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L I F E  S C I E N C E S

Biological age prediction using a DNN model based on 
pathways of steroidogenesis
Qiuyi Wang†‡, Zi Wang*†, Kenji Mizuguchi, Toshifumi Takao*

Aging involves the progressive accumulation of cellular damage, leading to systemic decline and age-related dis-
eases. Despite advances in medicine, accurately predicting biological age (BA) remains challenging due to the 
complexity of aging processes and the limitations of current models. This study introduces a method for predict-
ing BA using a deep neural network (DNN) based on pathways of steroidogenesis. We analyzed 22 steroids from 
148 serum samples of individuals aged 20 to 73, using 98 samples for model training and 50 for validation. Our 
model reflects the often-overlooked fact that aging heterogeneity expands over time and uncovers sex-specific 
variations in steroidogenesis. This study leveraged key markers, including cortisol (COL), which underscore the 
role of stress-related and sex-specific steroids in aging. The resulting model establishes a biologically meaningful 
and robust framework for predicting BA across diverse datasets, offering fresh insights and supporting more tar-
geted strategies in aging research and disease management.

INTRODUCTION
Aging is a complex and inevitable process involving the accumula-
tion of cellular and molecular damage, leading to functional decline 
and an increased risk of age-related diseases (1, 2). Conditions such 
as Alzheimer’s disease, Parkinson’s disease, and osteoporosis are 
closely tied to aging and substantially contribute to the health chal-
lenges faced by the elderly (2–6). Despite medical advancements, 
these diseases remain incurable, with current strategies focused on 
slowing their progression through early diagnosis and management 
(7–10). Accurately assessing an individual’s biological age (BA), 
which reflects their physiological state, is essential for understanding 
aging and developing effective interventions. Unlike chronological 
age (CA), which simply measures the passage of time, BA provides 
insights into the biological processes underlying aging (11). Howev-
er, determining BA is complex, as it is influenced by both genetic and 
nongenetic factors, and no universally accepted standards for BA mea-
surement currently exist (12–17). Early methods, which used pheno-
typic indicators like lung capacity and grip strength, lacked precision 
and standardization, limiting their predictive utility for aging-related 
diseases (18–23).

In recent years, researchers have shifted from surface-level indi-
cators to more intrinsic measures that better capture physiological 
aging. Common diagnostic tools like complete blood counts and 
biochemical tests are frequently used to model BA, offering valuable 
insights into an individual’s health (24). However, these markers often 
fail to provide a direct window into the specific physiological or meta-
bolic pathways that drive aging. To address this, omics technologies—
such as genomics, epigenomics, transcriptomics, proteomics, and 
metabolomics—have been used to analyze aging at a molecular level 
(25). These approaches generate high-dimensional data, revealing 
complex interactions among potential biomarkers. Given the vital 
role of nongenetic factors in aging, methods like epigenomics and 
metabolomics, which are sensitive to environmental and lifestyle 

influences, have proven particularly effective in enhancing the accu-
racy of BA models (12, 13, 26). Building on these advancements, ste-
roid hormones have emerged as crucial indicators of physiological 
aging due to their regulation of key metabolic processes (27–30). 
Stress-related corticosteroids and sex hormones, both of which 
strongly correlate with aging, present a promising avenue for refining 
BA predictions. Steroid profiles not only complement traditional 
biomarkers like DNA methylation but also offer a data-driven lens 
into the biological heterogeneity of aging, including sex-specific dif-
ferences. By incorporating biological relationship between these hor-
mones into BA models, it becomes possible to more accurately reflect 
the underlying physiological state of aging individuals.

Developing precise BA models has become a central focus in bio-
informatics, with researchers using various biomarkers to estimate 
BA (31). Methods such as least absolute shrinkage and selection op-
erator (LASSO) and Ridge regression have been applied to DNA 
methylation and proteomics data (32–34). While these methods are 
effective at identifying linear relationships, they often overlook the 
biomarkers linked to metabolic pathways, which are critical to 
understanding aging (35,  36). Traditional machine learning tech-
niques, though useful for preventing overfitting and balancing model 
complexity, struggle to capture the nonlinear interactions inherent 
in biological systems (12). As a result, these methods may miss the 
intricate biological processes underlying aging and fail to account 
for the substantial impact of environmental and lifestyle factors.

To overcome these challenges, modern machine learning 
techniques—such as support vector machines (SVMs) (37, 38), random 
forests (39), and deep neural networks (DNNs) (17, 40, 41)—have 
gained prominence. These approaches excel at modeling nonlinear 
relationships, making them particularly well suited for capturing the 
complex biological processes involved in aging. DNNs, in particular, 
are effective at handling high-dimensional data and are widely used 
for tasks such as predicting BA. Researchers, including Levine (17), 
Mamoshina et al. (40), and Putin et al. (41), have used public 
datasets of blood tests and biochemical markers to predict BA using 
DNNs, leveraging their capacity for feature learning. Mamoshina et al. 
(42) also applied similar techniques to gene expression data from 
muscle samples, identifying age-related markers. Despite their fitting 
capabilities, however, DNNs are prone to overfitting, especially when 
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involving numerous hidden layers and nodes, which can reduce per-
formance on unseen data (43–45). Regularization techniques, cross-
validation, and data augmentation are typically used to mitigate 
these issues, but challenges remain. One major limitation of current 
BA models is their emphasis on minimizing prediction errors—often 
measured by mean absolute error (MAE) or mean squared error 
(MSE)—which may not fully capture the increasing heterogeneity 
of aging over time (46, 47). Additionally, DNNs often function as 
“black boxes,” making it difficult to derive biological meaning from 
the learned features. To uncover meaningful aging mechanisms, it 
is essential to address the biological interpretability of BA models, 
particularly in integrating biologically meaningful pathways such 
as steroidogenesis.

Here, we developed a DNN model centered on pathways of ste-
roidogenesis to enhance the accuracy of BA prediction. Steroids 
were quantified using an in-house liquid chromatography–tandem 
mass spectrometry (LC-MS/MS) method (48), with the resulting 
data stratified into four groups according to sex and designation for 
training or independent validation (Fig. 1A). To address physiologi-
cal and experimental variability, we applied tailored data scaling 
techniques that preserved the inherent relative proportions of ste-
roid concentrations while achieving reliable alignment between the 
training and validation datasets (Fig. 1B). The DNN model also in-
corporates a custom-designed loss function, specifically construct-
ed to account for the progressive heterogeneity of aging—a feature 
largely neglected in previous predictive models (Fig. 1C). Further-
more, the DNN architecture was structured to capture biochemical 
process within key steroid pathways, thus substantially enhancing 
the model’s biological interpretability (Fig. 1D). Through consider-
ation of sex-specific steroidogenesis and validation with indepen-
dent datasets, our goal was to establish a DNN-based BA prediction 
model that effectively represents diverse aging patterns across popu-
lations and reflects fundamental biological pathways.

RESULTS
DNN dataset generation via steroid quantification 
using LC-MS/MS
We applied a previously established method to quantify 30 steroid 
hormones in serum, with the list of compounds and their struc-
tures shown in table S1 and fig. S1 and the experimental parame-
ters outlined in table S2. Validation results, including assessments 
of limit of quantitation (LOQ), linearity, recovery, precision, 
and accuracy (table S3), confirm the method’s robustness for ste-
roid quantification.

We used this validated method to quantify 22 steroids in 150 
individuals, aged 20 to 73, with detailed results presented in table 
S4. Out of the 100 samples used for modeling, two were excluded 
due to one exceeding the maximum LOQ and the other having 
most compounds below the LOQ, while 50 samples were used for 
validation (Fig. 1A). As shown in fig. S2 and table S5, the concen-
trations varied widely but mostly aligned with previous studies. 
Differences in estrone (E1) levels in female samples likely 
stemmed from menstrual cycle variations. The broader range of 
7α-hydroxydehydroepiandrosterone (7-OH-DHEA) in our study 
may reflect the inclusion of younger, more diverse participants, 
whereas previous research focused on older individuals (aged 50 to 
91). Comparisons with previous studies on tetrahydrocortisol (TH-
COL), tetrahydrocortisone (TH-COR), 11-β-hydroxyandrosterone 

(11-OH-An), tetrahydrocorticosterone (THB), tetrahydrodeoxy-
cortisol (THS), and adrenosterone (AT) are limited due to smaller 
sample sizes in those studies (fewer than 20 subjects), while our 
dataset is more robust (see table S6).

To conduct DNN modeling, we gathered additional demographic 
and physiological information for each individual subject, including 
CA, sex, ethnicity, ABO blood types, Rh blood types, and smoking 
habits (applicable only to the independent validation datasets). Rec-
ognizing the potential influence of sex-specific factors on steroid con-
centrations, we performed principal components analysis (PCA) on 
the original modeling dataset to assess the need for sex-specific mod-
els. As shown in fig. S3, PCA revealed a clear separation between 
sexes along PC2 (fig. S3A), which accounted for 14.7% of the variance 
(fig. S3B). This separation was primarily driven by specific steroids 
such as P5, 11-OH-An, An, DOC, E1, P4, DHT, TE, and AE—most of 
which are sex hormones (fig. S3, C and D). Furthermore, distinct cor-
relations between CA and higher principal components (PC3) were 
observed in female and male groups (fig. S3E), underscoring inherent 
biological differences in steroid profiles between sexes and support-
ing the need for separate sex-specific models. For downstream analy-
sis, the female and male datasets were further divided into 49 samples 
for training and 25 for independent validation (Fig. 1A), ensuring 
robust model evaluation and biological relevance.

Additionally, PC1 accounted for 32.1% of the total variance, and 
its factor loadings revealed a strong positive correlation among ste-
roid variables, suggesting a coherent pattern across individuals, 
likely reflecting shared biological rhythms (fig. S3C). To further in-
vestigate this synchronization, we conducted an interindividual cor-
relation analysis using the raw concentrations of 22 measured 
steroids (fig. S4A). The analysis revealed an average correlation ex-
ceeding 98% across individuals, consistent across all groups (fig. 
S4B). These findings suggest that while interindividual synchroniza-
tion dominates, subtle variability remains present and must be ac-
counted for. To address this, we implemented a scaling approach 
designed to preserve biological consistency while minimizing batch 
effects for downstream modeling.

Maintaining biological consistency and minimizing 
batch variability
Building on the initial observations of raw steroid concentration 
data, we implemented a cumulative distribution function (CDF)–
based proportional scaling method to refine the dataset, aiming 
to preserve inherent relative proportions of steroid concentrations 
while reducing batch variability across samples. This approach 
transforms each sample’s steroid concentrations by aligning them 
with a reference distribution, facilitating consistent downstream 
modeling. Specifically, the scaling process began with a Yeo-Johnson 
transformation followed by z-score normalization to approximate 
normality, standardizing across variables while retaining relative 
concentration differences.

The similarity in distribution patterns for scaled concentrations 
in both the modeling and validation datasets indicates that scaling 
effectively preserves the relative proportions of steroid concentra-
tions within each sample (Fig. 2A). Notably, proportional differ-
ences among steroids are maintained, with reduced intergroup 
variability, as shown by the closer alignment of concentration distri-
butions across cohorts compared to the original data.

To further evaluate scaling’s impact on overall sample distribu-
tion, we renormalized the scaled steroid concentrations into z scores 

D
ow

nloaded from
 https://w

w
w

.science.org at T
he U

niversity of O
saka on M

arch 17, 2025



Wang et al., Sci. Adv. 11, eadt2624 (2025)     14 March 2025

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

3 of 12

Fig. 1. Pathway-based DNN model for BA prediction from serum steroid profiling via LC-MS/MS. (A) Steroid hormone quantification in blood using the LC-MS/MS 
method, with data divided into four groups by sex and assigned to either training with 98 samples or validation with 50 samples. (B) Tailored data scaling techniques were 
applied to address physiological and experimental variability, ensuring a reliable training dataset. This process included a CDF-based proportional scaling method, Yeo-
Johnson transformation, and z-score normalization to maintain relative steroid concentration differences across samples. (C) The DNN model reflects aging heterogeneity 
and lifestyle-related variations by integrating known steroid pathways. A custom WSATL function balances prediction accuracy by weighting differences between BAs and 
CAs, preventing overfitting. (D) The DNN model identified key steroid pathways associated with aging, enhancing biological interpretability for BA prediction. The frame-
work, based on steroid metabolic pathways extracted from the KEGG database, consists of 25 nodes connected by 37 directed edges, revealing the steroidogenesis that 
influences aging.
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for each individual and averaged these values across all steroids. 
This was then compared with z scores derived from the original, 
unscaled steroid concentrations to assess cumulative profiles (Fig. 2B). 
In both the modeling and validation groups, the distribution shifted 
from a broad, flat pattern in the original data to a more concentrated 
distribution centered around a z score of zero, indicating reduced 
sample-to-sample variability. This outcome suggests that scaling ef-
fectively aligns individual distributions and minimizes batch effects 
while preserving biologically relevant concentration gradients be-
tween steroids.

Moreover, analysis of the scaled steroid concentration distribu-
tions in the modeling dataset showed no statistically significant 

differences across ABO blood types (fig. S5A), Rh blood types (fig. 
S5B), or ethnicities (fig. S6), further supporting the robustness of the 
scaling method. This finding suggests that these demographic labels 
are unlikely to influence subsequent modeling outcomes. Together, 
these results underscore the dual advantages of this CDF-based pro-
portional scaling approach: preserving essential steroid concentration 
patterns and minimizing biases that could otherwise compromise 
model accuracy and generalizability. The enhanced uniformity across 
samples and consistency in relative proportions of steroid concentra-
tions within the scaled data are expected to strengthen model ro-
bustness, ensuring that input data accurately reflect biologically 
relevant variation.

A

B

Fig. 2. Impact of CDF-based proportional scaling on steroid concentration distributions. (A) Steroid concentration distributions before and after scaling for model-
ing and validation datasets, stratified by sex. (B) Density distributions of z scores for original and scaled steroid concentrations across modeling and validation datasets 
by sex.
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DNN design: Unveiling pathway biological features and 
sex-specific insights
Building on the achieved uniformity and minimized batch variabil-
ity in scaled steroid concentrations across demographic subgroups, 
we implemented our metabolic pathway–based DNN to predict 
BA. The model’s architecture is explicitly designed to reflect the se-
quential stages of steroid biosynthesis: starting from pregnenolone 
(P5) as the precursor, progressing through intermediate metabo-
lites, and culminating with the physiological indices, pressure index 
(PI) and sexual index (SI), along with the final BA prediction. This 
structured design enables the DNN to model pathways of steroido-
genesis, including both active steroids and their downstream excre-
tory metabolites, which are known to influence aging, particularly 
under various hormonal conditions relating with stress and sex.

To embed biologically meaningful pathways, we initialized the 
edge weights according to Spearman correlations among steroids 
and between steroids and CA (fig. S7). This initialization avoids ran-
dom weights—a common source of instability in DNN models—
and reduces biases linked to irrelevant biological processes by 
uniformly setting initial bias values to zero. To capture the heteroge-
neity of aging across CA, we used a custom weighted symmetric 
arc-tangent loss (WSATL) function, which penalizes disproportion-
ate predictions and maintains symmetry in the model’s handling of 
high and low biases across different CA ranges. In contrast to con-
ventional DNN approaches, which may misinterpret heterogeneity 
as prediction noise or instability, our method intentionally inte-
grates this variability as a biologically meaningful signal. By captur-
ing the increasing variance between predicted BA and CA over time, 
our model aligns with observations from aging studies and provides 
insights into the intricate biological complexity often overlooked in 
traditional frameworks.

Training optimization for enhancing model robustness and re-
ducing the risk of overfitting was conducted through fivefold 
cross-validation to select hyperparameters, specifically the learn-
ing rate (lr) and number of epochs (t), ensuring a balance between 
validation fold loss, training stability, and computational efficiency 
(fig. S8). On the basis of these evaluations, a learning rate of 0.005 
with 4000 epochs was selected for females, and a learning rate of 
0.003 with 8000 epochs was selected for males, yielding smooth 
convergence with minimal loss fluctuation across iterations and 
contributing to stable training dynamics (fig. S9, A and B). The 
scatter distribution of predicted BA against actual CA reflects the 
intended design of the loss function, illustrating that the heteroge-
neity of aging expands over time and that both overestimations 
and underestimations across various CA segments are balanced 
(fig. S9C).

The final trained models, depicted in Fig. 3A (female) and Fig. 3B 
(male), illustrate the pathways of steroidogenesis, highlighting the 
nodes and connections with the greatest impact on BA predictions 
(table S7). Visualization of the scaled weights between pathway 
components (connection weights) enables the identification of a hi-
erarchy of steroid influence on BA prediction. The average contribu-
tion of each node (node influence) propagates through the pathway 
network, providing an indication of each node’s relative role in pre-
dicting BA. Additionally, categorizing nodes by origin (component 
type) allows for the differentiation of endogenous and exogenous 
influences, offering insights into their respective contributions with-
in the model.

Notably, corticosteroid and sex hormone pathways markedly con-
tribute to BA, with distinct impacts observed between female and 
male models, consistent with physiological differences. Corticoste-
roid nodes show strong positive associations with PI in both models, 
aligning with established research linking elevated corticosteroids to 
stress-related aging effects and supporting the hypothesis that stress 
pathways play a substantial role in aging across sexes. The DNN also 
captured sex-specific patterns within the steroid pathway: Estrogen-
related nodes, such as the E1 join node, exhibited heightened influ-
ence in the female model, while androgen-related nodes, such as the 
AT join node, were more pronounced in the male model. This find-
ing emphasizes the physiological specificity embedded within the 
DNN, in line with sex-specific hormonal profiles and their aging im-
plications.

These pathway-based DNN models offer a robust, biologically 
informed approach to predicting BA by precisely leveraging ste-
roidogenesis. To validate the DNN models identified, we assessed 
their predictive accuracy and generalizability, particularly in captur-
ing BA variability across diverse independent validation datasets.

DNN model performance and smoking impact on 
BA prediction
To assess the performance of the established DNN model, we ana-
lyzed the scatter distribution of predicted BA against actual CA for 
both the model training group and the independent validation 
group. The distribution of individual prediction results suggests that 
the boundaries of a twofold change can be interpreted as physiolog-
ical thresholds indicative of a younger or older biological state. No-
tably, most predictions fall within this twofold change range (Fig. 4A). 
Statistical analysis of the WSATL value across the various groups 
reveals no significant differences in prediction losses, indicating 
consistent performance across the cohorts (fig. S10).

Additionally, the independent validation group dataset includes 
smoking habit information, allowing us to further investigate its im-
pact on BA predictions by comparing performance across smokers 
and nonsmokers. By examining the angular difference (φ) among 
individuals, we find that the smoking subgroup of females shows no 
significant difference in φ compared to their nonsmoking counter-
parts (Fig. 4B, Female). In contrast, the smoking subgroup of males 
exhibits a statistically significant difference in φ when compared to 
nonsmokers (Fig. 4B, Male), suggesting that smoking habits may ac-
celerate biological aging in male individuals (49, 50).

It is important to note that while the modeling group lacks ex-
plicit smoking habit labels, which obscures the absolute positioning 
of the reference frame, the relative distribution of φ among different 
smoking habits in the validation group remains discernible. Specifi-
cally, when using the model group data as a baseline, the test of φ 
against a value of zero shows no significant differences across both 
female and male model groups. However, the relative distribution 
differences in φ among the validation group’s smoking habits are 
preserved, highlighting the robustness of our DNN model in cap-
turing the nuanced effects of lifestyle factors on biological aging.

Sensitivity analysis for identifying aging key markers
To assess the sensitivity of the established DNN model, we exam-
ined the impact of doubling the input values of each steroid node on 
the output values of the BA node (Fig. 5A and table S8). Notably, 
both the female and male DNN models revealed that cortisol (COL), 
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a steroid associated with stress and present in relatively high con-
centrations, exerted a momentous positive sensitivity effect on BA 
predictions, exceeding 40%. Additionally, in the female model, ste-
roids such as 17α-hydroxyprogesterone (17-OH-P4), cortisone (COR), 
11-deoxycortisol (COS), and TH-COL also demonstrated a stable 
positive influence on BA. In the male model, P5 and testosterone 
(TE) exhibited similar trends.

Analysis of variance (ANOVA) results indicated that the in-
put values of the 22 steroids explained a substantial portion of 
the BA prediction model, achieving an explanatory ability (η2 
value) of 0.9169 for females and 0.5583 for males, highlighting 
the reliability of our biological process modeling. Conversely, 
we did not identify any steroids with a consistent negative impact 
on BA, suggesting that the physiological regulation required to delay 

Fig. 3. Visualization of the DNN model constructed on pathways of steroidogenesis. Sex-specific variations in steroid pathways for female (A) and male (B) models. 
Distinct colors are used to represent different steroid classes in the steroid labels. Connection weights reflect the influence of hierarchical steroidogenic pathways on BA 
prediction. Node influence reflects the average contribution of each node as it propagates through the pathway network. Component types illustrate the various sources 
of endogenous and exogenous influences. Detailed edge weight values and node values can be found in table S7. Bias, contribution from external pathways; Input, initial 
concentration; Join, summarized contributions from upstream metabolites.
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biological aging is more likely associated with the reduction of 
stress-related hormones.

Furthermore, an analysis of the scaled values of each steroid con-
cerning smoking habits revealed no significant differences across 
sexes (fig. S11), underscoring the necessity of considering the bio-
logical process among steroids. When evaluating BA as an absolute 
indicator of aging, alongside the angular difference (φ) of BA against 
CA as a relative aging indicator, COL demonstrated a strong linear 
correlation and high confidence for both indicators across sex models 
(Fig. 5B). This suggests that COL may serve as a robust marker for 
reflecting BA, with its associated physiological pathways likely con-
taining important factors or processes related to aging regulation.

DISCUSSION
Here, we developed a DNN model based on steroid metabolic path-
ways to predict BA. The model effectively captured the increasing 
heterogeneity of aging over time and the complex biological pro-
cesses influenced by steroidogenesis. After training the model on a 
well-organized dataset, we analyzed the intricate relationships be-
tween specific hormones and physiological aging processes. The 
DNN architecture allowed for a detailed examination of how differ-
ent steroids affect BA, revealing notable sex-specific differences be-
tween female and male models. These findings underscore the 
distinct metabolic pathways in each sex and their influence on ag-
ing trajectories.

B

A

Fig. 4. Performance of the DNN model and smoking impact on BA prediction. (A) Scatter plot of predicted BA versus CA for modeling and validation samples, includ-
ing both smoking and nonsmoking groups. The dashed lines represent the boundaries of the twofold change, which can be interpreted as physiological thresholds in-
dicative of a younger or older biological state. (B) Statistical analysis of angular differences for female and male samples. The gray P values indicate the differences 
between the smoking and nonsmoking groups, while the navy values represent the P values for each group in relation to the null hypothesis (H0) set to a median value 
of zero. Statistical comparisons were performed using the Wilcoxon test adjusted by Bonferroni correction. The groups include nonsmoking (validation, n = 40), smoking 
(validation, n = 10) for each sex, and modeling (smoking status unknown; female, n = 48; male, n = 49) individuals. ns Padj ≥ 0.05; *Padj < 0.05; **Padj < 0.01.
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Steroid metabolism is a systemic process involving contributions 
from multiple organs, including the adrenal glands, liver, and go-
nads (51). The resulting steroid profiles provide an integrated per-
spective on biological aging, capturing dynamic changes that 
transcend isolated organ-specific dysfunction. By focusing on ste-
roid metabolic pathways, our approach bridges the gap between 
organ-specific changes and systemic aging patterns, offering a foun-
dation for investigating the mechanisms underlying aging heteroge-
neity. This systemic nature complements the use of CA as an 
objective temporal reference during model training, allowing us to 
quantify deviations arising from physiological and metabolic het-
erogeneity and to contextualize relative biological changes within an 
absolute chronological framework. These findings highlight the util-
ity of steroid profiles as dynamic biomarkers for investigating the 
multifaceted nature of aging.

One strength of our model lies in its use of a CDF-based propor-
tional scaling that preserves intrinsic relative proportions of steroid 

concentrations while minimizing variations stemming from experi-
mental batch effects, individual physiological differences, and po-
tential circadian fluctuations (52,  53). Building on the observed 
interindividual synchronicity in steroid profiles, this approach ef-
fectively accounts for subtle variability while maintaining synchro-
nization across individuals. As a result, it greatly enhances the 
robustness and accuracy of predictions, as validated within our in-
dependent datasets. However, broader applicability to external data-
sets remains constrained by the requirement for a full steroid panel. 
Future refinements could explore alternative normalization strate-
gies, such as leveraging total cholesterol as a reference, to facilitate 
model adaptation to datasets with fewer available steroid measure-
ments while preserving predictive accuracy.

Our analysis revealed several steroid markers associated with ag-
ing, with COL standing out as a key factor. While these markers have 
been previously identified, our unique analytical framework offers 
deeper insights by providing a refined perspective on their biological 

Fig. 5. Sensitivity analysis and aging marker identification. (A) Percentage change in BA in response to a twofold increase in each of the 22 steroid input nodes for 
sex-specific DNN models. Error bars represent the variability in sensitivity results across individuals. (B) Heatmaps of Pearson correlation coefficients between the 22 ste-
roid input nodes and BA, as well as the angular difference between BA and CA in both female and male models. Pearson correlation test was assessed with Bonferroni 
correction. ns Padj ≥ 0.05; *Padj < 0.05; **Padj < 0.01; ***Padj < 0.001.
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relevance. Specifically, we observed a positive correlation between 
COL and BA, supporting its role as a stress biomarker that reflects 
cumulative physiological wear and tear. This finding aligns with 
studies examining the complex relationship between stress, aging, 
and steroid metabolism. While COL may act as a marker for aging 
rather than a direct causative agent, its involvement in processes 
such as gluconeogenesis and inflammation suppression calls for fur-
ther investigation into its upstream and downstream pathways.

When considering lifestyle factors, smoking status emerged as a 
notable variable, although our validation cohort lacked detailed in-
formation on other behaviors such as alcohol consumption and diet 
(54–59). Our results revealed that only male smokers exhibited a 
more accelerated aging trajectory compared to nonsmokers. We hy-
pothesize that this disparity may be due to the generally higher 
smoking frequency among males. In contrast, the lower smoking 
frequency in females, combined with unmeasured lifestyle factors 
that influence BA, may have obscured the aging effects in female 
smokers. Future studies with larger cohorts and more comprehen-
sive lifestyle and physiological data will be crucial to further eluci-
date these relationships.

Despite the valuable insights provided by this study, several limi-
tations should be acknowledged. The relatively small sample size 
and the lack of detailed lifestyle data across certain cohorts limit the 
generalizability of our findings. Additionally, our treatment of ste-
roids in a static manner, without fully accounting for their broader 
biochemical pathways and circadian variations, may introduce bi-
ases. Furthermore, the specific design of our DNN model, tailored 
to reflect the complexity of steroidogenesis pathways and aging het-
erogeneity, presents challenges for direct comparisons with tradi-
tional methods (17, 40, 41) or other neural network designs (60). 
These challenges arise from fundamentally different evaluation cri-
teria and objectives—balancing biological interpretability with pre-
dictive accuracy in our framework.

To address these limitations, future research should focus on lon-
gitudinal studies that track individuals over time and adopt more 
dynamic approaches that capture steroid fluctuations. Expanding 
the dataset to encompass a broader range of environmental and be-
havioral factors, alongside deeper investigations of sex-specific met-
abolic pathways, will further enhance the predictive power and 
clinical relevance of the model. Additionally, comparative analyses 
with alternative modeling approaches on larger and more diverse 
datasets could provide further insights into the strengths and weak-
nesses of our approach, enabling a more comprehensive evaluation 
of its utility. These advancements could help establish the BA pre-
diction model a valuable tool in personalized aging interventions, 
facilitating the identification of biomarkers and enabling more tar-
geted strategies to modulate aging processes.

MATERIALS AND METHODS
Chemicals
This study used 30 steroid standards and 14 internal standards, as 
summarized in fig. S1 and table S1. HPLC-grade methanol (MeOH), 
acetonitrile (ACN), and 99.998% trace metals basis lithium chloride 
(LiCl), as well as analytical reagent–grade acetic acid (AcOH), were 
purchased from Sigma-Aldrich (USA). HPLC-grade formic acid 
was obtained from FUJIFILM Wako Pure Chemical Corporation 
(Japan). Ultrapure water was produced using an Organo Puric ω 
system (Japan).

Sample acquisition and cohort
Serum samples from 150 healthy individuals were obtained from 
BIOIVT (New York, US). All samples were collected in the United 
States, imported to Japan on dry ice, and stored at −80°C until anal-
ysis. The storage and study protocols were approved by the Institute 
for Protein Research’s ethics committee. Our study modeled BA us-
ing data from 100 healthy participants (50 females and 50 males, aged 
20 to 73 years). The model was then applied to a validation cohort 
of 50 participants (25 females and 25 males, aged 40 to 59 years). Of 
the validation set, 40 participants were nonsmokers, while 10 were 
smokers, each smoking at least 10 cigarettes per day.

Sample preparation
Serum (240 μl) and 4.8 μl of isotope-labeled internal standard solu-
tion were added to a 1.5-ml tube (Eppendorf, Germany) and mixed, 
followed by the addition of 480 μl of ACN. The mixture was vor-
texed at 3200 rpm for 30 s and incubated at 4°C for 30 min, followed 
by centrifugation at 20,000g at 4°C for 15 min to precipitate pro-
teins. The supernatant was transferred to a 15-ml tube and diluted 
with 4.08 ml of H2O, achieving a final ACN concentration of 10% 
(v/v). After a second centrifugation at 19,000g at 4°C for 15 min, the 
supernatant was applied to a Bond Elut C18 column (Agilent, USA), 
preconditioned with 80% ACN and 10% ACN. The sample was 
washed with 10% ACN and eluted with 1 ml of 80% ACN, which 
was collected in a clean tube. The eluate was dried using a speed-vac, 
and the residue was redissolved in 24 μl of 40% MeOH. After cen-
trifugation at 20,000g for 15 min, the supernatant was transferred 
and analyzed by LC-MS/MS.

LC-MS/MS analysis
LC-MS/MS quantification of steroids was performed using an Agilent 
1290 Infinity II and a 6470 triple quadrupole mass spectrometer 
(Agilent) in positive ion mode, using the multiple reaction monitoring 
(MRM) method. Chromatographic separation was achieved with a C18 
column (Eclipse Plus C18 RRHD 2.1 × 100 mm, 1.8 μm, Agilent, USA) 
at 40°C. The details of this method are reported in our previous method.

R environment and packages
All computational analyses were performed in R (version 4.4.1). A 
complete list of packages and their versions used in this study is pro-
vided in table S9. These packages were used for data preprocessing, 
statistical analysis, and model construction.

CDF-based proportional scaling
To achieve cross-batch alignment while maintaining within-group 
proportionality, we calculated a scaling factor k for each individual 
dataset. This process began by applying the Yeo-Johnson transfor-
mation (61) X � = fYJ(X, λ) to each variable X(representing the 
original concentration of steroids) to address nonnormality. Here, 
X ′ represents the transformed data and fYJ is the transforma-
tion function

fYJ(x; λ)=

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

(x+1)λ −1

λ
if λ≠0, x≥0

log(x+1) if λ=0, x≥0

−
(−x+1)2−λ−1

2−λ
if λ≠2, x<0

− log(−x+1) if λ=2, x<0

(1)
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Here, λ was optimized for each variable (steroid) within the mod-
eling group and retained as a parameter for transformations on in-
dependent validation data. Next, to standardize across individuals, 
we computed the z score as

where μ is the mean and σ is the SD of X ′ within each steroid, both 
optimized within the modeling group and retained for parameter-
ized normalization on independent validation data. Thus, for inde-
pendent validation data, transformations and normalizations in Eqs. 1 
and 2 were performed using the retained parameters λ, μ, and σ from 
the modeling group. The z scores Z were then mapped to a common 
CDF to derive the scaling factor k

In Eq. 3, μ is the mean of the distribution and σ is its SD. In Eq. 4, 
μCDF is the mean CDF value across all steroids for each individual, 
with 0.5 representing the cumulative distribution at Z = 0. Finally, 
each individual’s primary-derived dataset was rescaled by k to 
achieve aligned concentration values

Here, Xscaled denotes the final scaled concentration, preserving 
proportional consistency across batches.

Metabolic pathway–based DNN architecture
We extracted steroid-associated metabolic pathways from the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) database (62, 63) and 
encoded each pathway as input to a deep multilayer perceptron 
(DNN), designed to simulate steroid synthesis and metabolic pro-
cesses in organisms. The DNN model was built with 25 components, 
beginning with P5, continuing through 21 intermediate steroids, 
and concluding with PI and SI outputs, with a final output for BA. To 
enhance biological interpretability, the model incorporated 22 input 
nodes representing scaled data for P5 and the 21 intermediate ste-
roids, distributed across eight layers. It also included 24 bias nodes 
(including PI, SI, and BA) to capture influences from other biologi-
cal processes. These input and bias nodes collectively fed into 24 join 
nodes, which represent intermediate outputs for the 21 steroids, PI, 
and SI, as well as the final BA output. A total of 37 weighted edges 
linked upstream input or join nodes to downstream ones, capturing 
interactions among these biological components.

Model loss function designing
WSATL function was designed to address the expanding heteroge-
neity of aging over time

where y represents the true CA and ŷ  represents the predicted 
BA. The parameter δ (default set to 0.001) smooths the function 
f (x) =

√
x2 + δ2 − δ, mitigating sharp deviations. The angular dif-

ference between arctan
(

y

ŷ

)
 and arctan

(
ŷ

y

)
 captures proportional 

similarity between BA and CA, while the denominator in Eq. 6 acts 
as a weighting factor, imposing greater penalties as predictions near 
true values to avoid overfitting.

Model training strategy
Weighted edges between steroids were initialized based on their Spear-
man correlation coefficients, with edges from steroids to PI or SI set 
according to their correlations with CA. Edges from PI and SI to BA 
were intuitively set to 1 or −1, based on previous findings associating 
stress with aging acceleration and active sex hormone levels with youth-
fulness. Join nodes for intermediate steroids were processed through 
the activation function ReLU(x) = max(0, x), while other join nodes 
remained linear. The weights of all edges and biases were iteratively up-
dated through backpropagation, managed by the Adam optimizer (64) 
with default momentum parameters β1 ​= 0.9, β2 = 0.999, and ϵ = 10−8.

Hyperparameter tuning via cross-validation
Hyperparameters in DNN training, specifically the learning rate (lr) 
and epochs (t), were optimized using fivefold cross-validation. The 
modeling group data were divided into five subsets, with each subset 
serving iteratively as the validation-fold while the remaining four 
formed the training-fold data. Optimal values for lr and t were de-
termined by balancing four criteria: median validation loss, the dif-
ference in median loss between validation and training folds, SD 
differences in loss between folds, and the training efficiency ratio 
(t∕lr). This approach ensured robust model performance across a 
range of learning rates (lr: 0.001, 0.003, 0.005, 0.01) and epochs (t: 
1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10,000).

Performance validation across sex and lifestyle factors
After training, the DNN model was transferred to an independent 
validation dataset to assess its performance. Loss values served as 
metrics to determine whether there were statistically significant per-
formance differences between the training and validation datasets 
across sexes, using the Wilcoxon rank sum test with Bonferroni cor-
rection and Kruskal-Wallis H test.

The model’s performance was further evaluated using the de-
fined angular difference φ, calculated as

where y represents the true CA and ŷ represents the predicted BA. We 
tested whether the median φ values for each group (modeling, smok-
ing, and nonsmoking) significantly differed from zero (H0​: median = 0) 
using the Wilcoxon test with Bonferroni correction. Additionally, to 
examine the effects of smoking status, we assessed sex-specific differ-
ences in φ values using the Wilcoxon test, with Bonferroni correction 
applied. This analysis aimed to reveal how smoking habits may affect 
the model’s predictive capacity, providing insights into the potential im-
pact of lifestyle factors on BA predictions.

Sensitivity analysis of the DNN model
To evaluate the sensitivity of the DNN model to variations in steroid 
levels, each steroid concentration was independently increased by 

Z=

(
X� −μ

)

σ
(2)

CDF(x; μ, σ)=
1

σ
√
2π

x

∫
−∞

exp

�
−
(t−μ)2

2σ2

�
dt (3)

k≡
0.5

μCDF
(4)

Xscaled=k ⋅X (5)


(
y, ŷ

)
≡

{√[
arctan

(
y

ŷ

)
−arctan

(
ŷ

y

)]2
+δ2−δ

}2

1+

√(
y− ŷ

)2
+δ2−δ

(6)

φ≡arctan

(
ŷ

y

)
−
π

4
(7)
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100% within the dataset. For each steroid, the resulting change in 
predicted BA was calculated as a percentage difference from the 
baseline prediction. These calculations were performed across the 
entire modeling group, stratified by sex. Using these individual BA 
changes, we derived the mean change and 95% confidence intervals 
(CIs), expressed as CI = μChange ± 1.96 × σChange, to quantify each 
steroid’s impact on model predictions. An ANOVA test on the BA 
changes assessed significant sensitivity differences across steroids, 
followed by an effect size (η2) calculation. Post hoc Tukey’s Honestly 
Significant Difference (HSD) analysis further identified steroids 
with distinct sensitivity effects.

Supplementary Materials
The PDF file includes:
Supplementary Text
Figs. S1 to S11
Legends for tables S1 to S9

Other Supplementary Material for this manuscript includes the following:
Tables S1 to S9
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