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In recent years, quantum computing has evolved as an exciting frontier, with the development of numer-
ous algorithms dedicated to constructing quantum circuits that adeptly represent quantum many-body states.
However, this domain remains in its early stages and requires further refinement to better understand the
effective construction of highly entangled quantum states within quantum circuits. Here, we demonstrate that
quantum many-body states can be universally represented using a quantum circuit comprising multiqubit gates.
Furthermore, we evaluate the efficiency of a quantum circuit constructed with two-qubit gates in quench
dynamics for the transverse-field Ising model. In this specific model, despite the initial state being classical
without entanglement, it undergoes long-time evolution, eventually leading to a highly entangled quantum state.
Our results reveal that a diamond-shaped quantum circuit, designed to approximate the multiqubit gate-based
quantum circuit, remarkably excels in accurately representing the long-time dynamics of the system. Moreover,
the diamond-shaped circuit follows the volume law behavior in entanglement entropy, offering a significant
advantage over alternative quantum circuit constructions employing two-qubit gates.

DOI: 10.1103/PhysRevResearch.6.043318

I. INTRODUCTION

The recent strides made in state-of-the-art quantum com-
puters have ushered in a new era of possibilities for tackling a
diverse array of complex problems in computational science.
In particular, the progress towards achieving long-term fault-
tolerant quantum computers (FTQCs) has intensified interest
in designing efficient quantum circuits for general-purpose
computing across various disciplines, including quantum
chemistry [1–7] and quantum machine learning [8–10]. Nev-
ertheless, optimizing the structure of quantum circuits, which
involves managing numerous internal parameters to repre-
sent highly entangled quantum states, continues to pose a
significant challenge [11–18]. Notably, utilizing quantum cir-
cuits for precisely representing highly entangled states is
expected to accelerate studies in nonequilibrium many-body
quantum dynamics [19,19–24] through the use of quantum
computers.

Within quantum computing, noisy intermediate-scale
quantum (NISQ) devices currently face significant challenges
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due to severe limitations in quantum-circuit depth, the num-
ber of qubits, and the number of gate operations, all caused
by inevitable quantum noise [25–27]. Therefore, executing
quantum-circuit algorithms on NISQ devices presents another
challenge: implementing entangled states in shallow circuits
with a certain degree of accuracy. This challenge is partic-
ularly pertinent when considering computational resources,
such as computation time and storage, even in the long-
term FTQCs. Most contemporary research utilizing NISQ
devices reports results for a low-entangled quantum state or
a matrix-product state (MPS) with a small bond dimension
represented by a shallow quantum circuit [28]. However, to
achieve scalable quantum computing, overcoming this chal-
lenge is imperative.

For the successful realization of highly entangled quantum
states in NISQ devices, the quantum circuits representing
these states must consist of a polynomial number of gate
operations, with an expressivity comparable to MPS with a
large number of bond dimensions, while ensuring a defined
level of precision. Notably, stacking multiple gate opera-
tions may increase the effective bond dimensions in terms
of MPS; however, this approach potentially complicates the
optimization of internal parameters and the management of
these circuits within NISQ devices. Therefore, it is essen-
tial to identify the efficient network of quantum circuits and
the complexity class of highly entangled quantum states that
shallow quantum circuits cannot effectively represent. Such
understandings deepen our knowledge of quantum many-body
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states in condensed matter physics and nonequilibrium quan-
tum dynamics, significantly contributing to advancements in
quantum computing.

In this study, we present an analysis of global quench
dynamics for the quantum Ising model in both transverse
and longitudinal fields, employing various types of quantum-
circuit states. Recent literature on this study has explored
similar models using different quantum devices, such as
trapped atomic ions [29] and superconducting qubits [30].
Despite these experiments facing limitations in the number
of gate operations due to noise accumulation, they demon-
strate the feasibility of evaluating physical quantities of highly
entangled quantum states, which may pose challenges for
current classical computations [31–36]. In contrast to these
investigations, our approach focuses on achieving long-time
evolution by compressing a time-evolved quantum state into a
quantum-circuit representation with a reduced gate count.

Our investigation begins by examining quantum circuits
composed of multiqubit gates. Specifically, we assess the
gate size of multiqubit gates included in a quantum circuit,
which is essential for accurately representing a quantum state
in nonequilibrium dynamics. Our numerical analyses suggest
that a quantum circuit employing multiqubit gates greater
than half the system size can accurately represent the numer-
ically exact long-time dynamics. However, the use of large
multiqubit gates poses optimization challenges due to the ex-
ponential increase of internal parameters with increasing the
system size. To address this issue, we explore the possibility
of decomposing a multiqubit gate into two-qubit gates in two
distinct quantum circuit configurations: sequential-type and
diamond-shaped quantum circuits. Through an exhaustive nu-
merical assessment of these configurations, we reveal that the
diamond-shaped quantum circuit exhibits superior fidelity in
describing the nonequilibrium quantum dynamics. This result
is noteworthy as the diamond-shaped quantum circuit requires
fewer gates than its sequential-type counterpart.

The rest of this paper is organized as follows. In Sec. II, we
introduce a model for nonequilibrium quantum dynamics and
elaborate on the optimization schemes of a quantum circuit
to describe the real-time evolution of the system. In Sec. III,
we demonstrate the real-time evolution using a quantum cir-
cuit with multiqubit gates for the global quench dynamics.
In Sec. IV, we introduce a diamond-shaped quantum circuit
and examine its fidelity to the numerically exact state. We
also compare the results with other types of quantum circuits.
Finally, we summarize the results and give insights from this
study in Sec. V. Additionally, we summarize a quantum cir-
cuit optimization scheme designed for a time-evolved state in
Appendix A. Appendix B proves that a quantum circuit with
multiqubit gates can represent any quantum state. We discuss
the upper bound of entanglement entropy for a quantum-
circuit state in Appendix C. Furthermore, we provide more
numerical results for the sequential-type quantum circuits in
Appendix D.

II. MODEL AND METHOD

Our research explores various types of quantum-circuit
ansatze, with a special focus on their ability to accurately
represent quantum dynamics. To achieve this, we make a

comprehensive analysis of the global quench dynamics for
a quantum Ising model. This model includes both the trans-
verse and longitudinal fields, controlled by the dimensionless
variables g and h, respectively, as described in the following
Hamiltonian:

Ĥ =
L−1∑
j=1

ĥ j, j+1 + ĥleft + ĥright, (1)

with

ĥ j, j+1 = −J

⎡
⎣σ̂ x

j σ̂
x
j+1 +

∑
k=0,1

(
g

2
σ̂ z

j+k + h

2
σ̂ x

j+k

)⎤
⎦ (2)
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ĥleft = −J

(
g

2
σ̂ z

1 + h

2
σ̂ x

1

)
, (3)

ĥright = −J

(
g

2
σ̂ z

L + h

2
σ̂ x

L

)
, (4)

where the Ising coupling J is positive and σ̂ α
j (α = x, z) is

the α component of the Pauli operator at site j on a one-
dimensional (1D) chain of L sites. We assume that the initial
state at time t = 0 is given by the spin-polarized product state
|�〉 = |↑↑ · · · ↑〉. When h = 0, the model is equivalent to
the transverse-field Ising model, which is integrable. As the
longitudinal field h increases, the quantum dynamics after the
global quench becomes more chaotic, and the fast scrambling
makes the classical simulation difficult [17].

The primary focus of our research is the real-time dy-
namics of the quantum state |�(t )〉 = e−iĤt |�〉. In order to
implement the time evolution on a quantum computer, we
utilize a second-order Trotter decomposition of e−iĤ�t with
a time step J�t � 1, i.e.,

V̂ (�t ) = e−iĤodd�t/2e−iĤeven�t e−iĤodd�t/2, (5)

where Ĥ = Ĥeven + Ĥodd with

Ĥeven =
{ ∑L/2−1

j=1 ĥ2 j,2 j+1 (L : even)∑(L−1)/2
j=1 ĥ2 j,2 j+1 + ĥleft (L : odd)

(6)

and

Ĥodd =
{∑L/2

j=1 ĥ2 j−1,2 j + ĥleft + ĥright (L : even)∑(L−1)/2
j=1 ĥ2 j−1,2 j + ĥright (L : odd).

(7)

The operator V̂ (�t ) is then applied successively to |�〉
to obtain the quantum state at time t , i.e., |�(t )〉 =
V̂ (�t )|�(t − �t )〉 + O(�t3) with |�(t = 0)〉 = |�〉. Such a
quantum dynamics process poses a canonical problem in
attaining quantum acceleration [29,30]. This is because, as
the circuit depth increases along the temporal axis, the bi-
partite entanglement entropy generally rises monotonically,
eventually reaching a value proportional to the volume of
the subsystem. This phenomenon is widely recognized as the
volume law. On the other hand, most classical approaches are
sophisticated to treat quantum states satisfying the entropic
area law, i.e., the entanglement entropy being proportional to
the boundary area of the subsystem, as opposed to its volume.
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FIG. 1. An example of the quantum-circuit ansatz: a sequential-
type quantum circuit with four layers for L = 8. Each gray dumbbell-
shaped symbol represents a two-qubit gate corresponding to a U(4)
operator, and the red arrows between two-qubit gates indicate the
optimization sequence for these gates in our numerical calculations.

Therefore, it is challenging to achieve long-time dynamics
using classical approaches.

For NISQ devices, dealing with excessively deep quantum
circuits presents challenges due to the inherent noise and
decoherence, which hampers the direct implementation of the
long-time evolution of quantum many-body dynamics. Hence,
a variational approach using a parametrized quantum circuit
Ĉt with constant depth emerges as a viable strategy. As a case
in point, the sequential-type quantum circuit often adopted
for analyzing 1D quantum many-body systems is shown in
Fig. 1. Here, we consider a quantum circuit Ĉt consisting of
a product of U(4) operators, i.e., two-qubit gates. To further
elaborate on the expressivity of parametrized quantum circuits
in the context of quantum dynamics, we expand the gate size
to act on l = 3, 4, 5 qubits in the sequential-type quantum
circuits, as shown schematically in Fig. 2 (see Sec. III for the
detailed explanation). Additionally, in Sec. IV, we introduce a

FIG. 2. The single-layer sequential-type quantum circuits con-
sisting of (a) three-qubit gates (l = 3), (b) four-qubit gates (l = 4),
and (c) five-qubit gates (l = 5) for L = 8. The tensor-network rep-
resentations for these quantum circuits are also shown in the bottom
panels, where each colored square or rectangle corresponds to the
multiqubit gate with the same color in the quantum circuit, and each
horizontal bond in the tensor-network state represents the internal
degrees of freedom for qubits connecting the neighboring multiqubit
gates. The number above each bond represents the bond dimen-
sion. The arrows in the tensor-network state indicate the direction
from the local physical states to the top tensor (indicated by a blue
square). It is straightforward to extend these quantum circuits with
the corresponding tensor-network representations to those composed
of different l-qubit gates for other system sizes. For example, the
quantum circuit depicted in Fig. 1 is a four-layer sequential-type
quantum circuit composed of two-qubit gates for L = 8.

diamond-shaped quantum circuit as the optimal configuration
for describing quantum many-body dynamics.

Employing a variety of quantum-circuit configurations, we
approximately represent the real-time evolved quantum state
|�(t )〉 ≈ Ĉt |�〉 by iteratively optimizing the quantum circuit
Ĉt to maximize the fidelity,

I (t ) = |〈�|Ĉ†
t−�tV̂ (�t )†Ĉt |�〉|, (8)

where Ĉt−�t is already optimized in the previous time step
for approximately representing |�(t − �t )〉. To address this
variational problem, we sequentially optimize each gate one
by one in the quantum circuit, as often employed in tensor
network methods. More details of the optimization technique
can be found in Appendix A. The optimization sequence is
outlined in the following. As illustrated in Fig. 1, the optimiza-
tion begins with the gate in the top-left corner. Subsequently,
the gates are optimized sequentially, moving from left to right
and from top to bottom, especially when there are multiple
vertically stacked gates. This sequence continues until one
reaches the gate in the bottom-right corner. Upon completing
this step, the optimization direction reverses, iterating through
the gates in the inverse order until returning to the initial
gate in the top-left corner. This entire process constitutes a
single round of optimization, hereafter termed a “single sweep
update.” This process is repeated multiple times (i.e., through
many sweep updates) until the convergence is achieved.

For the termination criteria of the optimization, we in-
troduce four hyperparameters: the upper (lower) limit wmax

(wmin) on the number of sweep updates, and the absolute
(relative) convergence threshold εa (εr). Utilizing these hy-
perparameters, the termination condition is defined as |1 −
I (t )| < εa and |1 − I (t )/I (t − �t )| < εr, within the range of
sweep updates [wmin,wmax]. Therefore, the sweep update is
executed a minimum of wmin times, while it is capped at a
maximum of wmax times. For the optimization of the quantum
circuit Ĉt at time t in Eq. (8), we use the quantum circuit
Ĉt−�t , which has already been optimized during the previous
time step, as the initial circuit for the optimization iteration.
This applies for all time steps except when t = 0, where the
identity operator is assigned to each qubit gate as the initial
condition. The time step is set at �t = 0.01/J , chosen to be
sufficiently small to ensure that the Trotter error has a negli-
gible effect on the numerical accuracy of the results presented
below.

III. MULTIQUBIT QUANTUM CIRCUIT

We begin by evaluating the expressivity of a single-layer
sequential-type quantum circuit consisting of multiqubit gates
(see top panels in Fig. 2) in representing real-time quantum
dynamics. Here, the size of a multiqubit gate is denoted as l ,
and thus each gate corresponds to a U(2l ) operator. Expanding
the size of these gates enhances the capability to represent
complex quantum states, provided that the system size L
remains finite [37]. However, in practice, optimizing these
quantum circuits frequently encounters the barren-plateau
problem [38].
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FIG. 3. The infidelity and von Neumann entropy in the global
quench dynamics for the L = 11 quantum Ising chain with the
model parameters g = 1.4 and h = 0.1 in the nonintegrable region.
The time-evolved state |�(t )〉 is approximated using the single-
layer sequential-type quantum circuits consisting of l-qubit gates,
|�(t )〉 = Ĉt |�〉 (see Fig. 2). (a) Time evolution of the infidelity
1 − Ft for different gate sizes. The arrow indicates the infidelity
1 − Ft lower than 10−14. (b) The maximum evolution time t∗ below
which 1 − Ft < 10−z (z = 2, 3, . . . , 6) as a function of the gate size
l . (c) Time evolution of the von Neumann entropy St for different gate
sizes. Here, the system is partitioned into subsystems of five and six
sites. The vertical dotted line highlights the evolution time at which
the numerically exact time-evolved state |�(t )〉 exhibits the maximal
von Neumann entropy, i.e., Jt = 3.68. (d) The subsystem size de-
pendence of the von Neumann entropy St evaluated at Jt = 3.68. For
comparison, the numerically exact results evaluated from |�(t )〉 are
also plotted by the dashed lines in (c) and (d). The hyperparameters
are set to be wmax = 104, wmin = 102, εa = 10−14, and εr = 10−4.

Figures 3(a) and 4(a) show the l dependence of the infi-
delity 1 − Ft for L = 11 and 16, respectively, where

Ft = |〈�(t )|�(t )〉|2, (9)

with |�(t )〉 and |�(t )〉 being the exact and approximate
time-evolved quantum states given by |�(t )〉 = e−iĤt |�〉 and

FIG. 4. Same as Fig. 3, but for L = 16. St in (c) is evaluated by
bipartitioning the system exactly in half. The vertical dotted line in
(c) indicates Jt = 4.74, and St in (d) is evaluated at Jt = 4.74.

|�(t )〉 = Ĉt |�〉. In this study, the model parameters are set
to g = 1.4 and h = 0.1 in the nonintegrable region. As ob-
served in these figures, the infidelity increases monotonically
with time t , irrespective of l , except for l = 6 (l = 9) in the
L = 11 (L = 16) system (see below for more discussion), but
it decreases with increasing l for all time t .

Furthermore, we estimate the maximum evolution time
t∗ below which the infidelity satisfies 1 − Ft < 10−z (z =
2, 3, . . . , 6). Figures 3(b) and 4(b) show the maximum evolu-
tion time t∗ as a function of the gate size l for L = 11 and 16,
respectively. We observe that the maximum evolution time t∗
increases almost linearly with increasing the gate size l . Since
the fidelity Ft is an index of the expressivity of quantum cir-
cuits, these results numerically confirm that quantum circuits
improve their expressivity by increasing the gate size l .

It is also interesting to notice in Figs. 3(a) and 4(a) that
when the gate size l is larger than half the system size, i.e.,
l = 6 for L = 11 and l = 9 for L = 16, the quantum cir-
cuit can reproduce numerically exact quantum dynamics in
any time region. This can be explained through the tensor-
network representation of a quantum circuit. Figure 2 shows
the single-layer sequential-type quantum circuit composed
of different multiqubit gates with l = 3, 4 and 5 for L = 8,
along with the corresponding tensor-network representations.
As elaborated in Appendix B, the single-layer sequential-type
quantum circuit composed of l-qubit gates is equivalent to the
right-canonical MPS with a fixed bond dimension χ = 2l−1.
Therefore, when l = � L

2 	 + 1, the bond dimension of the cor-

responding MPS is χ = 2� L
2 	 and, hence, the MPS with this

bond dimension can represent any quantum state of the system
with L sites.

We now investigate the gate-size dependence of the von
Neumann entropy St = −TrB[ρ̂B(t ) ln ρ̂B(t )] with the reduced
density matrix ρ̂B(t ) = TrB̄[|�(t )〉〈�(t )|], where TrB(B̄) de-
notes the trace of the degrees of freedom associated with
subsystem B (the complement of subsystem B) partitioning
the whole 1D system. Figures 3(c) and 4(c) show the gate-
size dependence of the von Neumann entropy St for L = 11
and L = 16, respectively. These results are compared with
their exact counterparts. We observe that the von Neumann
entropy St grows monotonically in time t until it reaches the
maximum value at Jt = 3.68 (4.74) for L = 11 (16). For time
t smaller than the maximum evolution time t∗ determined by
1 − Ft < 10−2, the discrepancy between the von Neumann
entropy St and the exact value is as small as 10−2 for all gate
sizes.

To further examine the entanglement structure, we also
analyze the subsystem size dependence of the von Neumann
entropy St at time t , particularly when the exact value, calcu-
lated by partitioning the system in half, reaches its maximum.
Vertical dotted lines in Figs. 3(c) and 4(c) indicate this max-
imum. As shown in Figs. 3(d) and 4(d), the von Neumann
entropy calculated for the exact time-evolved quantum state
|�(t )〉 forms a mountainlike shape as the subsystem size
varies. Introducing the approximation by gradually reducing
the gate size l , the von Neumann entropy at the mountain’s
peak decreases, while it still maintains its exact value to some
extent for smaller subsystem sizes. Therefore, to accurately
describe the long-time dynamics using the approximate state
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|�(t )〉 with the single-layer sequential-type quantum circuit
composed of multiqubit gates, the gate size l of the multiqubit
gate should be increased. This ensures a sufficiently large
bond dimension, even when the system is partitioned into
halves.

IV. DIAMOND-TYPE DECOMPOSITION

In the previous section, we demonstrate that a quantum
circuit consisting of multiqubit gates well approximates the
global quench dynamics. However, to describe long-time dy-
namics, the gate size l of the multiqubit gate should be at
least as large as half of the system size, i.e., l � �L/2	 + 1.
Therefore, this approach is not scalable because the l-qubit
gate has O(22l ) internal parameters, and thus the number of
parameters increases exponentially with the system size L.
More exactly, the l-qubit unitary gate with p legs (p < l)
connecting to the state |0〉⊗p is described by the unitary matrix
with p qubit indices being fixed, i.e.,

Û =
∑
{σ j}

∑
{σ ′

j}
U

σ1···σl−pσl−p+1···σl

σ ′
1···σ ′

l−p0···0 |σ1〉〈σ ′
1| ⊗ · · ·

⊗ |σl−p〉〈σ ′
l−p| ⊗ |σl−p+1〉〈0| · · · |σl〉〈0|, (10)

where |σ j〉 with σ j = 0, 1 is the eigenstate of Pauli oper-
ator σ̂ z

j at site j, i.e., σ̂ z
j |0〉 = |0〉 and σ̂ z

j |1〉 = −|1〉. The

matrix U
σ1···σl−pσl−p+1···σl

σ ′
1···σ ′

l−p0···0 is composed of 22l−p+1 independent

real numbers with 22l−2p constraints due to its unitarity.
Hence, this unitary matrix is parametrized with np = 22l−2p

(2p+1 − 1) independent real numbers [17], which increases
exponentially with the gate size l even if p = l − 1. Thus, the
multiqubit gate-based quantum circuit with the large gate size
l is impractical when it is applied to a large system on real
quantum computers.

Because of the reason described above, we now consider
the decomposition of a single-layer sequential-type quantum
circuit composed of multiqubit gates into the product of a
finite number of two-qubit gates to reduce the internal pa-
rameters in a quantum circuit. For this purpose, here we
introduce a diamond-shaped quantum-circuit ansatz, which
is the simplest approximation decomposing each multiqubit
gate in the sequential-type quantum circuit shown in Fig. 5(a)
into a sequential-type quantum circuit composed of two-qubit
gates, as shown in Fig. 5(b). It should be noted here that
when the system is partitioned, the diamond-shaped quantum-
circuit ansatz follows the volume law of the entanglement
entropy since the shortest path dividing the system into two
subsystems corresponds to the upper limit of the entanglement
entropy (see Appendix C).

First, we discuss the degrees of freedom included in several
types of quantum circuits. The number of two-qubit gates, ng,
in the diamond-shaped quantum circuit [see Fig. 5(b)] is

ng =
{

L2−1
4 (L : odd)

L2

4 (L : even),
(11)

while the number of gates in the m-layer sequential-type and
brickwall-type quantum circuits composed of two-qubit gates
[see Fig. 5(c)] are both given by ng = m(L − 1). Hence, for
example, when L is odd, the number of two-qubit gates in the

FIG. 5. Decomposition of (a) a single-layer sequential-type
quantum circuit composed of multiqubit gates into (b) a diamond-
shaped quantum circuit with two-qubit gates. Each multiqubit gate,
indicated with a distinct color in (a), is approximately decomposed
with a product of two-qubit gates, denoted by the same color in (b).
Notice that each set of two-qubit gates indicated with different colors
in (b) is aligned sequentially. In this example, we consider that the
system size is L = 11 and the gate size of the multiqubit gate is l = 6,
for which the single-layer sequential-type quantum circuit in (a) can
exactly describe the global quench dynamics. The cyan solid lines
in (b) denote examples of the shortest paths that separate the system
into two subsystems, giving rise to the minimal bond dimension for
each path in Eq. (C16), with the associated entanglement entropy
being the upper limit (for more details, see Appendix C). (c) The
diamond-shaped quantum circuit in (b) is included as a special case
in both a brickwall-type quantum circuit of five layers (indicated
by the red-shaded region) and a five-layer sequential-type quantum
circuit composed of two-qubit gates (indicated by the blue-shaded
region).

diamond-shaped quantum circuit for L = 4n + 3 (n ∈ N) is
exactly the same as those in the sequential-type and brickwall-
type quantum circuits with (n + 1) layers for the same system
size. Moreover, as shown in Fig. 5(c), the sequential-type
and brickwall-type quantum circuits with m = �L/2	 layers
contain the diamond-shaped quantum circuit.

Using this gate-counting rule, we can estimate the net num-
ber np of independent real parameters in the diamond-shaped
quantum circuit as follows:

np = −1 − 4L + 16

⌊
L

2

⌋(
L −

⌊
L

2

⌋)
. (12)

In comparison, the number of parameters included in the
single-layer sequential-type quantum circuit composed of
multiqubit gates with the gate size l is given by

np = 2l+1 − 1 + 3(L − l )22l−2, (13)

where l = �L/2	 + 1 corresponds to the quantum circuit with
the perfect expressivity. Therefore, the compression ratio of
the internal degrees of freedom between these two quantum
circuits for, e.g., L = 11 is 15 487/435 ≈ 35.6, and, generally,
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FIG. 6. Time evolution of (a) the infidelity 1 − Ft and (b) the
von Neumann entropy St for the m-layer sequential-type quantum
circuits consisting of two-qubit gates and the diamond-shaped quan-
tum circuit, approximating the time-evolved state |�(t )〉 for the
L = 11 quantum Ising chain with the model parameters g = 1.4 and
h = 0. The hyperparameters are set to be wmax = 104, wmin = 103,
εa = 10−14, and εr = 10−4. For comparison, the exact result for St

is also shown by a dotted line in (b). (c) Sweep iteration depen-
dence of the infidelity 1 − Ft evaluated for the optimized quantum
circuit Ĉt with the diamond-shaped structure by directly referring to
the exact time-evolved state |�(t )〉 at Jt = 1, 2, . . . , 5 for the same
quantum Ising model with the same hyperparameters as in (a) and
(b). (d) Same as (c), but for L = 16 with wmax = 105 and wmin = 104.

it increases exponentially with increasing L. Thus, we can
regard the diamond-shaped quantum circuit as the simplest
sparse approximation of a quantum circuit with multiqubit
gates that can exactly represent the dynamical states. Addi-
tionally, such a quantum circuit is composed of only two-qubit
gates operating nearest-neighbor qubits, which makes it easier
to implement on real quantum computers and reduces the total
number of required native two-qubit gates.

For benchmark calculations, Figs. 6(a) and 6(b) illus-
trate, respectively, the time evolution of the infidelity 1 − Ft

and the von Neumann entropy St for the diamond-shaped
quantum circuit and the m-layer sequential-type quantum
circuits composed of two-qubit gates approximating global
quench dynamics of the quantum Ising model with the lon-
gitudinal field h = 0. These results clearly show that the
diamond-shaped quantum circuit is better than the sequential-
type quantum circuit with m � 4 layers in terms of the
expressivity of the exact time-evolved state |�(t )〉. This is
because the infidelity is well suppressed and the von Neu-
mann entropy is in good agreement with the exact value,
even in regions with high classical complexity characterized
by peaks in von Neumann entropy. Since the number ng of
two-qubit gates in the diamond-shaped quantum circuit is
exactly the same as that in the three-layer sequential-type
quantum circuit for the L = 11 system, the diamond-shaped
quantum circuit also performs better in compressibility than
the sequential-type quantum circuits. For instance, for Jt � 3,
the infidelity for the diamond-shaped quantum circuit is about
500 times smaller than that for the three-layer sequential-type
quantum circuit. Additionally, the infidelity for the diamond-
shaped quantum circuit becomes almost constant for Jt � 3,

FIG. 7. Time evolution of [(a), (c)] the infidelity 1 − Ft and [(b),
(d)] the von Neumann entropy St for the m-layer sequential-type
quantum circuits consisting of two-qubit gates and the diamond-
shaped quantum circuit in the case of a finite longitudinal magnetic
field [(a), (b)] h = 0.1 and [(c), (d)] 0.5. Other model parameters and
the hyperparameters for the circuit optimization are the same as those
in Figs. 6(a) and 6(b).

implying that there is no error accumulation occurring in this
time region, which is consistent with the results of the von
Neumann entropy in Fig. 6(b).

We also examine the accuracy of the diamond-shaped
quantum circuit by optimizing the quantum circuit Ĉt to max-
imize the overlap Ft = |〈�(t )|Ĉt |�〉|2, directly referring to
the exact time-evolved state |�(t )〉. As shown in Fig. 6(c),
we find that in the region of Jt � 3, the infidelity rapidly
decreases after an appropriate number of sweep iterations for
the optimization, and thus the quantum-circuit state |�(t )〉
with the diamond-shaped structure can very accurately rep-
resent, i.e., numerically exactly, the exact time-evolved state
|�(t )〉. This is consistent with the observation described above
that the error does not accumulate in time, and this behav-
ior is robust for larger systems up to L = 16, as shown in
Fig. 6(d). It is also worth noting that a similar analysis for
the three-layer sequential-type quantum circuit composed of
two-qubit gates and the single-layer sequential-type quantum
circuit composed of multiqubit gates with the gate size l = 5
does not find any optimized quantum circuits that reach the
numerically exact solution (see Appendix D).

However, as illustrated in Fig. 7, the advantage of the
diamond-shaped quantum circuit is gradually lost with in-
creasing longitudinal field h. In fact, as shown in Figs. 7(b)
and 7(d), we find that all quantum circuits fail to accurately
represent the exact time-evolved state in terms of the von
Neumann entropy St before reaching Jt = 5. A finite longi-
tudinal field transforms the system from an integrable to a
nonintegrable one and enhances the complexity of quantum
dynamics toward quantum information scrambling [39,40].
Although the diamond-shaped quantum circuit obeys the
entropic volume law in its structure, there is an inherent dif-
ficulty in representing such quantum information scrambling
with only very small internal degrees of freedom. In contrast,
the difficulties posed by the finite longitudinal field h > 0
are absent when the single-layer sequential-type quantum cir-
cuit composed of multiqubit gates is employed; the infidelity
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FIG. 8. The subsystem size dependence of the time evolution
of the von Neumann entropy St evaluated by the numerically ex-
act calculation (left), the diamond-shaped quantum circuit (center),
and the three-layer sequential-type quantum circuit consisting of
two-qubit gates (right). The upper and lower panels are the results
for the longitudinal field h = 0 and 0.1, respectively. Other model
parameters and the hyperparameters for the circuit optimization are
the same as those in Fig. 7.

for the multiqubit-gate-based quantum circuit monotonically
decreases with increasing the size l of multiqubit gates, as
already shown in Figs. 3(a) and 4(a).

Finally, we examine in Fig. 8 the spacetime distribu-
tion of the von Neumann entropy St evaluated for the
diamond-shaped quantum circuit and the m-layer sequential-
type quantum circuit with m = 3, also compared with the
exact one. Here, the quantum circuits are optimized by maxi-
mizing I (t ) in Eq. (8). Initially, we observe the von Neumann
entropy in the exact calculation forms a mountainlike shape
in spacetime with a peak located near the central bond of
the system at time Jt = 3.68 for the longitudinal field h = 0,
while the von Neumann entropy at the edges almost does not
increase in time. This spacetime distribution of the von Neu-
mann entropy is in good accordance with the results obtained
for the diamond-shaped quantum circuit in which the depth
of the quantum circuit increases linearly from the edge to
the center of the system. On the other hand, the three-layer
sequential-type quantum circuit containing the same number
ng of two-qubit gates as the diamond-shaped quantum circuit
needs longer circuit depth near the center of the system to
capture the whole entanglement structure. This advantage of
the diamond-shaped quantum circuit in describing the space-
time distribution of the von Neumann entropy is explicitly
confirmed for the longitudinal field up to h = 0.1, as shown

in the lower panels of Fig. 8, which is also consistent with the
results in Fig. 7.

V. CONCLUSION

We have investigated the quantum-circuit ansatz that can
efficiently describe the real-time dynamics of quantum states
in the 1D quantum Ising model with the longitudinal and
transverse fields after a global quantum quench. First, we ex-
amined the expressiveness of the single-layer sequential-type
quantum circuit composed of multiqubit gates with the gate
size l . Our numerical calculations utilizing this multiqubit-
gate-based quantum circuit revealed that the evolution time
of the quench dynamics for which the quantum-circuit ansatz
can faithfully represent the time-evolved state within a certain
accuracy increases almost linearly in the gate size l . Moreover,
based on the analysis of the tensor-network representation
of the quantum circuits, we showed that the single-layer
sequential-type quantum circuit composed of multiqubit gates
with the gate size l > L/2 can exactly represent any quantum
state, which was also confirmed numerically.

In order to reduce the internal degrees of freedom
in the multiqubit-gate-based quantum circuit, we subse-
quently explored two distinct types of quantum circuits,
i.e., the diamond-shaped quantum circuit and the multilayer
sequential-type quantum circuit constructed using two-qubit
gates. The diamond-shaped quantum circuit contains O(L2)
real parameters as its internal degrees of freedom, following
the volume law of entanglement, and is encompassed within
the multilayer sequential-type quantum circuit composed of
two-qubit gates with m = �L/2	 layers. As a benchmark,
we have examined the accuracy of these two types of quan-
tum circuits in describing the long-time evolution of the
quench dynamics in the transverse-field Ising model with-
out the longitudinal field. Our numerical calculations found
that the infidelity of the diamond-shaped quantum circuit is
approximately 500 times smaller than that of the three-layer
sequential-type quantum circuit, which contains the same
number of two-qubit gates as the diamond-shaped quantum
circuit. Intriguingly, we found that the diamond-shaped quan-
tum circuit achieves smaller infidelity than the single-layer
sequential-type quantum circuits composed of multiqubit
gates with the gate size l � �L/2	, demonstrating an advan-
tage in the sparsity of the diamond-shaped quantum circuit
that satisfies the entropic volume law for time-evolved states
in nonequilibrium quantum dynamics.

However, it should be noted that the diamond-shaped
quantum circuit does not invariably succeed in describing
time-evolved quantum states. In fact, for the quench dy-
namics of the same quantum Ising model but with a finite
longitudinal field h > 0, which amplifies the quantum infor-
mation scrambling, no difference in the expressivity is found
between the diamond-shaped quantum circuit and the multi-
layer sequential-type quantum circuits composed of two-qubit
gates, both of which do not successfully describe the long-
time evolution of the quantum dynamics, especially when
h > 0.1. On the other hand, no difficulty is observed in
describing the long-time dynamics even with a finite longi-
tudinal field h > 0 when the multiqubit-gate-based quantum
circuit is employed. Therefore, these studies highlight the
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importance of not only the entropic volume law, but also the
inherent degrees of freedom in the quantum circuit to describe
long-time dynamics in general. In such cases, it is essential to
consider not only increasing the number of gate operations to
represent multiqubit gates, but also optimizing the quantum-
circuit structure according to a specific problem at hand, such
as its nonuniformity.

One of the promising avenues for future studies is the
classification of different quantum dynamical systems based
on their compatible quantum circuits for describing these
systems, such as the diamond-shaped, sequential-type, and
brickwall-type quantum circuits. A noteworthy example is
that the diamond-shaped quantum circuit is highly effective
in describing time-evolved states of the quantum Ising model
without the longitudinal field, i.e., h = 0, which can plausibly
be attributed to the one-body nature of the system. The num-
ber of parameters necessary to describe the time-evolution
operator for a noninteracting one-body fermion model is
considerably fewer than an interacting many-body fermion
model, and the 1D transverse-field Ising model can be trans-
formed into the one-body fermionic Hamiltonian using the
Jordan-Wigner transformation [41]. Moreover, it has been es-
tablished that a quantum circuit with a depth of layers less than
the system size can exactly describe the real-time dynamics of
free fermions [42]. Therefore, it is highly interesting to extend
these analyses to a perturbative region near free-fermion sys-
tems in light of quantum dynamics.

A significant challenge is the optimization procedure to
obtain an optimized quantum circuit with a given circuit
structure for describing time-evolved states. Our numerical
calculations have revealed that while the optimization of the
single-layer sequential-type quantum circuit composed of l-
qubit gates can typically be completed within, at most, 100
sweep iteration updates, regardless of the gate size l , the num-
ber of required sweep iteration updates is typically 10–100
times larger once the number of layers is increased, even for
l = 2. In particular, the numerical cost for a larger system
becomes more expensive. Therefore, it is imperative to im-
prove numerical algorithms that can optimize the multilayer
quantum circuits faster by, e.g., adjusting the initial conditions
of the quantum circuit and the order of unitary gates to be
optimized.

Considering the application of our time-evolving algorithm
to current NISQ devices, the quantum circuit proposed in
this study has the advantage of directly reducing errors due
to its minimal use of two-qubit gates and adherence to the
volume law. However, when optimizing the quantum circuit
on quantum computers, it is necessary not only to develop
optimization algorithms that efficiently maximize the overlap
integral between the time-evolving state and the quantum-
circuit state, but also to evaluate them as precisely as possible.
In particular, to reduce noise in observed quantities, it is
essential to choose optimal quantum circuits with a minimal
number of gate operations and to combine them with efficient
error-mitigation methods. Among these methods, zero-noise
extrapolation (ZNE) [43–45] and probabilistic error cancella-
tion (PEC) [43,46,47], which are based on learning a noise
model for each quantum device, are well known. To enhance
the practicality of current and next-generation noisy quantum
devices, continuous efforts are required to construct compact

quantum-circuit structures and develop error-mitigation algo-
rithms that are suitable for specific problems and quantum
devices.
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APPENDIX A: LOCAL OPTIMIZATION ALGORITHM

1. Quantum-circuit encoding algorithm

We first briefly summarize the quantum-circuit encoding
(QCE) algorithm originally proposed in Ref. [16]. Let us
assume that |�〉 is a target quantum state and construct a
variational state |�〉 = Ĉ|0〉⊗L which approximates the target
state |�〉. Here, |0〉⊗L is the direct product of local states |0〉
for the L-site system and Ĉ is the quantum circuit defined as

Ĉ = ÛN · · · Û1 ≡
1∏

i=N

Ûi, (A1)

where each unitary operator Ûi acts on li (< L) qubits ex-
panded by the orthonormal set {|σb1 · · · σbli

〉}, with 1 � b1 <

· · · < bli � L. The index pool Bi = {b1, b2, . . . , bli} ∈ B for
specifying a subsystem is a hyperparameter of the QCE algo-
rithm [16]. However, in this study, the form of the quantum
circuit, i.e., the gate sets as well as the loci that the gates act
on, is fixed.

The QCE algorithm seeks an optimal quantum circuit Ĉ
to maximize the overlap between the two states |�〉 and |�〉,
i.e., F = Re〈�|�〉 = Re〈0|Ĉ†|�〉. Now, let us focus on the
update of the ith unitary operator Ûi in the quantum circuit Ĉ.
Introducing 〈�i| = 〈0| ∏i−1

j=1 Û †
j and |�i〉 = ∏L

j=i+1 Û †
j |�〉,
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we can rewrite F as follows:

F = ReTr[|�i〉〈�i|U †
i ] = ReTrBi [F̂iÛ

†
i ], (A2)

where F̂i = TrB̄i
|�i〉〈�i|, and B̄i denotes the complement of

the subsystem Bi. Then, applying the singular-value decom-
position (SVD) to F̂i as F̂i = X̂iD̂iŶ

†
i with unitary operators

{X̂i, Ŷi} and the diagonal non-negative operator D̂i, we can
further rewrite F as

F = ReTrBi [D̂iŶ
†

i Û †
i X̂i] � TrBi D̂i (A3)

because the norm of the diagonal elements for the unitary
Ŷ †

i Û †
i X̂i is less than or equal to one. Therefore, updating

Û †
i = ŶiX̂

†
i , we can locally maximize F . Note that in Ref. [16],

instead of maximizing F , the quantity |〈�|�〉| is maximized.
However, the resulting unitary operator Û †

i maximizing this
quantity is exactly the same as that obtained here.

Within the QCE algorithm, the local update described
above is repeatedly applied from i = 1 to N . After updating
Ûi at i = N , we turn around the update order and decrease i
down to i = 1. This sequence of updates is referred to as a
one-sweep update. The QCE algorithm performs these sweep
updates several times until F converges.

2. Time-evolution algorithm

In quantum mechanics, the dynamics for the time-
dependent Hamiltonian Ĥ (t ) can be described by the time-
dependent Schrödinger equation,

i
∂

∂t
|�(t )〉 = Ĥ (t )|�(t )〉, (A4)

with the time-evolved state |�(t )〉 and the reduced Planck
constant h̄ = 1. This equation can be formally resolved as

|�(t )〉 = Û (t, t0)|�(t0)〉, (A5)

with

Û (t, t ′) = Tt
[
e−i

∫ t
t ′ dt ′′ Ĥ (t ′′ )], (A6)

where Tt [·] denotes the time-ordering product. When we split
the time into N pieces, i.e., tn = n�t + t0, with �t = t−t0

N and
n = 0, 1, . . . , N , we can obtain the recurrence formula,

Û (tn+1, tn)|�(tn)〉 = |�(tn+1)〉. (A7)

If a parametrized quantum circuit Ĉn = Ĉ(θn) has suffi-
ciently large degrees of freedom θn and can represent the
dynamical state at time tn, namely, |�(tn)〉 = Ĉn|0〉, this re-
currence formula can be rewritten for the time-evolved state
|�(tn+1)〉 at time tn+1 as

e−i�t Ĥ (tn )Ĉn|0〉 = Ĉn+1|0〉, (A8)

in the small-�t limit. In this case, we can formulate the time-
dependent variational principle by minimizing the following
cost function:

F̃ (n+1) = ‖e−i�tHĈn|0〉 − Ĉn+1|0〉‖2

= 2 − 2Re〈0|Ĉ†
n+1e−i�tHĈn|0〉. (A9)

Therefore, we can construct an optimal quantum circuit Ĉn+1

for |�(tn+1)〉 by solving the following equation:

Ĉn+1 = arg max
Ĉ

Re〈0|Ĉ†e−i�tHĈn|0〉, (A10)

which is equivalent to maximizing I (t + �t ) in Eq. (8).
Continuing this procedure iteratively, we can investigate the
real-time dynamics of the parametrized quantum circuit.

APPENDIX B: EXACT QUANTUM-CIRCUIT
REPRESENTATION

This Appendix explains that an arbitrary quantum state can
be explicitly written as a single-layer sequential-type quantum
circuit composed of multiqubit gates with the qubit size l =
�L/2	 + 1 (see Fig. 2). Let us first introduce the normalized
quantum state,

|�〉 =
∑
{σ j}

cσ1···σL |σ1 · · · σL〉, (B1)

where L is the system size and σ j ∈ {0, 1} with 1 � j � L
represents the local state at the jth qubit.

Now, we consider {σ1 · · · σL−l} and {σL−l+1 · · · σL} to be
indices specifying the row and column components of cσ1···σL

in Eq. (B1), and apply the SVD to this matrix as

cσ1···σL =
2L−l −1∑
λL−l =0

Y [L−l],σ1···σL−l

λL−l
D[L−l]

λL−l
BσL−l+1···σL

λL−l

=
2L−l −1∑
λL−l =0

X [L−l],σ1···σL−l

λL−l
BσL−l+1···σL

λL−l
, (B2)

with X [L−l],σ1···σL−l

λL−l
= Y [L−l],σ1···σL−l

λL−l
D[L−l]

λL−l
. Notice that here we

use L − l < l for l = �L/2	 + 1 and thus the upper bound
of the sum above for λL−l is 2L−l − 1. In addition, the
left-singular vectors {Y [L−l],σ1···σL−l

λL−l
}, the right-singular vectors

{BσL−l+1···σL

λL−l
}, and the singular values {D[L−l]

λL−l
} satisfy, respec-

tively, the following relations:∑
σ1, ··· , σL−l

(
Y [L−l],σ1···σL−l

λL−l

)∗
Y [L−l],σ1···σL−l

λ′
L−l

= δλL−l ,λ
′
L−l

,

∑
σL−l+1, ··· , σL

(
BσL−l+1···σL

λL−l

)∗
BσL−l+1···σL

λ′
L−l

= δλL−l ,λ
′
L−l

,

∑
λL−l

(
D[L−l]

λL−l

)2 = 1, (B3)

with δλL−l ,λ
′
L−l

being the Kronecker delta.
Next, we consider {σ1 · · · σL−l−1} and {σL−lλL−l} to be

indices specifying the row and column components of
X [L−l],σ1···σL−l

λL−l
in Eq. (B2), and apply the SVD to this matrix

to obtain

X [L−l],σ1···σL−l

λL−l
=

2L−l−1−1∑
λL−l−1=0

X [L−l−1],σ1···σL−l−1
λL−l−1

A[L−l−1],σL−l

λL−l−1,λL−l
, (B4)

where the right-singular vectors {A[L−l−1],σL−l

λL−l−1,λL−l
} satisfy∑

σL−l ,λL−l

(
A[L−l−1],σL−l

λL−l−1,λL−l

)∗
A[L−l−1],σL−l

λ′
L−l−1,λL−l

= δλL−l−1,λ
′
L−l−1

.
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FIG. 9. The schematic figure of the transformation between the
exact MPS representation (the left-bottom panel) and the exact
quantum-circuit representation (the right panel) for a quantum state
|�〉 (the left-top panel). The numbers in the left-bottom panel denote
the bond dimensions of the corresponding links in the MPS. In
the right panel, the differently colored dumbbell-like objects rep-
resent different multiqubit gates describing the unitary operators
Ûi in Eq. (B10), and the shaded regions indicate that the exact
quantum-circuit representation can be embedded into the single-layer
sequential-type quantum circuit composed of multiqubit gates with
the gate size l = � L

2 	 + 1. In this example, we consider the system
size L = 11.

Then, recursively executing this procedure, we can finally
rewrite cσ1···σL as the following MPS form:

cσ1···σL =
1∑

λ1=0

· · ·
2L−l −1∑
λL−1=0

A[1],σ1
0,λ1

· · · A[L−l],σL−l

λL−l−1,λL−l
BσL−l+1···σL

λL−l
. (B5)

Let us now introduce unitary operators representing an (i +
1)-qubit gate for 1 � i � L − l ,

Ûi =
∑

σi, ··· , σ2i

∑
σ ′

i , ··· , σ ′
2i

[Ui]
σi···σ2i

σ ′
i ···σ ′

2i
|σi · · · σ2i〉〈σ ′

i · · · σ ′
2i|, (B6)

and a unitary operator representing a l-qubit gate,

ÛL−l+1 =
∑

σL−l+1, ··· , σL

∑
σ ′

L−l+1, ··· , σ ′
L

[UL−l+1]σL−l+1···σL

σ ′
L−l+1···σ ′

L

× |σL−l+1 · · · σL〉〈σ ′
L−l+1 · · · σ ′

L|. (B7)

Then, we can straightforwardly embed elements of tensors
constituting the MPS in Eq. (B5) into the unitary matri-
ces by rewriting the bond index λi as the binary number
λi = (x1 · · · xi ), i.e.,

[Ui]
σix′

1···x′
i

x1···xi−100 = A[i],σi

(x1···xi−1 ),(x′
1···x′

i )
, (B8)

for 1 � i � L − l , and

[UL−l+1]σL−l+1···σL

x1···xL−l 0···0 = BσL−l+1···σL

(x1···xL−l ) . (B9)

Using these unitary operators, the MPS representation of |�〉
can be transformed into the following quantum-circuit repre-
sentation (also see Fig. 9):

|�〉 = ÛL−l+1ÛL−l · · · Û1|0〉⊗L. (B10)

Therefore, we can easily confirm that the single-layer
sequential-type quantum circuit composed of multiqubit gates

FIG. 10. (a) Exact quantum-circuit representation of a quantum
state |�1〉, i.e., |�1〉 = Ĉ1|0〉, which is essentially the same as that
shown in Fig. 9 but is composed of multiqubit gates aligned dif-
ferently from the bottom left to the top right. (b) Quantum-circuit
representation that transforms a quantum state |�1〉 to a quantum
state |�2〉, i.e., |�2〉 = Ĉ|�1〉. The unitary transformation Ĉ is easily
constructed as Ĉ = Ĉ2Ĉ

†
1 , where Ĉ1 and Ĉ2 are obtained exactly as

in (a) and the right panel in Fig. 9, respectively. Since the two multi-
qubit gates indicated by the same color are combined into a single
multiqubit gate (shaded color) with the gate size l = � L+1

2 	 + 1,
this proves that the unitary transformation Ĉ representing the tran-
sition between arbitrarily two quantum states |�1〉 and |�2〉 can be
described by a single-layer sequential-type quantum circuit com-
posed of l-qubit gates. The example here considers the system size
L even (i.e., L = 12), but the same statement is also correct for
L odd.

with the gate size l contains this quantum circuit (see the right
panel in Fig. 9). This implies that no matter how complex
the quantum state is, it can be universally described by the
single-layer sequential-type quantum circuit, as long as the
size of its constituent multiqubit gates is large enough, i.e.,
l = � L

2 	 + 1, as shown in Fig. 9.
Finally, we prove that the unitary transformation Ĉ repre-

senting the transition between two normalized states |�1〉 and
|�2〉, i.e., |�2〉 = Ĉ|�1〉, can be described by a single-layer
sequential-type quantum circuit with l (= � L+1

2 	 + 1)-qubit
gates. For this purpose, we first note that the two states |�1〉
and |�2〉 can be exactly described as |�1〉 = Ĉ1|0〉⊗L and
|�2〉 = Ĉ2|0〉⊗L, where Ĉ1 and Ĉ2 are given, respectively,
by two distinct sets of L − l + 1 unitary operators as in
Eq. (B10) (also see the right panel in Fig. 9). However, here
we assume that Ĉ1 is now composed of the unitary operators
representing multiqubit gates arranged as in Fig. 10(a). This
is always possible simply because the indices of cσ1···σL in
Eq. (B2) can also be divided into {σ1 · · · σl} and {σl+1 · · · σL}.
By applying a similar analysis as in Eqs. (B2)–(B10), we
can decompose cσ1···σL from the left, with the left-singular
vectors now being implemented in the unitary operators. The
unitary transformation Ĉ, simply given by Ĉ = Ĉ2Ĉ

†
1 , is thus

schematically shown in Fig. 10(b). From this figure, it is
obvious that Ĉ is described by a single-layer sequential-type
quantum circuit composed of multiqubit gates with the gate
size l = � L+1

2 	 + 1. We have also numerically checked that Ĉ
can always be exactly obtained within the numerical accuracy
for randomly generated states |�1〉 and |�2〉 by optimizing
the single-layer sequential-type quantum circuit with l-qubit
gates.
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FIG. 11. (a) Left panel: the quantum-circuit state |�〉 composed of three-stacked unitary gates for L = 6. The red line indicates an example
of paths for 1D bipartition {σ1σ2|σ3σ4σ5σ6}. Right panel: deformation of the quantum-circuit state in the left panel with {σ1σ2} on the right-hand
side and {σ3σ4σ5σ6} on the left-hand side. D is the total bond dimension. (b) Two examples of the unitary gates Ûn used in (a). The left one is
composed of a single multiqubit gate with a gate size l = 6, and the right one is composed of two two-qubit gates. The number on each red
line indicates the bond dimension when the unitary gate is partitioned along this red line. (c) A schematic diagram for bipartitioning a unitary
gate Ûn. Dn indicates the corresponding bond dimension of Ûn.

APPENDIX C: UPPER BOUND OF ENTANGLEMENT
ENTROPY FOR QUANTUM-CIRCUIT STATES

Here, we evaluate the upper bound of the entanglement
entropy for quantum-circuit states. Let us assume that the
quantum-circuit state |�〉 is given by M-stacked unitary gates
on the simple product state |0〉 = |0〉⊗L, as shown in the left
panel of Fig. 11(a), i.e.,

|�〉 = ÛM · · · Û1|0〉, (C1)

where each unitary operator Ûn is a direct product of several
multiqubit gates (or a multiqubit gate), as shown in Fig. 11(b).

To evaluate the von Neumann entropy of the quantum-
circuit state, we consider the SVD for the unitary operator
Ûn by bipartitioning the operator. For example, the red line in
Fig. 11(c) indicates one of several patterns for partitioning the
unitary operator Ûn [48]. Let us simply write the decomposed
unitary operator Ûn as

Ûn =
Dn∑

λn=1

dλn X̂n,λnŶn,λn , (C2)

where X̂n,λn and Ŷn,λn are nonunitary operators and dλn is
the singular value. As shown in Fig. 11(c), the right (left)
indexes of qubits for operator X̂n,λn are denoted as {xn,i}1�i�In

({xn−1,i}1�i�In−1 ), i.e.,

X̂n,λn =
∑

{σxn−1,i}

∑
{σxn ,i}

(Xn,λn )σxn ,1σxn ,2···σxn ,In
σxn−1,1σxn−1,2···σxn−1,In−1

× |σxn,1σxn,2 · · · σxn,In〉〈σxn−1,1σxn−1,2 · · · σxn−1,In−1 |,
(C3)

where In (In−1) specifies the number of right indexes of qubits
for X̂n,λn (X̂n−1,λn−1 ), implicitly assuming that the number of
left indexes of qubits for X̂n,λn is In−1. Similarly, the right
(left) indexes of qubits for operator Ŷn,λn are denoted as
{yn,i}1�i�L−In ({yn−1,i}1�i�L−In−1 ). The bond dimension Dn of
the unitary gate Ûn is then given as

Dn = min

⎛
⎝∑

xn−1

∑
xn

1,
∑
yn−1

∑
yn

1

⎞
⎠ (C4)

= min(2In−1+In , 22L−(In−1+In ) ), (C5)

with
∑

xn(yn ) = ∑
xn,1(yn,1 )=0,1 · · · ∑xn,In (yn,L−In )=0,1. Note that in

counting the bond dimension, one should not take into account
the indexes of qubits connecting to the initial qubit state |0〉
and the indexes of qubits for other gate operators in Ûn that
are intact by the bipartition. Using these counting rules for the
bond dimension, we can calculate the bond dimension of a
unitary gate, as shown in Fig. 11(b).

Using Eq. (C2), we can explicitly write the quantum-circuit
state with M-stacked unitary gates as follows:

|�〉 =
D1∑

λ1=1

· · ·
DM∑

λM=1

dλ1 · · · dλM

× (
X̂M,λM · · · X̂1,λ1

)(
ŶM,λM · · · Ŷ1,λ1

)|0〉. (C6)

Note that the two sets of vectors,

|λ〉X = X̂M,λM · · · X̂1,λ1 |0〉⊗I0 (C7)

and

|λ〉Y = ŶM,λM · · · Ŷ1,λ1 |0〉⊗L−I0 , (C8)

correspond to the nonorthogonalized basis vectors in the two
separated subspaces. We can orthonormalize these vectors
using the Gram-Schmidt method, i.e.,

|λ〉X =
DX∑
a=1

|ua〉Xa,λM ···λ1 (C9)

and

|λ〉Y =
DY∑
b=1

|vb〉Yb,λM ···λ1 , (C10)

where the total numbers DX and DY of the orthonormalized
vectors are given, respectively, as

DX = rank(X 〈λ|λ′〉X ) � min(2IM , Dtot ) (C11)

and

DY = rank(Y 〈λ|λ′〉Y ) � min(2L−IM , Dtot ), (C12)

with

Dtot =
M∏

n=1

Dn. (C13)
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The quantum-circuit state |�〉 is then written as

|�〉 =
DX∑
a=1

DY∑
b=1

Wab|ua〉 ⊗ |vb〉, (C14)

with

Wab =
∑

λ1,··· ,λM

dλ1 · · · dλMXa,λM ···λ1Yb,λM ···λ1 . (C15)

Therefore, performing the SVD for Wab =∑D
λ=1 wλX̃λ,aỸλ,b with D = min(DX , DY ), the quantum-

circuit state finally reads

|�〉 =
D∑

λ=1

wλ|ũλ〉 ⊗ |ṽλ〉, (C16)

where |ũλ〉 = ∑DX
a=1 |ua〉X̃λ,a and |ṽλ〉 = ∑DY

b=1 |vb〉Ỹλ,b. Thus,
the upper bound of the von Neumann entropy S of the
quantum-circuit state is given by the logarithm of the bond
dimension D, i.e.,

S = −
D∑

λ=1

w2
λ ln w2

λ � ln D, (C17)

with

D � min(2min(IM ,L−IM ), Dtot ), (C18)

where the normalization condition
∑D

λ=1 w2
λ = 1 is im-

plied. In particular, when no path is found with the
bond dimension Dtot < 2min(IM ,L−IM ) for the 1D bipartition
{σ1 · · · σIM |σIM+1 · · · σL}, we consider that the quantum-circuit
state follows the volume law in entanglement entropy.

As discussed in Sec. IV, a quantum-circuit state satisfying
the volume law can represent a highly entangled quantum
state, often appearing in a time-evolved state for nonequilib-
rium dynamics. Hence, it is instructive to illustrate several
quantum-circuit structures that satisfy the volume law. Fig-
ure 12 shows two quantum-circuit states satisfying the volume
law. The simplest example is a sequential-type quantum cir-
cuit composed of two-qubit gates with multiple layers, shown
in Fig. 12(a). If we calculate the bond dimension for the 1D
bipartition, shown by the red line in Fig. 12(a), the bond
dimension Dtot in Eq. (C13) satisfies Dtot = 2min(IM ,L−IM ). On
the other hand, if we consider a quantum circuit that is one
layer less than the quantum circuit, in Fig. 12(a), we can easily
confirm that there exists a path across the two layers that
results in a loss of the volume law. Thus, the sequential-type
quantum circuit composed of two-qubit gates that satisfies the
volume law needs m = � L

2 	 layers, e.g., three layers for L = 6
and five layers for L = 11. In other words, the sequential-
type quantum circuit containing the diamond-shaped quantum
circuit satisfies the volume law [see Fig. 5(c)].

In addition to the above example, the quantum-circuit
structure shown in the left panel of Fig. 12(b) also satisfies
the volume law. One can easily show that this quantum circuit
is transformed into a diamond-shaped quantum circuit with
SWAP gates, as given in the right panel of Fig. 12(b). In partic-
ular, if we replace all these two-qubit gates in the quantum
circuit with the products of HADAMARD and CONTROLLED-
NOT gates, the resulting quantum-circuit state is maximally

FIG. 12. Two examples of quantum-circuit ansatze satisfying the
volume law. (a) A three-layer sequential-type quantum circuit com-
posed of two-qubit gates. (b) A quantum circuit consisting of the
minimum number of two-qubit gates, i.e., three two-qubit gates (left
panel), which is equivalent to a diamond-shaped quantum circuit
with SWAP gates (right panel). The red lines represent several paths
for the 1D bipartition and the number on each red line denotes the
corresponding bond dimension Dtot (red) and {Dn}1�n�M (black).

entangled. However, a quantum circuit satisfying the volume
law is not a sufficient condition for representing a highly en-
tangled quantum state, but only a necessary condition. Since
the quantum circuit in the left panel of Fig. 12(b) comprises
three independent subspaces, i.e., {σ1σ6}, {σ2σ5}, and {σ3σ4},
it is clear that such a quantum-circuit state cannot represent
a quantum state with physically relevant correlations among
these subspaces.

APPENDIX D: OPTIMIZED QUANTUM CIRCUITS
FOR EXACT QUANTUM DYNAMICS

As shown in Figs. 6(c) and 6(d), we find that the diamond-
shaped quantum circuit satisfying the volume law can exactly
represent the time-evolved states for relatively long-time
dynamics of the transverse-field Ising model without the lon-
gitudinal field (i.e., h = 0). This Appendix confirms that such
behavior is not observed for the multilayer sequential-type
quantum circuits composed of two-qubit gates having the
same degrees of freedom as the diamond-shaped quantum cir-
cuits and for the single-layer sequential-type quantum circuits
composed of multiqubit (l > 2) gates having more internal
degrees of freedom than the diamond-shaped quantum circuits
but without showing the volume law. Note that the quan-
tum circuits Ĉt studied here are optimized by minimizing the
cost function F = ‖|�(t )〉 − Ĉt |�〉‖2

, directly referring to the
exact time-evolved state |�(t )〉, instead of the cost function
given in Eq. (8) and, equivalently, in Eq. (A9).

Figure 13(a) shows the infidelity 1 − Ft for the transverse-
field Ising model with the transverse field g = 1.4 for L = 11
as a function of the number of sweep iteration updates for the
optimization of the circuit state |�(t )〉 = Ĉt |�〉 with the three-
layer (m = 3) sequential-type quantum circuit composed of
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FIG. 13. The infidelity 1 − Ft of the quantum-circuit states with
(a) the three-layer sequential-type quantum circuit composed of two-
qubit gates and (b) the single-layer sequential-type quantum circuit
composed of multiqubit gates (the gate size l = 5) at different times
Jt = 1, 2, . . . , 5 in quantum dynamics for the L = 11 quantum Ising
chain with the model parameters g = 1.4 and h = 0. The hyper-
parameters are set to be wmax = 104, wmin = 103, εa = 10−14, and
εr = 10−4. These model parameters and hyperparameters are the
same as those in Fig. 6(a). Note that the result for Jt = 1 in (b) is
smaller than 10−14.

two-qubit gates, which has the same number of two-qubit
gates, ng = 30, of the diamond-shaped quantum circuit. At
Jt = 1, when the growth of entanglement is not large, the
sequential-type quantum circuit can well represent the exact

time-evolved quantum state |�(t )〉 with its infidelity as small
as 10−6. However, for Jt � 2, when the growth of entangle-
ment becomes pronounced, the quantum-circuit ansatz based
on the sequential-type quantum circuit has large infidelity
of about 10−2, which causes the rather large error accumu-
lated in the long-time dynamics. As shown in Fig. 13(b),
similar behavior is observed in the result for the single-layer
sequential-type quantum circuit composed of five-qubit gates
(l = 5), corresponding to an MPS with the bond dimension
16. This is understood simply because in order for the MPS
representation to exactly represent an arbitrary quantum state,
a bond dimension larger than 2�L/2	 is required.

On the other hand, as discussed in Sec. IV, the quantum-
circuit state based on the diamond-shaped quantum circuit
follows the volume law. Moreover, the internal degrees of
freedom in the diamond-shaped quantum circuit are smaller
than those in the single-layer sequential-type quantum cir-
cuit composed of multiqubit gates exactly representing an
arbitrary quantum state. Therefore, the diamond-shaped quan-
tum circuit or a quantum circuit with a similar structure
[e.g., see Fig. 5(c)] can potentially be a powerful component
of quantum circuits to achieve quantum advantage, at least in
quantum many-body physics and especially nonequilibrium
quantum many-body dynamics.
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