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A B S T R A C T

Microplastics (MPs), defined as plastic particles smaller than 5 mm, have garnered considerable attention owing 
to their potential biological impact on human health. These particles exhibit a range of physicochemical prop-
erties, including size, shape, and surface oxidation. Nile Red is a prominent tool for detecting microplastics, 
enabling staining for dynamic analyses within biological systems. However, the efficacy of Nile Red staining for 
surface-oxidized MPs remains unclear. Therefore, we applied Nile Red dye to stain surface-oxidized polyethylene 
and polyvinyl chloride and observed that both materials were effectively stained, although the fluorescence 
intensity varied according to different hydrophobic dynamics. Imaging analysis revealed a correlation between 
the fluorescence intensity score and the degree of surface oxidation, as determined using the carbonyl index 
calculated from attenuated total reflection-Fourier transform infrared spectroscopy data. Collectively, these 
findings offer novel analytical approaches for investigating environmental MPs, enhancing our understanding of 
their behavior and impact.

1. Introduction

Microplastics (MPs), plastic particles with a diameter of less than 5 
mm (Thompson et al., 2004; Arthur and Baker, 1959), are increasingly 
recognized as significant environmental pollutants posing potential risks 
to ecosystems and human health. Detection of MPs in various human 
samples, including blood (Leslie et al., 2022), lung (Jenner et al., 2022), 
placenta (Ragusa et al., 2021), feces (Yan et al., 2022), and atheroma 
tissue (Marfella et al., 2024), suggests widespread exposure. Therefore, 
comprehensive studies to understand their behaviors and effects are 
urgently needed.

The complex physicochemical properties of MPs, including size, 
shape, and surface modifications, present significant challenges for ac-
curate analysis (Lim, 2021). A major hurdle is the absence of standard 
laboratory samples that effectively mimic the environmental 

counterparts of MPs (Rubin et al., 2021), especially in terms of diverse 
physicochemical properties. Additionally, the lack of labeled samples 
complicates efforts to investigate their kinetics effectively.

In response to these challenges, we developed a protocol for gener-
ating MPs that closely resemble those in the environment, focusing 
specifically on replicating surface chemical modifications (Ikuno et al., 
2023, 2024). Since almost all the MPs are oxidized on their surface, we 
generated oxidized MPs by exposing them to vacuum ultraviolet rays. 
This protocol provides researchers with a valuable tool for conducting 
more accurate and representative studies on the behavior and effects of 
MPs.

Staining techniques, particularly using Nile Red, are crucial for 
enhancing the detection and analysis of MPs in the environment such as 
marine water or sewage sludge (Shruti et al., 2022). Nile Red is a lipo-
philic fluorescent dye with solvatochromic properties, meaning its 
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fluorescence emission spectrum shifts depending on the polarity of its 
environment (Gajo et al., 2024). In more polar surroundings, it displays 
a red-shift, resulting in longer wavelength emissions (Owen Tuck et al., 
2009). This characteristic makes Nile Red particularly useful for 
detecting and distinguishing between different polymer types, as it can 
indicate variations in polarity associated with each polymer (Sturm 
et al., 2021). However, the application of Nile Red staining to envi-
ronmentally mimicked MPs, especially those with surface oxidation and 
varying fluorescence ranges, remains largely unexplored. In particular, 
how surface oxidation changes the staining pattern has not been thor-
oughly examined, despite the fact that environmental MPs often un-
dergo surface degradation.

Accordingly, in this study, we addressed these gaps by applying Nile 
Red staining to MPs generated using our protocol and focusing on sur-
face modifications, as well as crucial physicochemical properties. We 
aimed to provide insights to assess the efficacy of this analytical tool via 
Nile Red staining in distinguishing between different types of MPs. 
Overall, our findings might contribute to the advancement of analytical 
techniques for studying environmental surface oxidazed MPs.

2. Materials and methods

2.1. Reagents

Nile Red was purchased from Sigma-Aldrich (St. Louis, MO, USA). 
Polyethylene (PE) particles (Flo-thene), with a medium particle size of 
180 μm per the manufacturer’s information, were purchased from 
Sumitomo Seika Chemicals Company (Osaka, Japan). Polyvinyl chloride 
(PVC) particles were obtained from Sigma-Aldrich, with a particle size of 
80–120 μm determined via microscopic observation.

2.2. Sample preparation

We previously reported an oxidization method for PE and confirmed 
its successful oxidization (Ikuno et al., 2023). Briefly, to oxidize PE and 
PVC, we utilized a FLAT EXCIMER EX-mini (Hamamatsu Photonics K. 
K., Shizuoka, Japan) emitting UV light with a wavelength of 172 nm and 
dimensions of 86 × 40 mm. Initially, the sample was evenly spread on 
the bottom of a Petri dish, positioned approximately 10 mm from the 
light source, and exposed to UV light for 0.5, 1, and 2 h for PE or 5, 10, 
and 20 min for PVC. Subsequently, the treated PE and PVC samples were 
collected in sample bottles. PE and PVC without UV light exposure are 
presented as non-oxidized samples (0 h or 0 min for PE and PVC, 
respectively). Before and after degradation, particle size and shape are 
not changed through microscopic observation (data not shown), indi-
cating that the UV treatment primarily affects the chemical structure 
rather than the physical morphology of the particles. We have previ-
ously confirmed that oxidized PE samples, prepared using a VUV 
wavelength of 172 nm, exhibit surface characteristics similar to those of 
environmental PE-MPs, as determined by XPS, SEM, and IR analysis 
(Ikuno et al., 2024).

2.3. ATR-IR measurement

To assess the oxidation of PE and PVC, attenuated total reflection 
infrared (ATR-IR) spectra were acquired using an Fourier Transform 
Infrared Spectroscopy (FTIR) Spectrum Two instrument (PerkinElmer, 
Waltham, MA, USA) equipped with a TGS detector. A diamond Atten-
uated Total Reflectance (ATR) crystal set at an incident angle of 45◦ to 
achieve approximately one reflection was utilized within a horizontal 
ATR accessory for sample measurement. Spectra were collected over the 
range of 4000–450 cm− 1 with 8 scans at a resolution of 8 cm− 1.

Initially, a background spectrum devoid of any sample (air) was 
recorded on the ATR crystal, followed by the immediate measurement of 
the sample. The specimens were then placed on an ATR crystal and 
pressed to ensure proper contact. The IR spectra of the PE samples were 

subsequently obtained. The raw spectra were presented as the pATR 
(=− log I/I0) spectra, where the sample spectral intensity (I) was 
normalized by the background spectral intensity (I0) immediately pre-
ceding the sample measurement. Each value was normalized to the 
maximum value for each condition to normalize the IR spectra.

2.4. Carbonyl index

We used the carbonyl index to quantify the extent of oxidation, and 
we employed the carbonyl index (Almond et al., 2020). Carbonyl index 
is commonly utilized to assess the level of oxidation of MPs. This index 
was determined by evaluating the ratio of the peak height corresponding 
to the C=O bond (at 1714 cm− 1) to that of the CH2 bond (at 1466 cm− 1) 
for PE, and similarly for PVC, by comparing the peak height of the C=O 
bond (at 1724 cm− 1) with that of the CH2 bond (at 1426 cm− 1).

2.5. Nile red staining

We modified the published protocol for Nile Red staining (Maes 
et al., 2017). Briefly, prepared particles were stained with 10 μg/mL Nile 
Red in (50% Ethanol in MilliQ) for 24 h at 50 ◦C. After staining, the 
stained MPs were washed thrice with ethanol and allowed to dry for 
further analysis.

2.6. Imaging analysis

Nile Red is a lipophilic fluorescent dye with solvatochromic prop-
erties that exhibits a red shift in highly polar environments, resulting in a 
longer emission wavelength (Owen Tuck et al., 2009). Nile Red-stained 
particles were imaged using a CellVoyager CV8000 (CV8000; Yoko-
gawa, Tokyo, Japan). Given their chemical structures, two sets of exci-
tation and emission filters were selected for analysis of the PE, 
surface-oxidized PE, PVC and surface oxidized PVC. Particles were 
imaged with 488 nm excitation and 525/50 nm emission filters and 561 
nm excitation and 600/37 nm emission filters for PE. Additionally, 561 
nm excitation and 600/37 nm emission filters, as well as 640 nm exci-
tation and 676/29 nm emission filters, were used for the PVC. Subse-
quently, the images were processed using Fiji (version: 2.9.0/1.53t, 
National Institutes of Health, Bethesda, MD, USA) and analyzed using 
CellProfiler 4.2.1 (Stirling et al., 2021) to quantify the fluorescence in-
tensity of each particle. At least 40 particles (up to over 200 particles) 
from each condition were analyzed. The mean intensities of each par-
ticle were utilized to generate graphs using R software (R).

2.7. Statistical analyses

Graphs were generated using Prism 10 for MacOS (GraphPad Soft-
ware, San Francisco, CA, USA) and the R software (R). Statistical ana-
lyses were performed using the R software (R). The data are presented as 
boxplots, with each value represented by a dotted line. P-values and 
R-values were calculated using Pearson correlation analysis with the 
stat_cor function in the ggplot2 library in R software (R). Statistical 
significance was set at P < 0.05.

3. Results and discussion

3.1. Generation of surface-oxidized PE and PVC

Surface-oxidized PE and PVC were generated in air using vacuum 
ultraviolet (VUV) light at a wavelength of 172 nm. The ATR-IR spectra of 
PE particles before and after VUV exposure are shown in Fig. 1A. A peak 
around 1466 cm− 1 was due to CH2 bending band. In addition, C=O 
stretching band (1714 cm− 1) appeared after VUV exposure. This spectra 
change demonstrated that carbonyl groups were introduced into PE in a 
time-dependent manner, indicating that PE samples were successfully 
oxidized by VUV exposure. The ATR-IR spectra of PVC particles before 
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and after VUV exposure are shown in Fig. 1B. A peak around 1426 cm− 1 

was due to CH2 bending band. In addition, C=O stretching band (1724 
cm− 1) appeared after VUV exposure. Similary to PE, this change indi-
cated that the time-dependent introduction of carbonyl groups were 
introduced into PVC particles.

3.2. Application of Nile red to surface-oxidized PE and PVC

As previously reported, the excitation and emission spectra of Nile 
Red-stained microplastics vary depending on the polymer type, specif-
ically the hydrophobicity of the surface environment (Sancataldo et al., 
2020). PE is more hydrophobic than PVC, which is why PVC exhibits 
fluorescence at longer wavelengths. Consequently, distinct wavelengths 
were selected for each polymer type. Additionally, Nile Red is a lipo-
philic fluorescent dye with solvatochromic properties that exhibits a red 
shift in highly polar environments, resulting in a longer emission 
wavelength (Owen Tuck et al., 2009). Upon VUV irradiation, the fluo-
rescence intensity of PE altered; the fluorescent singals at 488 nm 
excitation with a 525/50 nm emission filter were detected in the 
non-oxidized sample but decreased with VUV oxidation, whereas the 
second fluorescent set, utilizing 561 nm excitation with a 600/37 nm 
emission filter, was almost undetectable in the non-oxidized sample but 
increased in a time-dependent manner (Fig. 2A). Considering the 
chemical structures of PVC, for the PVC samples, we employed 561 nm 
excitation with 600 nm emission filters and 640 nm excitation with 
676/29 nm emission filters, showing dynamic changes in fluorescence 

intensity; upon VUV exposure, both fluorescence signals were increased 
(Fig. 2B).

3.3. Assessment of Nile red staining and extent of oxidation in PE and 
PVC materials

As depicted in Fig. 2, oxidized MPs demonstrated varied fluorescence 
intensities across channels in both PE and PVC samples. Thus, we 
analyzed the correlation between the carbonyl index and the fluores-
cence intensity ratio of each channel. The carbonyl index is a widely 
used measure for determining the oxidation level of MPs (Almond et al., 
2020). It is calculated by comparing the peak height of the C=O bond 
(1714 cm− 1) to that of the CH2 bond (1466 cm− 1) in PE (Fig. 1A). For 
PVC, the carbonyl index is similarly determined by comparing the peak 
height of the C=O bond (1724 cm− 1) to that of the CH2 bond (1426 
cm− 1) (Fig. 1B). In PE samples, particles were identified using Cell-
Profiler software, and the fluorescence intensities of green (488 nm 
excitation and 525/50 nm emission) and yellow (561 nm excitation and 
600/37 nm emission) were measured. Although the mean intensities of 
green and yellow fluorescence did not vary with VUV exposure time 
(Supplementary Figs. 1A and 1B), the ratio of yellow to green fluores-
cence (PE fluorescence score) increased in an exposure time-dependent 
manner (Fig. 3A). Furthermore, by using the median value to account for 
variability in the stained particles, a correlation existed between the 
carbonyl index of each sample and the median PE fluorescence score 
under each condition (Fig. 3B). Although increasing the number of 
analyzed particles and experimental trials to refine the correlation line 
would improve the robustness of these findings, the ratio of yellow to 
green fluorescence shows potential as an indicator of the oxidation rate 
in PE samples.

In PVC samples, Nile Red staining indicated a shift in emission 
wavelength to a longer wavelength with increasing polymer polarity 
(Sturm et al., 2021; Maes et al., 2017). Yellow and red fluorescence 
intensity increased with VUV exposure time (Supplementary Figs. 1C 
and 1D). To evaluate the correlation between the carbonyl index and the 
values derived from yellow and red fluorescence intensities, we assessed 
the mean fluorescence intensities of yellow and red in each particle (PVC 
fluorescence score). As shown in Fig. 3C, the PVC fluorescence score for 
each particle increased with VUV exposure time. Furthermore, by using 
the median PVC fluorescence score to account for variability, a corre-
lation was observed between the carbonyl index and the median fluo-
rescence score (Fig. 3D). Although increasing the number of analyzed 
particles and experimental trials to refine the correlation line would 
improve the robustness of these findings, the mean values of yellow and 
red fluorescence collectively serve as effective indicators for assessing 
oxidation in PVC samples.

Our investigation revealed distinct fluorescence patterns in different 
polymer types in response to oxidation. Nile Red fluorescence varies 
with polymer polarity (Sturm et al., 2021; Maes et al., 2017). As 
microplastics undergo changes in surface polarity owing to oxidative 
treatment (Kim et al., 2022), distinct fluorescence patterns emerge. 
Specifically, in PE samples, green fluorescence decreased upon oxida-
tion, while yellow fluorescence increased. Conversely, in PVC samples, 
both yellow and red fluorescence increased. For PE, calculating the ratio 
of green-to-yellow fluorescence revealed a correlation with the degree of 
oxidation, whereas, for PVC, the average yellow and red fluorescence 
correlated with the degree of oxidation. These findings highlight the 
utility of Nile Red as a tool for analyzing the oxidation of PE and PVC 
MPs, suggesting its applicability in analysis of environmental oxidized 
MPs.

Since Nile Red is a solvatochromic reagent, stained particles emit 
different fluorescence intensities depending on their hydrophobic or 
hydrophilic nature (Owen Tuck et al., 2009; Meyers et al., 2022). As 
reported in previous studies (Sturm et al., 2021; Kang et al., 2020; Van 
et al., 2020), Nile Red staining can be applied to a wide range of poly-
mers, including PE, polypropylene (PP), polystyrene (PS), polyethylene 

Fig. 1. ATR-IR spectra for oxidized PE and PVC. (A) Normalized attenuated 
total reflectance infrared spectra of PE samples at varying VUV exposure times 
(0, 0.5, 1, and 2 h). (B) Normalized attenuated total reflectance infrared spectra 
of PVC samples at varying VUV exposure times (0, 5, 10, and 20 min).
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terephthalate (PET), polyester, PVC, and polyamide (PA), regardless of 
their polarity or hydrophobicity. While further investigation is needed 
to determine the extent of fluorescence shifts and polarity changes due 
to oxidative degradation, as well as to ensure proper calibration for each 
polymer type to improve the accuracy of our analysis, this method shows 
potential for application to various polymer types beyond PE and PVC.

As Nile Red is typically used to stain lipids in cellular components 
(Greenspan et al., 1985), applying our method for MP analysis in tissues 
requires the removal of tissue components and the isolation of plastic 
debris. Previous studies have demonstrated effective methods for tissue 
digestion and component removal (Di Fiore et al., 2024), enabling the 
application of our method for MP detection in tissue samples.

Fig. 2. Fluorescence images of Nile Red-stained PE and PVC particles. (A) Fluorescence images of PE samples at different VUV exposure times (0, 0.5, 1, and 2 
h). (B) Fluorescence images of PVC samples at varying VUV exposure times (0, 5, 10, and 20 min). Representative images from two experiments are displayed. Scale 
bar: 500 μm.
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In the case of environmental samples comprising a mixture of 
different materials, a statistical approach utilizing histograms would 
likely be the most suitable method for analysis. Additionally, by 
isolating individual particles from environmental samples and exam-
ining the correlation between the Nile Red method and IR measure-
ments, a more robust analytical approach for environmental MPs could 
be developed. Regarding the oxidation method, a VUV wavelength of 
172 nm was used in this study. However, considering natural environ-
mental conditions, future analyses may benefit from utilizing wave-
lengths around 300 nm, such as those produced by xenon lamp 
irradiation.

4. Conclusions

VUV exposure successfully generated oxidized PE and PVC MPs, 
resulting in altered fluorescence signals from Nile Red staining. The 
correlation observed between fluorescence scores and the carbonyl 
index of oxidized MPs underscores the potential of Nile Red as an 
effective tool for analyzing the oxidation state of PE and PVC MPs, 
supporting its use in environmental studies of oxidized MPs.
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