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1. Introduction. We call (M, o) a Riemannian manifold with a pole iff
M is a Riemannian manifold and exp,: M,—M 1s a global diffeomorphism.
We write r(x) for the distance function from o. Suppose now our (M, o) satis-
fies the following condition:

(1-1) 'There exist C~ functions &, K: [0, co)—[0, oo) such that
(i) —k(r(x))< all the radial curvature at x= K(r(x)),

(i) [ Trdr<eo,

(iii) S:tK(t)dtg 1.

In (i) above, a radial curvature at an x& M denotes the sectional curvature of
a 2-dimensional plane in M, which is tangent to the unique geodesic joining
the pole o of M to x (if x=o, then simply define a radial curvature to be a sec-
tional curvature at 0). R. Greene and H. Wu have studied general properties
of Riemannian manifolds with a pole in [1]. Among other things, they have
shown that Riemannian manifolds with a pole satisfying condition (1-1) give
r se to a very interesting class of Riemannian manifolds. Making use of their
results, we shall prove the following theorem.

Theorem 1. Let (M, o) be an m-dimensional Kdihler manifold with a pole
satisfying condition (1-1) above (m=2). Let L—>M be a hclomorphic line bundle
over M with a hermitian fibre metric h. Suppose the Chern form w=—(i[27)09 log
h of the hermitian line bundle {L, b} satisfies one of the following conditions:

(1-2) o 15 non positive,
(1-3) llo@®)ll=o((®) (€M),
where v(t) 1s a nonnegative function on [0, oo) which satisfies

(1-4) S:tv(t)dt<oo .
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Then there exists a positive number v, such that if s is a non-zero holomorphic
section of L over M which satisfies

(1-5) [Is(x)[|= C(1+4-r(x))"
on M for some constant C>0 and some v<<v,, then s is nowhere zero on M.

When (M, o) has negative curvatures everywhere, above Theorem 1 has
been proved by Greene and Wu (cf. Step III in the proof of Theorem J in
[1]). Before them, Siu and Yau have proved above Theorem 1 when M is
negatively curved and k(tf)=At"2"* (6>0) (cf. Proposition 24 1 [5]). Ow
proof of Theorem 1 will be given by generaiizing the agruments in the proofs of
Step III in [1] and Proposition 24 1n [5] cited above.

It has been conjectured that an m-d‘mensional Kahler manifold (3, o) with
a pole satisfying condition (1-1) should be biholomorphic to C™. In fact this is
true in the case where (M, 0) is negatively curved and k(t)=A¢"*"* ([5]). More
generally Greene and Wu have verified this conjecture in the case where (M,
0) is negatively curved and k(t) is nondecreasing on [6, o) for some §>0 (cf.
Theorem J in [1]). In the proofs of these results, one of the crucial steps was
to prove above Theorem 1 in case (M, o) is negatively curved (Step III, [1], p.
188). Therefore our Theorem 1 will be of some use to study the conjecture
mentioned above. In fact an application of our Theorem 1 to the case where
(M, o) is positively curved will be published elsewhere.

2. Preliminaries. Let (M, o) be an m-dimensional Kihler manifold
with a pole which satisfies condition (1-1). We recall several facts from The-
orem C in [1] and Theorem in [4] as follows.

Fact 2-1. Define C* functions p(ty and q(t) by

(2-1) p'—kp =10, p(0) =0 and p'(0) = 1,
(2-1) q'+Kg=0,9(0)=0and g0)=1.
Then the following inequalities hold on [0, co):

(2-3) ISp't)<7n and t= p(t)<ut,

(24) 1=2q'(t)=p and t=q(t)= pt,

where the constants n and p are positive and satisfy

(2-5) 1<n< exp{S:tk(t)dt} :

(2-6) 1> pgl—s:tK(t)dt.
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Fact 2-2. Let p(t) and q(t) be as in Fact 2-1. Set n*(t)=tp'(t)[p(t) and
w*(@)=tq'(®)/q(t). Then for any t=0, we have

(2-7) 1=7*@#)<7»,
(2-8) 1zp*()zp.

If D?r (resp. D**) denotes the Hessian of the function r (resp. the function r*), then
the following inequalities hold on M— {0} :

(2-9) B0 (o ar@dr) = Dr<T" (¢—ar@dr)
r 4

(2-10) 2ug<D<2ng,

where g=23g 7dz'dz" is the K dhler metric of (M, o).

As usual the associated Kihler form Q of the Kiahler metric g=23>1g;3dz2+
dz* is defined by Q=i>)g;dz’ NdZz".

Lemma 2-1. The following inequalities hold in M— {o} :

(2-11) 2°0) (—ior ATr) Z 09 =) (Q—ior NBY) ,
r r

2-12) 290260 220,

(2-13) Q=2i0r A3 .

Proof. Let J be the natural almost complex structure on M. Define J-
invariant symmetric covariant two tensors 4, and %, by

h(X,Y) = (dr®dr) (X, Y)+(dr@dr) (JX, JY),
hy(X,Y) = Dr(X, Y)-+D(JX, JY).

Then h(JX,Y)=2i0r Nor(X,Y). Since h(X, X)<g(X, X), we have (2-13).
On the other hand, since g is a Kahler metric, we have A,(x, x)=(2:00r) (X, JX).
Then (2-9) and (2-13) im; ly (2-11). Finally (2-10) implies (2-12). q.e.d.

We need a few more facts from [1]. A Riemannian manifold with a pole
(N, e) is called a model iff the linear isotropy group of isometries at the pole e
is the full orthogonal group. Then for a point xEN, all the 1adial curvature at
x are the same. Hence there exists a C* function Ky: [0, co)— R such that
for a point x, any 1adial curvature at x is equal to ky(ry(x)), where ry: N—[0, o)
is the distance function from e. The &y is called the radial curvature funtion of
the model (IV, ¢). Moreover the metric gy of N relative to geodesic polar coor-
dinate centered at e assumes the form

(2-14) gy = dE-Lf(1)2d6?,
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where f is a C* function on [0, oo) which satisfies f >0 on (0, o) and
(2-15) f"+kyf=0with f(0) =0and f'(0)=1.

Conversely for any C* function f(#) on [0, o) satisfying f >0 on (0, o), f(0)=0
and f'(0)=1, there exists uniquely (up to isometry) a model (NN, e) such that
(2-14) holds. 'Then the radial curvature function ky 1s equal to —f”/f. There-
fore by (2-3) we have the foilowing fact (cf. p. 60 of [1]).

Fact 2-3. Consider the function p(t) defined in Fact 2-1. Then there exists
a 2 m dimensional model (N, .) whcse metric relative to geodesic polar coordinates
centered at e is given by

gy = di+p(2)%d6?,
and the radial curvature function ky is exactly —k.

Now by Proposition 2.15 (Laplacian Comparison Theorem) of [1], we
have the following fact.

Fact 2-4. Let (M, o) be a Kahler manifold with a pole satisfying condition
(1-1) and (N, r) the model constructed in Fact 2-3. Let f(t) be a nondecreasing
C* function on (0, ). Then for every x&M— {0} and y& N—{e} such that r(x)
=ry(y), we have

Afir) (®)=Af(ry) (9) -

Lemma 2-2. Let (M, o) be a Kdhler manifold with a pole satisfying con-
dition (1-1). Let p(x) be the C function defined in Fact 2-1. For a positive
number R>0, define a C* function f » on (0, o) by

R ds
fr(®) = StW .

Then we have A f g(r)=0 on M— {c}.

Proof. Let (N, e) be the model constructed in Fact 2-3. Let {&!, ---, x*}
be the geodesic polar coordinate system of N centered at e such that x'=ry.
Then on N— {e} we see

Afi(ry) = L > 9 (\/—G“gf;B ifR(’N))

VG 55 9x4 ox®
— 2(2m-1)\ -1/ 1 2(2m~1 1/2£
(payem-ny L {papennyn L g )]
=0.

Since —f(?) is atnondecreasing C* function on (0, o), Fact 24 implies A(—fx(r))
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(= A(—/f(rn))=0 on M—{o}. q.e.d.
Lemma 2-3. Let (M, o) be a Kdhler manifold with a pole satisfying con-
dition (1-1). Let q(t) be the C* function defined in Fact 2-1. Set F(f)=
t
exp <2$ %) Then we have the following:
1
(1) KF(r)is an C* function on M,
(i1) F(r)/q(r)’ is a positive monotone increasing C* function on [0, )

i) 24F0) o<inapp< 2LENF
g =R gy
(iv) 400 log F(r)=0  on M— {o}.

’

Proof. As we obtain Fact 2-3, there exists a Riemannian metric g on R?
which can be written as

g = di*+4-q(t)’do?

on R?*—{o}, where (¢, 6) is the usual polar coordinates. We put a complex
structure on R? so that g becomes a Kihler metric. Define a map I: R?— {o} —

R*— {0} by
I(t,0) = <exp gtﬁ>, 0) ,
1q/
where (¢, 0) is the polar coordinates on R?—{o}. Then I is a diffeomorphism.
Since we have

t

(2-16) I¥(dr+-£d6%) = {fﬂ)(—qg“’—)}z(drurqwm) :

I is a conformal map. Hence, if we consider I to be a C-valued function, I is a
holomorphic function on R?—{o}. Since I is bounded on a neighbourhood of
0, I can be extended holomorphically to o and we have I(0)=o0. Set F(s)=
|I((s, 0)) |? for any s&R. Then F 1s an even C* function on R and F(t)=F(t)
for any t>0. Since 72 1s a C~ function on M, we know that F(r) 1s a C* function
on M. Since I 1s holomorphic at o, I is a biholomorphic map. Consequently,
(2-16) implies that F(t)/q()? 1s an even positive C” function. Hence F(r)/q(r)?
a positive C” function on M. On the other hand, we have

F@O)\ _ 2F@) )
(gep) = S0 7@

By (2—4), we see F(t)/q(t)? 1s an increasing function. Since we have

109F(r) = F'(r)iodr-+F"(r)idr Ar
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2F(r)lag +2F (@) (2—¢'(r))idr Nor ,
q(r) 90y’

by (2--11) and (2-4), we see
i03F(r) = %(? 220 (o ior /\&)Jr%()’) (2—q'(r))idr A3

— 2F@) (a1 201—gyior ABR} 2 22‘(5; 2uF)

q(r)
On the other hand, by (2.11) and (2.3), we see

2F(r) 7
q(r)
_ 21(”;)') i ((r’)) Q- zar/\ar)+zf()')(2 g'(r))idr A3
St S

<Ay

Finally by (2-11), we have

i03F(r) < r(’) (Q—idr ATr)+ 2{ ()’) (2—q'(r))idr A3r

i09log Flr)= )zaar qu( ()’) i0r NBr

> = Z p*(r) Q—i0r Aor 29'(r) 10r Aor
@ 7 TN A

_ 240 o 415,05

q(ry? q(r)?
=0. q.e.d.

3. A volume estimate for analytic subsets. Let I ke a closed an-
alytic subset in M of pure dimension n. For a positive number ¢, we set B(t)=
{xeM, r(x)<t} and 9B(t)={xEM, r(x)=1}. Then B(t) is compact and 9B(¢)
is a hypersurface in M. We write Vol (VV N B(#)) for the voiume of V N B(¢).
Then we have

o)
2"nl Jvam®

n

Vol (V N B(t)) =

As usual we set d°=4(3—0)/2 so that dd°=1i90. In this section we shall prove

Proposition 3-1. Let (M, o) be as in Theorem 1 in section 1. Then there
exists a positive constant A depending only on (M, o) such that for any closed an-
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alytic subset V in M of pure dimension n, we have Vol (V NB(t))=A(V)t* for
t=0, where (V) is the multiplicity of V at o.

Proof. Set B(t,s)=DB(s)—B(t) for 0<t<s. Using Stokes Theorem for
analytic subsets (cf. [3] or Theorem 1.28 in [2]), for 0<<t<Cs, we have

1

1
F(t)"SVHB(t)

WS vNB(s)
1
F (s)”S VN3B(s)
_LS
FE(t)"Jvnasm
_ S d‘F(r)/\(dd‘F(_r)_ dF(r)/\d‘F(z))"‘l
vnas(® F(s) F(s) F(s)?
. S d°F(r) A dd°F(r) _ dF(r) \d°F (r))"‘l
vnes( F(t) F(z) F(t)?

(dd°F(r))"— (dd°F(r))"

d°F(r) \(dd°F(r))"

d°F(r) \(dd°F(r))*!

(dF(r) being zero on B(t) and B(s))

— Sd‘ log F(r) A (dd log F(r))"™"

- VNaB(t)

_ c ¢ n-1
Smwd log F(r) A (dd* log F(r))

(a log Fy—|  (da 1og F(r)y

SVﬂB(s)

dd° 1 "
SVﬂB(t,s)( g F(r))

=0
(cf. (i1) of Lemma 2-3). Therefore we know

i)
F(t)y*Jvnsw

(dd°F(r))"

is a non-negative increasing function for £>0. In particular there exists

lim (dd°F(r))"

o
F(t)*Jvnsw
which 1s denoted by n*(V, 0). Now by (iii) and (ii) of Lemma 2-3, we have

Vol(VNB(#) _ 1 S
1 2l Jvns)

1 9\ ggFiryy»
= 22 ) (1+m) g2 Svme(:)(F(r)) (dd°F (1))

n

(3-1)
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1 @™

2 c n
= 22pl (1n)men F(t)”SVnB(t)(dd F)

> p* 1 ¢ "

= 221 (14-n)" F (t)”s VnB(t)(dd Fy
Hence we have

2n
-2 Vol (WNB@#)= —F — _p* 2n

(3-2) o (V NBO)Z g n* (7, o

for t=0. By (2-4), we see

11 _1

(-3) 2 S

for 0<t=<1. By (ii) and (iii) of Lemma 2-3, there exists a positive constant B,
such that

(34) 100F(r) = B\Q

on B(1). Then (3-3) and (3—4) imply

L{  @arpyz B

(3—5) F(t)”g veB(t) I S VNB()

Qn

for 0<t<1. Now take sufficiently small €>0 so that B(€) is a holomorphic
local coordinate neighbourhood with a holomorphic local coordinate system
{4, -+, 2"} (2¥(0)=0, 1=<i<m). Let g,=>dz’dz’ be the usual flat Kihler
metric on B(€). Then a,= {109(3>}|27|?)}/2 is the associated Kahler form of g,.
By using 700 log (3)|27|%) =0 on B(€)— {0}, the same argument to have obtained
n*(V, o) implies that if we set

1

—_ ”
n(t’ 0) - zz”SVﬂ{Elz’lz<tz}a° ’

then n(t, 0) is an increasing function of ¢ and lim #(¢, 0)=B,l(V) where B; is a
t>0

universal constant (cf. Corollary 1.29 in [2]). Since there exists a positive
constant B; such that

1
ané Q§B3ao

3

on B(%), we know there exists a positive constant B, such that

1

(3_6) ESVﬂB(t)

Q= BAV)



HoLoMoRpPHIC SECTIONS WITH SLOW GROWTH 685

for sufficiently small . By (3-5) and (3-6) we have
3-7) n*(V, 0) = B"BJ(V).
Then (3-7) and (3-2) imply Proposition 3-1. q.e.d.

Corollary. For a positive number R, there exists a positive constant B*(R)
such that for t =R we have

Vol (V N B(t)) = B¥(R)V*(R)t*™,

where V*(R):S (ddF@))y".

vnB(R)

Proof. By (3-1) we see

Vol (VN B(t) <. 2%n!(149)* 1 V*(R)
£ - 2n F(R) '

q.e.d.

4. Proof of Theorem 1. We keep the notation of the previous sections.
Let p(t) be the function defined in Fact 2-1. For any positive number R,
define a C* function F on M— {0} by F(x)=f(r(x)) where f is the function
defined in Lemma 2-2.

Let s by any nonzero holomorphic section of L such that

4-1) {xeM; s(x) = 0} is not empty,
(4-2) sl = C(1+r(x))”

for some positive constants C and ». Let V' be the divisor defined by the
zeros of s. For R>1, we set B(R, 1)=B(R)—B(1). Then Green’s formula
implies

Fp-l Z—S . ?

SB(R,I)A R ogHsH B(R,I)FR AlOg”SH

= [ loglisPxaF,—{ togllsiPsaF,
2B(R) 9B(1)

—( Fodlog]lslp s 2,
Sasm wxd logllsl*+ BB(I)FR*d Loglsl

By (2-3) we have

1 SR 1 SfR(t)égR dt

.)72m—1 tth—l - ‘th—l

Hence we obtain

1 11 1 (1 1
(4-1) (2m—1)p?m! (t2m—2 R2m—z> =f) = Om—2\ g2m=2 RZm—Z) :
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Therefore we have an estimate:

— 1 2 S 2
=, JogllesdFyt | Fodlogli

9B

= =), oglisiPrdr+fu(1), sdloglilr

9B 9B(

1 1 ( 1 ) S "
= 1 2 _
o 1)(1)2’”"1 SOB(]) ogllsl *dr‘-l_ 2m—2 1 Rim-2 aB(1)*d log|ls]|
= 0(1),

where 0(1) stands for a bounded term as R—co. Since

F;=0 on 0B(R), we have
. 2_ . 2
(+-2) [0 pAFs-loglllP—{  Fy-Alogls
— 2£7
— Samlognsn FR(Ryxdr-+O(1) .
On the other hand, Poincaré-Lelong’s formula implies

|
@3 Zm  Fealoglir= |

27 IB(R

(cf. [3] or Theorem 1.11 in [2]). Since AFz=0 by Lemma 2-2, we see by
(4-2)

FRQ""l——S Fao AQ™1
B(R,D

B(R VNV

S AFg-log|ls|? = S AFg-log {C(1+47)"} .
B(R,D B(R,1
Now by Green’s formula, we have
S AFg-log{C(14+7)"}
B(R,1)

— S Fg-Alog {C(147r)"}+ S log {C(1+-7)"} #dF
B(R,1) (R)

9B

o S 9B(1) log {C(14-7)"} +dFp— S 2B(R) Fgxd log{C(1+4-7)"}

+S  Faxd log{C(1+7)}

9B

= [ oy Frr A 08 COE} +{ | log{C1-4r) bodFot-O(1)

9B

Therefore we have

. 2 < . v
(44) Sm’l) AFg+log [Is|* < Sm,l)F’* Alog{C(1+7)}
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+Sm) log {C(14-7)"} fA(R)+dr+O(1).
From (44), (4-2) and (4-3), we obtain
0B

fage Fre A T8 {CAER} 4 log {147} fi(Rywar+O()

z(  AFglogliir
B(R,1)

Il

[ Faenloglilf+] toglllfa(Ryrdrt-0(1)
B(R,1) 9B(R)

2w S .1 2 S m—1
= Qm-l_ =% F Q
2mm ey © 2mmJ B(R,D 20/

+§ log |Isl[2f4(R)*dr+0O(1) .
9B(R)
Since f#(R)<<0, we see
S log{C(1+7)"} fi(R)*dr < S log [Is|f4(R)dr .
9B(R) 9B(R)
Therefore we obtain

2'”772' v
(4-5) —Z”—SB(R,DFR-AIog {C(14+7

z[  Fom-{  Feaeritoq).
B(R,1NV B(R,1)

Now by (2-9) and (2-7), we have

(4-6) Ar < @m=T)n
r
Then (4-6) implies
_Ar 1
4-7) Alog C(1+47) = I—r ALy
< (2m—1)n
(1+4n)r
Now (4-7) and (4-1) imply

(+8) SB(R,I) FrAlog{c(l 7 = VSB(R,I) (Zm—;)rz'"—2 ) (%;n—ljr;i)‘n

@m—1)S@m—1yr™ 1,0 14 gy,
2m—2

IA
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where S(2m—1) denotes the Euclidian volume of (2m—1) dimensional unit
sphere. By the same way we have

R
S FRm-1=$dtS Fy (a)m !
B(R,DNV 1 BNV or

= SffR(t)dtS ¢ @>Qm‘1

BNV (ar

- Sf[(%{fR(t)S;dt SOB(t)nV (61’ Q"’“l}]dt
—frofaf,,,, A5

= 2" Ym—1)![fx(¢) Vol(B() N V)]F
m1r 1\t (2 VOI(BE,1)N V)
+2 (m 1)! Sl p(t)Zm—l *

Then by (2-3) and fz(R)=0, we have

(4+-9)

Pz 2 1(2m . 1)'SRV01(B(t)ﬂV) dr+0(1)

SB(R,]) nv "= 1 f2m-1

From (4-5), (4-8) and (4-9) we obtain

(+-10) Bowlog(1+ ) 2 2 D TVOUEONT)

1 t?m 1
_S Fro AQ110(1),
B(R,1)

where E, 1s a positive constant depending only on m.
If the Chern form o satisfies (1-3), we have

(4-11) —SB(R FroA@™i20.
If w satisfies (1-4), we see by (4-1)

(4+-12)

S Rw/\ﬂm 1
B(R,1)

=p| Fillelior

< D’S(Zm—I)Sffk(t)v(t)tz"‘"dt
< D”Sftv(t)dt — o),

where D, D', D” are constants independent of s. Therefore by (4-10), (4-11)
and (3-12), we have
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#-13)  Eymwlog(1+R) = 1(2':1D'SRVOI(B(t)”V)dt-i-O(I).

1 t2m 1

Therefore from Proposition 3-1, we obtain

Eyvlog(14+R) = 2~ 1(’” 1)'SRA’(V)’2"'  dt4-0(1)

2m 1 t2m 1
> Ezl(V) log R+0(1),

where E, is a positive constant depending only on (M, o). Hence, taking the
limit, we have

(4-14) v = L2y,
E,

where E; and E, are positive constants depending only on (}M, o).

Lemma 4-1. Let (M, 0) and {L, h} be as in Theorem 1. For a positive
number v, denote by T'(M, L; v) the complex vector space of holomorphic sections
s over M which satisfy

(4-15) lls@)ll = C(1+r(x))”

for some positive C. Then there exists a positive number v* depending only on
(M, o) such that the dimension of T(M, L; v*) is at most one.

Proof. Take E,2E, as v*, where E,, E, are as in (4-14). Take any
holomorphic section s in I'(M, L; »*). Then by (4-15), we see I(V)=0,
i.e., s(0)#0. Suppose there were two elements s, and s, in T'(M, L; »*) which
are linearly independent. Since s,(0)=0 and s,(0)=0, there would exist a
number a such that (as,+s,) (0)=0. Then as;+s, should be zero. This is a
contradiction.

Proof of Theorem 1. Let »* be as in Lemma 4-1. It is enough to
check the case when I'(M, L; »*) contains an element s, such that {x&M;
so(¥)=0} is non empty. Fix a sufficiently large number R, so that

(4-16) B(R)N {x&M; sy(x) = 0} =0 .
Then by (4-13) and Corollary to Proposition 3-1, for R> R, we have

Ep log(14R) = 20D VABONT) 4. o)
7"

Ro th 1
2" Y (m—1)! B¥(R)V*(R
> (m ),72».( )V H(R,) log R+0(1).

Hence, taking the limit, we see
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(#-17) vz DBHRIVHRY,
1

where E,, E; are positive constants depending only on (M, o), and B*(R,) is
positive. By (4-16), we see V¥(R,) 1s positive. Now set
v, = min {v*, E———3B*(R°)V*(R°)} .
2E,

Then we have T'(M, L; v)=0. In fact take any eiement s in T'(M, L; »,). Then
by Lemma 4-1, there exists a reai number a such that s=as,. Suppose a=0.
Then since {x&M; s(x)=0}={x=M; s,(x)=0}, (4-17) implies v,=E;B*(R,)
V*(R)/E,. This is a constradiction. q.e.d.
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