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1. Introduction. We call (M, ό) a Riemannίan manifold with a pole iff
M is a Riemannian manifold and exp0: M0->M is a global diffeomorphism.
We write r(x) for the distance function from o. Suppose now our (M, ό) satis-
fies the following condition:

(1-1) There exist C°° functions k, K: [0, oo)-*[0, oo) such that
( i ) — k(r(x))^ all the radial curvature at x^K(r(x))y

(ii) \ tk(t)dt<oo>

Jo

(iii) [°tK(t)dt^l.
Jo

In (i) above, a radial curvature at an x^M denotes the sectional curvature of
a 2-dimensional plane in Mx which is tangent to the unique geodesic joining
the pole o of M to x (if x=o, then simply define a radial curvature to be a sec-
tional curvature at o). R. Greene and H. Wu have studied general properties
of Riemannian manifolds with a pole in [1], Among other things, they have
shown that Riemannian manifolds with a pole satisfying condition (1-1) give
r se to a very interesting class of Riemannian manifolds. Making use of their
results, we shall prove the following theorem.

Theorem 1. Let (M, o) be an m-dimensional Kahler manifold with a pole
satisfying condition (1-1) above (m^2). Let L-+M be a hclomorphic line bundle
over M with a hermitian fibre metric h. Suppose the Chern form ω= — (il2π)dd log
h of the hermitian line bundle {L, h} satisfies one of the following conditions:

(1-2) ω is non positive,

(1-3) \\ω{x)\\^v{r{x)) (x(=M),

where v(t) is a nonnegative function on [0, oo) which satisfies

(1-4) ( tv(t)dt< oo .
Jo
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Then there exists a positive number vQ such that if s is a non-zero holomorphic

section of L over M which satisfies

(1-5) \\s(x)UC(l+r(x)Y

on M for some constant C > 0 and some v<v0, then s is nowhere zero on M.

When (My o) has negative curvatures everywhere, above Theorem 1 has
been proved by Greene and Wu (cf. Step III in the proof of Theorem / in
[1]). Before them, Siu and Yau have proved above Theorem 1 when M is
negatively curved and k(t)=Ar2~* (£>0) (cf. Proposition 2-4 in [5]). Out
proof of Theorem 1 will be given by generalizing the agruments in the proofs of
Step III in [1] and Proposition 2-4 in [5] cited above.

It has been conjectured that an m-d:mensional Kahler manifold (M, o) with
a pole satisfying condition (1-1) should be biholomorphic to Cm. In fact this is
true in the case where (M, o) is negatively curved and k(t)=At~2~* ([5]). More
generally Greene and Wu have verified this conjecture in the case where (M,
o) is negatively curved and k(t) is nondecreasing on [θ, oo) for some 0>O (cf.
Theorem / in [1]). In the proofs of these results, one of the crucial steps was
to prove above Theorem 1 in case (M, o) is negatively curved (Step III, [1], p.
188). Therefore our Theorem 1 will be of some use to study the conjecture
mentioned above. In fact an application of our Theorem 1 to the case where
(M, o) is positively curved will be published elsewhere.

2. Preliminaries. Let (M, o) be an m-dimensional Kahler manifold
with a pole which satisfies condition (1-1). We recall several facts from The-
orem C in [1] and Theorem in [4] as follows.

Fact 2-1. Define C°° functions ρ(t} and q(t) by

(2-1) p"-kp = 0, p(0) = 0 and p'(0) = 1,

(2-1) q"+Kq = 0, j(0) = 0 and qf(0) = 1 .

Then the following inequalities hold on [0, oo):

(2-3) l^p\t)£v and

(2-4) l^q\t)^μ and

where the constants η and μ are positive and satisfy

(2-5)

(2-6)
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Fact 2-2. Let p{t) and q(t) be as in Fact 2-1. Set V*(t)=tρ'(t)lp(t) and
μ*(t)=tq'(t)lq(t). Then for any ί^O, we have

(2-7)

(2-8)

If D2r (resp. D2r2) denotes the Hessian of the function r (resp. the function r2), then

the following inequalities hold on M— {o} :

(2-9) (±*iΔ (g-dr®dr)^D2r^Ύ^- (g-dr®dr),

(2-10)

whete g=2yΣgfkdzidzk is the Kdhler metric of (M, o).

As usual the associated Kahler form Ω of the Kahler metric g=
dzk is defined by ^=i

Lemma 2-1. The following inequalities hold in M— {o}:

(2-11)

(2-12)

(2-13)

Proof. Let / be the natural almost complex structure on M. Define J-
invariant symmetric covariant two tensors hλ and h2 by

hlX, Y) = (dr®dr) {Xy Y)+(dr®dr) (JXJY),

h2(X, Y) = D2r{X9 Y)+D2r(JXJY).

Then hι{JX,Y)=2idr/\^r{X,Y). Since hx(X, X)^g(X, X), we have (2-13).
On the other hand, since g is a Kahler metric, we have h2(x, x)=(2iddr) (X,JX).
Then (2-9) and (2-13) im^ly (2-11). Finally (2-10) implies (2-12). q.e.d.

We need a few more facts from [1]. A Riemannian manifold with a pole
(AT", e) is called a model iff the linear isotropy group of isometries at the pole e
is the full orthogonal group. Then for a point x^N, all the ladial curvature at
x are the same. Hence there exists a C°° function KN: [0, oo)-»ig such that
for a point x> any ladial curvature at x is equal to kN(rN(x)), where rN:N-> [0, oo)
is the distance function from e. The kN is called the radial curvature fumtion of
the model (N, e). Moreover the metric gN of N relative to geodesic polar coor-
dinate centered at e assumes the form

(2-14)
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where/is a C°° function on [0, oo) which satisfies/>0 on (0, oo) and

(2-15) f"+kNf = 0 with/(0) = 0 and/'(0) = 1 .

Conversely for any C°° function/(f) on [0, oo) satisfying/>0 on (0, °°),/(O)=O
and/'(0)=l, there exists uniquely (up to isometry) a model (ΛΓ, e) such that
(2-14) holds. Then the radial curvature function kN is equal to —/"//• There-
fore by (2-3) we have the following fact (cf. p. 60 of [1]).

Fact 2-3. Consider the function p(t) defined in Fact 2-1. Then there exists
a 2 m dimensional model (Ny c) whcse metric relative to geodesic polar coordinates
centered at e is given by

and the radial curvature function kN is exactly —k.

Now by Proposition 2.15 (Laplacian Comparison Theorem) of [1], we
have the following fact.

Fact 2-4. Let (My 6) be a Kdhler manifold with a pole satisfying condition
(1-1) and (Ny r) the model constructed in Fact 2-3. Let f{t) be a nondeaeasing
C°° function on (0, oo). Then for every x^M— {6} andy^N— {e} such that r(x)
=rN(y), we have

Lemma 2-2. Let (M, o) be a Kdhler manifold with a pole satisfying con-
dition (1-1). Let p(x) be the C°° function defined in Fact 2-1. For a positive
number 2?>0, define a C°° function f R on (0, oo) by

Then we have AfR(r)^>0 on M— {<?}.

Proof. Let (N, e) be the model constructed in Fact 2-3. Let {xι> •••, x2m}
be the geodesic polar coordinate system of N centered at e such that ocL=rN.
Then on N— {e} we see

)

= 0.

Since —fR(t) is atnondecreasing C° function on (0, oo), Fact 2-4implies Δ(—fR(r))
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(^A(-fR(rN))=0 on M-{o}. q.e.d.

Lemma 2-3. Let (M, o) be a Kahler manifold with a pole satisfying con-

dition (1-1). Let q(t) be the C°° function defined in Fact 2-1. Set F(t) =

exp ί 21 — ) . Then we have the following:

( i ) F(r) is anC°° function on M,

(ii) F(r)/q(r)2 is a positive monotone increasing C°° function on [0, oo)

(in)

(iv) i99 log F(r) ̂  0 on M— {o}.

Proof. As we obtain Fact 2-3, there exists a Riemannian metric g on R2

which can be written as

g = dt2+q(t)2dθ2

on R2— {o}, where (t, θ) is the usual polar coordinates. We put a complex
structure on R2 so that g becomes a Kahler metric. Define a map /: R2— {o} ->
i?2-{o} by

where (£, θ) is the polar coordinates on R2— {o}. Then / is a diffeomorphism.
Since we have

(2-16) I*(dt2+t2dθ2) = { ψίl\\dt2+q2dθ2),

/ is a conformal map. Hence, if we consider / to be a C-valued function, / is a
holomorphic function on R2— {0}. Since / is bounded on a neighbourhood of
0, / can be extended holomorphically to 0 and we have I(o)=o. Set F(s)=
\I((s, 0)) | 2 for any s(=R. Then F is an even C°° function on R and F(t)=F(t)
for any £>0. Since r2 is a C°° function on M, we know that F(r) is a C°° function
on M. Since / is holomorphic at 0, / is a biholomorphic map. Consequently,
(2-16) implies that F{t)jq{t)2 is an even positive C°° function. Hence F(r)lq(r)2

a positive C°° function on M. On the other hand, we have

By (2-4), we see F{t)jq{t)2 is an increasing function. Since we have

tddF(r) = F'(r)iddr+F"(r)idrΛdr
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q(r) q(r

by (2—11) and (2-4), we see

Δ (2-q'(r»idrΛdr,
f

q(r) r
(ClidrA^r)+4(2q

q(r) r q(r)2

On the other hand, by (2.11) and (2.3), we see

iS8F(r) ̂  ^> " ^ ( Ω - i 9 r Λ 5 r ) + ^ ί (2-g'(r))»8rΛ3r

q(r) p(r) q{r)

q(r)

q(r)2

Finally by (2-11), we have

idd log F(r) =

P(r)
)

<
q(r)

q(rf

q(r)2 '

a 3 2q'(r)

q(r)2

{ίlidrAZr)
q(r) r q(r)

^ 0 . q.e.d.

3. A volume estimate for analytic subsets. Let V be a closed an-
alytic subset in M of pure dimension n. For a positive number t, we set B(t)=

{x<=M9 r(x)<t} and 3£(i)={a:<EM, r(*)=f}. Then B(t) is compact and
is a hypersurface in M. We write Vol (Vf}B(t)) for the voiume of Vf)B(t).
Then we have

Vol(VClB(t))=-}-\
2nn\J

As usual we set dc—ί{β—d)β so that ddc=idd. In this section we shall prove

Proposition 3-1. Let (M, o) be as in Theorem 1 in section 1. Then there
exists a positive constant A depending only on (M, o) such that for any closed an-
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alytic subset V in M of pure dimension n, we have Vol (V f)B(t))^>Al(V)t2n for
ί^>0, where l(V) is the multiplicity of V at o.

Proof. Set B(t,s)=B(s)—B(t) for 0<t<s. Using Stokes Theorem for
analytic subsets (cf. [3] or Theorem 1.28 in [2]), for 0<t<s, we have

(ddcF(r))nM (ddF(r))Λ

= f dψ(r) A (dd'Fjr) _ dF{r)
Ivmsω F(s) \ F(s) F(s)2

_[ d<F(r) fdd'Fjr) _ dF(r) A d'Fjr)}*-1

Jvn9ί«) F(t) \ F(t) F(t)2 )

(dF(r) being zero on B(t) and B(s))

= [d° log F(r) A {ddc log Fir))'-1

VOdB(t)J

- [ dc log F(r) A (ddc log F(r))n -1

JVΠdB(t)

(cf. (ii) of Lemma 2-3). Therefore we know

-U (ddΨ(r)Y
F(t)nJvnB(t)

is a non-negative increasing function for £>0. In particular there exists

M (ddcF(r)Y

which is denoted by «*(F, o). Now by (iii) and (ii) of Lemma 2-3, we have

f2»

1
22"n\(l+v)nt2'
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(ddcF(r)Y
22nn\(l+v)nt2n

L_f (ddcF(r)Y .
(t)»lvnB(t)y v "- 22"nl(l+v)

Hence we have

(3-2) Voi {V n B(ή) ;> ^ J - , ^ «*(F, ό)?»

for t^O. By (2-4), we see

(3-3)
f ~ F(t) ~ t^

for 0 < ί ^ 1. By (ii) and (iii) of Lemma 2-3, there exists a positive constant Bλ

such that

(3-4) iddF(r) ^ ^ Ω

on 5(1). Then (3-3) and (3-4) imply

(3-5)

for 0<t^l. Now take sufficiently small S>0 so that #(£) is a holomorphic
local coordinate neighbourhood with a holomorphic local coordinate system
{z\~-,zm} (z\o)=0, l^i^m). Let go='Σidzidzi be the usual flat Kahler
metric on B(S). Then ao= {idd(Σ I %' 12)}/2 is the associated Kahler form of £0.
By using idd log (21 #y 12)^0 on B(β)— {0}, the same argument to have obtained
w*(F, o) implies that if we set

then n(t, 0) is an increasing function of t and lim n(t, ό)=B2l(V) where B2 is a

universal constant (cf. Corollary 1.29 in [2]). Since there exists a positive
constant B3 such that

— a0 ^ Ω ^

on (— )> w e know there exists a positive constant B4 such that

(3-6) 1 ( ,Ω»^J54/(F)
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for sufficiently small t. By (3-5) and (3-6) we have

(3-7) n*(V, ό) ̂  BfBJiV).

Then (3-7) and (3-2) imply Proposition 3-1. q.e.d.

Corollary. For a positive number R, there exists a positive constant B*(R)
such that for t^Rwe have

Vol (VΠB(ή) ^

where V* (R) = [ (ddcF(r))\

Proof. By (3-1) we see

4. Proof of Theorem 1. We keep the notation of the previous sections.
Let p(t) be the function defined in Fact 2-1. For any positive number Ry

define a C°° function FR on M— {o} by FR(x)=fR(r(x)) where fR is the function
defined in Lemma 2-2.

Let s by any nonzero holomorphic section of L such that

(4-1) {x^M; s(x) = 0} is not empty,

(+-2) IK*)|| ^ C(l+r(x)Y

for some positive constants C and v. Let V be the divisor defined by the
zeros of s. For Λ>1, we set 5(2?, 1)=B(R)—B(1). Then Green's formula
implies

\ ^ g H l P
JB(R,l) JB(R,l)

( loglWP^^-f
JdB(R) Jθβ(l)

\
J

- ( FR*dlog\\s\n\ Fx*dlog\\s
JdB(r) JdB(l)

By (2-3) we have

dt

Hence we obtain

(4-D 1 (Λ—L-) < f (t) <i ι ( 1 - M
V ' (2m-\)η2m-Λ?m-2 R*»-V JRK} ~2m-2\t2m-2 If-*/'
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Therefore we have an estimate:

dBil) θB(l)

1

= 0(1),

where 0(1) stands for a bounded term as R->oo. Since

FR = 0 on dB(R), we have

(4-2) ( AFR-log\\s\\>-\ F

On the other hand, Poincarά-Lelong's formula implies

(4-3) ^ \ FRAlog\\s\\*=\ F^Ω - ' - ί

(cf. [3] or Theorem 1.11 in [2]). Since AFS^Q by Lemma 2-2, we see by
(4-2)

( Δ 2 V l o g | | « t AFR log{C(l+rγ} .
JB(R,l) JB(R,l)

Now by Green's formula, we have

ί AFβΛog{C(ί+rγ}
JB(R,1)

= ( FR Alog{C(l+rγ} + \ log{C(l+rγ}*dFB

JB(R,1) JdB(R)

-\ log{C(l+r) v }*^

+ \ Fs*dlog{C(\+rγ}
JdBd)

dB(R)

QB(R)

\
JB(R,l)

Therefore we have

dB(R)
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*} fj(B)*dr+O[l).

From (4-4), (4-2) and (4-3), we obtain

\
JB(R,1)

= \ FR-A\og\\s\\2+\ log \\s\\^(R)*dr+O(ί)

2mm\JB(.R,i)nv 2mm\JB(s,ύ

+ [ log \\s\\*f£(K)*dr+O(l).
JdB(R)

Since //(i?)<0, we see

( \og{C(l+ry}ti(R)*dr ^ \ log \\s\\2fί(R)*dr
JdB(R) JdB(R)

Therefore we obtain

(4-5) ^

J5(/?,i)nr J

Now by (2-9) and (2-7), we have

(4-6) Δr

Then (4-6) implies

Now (4-7) and (4-1) imply

(4-8) JΛΛϋFxΔ\og{C(l+rγ} £ p^ —-1

2m-2 S V '
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where S(2m— 1) denotes the Euclidian volume of (2m— 1) dimensional unit

sphere. By the same way we have

^ l " " 1 = [*dt [ FRc(~)£lm

Ji hBti)nv \9r/

^ l " " 1 = [*
B(R, ι)r\v J

\m)UA
i I h JdB(t)r\v

Π

Then by (2-3) and/fi(i?)=0, we have

(4-9) ( Fsίl^ > 2*-\m-l)l<:«Vol(BmV) Q

From (4-5), (4-8) and (4-9) we obtain

(4-10) B*. log{l+R) ^ j ^ ^

where E1 is a positive constant depending only on m.
If the Chern form ω satisfies (1-3), we have

(4-11) (
JBtit.ϋ

If α> satisfies (1-4-), we see by (4-1)

(4-12) ( f ^ Λ Ω ' 1 ^ ΰ (B(R,I)

= 0(1),

where D, D', D" are constants independent of s. Therefore by (4—10), (4—11)

and (3-12), we have
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(4-13) *,*, log(l+*) ^

Therefore from Proposition 3-1, we obtain

^E2l(V) log R+O(ί),

where E2 is a positive constant depending only on (M, o). Hence, taking the
limit, we have

(4-14) v^>^

where E1 and E2 are positive constants depending only on (M, o).

Lemma 4-1. Let (M, o) and {L, h} be as in Theorem 1. For a positive
number v, denote by Γ(M, L; v) the complex vector space of holomorphic sections
s over M which satisfy

(4-15) |K*)|| ^ C(ί+r(x)y

for some positive C. Then there exists a positive number v* depending only on
(M, o) such that the dimension of Γ(M, L\ v*) is at most one.

Proof. Take E2βEx as *>*, where Eu E2 are as in (4-14). Take any
holomorphic section $ in Γ(M, L; i>*). Then by (4-15), we see /(F) = 0,
i.e., s(o)=t=0. Suppose there were two elements sλ and s2 in Γ(M, L; v*) which
are linearly independent. Since ^(oJΦO and s2(o)Φ0, there would exist a
number a such that (dtfi+s2) (o)=0. Then asx-\-s2 should be zero. This is a
contradiction.

Proof of Theorem 1. Let v* be as in Lemma 4-1. It is enough to
check the case when Γ(M, L; v*) contains an element s0 such that
so(χ)=O} is non empty. Fix a sufficiently large number Ro so that

(4-16) B(R) Π {XZΞM; SO(X) = 0} Φ0 .

Then by (4-13) and Corollary to Proposition 3-1, for R>RQ we have

η2m { R + 0 { ί ) .

Hence, taking the limit, we see
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(4-17) ^ f B*(R0)V*(R0)y

where Eu E3 are positive constants depending only on (M, o), and S*(i?0)

positive. By (4-16), we see V*(R0) is positive. Now set

Then we have Γ(M, L\ vo)=O. In fact take any eiement s in Γ(M, L; P0). Then

by Lemma 4—1, there exists a real number a such that s=as0. Suppose #4=0.

Then since { Λ G M ; $(*)=()} = {*eΛf; J0(»)=0}> ( ^ l 7 ) implies z/0^£3B*(JR0)

V*(RO)IEV This is a constradiction. q.e.d.
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