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A B S T R A C T

Drug resistance often stems from drug-tolerant persister (DTP) cells in cancer. These cells arise from various 
lineages and exhibit complex dynamics. However, effectively targeting DTP cells remains challenging. We used 
single-cell RNA sequencing (scRNA-Seq) data and machine learning (ML) models to identify DTP cells in patient- 
derived organoids (PDOs) and computationally screened candidate drugs targeting these cells in familial 
adenomatous polyposis (FAP), associated with a high risk of colorectal cancer. Three PDOs (benign and ma
lignant tumor organoids and a normal organoid) were evaluated using scRNA-Seq. ML models constructed based 
on public scRNA-Seq data classified DTP versus non-DTP cells. Candidate drugs for DTP cells in a malignant 
tumor organoid were identified from public drug sensitivity data. From FAP scRNA-Seq data, a specific TC1 cell 
cluster in tumor organoids was identified. The ML model identified up to 36 % of TC1 cells as DTP cells, a higher 
proportion than those for other clusters. A viability assay using a malignant tumor organoid demonstrated that 
YM-155 and THZ2 exert synergistic effects with trametinib. The constructed ML model is effective for DTP cell 
identification based on scRNA-Seq data for FAP and provides candidate treatments. This approach may improve 
DTP cell targeting in the treatment of colorectal and other cancers.

1. Introduction

In colorectal cancer (CRC), inactivation of the adenomatous polyp
osis coli (APC) gene often occurs as the initial event in the development 
of preneoplastic asymptomatic lesions, known as adenomatous polyps 
[1]. The step-wise accumulation of genetic alterations confers a malig
nant phenotype [1]. Familial adenomatous polyposis (FAP) is an 
inherited syndrome characterized by the development of multiple ade
nomas in the colorectum, a high risk of CRC, and extracolonic mani
festations [2]. Germline APC mutations cause FAP, an autosomal 
dominant disorder [2–4]. A second hit causes adenomatous polyps, 
recapitulating the initial event in sporadic CRC development [1].

Organoid culture systems that partially mimic the 3D architecture of 
specific organs have been used extensively for cancer research [5]. 
Genomic, transcriptomic, and proteomic data for cancer organoids have 
contributed to the identification of novel driver genes and molecular- 
level characterization of various cancers [5–8]. We have previously 
established patient-derived organoids (PDOs) for FAP (i.e., HCT24-8 and 
HCT24-10, showing malignant and benign properties, respectively) [1]. 
HCT24-8 is resistant to MEK inhibitors and harbors an activating 

mutation in KRAS [1].
In many tumors, drug resistance is mediated by drug-tolerant 

persister (DTP) cell subpopulations [9]. The prevalence of DTP cells 
has implications for disease progression and management [9]. DTP cells 
do not appear to arise by a single event but rather involve a combination 
of changes; thus, a multimodal approach is needed for the character
ization of these cells [9,10]. DTP cells have been reported in many 
cancers [9]. However, the identification of drugs targeting DTP cells is a 
still major challenge.

Single-cell RNA sequencing (scRNA-Seq) is an emerging technology 
used to measure transcript levels within each individual cell of a sample. 
It allows a representation of expression profiles in specific sub
populations of cells [11] and provides a new opportunity to probe 
cancer biology in a high-resolution and dynamic manner [12]. For 
example, Kalkavan et al. evaluated PC9 cells (a human lung adenocar
cinoma cell line) before and after drug treatments using scRNA-Seq and 
identified DTP cells within the cell line [13]. Furthermore, scRNA-Seq 
data are used as inputs to feed linear or nonlinear models, contrib
uting to the increasing use of machine learning (ML) methods in cancer 
diagnosis, prognosis, and treatment guidance [11,14].
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In this study, we used scRNA-Seq to characterize PDOs in FAP and 
built ML models using public data from Kalkavan et al. as training data 
to identify DTP cells within PDOs. This study provides a novel strategy 
for the identification of DTP cells using ML models. Furthermore, we 
identified candidate drugs against DTP cells in the PDOs of FAP using 
public drug sensitivity data.

2. Materials and methods

2.1. Establishment and culture of organoids

FAP tumor samples were obtained from consenting patients, and all 
procedures were approved by the Research Ethics Board at the JFCR 
Cancer Institute (Tokyo, Japan). Following surgical resection, tumors 
were immediately cut into small pieces and washed with PBS. Tumors 
were enzymatically dissociated in digestion buffer composed of DMEM 
(Thermo Fisher Scientific, Waltham, MA, USA), 0.0625 % collagenase 
(Sigma-Aldrich, St. Louis, MO, USA), 0.125 % dispase (Thermo Fisher 
Scientific), and 2.5 % FBS at 37 ◦C for 60 min. Tumors were vigorously 
agitated by pipetting in PBS, and the tumor fragments were collected 
and centrifuged at 1000 ×g for 5 min. The pellets were suspended in 
Matrigel (Corning Incorporated, Corning, NY, USA), and 25 μl of this 
mixture was dispensed in each well. Plates were incubated at 37 ◦C for 
10 min. The basal medium consisted of Advanced DMEM/F12 (Thermo 
Fisher Scientific) supplemented with 2 mmol/l GlutaMAX, (Thermo 
Fisher Scientific), 10 mmol/l HEPES (Sigma-Aldrich), penicillin/strep
tomycin (Thermo Fisher Scientific), primocin (InvivoGen, San Diego, 
CA, USA), B27 supplement (Thermo Fisher Scientific), 1.25 mmol/l N- 
acetyl-L-cysteine (Sigma-Aldrich), and 10 nmol/l gastrin (Sigma- 
Aldrich). PDOs were cultured in ENR medium composed of 10 ng/ml 
recombinant mouse EGF (Thermo Fisher Scientific), 10 % Noggin 
conditioned medium, and 1 μg/ml recombinant mouse R-spondin-1 
(R&D Systems, Minneapolis, MN, USA) and were maintained at 37 ◦C at 
5 % O2. Media were changed every 3 days.

2.2. Processing of single-cell data

Single-cell sequencing was performed following a previously re
ported method [15]. The fastq files were processed using Cell Ranger 
(version 3.1.0; 10× Genomics, Inc., Pleasanton, CA, USA) count pipe
lines with the GRCh38 reference human genome (version 3.0.0; built on 
November 19, 2018). The output files from Cell Ranger were input into 
velocyto (version 0.17.17) [16] to count the spliced and unspliced reads. 
Loom files were generated and input into the Seurat package (version 
4.4.0) [17]. The “spliced” assay was utilized as the default assay. Cell 
quality was assessed by the percentage of mitochondrial gene expres
sion. In the PDO datasets, cells with unique feature counts between 500 
and 3000 and with <15 % mitochondrial genes were retained for 
downstream processing. In the GSE189638 dataset, unique feature 
counts and the percentage of mitochondrial genes were set to the same 
values used previously [13]. The filtered data were scaled and trans
formed using the SCTransform function [18], and linear regression was 
performed to remove variation due to cell quality (% mitochondrial 
reads). Then, the three scRNA-Seq data sets were integrated using the 
SelectIntegrationFeatures function with nfeatures = 3000 and the Pre
pSCTIntegration, FindIntegrationAnchors, and IntegrateData functions. 
Principal components (PCs) were selected by inspecting elbow plots 
(PDOs; Fig. S1B, GSE189638; Fig. S5B) and the percentage of variance 
explained was assessed. Then, non-linear dimensionality reduction was 
performed to visualize the results in uniform manifold approximation 
and projection (UMAP) plots using the first 30 PCs for each dataset. The 
cell clusters were detected by running the FindNeighbors function using 
the first 30 PCs for each dataset as the input followed by the FindClusters 
function. Each cell type was annotated according to maker gene 
expression using the RenameIdents function of the SeuratObject pack
age (version 4.1.4).

Differentially expressed genes (DEGs) between tumor cluster 1 (TC1) 
of the malignant tumor organoid and clusters of other organoids were 
obtained using the FindMarkers function. DEGs were identified based on 
5 % adjusted P-values and increased expression in TC1 cells of the ma
lignant tumor organoid. A pathway analysis was performed using the 
enrichKEGG function of clusterProfiler package (version 4.6.2) [19]. 
The Wnt signaling pathway was visualized using the pathview package 
(version 1.38.0) [20]. These functions were run in R software (version 
4.2.3).

2.3. Differential abundance analysis

Milo (version 1.6.0) [21] was used to evaluate the differential 
abundance (DA) of cells within defined neighborhoods between tumor 
and normal organoids. We first used the buildGraph function to 
construct a k-nearest neighbor (k-NN) graph with k = 20, using 30 PCs. 
Next, we used the makeNhoods function to assign cells to neighborhoods 
based on their connectivity over the k-NN graph. For computational 
efficiency, we subsampled 1000 cells for each cluster in the GSE189638 
dataset. To test for DA, the testNhoods function was used. To control for 
multiple testing, we used a 10 % spatial false discovery rate (FDR) 
implemented in Milo as a threshold for significance. The spatial FDR and 
log2(fold change) of the number of cells between the tumor and normal 
organoids in each neighborhood were used for visualization. The Milo 
package was implemented in R software (version 4.2.3).

2.4. RNA velocity, single-cell trajectory, and pseudotime analyses

Spliced and unspliced counts were calculated using the velocyto 
package (see scRNA-Seq analysis). To estimate RNA velocities of single 
cells, scVelo (version 0.2.4) [22] was used, as implemented in Python 
(version 3.9.1). The top 2000 highly variable genes were selected among 
those that passed a minimum threshold of 20 for spliced and unspliced 
mRNA counts using the scv.pp.filter_and_normalize function. A nearest- 
neighbor graph (with 30 neighbors) was calculated based on Euclidean 
distances in PCA space (with 30 PCs) on logarithmized spliced counts 
using the scv.pp.moments function. Prior to the velocity estimation, 
first- and second-order moments (means and uncentered variances) 
were computed for each cell across its 30 nearest neighbors using the 
scv.pp.moments function. The velocities were estimated using the scv.tl. 
velocity function, and a velocity graph was generated using the scv.tl. 
velocity_graph function. A stream plot of velocities on the embedding 
was generated using the scv.pl.velocity_embedding_stream function.

Single-cell trajectory and pseudotime analyses were performed using 
the monocle3 package (version 1.3.1) [23] in R software (version 4.2.3). 
TC1 cell cluster, TC2 cell cluster, Stem cells of cluster 2, Stem cells of 
cluster 22, Enterocytes of cluster 5, and Enterocytes of cluster 9 were 
subsampled prior to running monocle3. The subsampled data were 
normalized using the preprocess_cds function. The align_cds function 
was then used to eliminate batch effects using the batchelor package 
(version 1.14.1) [24]. UMAP dimensionality reduction and cell clus
tering were applied to the data using the reduce_dimension and clus
ter_cells functions, respectively. A principal graph was learned from the 
reduced dimensions using the learn_graph function, and visualization 
through the UMAP was performed using the plot_cells function. The 
graph was used to order cells in pseudotime using the order_cells 
function.

2.5. Construction of ML models

Based on the DA results, the C2 cluster was defined as DTP cells in 
GSE189638. Since 2998 cells clustered in C2, we randomly selected 214 
cells from each cluster except for the C2 cluster, resulting in 2994 cells 
classified as non-DTP cells. GSE189638 and PDO data were integrated, 
and genes that were expressed in >50 % of all cells were selected, 
resulting in 916 genes. Of these 916 genes, 897 overlapped with Cancer 
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Dependency Map (DepMap) gene expression data (version 23Q4) con
taining log2(TPM + 1) values for protein-coding genes. Classification 
models were constructed using the train function of the caret package 
(version 6.0-94) [25] in R software (version 4.2.3). The training samples 
were split into training and validation sets at a ratio of 8:2 and trained 
using 5-fold cross-validation. Four algorithms, support vector machines 
(SVM) with radial basis function kernel (svmRadial), SVM with linear 
kernel (svmLinear), eXtreme gradient boosting (xgbTree), and random 
forest (RF), were applied. Optimal hyperparameters were searched 
during the learning process using a grid search. The hyperparameter 
settings for each algorithm in the grid search are shown in Table S1. 
Metrics of accuracy, area under the curve (AUC), and kappa values were 
calculated using the confusionMatrix function and the roc function of 
the pROC package (version 1.18.0). Using the classification models with 
the best-performing hyperparameter settings, each cell in the PDO 
scRNA-Seq data was classified as either a DTP or non-DTP cell using the 
predict function.

2.6. Identification of candidate drugs against DTP cells

A list of 195 cell lines with activating mutations in KRAS was ob
tained using the Cancer Cell Line Encyclopedia (CCLE) and the Cata
logue of Somatic Mutations in Cancer (COSMIC) data downloaded from 
Harmonizome 3.0 (https://maayanlab.cloud/Harmonizome/). Of 195 
cell lines, 172 with processed bulk RNA-Seq data from DepMap were 
classified as either DTP or non-DTP cells. Drug sensitivity data for 22 of 
23 cell lines classified as DTP were obtained from Profiling Relative 
Inhibition Simultaneously in Mixtures (PRISM), Cancer Target Discov
ery and Development (CTD2), and Genomics of Drug Sensitivity in 
Cancer (GDSC) data available from DepMap. For overlapping drugs 
among the PRISM, CTD2, and GDSC datasets, the average AUC value was 
obtained. The top three drugs with the lowest AUC values for each of the 
22 cell lines were selected, resulting in 27 drugs. A network composed of 
the 22 cell lines and 27 drugs was constructed using Cytoscape (version 
3.10.0).

To rank the 27 drugs, scores were calculated using Eq. (1). 

score =
∑n

i=1
(Pi − log2Ai + |log2C| ) (1) 

Here, P denotes the probability that a cell line is classified as DTP 
cells. A denotes the AUC when a cell line was treated with the drug. C 
denotes the maximum AUC among all combinations of 27 drugs and 22 
cell lines, and n denotes the number of edges bound to each drug, which 
also corresponds to the number of cell line nodes.

2.7. PDO viability assay

Trametinib and YM-155 were purchased from Selleck Biotechnology 
(Kanagawa, Japan). THZ2 and sangivamycin were purchased from 
MedChemExpress (Monmouth Junction, NJ, USA). Organoids were 
digested with TrypLE Express (Thermo Fisher Scientific) supplemented 
with 10 μmol/l Y27632 (Sigma-Aldrich) at 37 ◦C for 15 min with 
pipetting every 5 min. The cells were suspended in a basal medium, and 
clumps were removed by passing the suspension through a 40 μm cell 
strainer. The suspension was centrifuged at 1000 ×g for 5 min, and the 
cells were resuspended in the basal medium. Cells were counted and 
adjusted to 2.0 × 105 cells/ml in the Matrigel. Then, 10 ml of the cell 
suspension was dispensed into each well of U-bottom 96-well micro
plates (Thermo Fisher Scientific). PDOs were cultured for 3 days to allow 
the formation of organoids and then treated with drugs at the indicated 
doses for 7 days. The medium was changed every 3–4 days. We gener
ated 8-step, 10-fold drug matrices in technical quadruplets. Cell viability 
was measured using a CellTiter-Glo 3D Cell Viability Assay Kit (Prom
ega, Madison, WI, USA). Readings were obtained using a Mithras LB 940 
luminometer (Berthold Technologies GmbH & Co., Bad Wildbad, 

Germany). In the 96-well plate, the average cell viability for each drug 
concentration was calculated using DMSO-treated cells as controls. Data 
were analyzed using GraphPad Prism 9 (GraphPad Software Inc., Bos
ton, MA, USA).

Titrations to determine drug synergy were performed by plating the 
PDOs in 96-well plates as described above. After 3 days, PDOs were 
treated with the indicated combination. The drugs were titrated in a 
five-dose manner, ranging from four times the IC50 concentration to one- 
fourth of the IC50 concentration. Cell viability was determined using the 
CellTiter-Glo 3D Cell Viability Assay, as described above. Synergistic 
effects were determined using the median effect principle proposed by 
Chou-Talalay [26], defined by Eq. (2) and implemented in the R package 
medianeffect (version 0.9.0). 

CI =
(D)1

(Dx)1
+

(D)2

(Dx)2
(2) 

Here, CI indicates the combination index. D denotes the respective 
combination doses of each drug resulting in 50 % growth inhibition. Dx 
denotes the dose of each drug resulting in 50 % growth inhibition when 
used alone.

3. Results

3.1. Identification of cell types and tumor clusters

Three organoids were evaluated using scRNA-Seq: HCT24-8 (ma
lignant tumor organoid), HCT-10 (benign organoid), and HCT71-2 
(derived from normal colorectal tissue of a patient with sporadic 
CRC). After applying a unified scRNA-Seq analysis pipeline (see 
Methods), we obtained 2435, 1975, and 2270 cells from the benign 
tumor, malignant tumor, and normal organoids, respectively. The cells 
from the three scRNA-Seq data sets were divided into 35 clusters, and 
each cluster was annotated according to their marker genes (Figs. 1A 
and S1A). Cells from clusters 18 and 19 did not show significant 
expression of any marker genes and were not abundant in the normal 
organoid; therefore, they were defined as TC1 and TC2, respectively. To 
evaluate differences in composition between tumor and normal orga
noids, a differential abundance (DA) analysis was performed using Milo 
[21], revealing 429 neighborhoods, including 31 with evidence for DA 
(Spatial FDR < 0.1, Fig. 1B). Of the 31 neighborhoods, 23 were from TC1 
and TC2 (Fig. 1C), resulting in higher proportions of TC1 and TC2 in 
tumor organoids than in the normal organoid. Furthermore, there were 
more TC1 cells in the malignant tumor organoid than in the benign 
tumor organoid, whereas there were more TC2 cells in the benign tumor 
organoid than in the malignant tumor organoid (Fig. 1D).

3.2. Differentiation trajectories of TC1 and TC2 cells

To estimate the cell types from which TC1 and TC2 cells were 
derived, RNA velocity and single-cell trajectory analyses were per
formed. The RNA velocity analysis showed a strong directional flow 
from the stem cell cluster to TC1 and from the enterocyte cluster to TC2 
(Fig. 2A). Using stem cells around TC1 (clusters 2 and 22 in Fig. S1A) 
and enterocytes around TC2 (clusters 5 and 9 in Fig. S1A), differentia
tion trajectories were evaluated (Fig. 2B). When both ends of the esti
mated differentiation trajectory were set to the early cells, TC2 cells 
exhibited the longest pseudotime, and these were contained mainly in 
the benign organoid and not in the malignant and normal organoids 
(Fig. 2C). The expression levels of the differentiation marker genes 
CDKN1A and CDKN2A were higher in TC2 cells of the benign tumor 
organoid than in other clusters and organoids (Fig. S2A–D), supporting 
the validity of the trajectory analysis. PERP, TESC, AREG, and SOX4, 
known marker genes of cancer stem cells (CSCs) in CRC [27–29], were 
more highly expressed in the TC1 cell cluster of the malignant tumor 
organoid than in other clusters and organoids (Table S2). A pathway 
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analysis based on DEGs between TC1 cells of the malignant tumor 
organoid and other clusters and organoids showed enrichment for the 
Wnt signaling pathway and Epstein-Barr virus infection (Fig. S3A). The 
Wnt signaling pathway contributes to the maintenance of stemness in 
CSCs of CRC [30]. The Wnt signaling pathway-related genes WNT6, 
BAMBI, NKD1, NOTUM, and APCDD1 were detected among the DEGs 
(Fig. S3B). They were highly expressed in TC1 cells (Fig. S3C), especially 
in the malignant tumor organoid (Fig. S3D), and were slightly expressed 
in TC2 cells (Fig. S3C). A pathway analysis based on DEGs between TC2 
cells of the benign tumor organoid and other clusters and organoids 
showed enrichment for focal adhesion, Salmonella infection, and the p53 
signaling pathway (Fig. S4A). Integrins (ITGs) are heterodimeric trans
membrane receptors consisting of α and β subunits, and they play a key 
role in focal adhesion [31]. Notably, heterodimeric integrin αvβ6 

(ITGAV/B6) promotes tumor formation in colorectal cancer [31], het
erodimeric integrin α3β4 (ITGA3/A4) is highly expressed in ovarian 
cancer [32], and ITGA2 is a candidate tumor marker for colorectal 
cancer [33]. These five integrin genes, ITGA2, ITGA3, ITGAV, ITGB4, 
and ITGB6, were more highly expressed in the TC2 cell cluster of the 
benign tumor organoid than in other clusters and organoids 
(Fig. S4B–D).

3.3. Construction of ML models for the classification of DTP and non- 
DTP cells

Drug resistance is frequently facilitated by a subpopulation of DTP 
cells in the tumor [9]. The malignant tumor organoid of FAP is resistant 
to trametinib treatment [1], suggesting that it contains DTP cells. 

Fig. 1. Single-cell RNA sequencing (scRNA-Seq) data for patient-derived organoids (PDOs). (A) Uniform manifold approximation and projection (UMAP) embedding 
of scRNA-Seq data. Nine cell types were defined based on marker gene expression (Figure S1C). (B) Graph representation of neighborhoods (Nhoods) identified using 
a differential abundance analysis [21]. Nodes are Nhoods, colored by log2(FC) values between the tumor organoids and normal organoid. Nondifferential abundance 
Nhoods (Spatial FDR ≥ 0.1) are shown in white, and sizes correspond to the number of cells in a Nhood. Graph edges depict the number of cells shared between 
adjacent Nhoods. (C) Beeswarm plot showing the distribution of adjusted log2(FC) values for abundance between the tumor and normal organoids in Nhoods ac
cording to nine cell types. Colors are defined as in (B). (D) Bar plot showing the cell count for each cell type in each organoid.
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Kalkavan et al. performed scRNA-Seq (GSE189638) using PC9, a human 
cell line derived from a patient with lung adenocarcinoma, parental (PT) 
cells, and corresponding persister cells on days 1, 3, and 7 (PS1D, PS3D, 
and PS7D, respectively) after BH3-mimetic treatment [13]. They uti
lized two BH3-mimetics, ABT737 (a BCL-2, BCL-XL, and BCL-W inhibi
tor) [34] and S63845 (a selective MCL-1 inhibitor) [35]. BCL-2, BCL-XL, 
BCL-W, and MCL-1 are associated with apoptosis and pathways related 
to MEK [36–40]. Thus, we hypothesized that the gene expression pro
files in DTP cells enriched by treatment with trametinib, a MEK inhib
itor, and those in DTP cells enriched by BH3-mimetic treatment are 
highly similar. To distinguish the DTP cells based on scRNA-Seq data for 
the malignant tumor organoid, we built ML models using the 
GSE189638 dataset. After applying the unified scRNA-Seq analysis 
pipeline (see Methods), we obtained 3620, 13,584, 13,411, and 6280 
cells from PT, PS1D, PS3D, and PS7D, respectively. The cells evaluated 
using scRNA-Seq were divided into 15 clusters (Fig. S5A), defined as C0 
to C14 (Fig. 3A). PS1D is enriched for DTP cells, suggesting a gradual 
return to the PT phenotype after BH3-mimetic treatment [13]. A DA 
analysis between PS1D and other samples identified 963 neighborhoods, 
including seven with evidence for DA (Spatial FDR < 0.1, Fig. 3B). Six of 
the seven neighborhoods were from the C2 cluster (Fig. 3C); the pro
portion of C2 was higher in the PS1D sample than in other samples. 
Furthermore, more than half of the cells in the C2 cluster were from 
PS1D (Fig. 3D). Thus, we defined the cells clustered in C2 as DTP cells 
and utilized them as training data to build ML models for classification.

Four algorithms, svmRadial, svmLinear, xgbTree, and RF, were uti
lized for the construction of ML models. Optimal hyperparameters were 
searched during the learning process using a grid search (Fig. S6A–E) 
and were evaluated via 5-fold cross-validation. The AUC, accuracy, and 
kappa values for each fold in four algorithms are shown in Fig. S7A–D. 
The kappa values for the classification models constructed using the 
svmRadial, xgbTree, and RF algorithms were generally over 0.6, 
whereas that for svmLinear was approximately 0.5. These values indi
cate good model performance [41].

3.4. Identification of drug-tolerant persister cells in the malignant tumor 
organoid of FAP

To identify DTP cells based on scRNA-Seq data for FAP, all cells 
derived from the three organoids were classified as either DTP or non- 
DTP using the four ML models. Using the svmRadial and svmLinear 
models, the number of cells classified as DTP was higher in the malig
nant tumor organoid than in the benign tumor organoid and normal 
organoid (Figs. 4A and S8A). In contrast, using the xgbTree model, the 
number of cells classified as DTP was higher in the benign tumor orga
noid and normal organoid than in the malignant tumor organoid 
(Fig. S8B). Using the RF model, more cells were classified as DTP than as 
non-DTP in all organoids (Fig. S8C). Among all TC1 cells, the pro
portions classified as DTP were 35.6 %, 29.3 %, 13.6 %, and 63.9 % 
using svmRadial, svmLinear, xgbTree, and RF models, respectively 

Fig. 2. RNA velocity, single-cell trajectory, and pseudotime inference from PDO scRNA-Seq data. (A) RNA velocities derived from the dynamical model for nine 
clusters from PDOs are projected onto a UMAP embedding. (B) Single-cell differentiation trajectory inferred using monocle3 overlaid on a UMAP embedding. The 
origin positions were set to both branch ends. TC1 cell cluster, TC2 cell cluster, Stem cells of cluster 2, Stem cells of cluster 22, Enterocytes of cluster 5, and 
Enterocytes of cluster 9 were subsampled prior to running monocle3. (C) Pseudotime inferred using monocle3 overlaid on a UMAP embedding.
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(Figs. 4B, C and S8D–I). Using svmRadial and svmLinear, the proportion 
of cells classified as DTP was highest for TC1 cells, followed by stem 
cells, whereas it was <10 % in other cell clusters (Figs. 4B, C and S8D, E). 
Using xgbTree, there was a slight difference between TC1 cells and other 
cell types (Fig. S8F and G). Using RF, TA1 cells had the highest pro
portion of cells classified as DTP, followed by Stem/TA1 cells, whereas 
the proportion of cells classified as DTP in TC1 cells was low (Fig. S8H 
and I).

3.5. Identification of drug combinations involving trametinib and 
validation of synergistic effects

The ML models mainly classified TC1 cells as DTP cells, suggesting 
that the drug resistance of the malignant tumor organoid is due to TC1 
cells. Thus, we identified candidate drugs against TC1 cells using public 
cell line data, including mutation, gene expression, and drug sensitivity 

data. A flowchart for drug identification is shown in Fig. 5A. As the 
malignant tumor organoid harbors activating mutations in KRAS [1], we 
identified 195 cell lines with KRAS mutations from the Cancer Cell Line 
Encyclopedia (CCLE) and Catalogue of Somatic Mutations in Cancer 
(COSMIC). Bulk RNA-Seq data for 172 of 195 cell lines were available 
from DepMap. The ML models built using svmRadial classified 23 out of 
172 cell lines as DTP cells. Of these 23 cell lines, drug sensitivity data for 
22 cell lines were available from DepMap. We selected the top three 
drugs with strong effects on the 22 cell lines, resulting in a total of 27 
drugs (Fig. 5A). The probabilities of DTP cells were highest (exceeding 
0.8) for DAUDI (derived from a patient with Burkitt lymphoma), fol
lowed by PL21 (derived from a patient with acute myeloid leukemia) 
and HCC44 (derived from a patient with lung adenocarcinoma) (Fig. 5B 
and Table S3). The candidate drugs with the top three scores were 
ranked as follows: YM-155, THZ2, and sangivamycin (Fig. 5C).

We examined the synergistic effects of YM-155, THZ2, or 

Fig. 3. Identification of drug-tolerant persister cells using public scRNA-Seq data. (A) UMAP embedding of public scRNA-Seq data. (B) Graph representation of 
Nhoods identified using a differential abundance analysis [21]. Nodes are Nhoods, colored based on log2(FC) values between persister cells in the 1st day (PS1D) and 
other samples. Nondifferential abundance Nhoods (Spatial FDR ≥ 0.1) are shown in white, and sizes correspond to the number of cells in a Nhood. Graph edges 
depict the number of cells shared between adjacent Nhoods. (C) Beeswarm plot showing the distribution of adjusted log2(FC) in abundance between PS1D and other 
samples in Nhoods according to 15 clusters. Colors are defined in the same way as in (B). (D) Bar plot showing the cell count for each cluster.
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sangivamycin with trametinib against the malignant tumor organoid 
using the Chou-Talalay method for drug combinations [26]. The com
bination indexes for the combination of YM-155 or THZ2 with trame
tinib were <1.0 in each fraction affected (Fa) (Fig. 6A and B), whereas 
those for sangivamycin with trametinib were >1.0 at a lower Fa and 
<1.0 at a higher Fa (Fig. 6C).

4. Discussion

Tumor development in patients with FAP recapitulates that of spo
radic CRC [1]. PDOs have many clinical features of the original patient 
tumors, including similar genetic mutations and responses to chemo
therapeutic agents [1,5,7,42]. Therefore, FAP organoids in this study 
were used as models for the progression of sporadic CRC.

The scRNA-Seq data for FAP highlighted the high frequencies of TC1 
and TC2 cell clusters in the tumor organoids. Cancer cells are derived 
from terminally differentiated cells by genetic mutations [43]. TC2 cells 
showed high pseudotime values and high differentiation marker gene 
expression; in addition, their differentiation trajectory predicted that 
they originate from enterocytes. Thus, TC2 cells might arise from 
differentiated cells by genetic mutations or other factors. TC2 in the 
benign tumor organoids expressed high levels of ITGA2, ITGA3, ITGAV, 
ITGB4, and ITGB6. Although we have previously confirmed the lack of 
tumor formation in the benign tumor organoid using mouse xenograft 
experiments [1], these five integrin genes are involved in carcinogenesis 
[31–33]. Thus, the TC2 cells in the benign tumor organoid may be in a 
precancerous condition, consistent with the characteristics of FAP [44]. 
CSCs arise from normal stem cells via genetic mutations and other 
mechanisms [45]. In this study, the differentiation trajectory predicted 

that TC1 cells originate from stem cells; in addition, levels of Wnt 
signaling pathway-related genes were increased in TC1 cells of the 
malignant tumor organoid. The Wnt signaling pathway contributes to 
the maintenance of stemness in CSCs of CRC [30]. In addition, the PERP, 
TESC, and AREG genes were upregulated in TC1 cells. These genes were 
among the 50 marker genes identified by Lin et al. for CSCs in CRC [27]. 
Furthermore, SOX4 is expressed in intestinal stem cells, maintains the 
stemness of cancer cells in CRC, and is regulated by the Wnt signaling 
pathway in intestinal stem cells [28,29]. We also detected SOX4 upre
gulation in TC1 cells. In addition, mutant KRAS promotes CSC properties 
via the Wnt signaling pathway in colorectal cancer [46]. The malignant 
tumor organoid is KRAS-positive [1], and TC1 was enriched in the 
malignant tumor organoid. These results suggest that TC1 cells possess 
cancer stem-like properties. CSCs typically exist as single cells or small 
clusters of up to 20 cells [47]. Therefore, TC1 cells might be enriched 
during the establishment and/or culture of the organoid.

CSCs are characterized by their ability to maintain an asymmetric 
self-renewal cellular state, expressing exclusive “stemness” markers and 
thus occupying the apex of the differentiation hierarchy [47]. In addi
tion, CSCs have the potential for immune evasion and treatment resis
tance [47–49]. The selective pressures imposed by systemic therapies 
might eliminate non-CSCs while sparing a population of intrinsically 
resistant CSCs, leading to CSC enrichment [47,50]. These surviving CSCs 
can be effectively re-populated, resulting in chemotherapy failure and 
cancer recurrence [51]. This hypothesis is called the CSC theory [52]. 
During chemotherapy, the cell cycle of CSCs slows down and the cells 
fall into a “quiescent” state [53], resulting a slow rate of proliferation 
[54]. However, conflicting results have been obtained regarding the 
proliferation rates of DTPs, with some reports suggesting slow 

Fig. 4. Classification of single cells in PDOs using the svmRadial model. (A) Bar plot showing the counts of cells classified as DTP or non-DTP cells in each organoid. 
(B) Cells classified as either drug-tolerant persister (DTP) or non-DTP cells are projected into a UMAP embedding. (C) Percentage of cells classified as DTP cells in 
each cell type of PDOs.
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proliferation [9,55] and others suggesting that they proliferate rapidly 
or grow at rates similar to those of non-DTP cells [9,55,56]. Although 
persistence and cancer stemness are two sides of the same coin, little is 
known about their relationship, in part owing to a lack of experimental 
systems that enable the investigation of both persistent cancer cells and 
CSCs [50,52]. Therefore, CSCs cannot necessarily be classified as DTP 
cells. Additionally, there is currently no consensus on DTP markers for 
CRC.

To investigate whether TC1 cells are DTP cells, we built ML models 
for classification using a public dataset, GSE189638. The frequency of 
C2 was elevated in PS1D, enriched for DTP cells [13], indicating that C2 
is composed of DTP cells. Typically, DTP cells are a rare population 
found in malignant tumor tissues, existing at a very low frequency in 
clinical samples [9]. Therefore, the svmRadial and svmLinear results 
were closer to the actual pathology than the xgbTree and RF results. 
Additionally, svmRadial demonstrated higher accuracy than that of 
svmLinear in cross-validation. Thus, we concluded that the svmRadial 
results are the most reasonable in terms of model accuracy and pa
thology. The svmRadial model classified approximately 36 % of the TC1 
cluster cells as DTP cells. This proportion was significantly higher than 

those for other cell types, suggesting that TC1 cells include DTP cells. 
ABT737 and S63845 are BH3-mimetic, and trametinib is a MEK inhib
itor [34,35,57]. The target proteins of these inhibitors each function in 
the same apoptosis-inducing pathway [36–40]. Therefore, it is assumed 
that DTP cells in both the malignant tumor organoid and in PS1D result 
from treatment with inhibitors that have similar mechanisms of action. 
As the result, the classification model could detect the DTP cells in the 
malignant tumor organoid, identified as TC1 cells.

Based on these results, drug resistance in the malignant tumor 
organoid results from TC1 cells; thus, we searched for drugs expected to 
be effective against TC1 cells. We used DepMap, CCLE, and COSMIC, 
which include data for various cancer cell lines, including genetic mu
tation, gene expression, and drug sensitivity data [58,59], with detailed 
genetic and pharmacological annotations [60]. KRAS mutations drive 
primary resistance to anti-epidermal growth factor receptor (EGFR) 
treatment [61]. Activating mutations in KRAS confer resistance to EGFR 
inhibitors in FAP organoids [1]. Thus, we focused on cell lines with 
activating mutations in KRAS, and classified the cell lines into DTP or 
non-DTP cells using the ML model. Among the cell lines classified as DTP 
cells, we investigated 22 for which gene expression and drug sensitivity 

Fig. 5. Identification of candidate drugs against DTP cells in the malignant tumor organoid. (A) Flowchart for the identification of candidate drugs against DTP cells. 
COSMIC, Catalogue of Somatic Mutations in Cancer; CCLE, Cancer Cell Line Encyclopedia; DepMap, Cancer Dependency Map. (B) Network composed of 22 cell lines 
classified as DTP cells and 27 drugs predicted to be effective against these cells. Green nodes indicate drugs. Nodes with probability estimates indicate cell lines. The 
edges indicate -log2AUC. AUC; area under the curve. (C) Scores for each of the 27 drugs (see Methods).
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data were available. We validated the effects of YM-155, THZ2, and 
sangivamycin (with the highest scores) on the malignant tumor orga
noid. The target proteins of YM-155, THZ2, and sangivamycin are sur
vivin, cyclin-dependent kinase 7 (CDK7), and protein kinase C, 
respectively [62–64].

YM-155 and THZ2 (but not sangivamycin) showed synergistic effects 
with trametinib on the malignant tumor organoid. Although the syner
gistic effect of YM-155 or THZ2 with trametinib was not strong, this 
finding has important implications considering the drug resistance 
exhibited by DTP cells. This study demonstrates that DTP cells are not 
resistant to all drugs. Survivin, the target protein of YM-155, is the 
smallest member of the inhibitor of apoptosis family and is overex
pressed in various malignant tumors and CSCs [65,66]. The elevated 
survivin levels indicate poor responses to chemotherapy and drug 
resistance [66]. Furthermore, other groups have demonstrated that YM- 
155 inhibits the stemness of CSCs in breast, lung, and gastric cancer cells 
[67–69]. CDK7, a target protein of THZ2, contributes to the mainte
nance of CSC activity through NOTCH1-cMYC signaling and its inhibi
tion attenuates CSC activity in anaplastic thyroid cancer [70]. These 
previous findings support the validity of the strategy in this study.

As the carcinogenic mechanisms in FAP and sporadic CRC are 
identical [1], the strategy utilized in this study is expected to be useful 
for proposing candidate drugs against DTP cells in sporadic CRC. 
Although PC9 cells used in GSE189638 are derived from non-FAP tis
sues, the ML models classified up to 36 % of TC1 cells as DTP cells. This 
suggests that the classification model may also be able to identify DTP 
cells resulting from treatment with MEK inhibitors or BH3 mimetics in 
other types of cancers. The drug types could affect model performance. 
However, the ability of the model to identify DTP cells treated with 
drugs targeting pathways other than those related to MEK inhibitors and 
BH3 mimetics was not evaluated in this study. This study demonstrated 
that DTP cells within organoids before drug treatment can be identified 

using ML models constructed using cell line data. In addition to the 
combination of BH3-mimetic and PC9 cells, numerous combinations of 
drugs and drug-resistant cell lines have been reported [71]. By adding 
these scRNA-Seq data, it may be possible to construct a DTP cell iden
tification model able to handle various drugs and cancer types in the 
future. Challenges remain in translating single-cell findings into clinical 
practice and developing personalized treatment strategies. Thus, it is 
difficult to immediately apply the approach used in this study to clinical 
practice. However, the clinical application of scRNA-Seq is being dis
cussed in rheumatic and allergic diseases [72], and with these ad
vancements, the feasibility of this approach in clinical practice is 
expected to increase.
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