-\ 1-t t -t

- 1 1 - 1 1 0 0

1- ί

f - 1

0

2 ί - l

Jo
1

0

ί - 1

0

0

i

ί-t

o

0

0

0

•

0

1

—t

Hence, the 2nd elementary ideal E2 is principal, and its generator is the 2nd

Alexander polynomial Δc2)=2£— 1. By the same reason, the rose type θ=
<Cc5 3 > and the iV-rose type Θ=[Cc6 r 3 ] are prime.

5.7. EXAMPLE. (Figure 8). This example generalizes Example 5.6.
(n-\-\) and K has n nodes.
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Fig. 8

A presentation in which xi9 y{j and zu correspond to the overpasses shown
in Fig. 8 is the following:

Riy Yiy Ziy Oiy Ω;,

\<j<n \<j<n-2

where

J ^

(y7^n-l,n+iyi

ί = l , •••, n; indices are integers mod ny

7̂ —1 —1 i
Z'i==Zi + n-i,iyi+n-iZi+n-2,2yi+n-2,2'"Zί+l,n

i=l, •••, n\ indices are integers mod n,

ί = l , •••, n indices are integers mod n>

y*.nXi+n-ιy7.Ui.nyi,n+iy7\ziΛy
1 = 1 , ..., W ,
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t=l, •••, n andy=l, •••, n—2 i+j are integers mod n,

Z i y J Z j *

393

t=ly •••, n and /= l , ••*, n—2; /+j are integers mod n,
see Fig. 9.

Fig. 9

The Alexander matrix A of the presentation can be written down. Es-
pecially, we have the following equivalent matrix of simpler form
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— t n — t + \ —tn—t+l — tn—ί+1

f-f-i+ί ί-i t{t-\)

tn~2{t-\) t

n-tn-^Λ-t t-\

tn-3(t-l) tn-\t-\) tn-tn~ι+t

t\t-\)

-tn-t+l -tn-t+l 0

tn-3(t-l) tn-\t-\) 0

tn-*(t-\) tn~3(t-l) 0

t"-5(t-l) tn-\t — \

t-\

0

t-\ t2(t-l) tn-\t-\)

Fig. 10

That the only first nXn minor determinant is not equal to 0 may be seen by
setting t=ί. We conclude that the (n-\-l)th elementary ideal is princiapl and
its (n-\-l)th Alexander polynomial Δc n + 1 ) contains — tn—ί+1 as a factor. Note

Γ

- - — ~*—

|

1

p

L

r-

1

t

t

L

ΐ
i 1

- -

1

1

—
L
r

j

Fig. 11
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that for any n, —tn—t-\-\ can not be a knot Alexander polynomial.

Sliding the each node of K in Fig. 8 along the center circle (see Fig. 11

which shows the case n=4), we have a (n-\-l)-leaίed rose (CdS3), whose group

presentation and the Alexander matrix are the same of (KdS3). But we can

not conclude that the rose type <9=<CcS3> and the iV-rose type θ = [ C c S 3 ]

are prime by the methods developed in the last two sections. The rose type θ=

<Cc*S3> can, however, be shown to be prime by the following Theorem 5.8

and the Examples 5.6 and 5.7.

Let C<=C(n) and C" be a subcomplex of C. Then, (CdS3) is said to be a

subrose of a rose (CdS3) iff C<=C. Especially, a subrose (C'cS 3 ) of (CdS3)

is proper iff C'(= C(m), C<= C(ri) and m<n.

5.8. Theorem. Suppose that CdC(n) and n > 3 . For a rose type θ=

<Cc5 3 > to be prime, it is sufficient that θ'=(C'dS3y is prime for every proper

subrose (CdS3) of (CdS3) such that C'EΞC(2).
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