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Abstract. The lubricant thickness in cold forging was estimated by machine learning of the in situ 
captured images of the die–workpiece contact interface. The images were in situ captured by a high-
speed camera from the backside of the transparent glass die during forging of commercially pure 
aluminum workpiece. On the other hand, the images of the lubricated workpiece were individually 
captured as training images for random forest with classification. The classification accuracy of the 
lubricant thickness was confirmed to be approximately 75% (classification ability: 5–10 m in 
lubricant thickness) in the training images with 22,500 px (50 px/mm). The in situ captured images 
of the die–workpiece contact interface during forging were classified by random forest using the 
training images. The estimated lubricant thickness of the in situ captured image almost agreed with 
the lubricant thickness estimated from the mean brightness value of the in situ captured image. 

Introduction 

Partial use of transparent glass in die is a well-known technique for in situ (direct) observation of 
die–workpiece contact interface during forming [1]. The die–workpiece contact interface was 
observed from the backside of the glass by a camera. In recent research works, lubricant flow during 
micro bending and ironing using glass die with micro dimples [2], the behavior of lubricant with fine-
ceramic particles during cold ironing [3], and the lubricating behavior during cold drawing using the 
fluorescence method [4] were in situ observed. We also reported the in situ observation of roll–strip 
contact interface during cold rolling with Ptolemaic rolling apparatus [5] and the in situ observation 
of re-lubricating behavior during oscillation forging [6]. In many cases of the research works 
concerning the in situ observation, the captured images are not quantitatively analyzed by image 
processing but qualitatively analyzed by visual inspection. 

On the other hand, machine learning techniques are applied in the field of metal forming. 
Concerning image-based machine learning, surface defects such as crack and hole were detected in 
rolled strip by the captured images of rolled strip [7]. The image-based machine learning may be an 
effective tool for analyzing quantitatively and objectively the features in the captured images. 

For analyzing lubricating behavior during cold forging, machine learning is performed on the 
captured images of the lubricated workpiece in this study. The influence of the machine learning 
conditions on the classification accuracy of the lubricant thickness is investigated by using the 
training data of the captured images of the workpiece. Then the lubricant thickness is estimated from 
the in situ captured images of the die–workpiece contact interface. 

In Situ Observation Conditions of Die–Workpiece Contact Interface during Forging 

Die Layout and In Situ Observation Conditions. Fig. 1 shows the appearance of the apparatus and 
the die layout for in situ observation of the glass die–workpiece contact interface in forging. The 
apparatus was used in our previous research work for the in situ observation of the contact interface, 
and the dimensions of the dies and the workpiece were described in our previous report [6]. The 



 

transparent glass for the observation window was made of ceramic glass (Ohara Inc.: 
NANOCERAM). The disk-shaped glass with 12.0 mm in diameter and 5.0 mm in thickness was 
inserted into the tapered section of the lower die. 

The contact interface was observed through a straight hole (minimum diameter: 4.0 mm) in the 
lower die and case from the backside of the transparent glass. The glass die–workpiece contact 
interface was captured by a high-speed camera with a white LED light source. The captured area and 
resolution were 3.0 mm × 4.0 mm and 600 pixels × 800 pixels (200 px/mm) in the parallel x horizontal 
directions with the tapered surface in the lower die, respectively. 
 

  
(a) Appearance.   (b) Die and workpiece layout. 

Fig. 1 Appearance of apparatus and die layout for in situ observation of glass die–workpiece contact 
interface in forging. 
 
Forging Conditions. JIS A1070 aluminum hollow cylindrical workpiece (Al  99.7 mass%, Vickers 
hardness: 36.8 HV0.2) was forged in two stages at room temperature on a link-type servo press. The 
first stage of forging was for preform of the workpiece with a forging stroke of s1 = 12 mm, while the 
second stage of forging was for the in situ observation of the die–workpiece contact interface with a 
forging stroke of s2 = 13 mm (total forging stroke: s1+s2 = 25 mm). 

Before the second stage of forging, polybutene (280 mm2/s at 313 K) with 5 vol% oil-soluble black 
colorant was applied to the tapered section of the workpiece with approximately 80 µm in mean 
thickness using a syringe. Hereafter, polybutene with colorant was simply described as lubricant. 

Image Analysis Procedures by Machine Learning 

Photographic Conditions of Training Images. The training images of the lubricated workpiece for 
machine learning were prepared as follows. (1) The lubricant was applied to the tapered section of 
the workpiece forged with s1+s2 = 25 mm. (2) The workpiece was inserted into the lower die. (3) The 
surface of the workpiece was captured through the observation hole in the lower die under the same 
photographic conditions with the in situ observation. Here, the lubricant film with thickness of 0–80 
m was formed at a maximum of 11 classes with classification intervals of 5 m or 10 m. Maximum 
100 training images were prepared for each lubricant thickness. The lubricant thickness was 
controlled by the application volume of the lubricant and the application area of the workpiece. 

Fig. 2 shows the examples of the training images of the lubricated workpiece for machine learning. 
The training image of thin lubricant thickness was bright (brightness value: high), while that of thick 
lubricant thickness was dark (brightness value: low). The lubricant thickness was not uniform in the 
analysis area, and the mean coefficient of variation of the brightness value was 0.33 in all captured 



 

images with lubricant thickness of 0–80 m. The mean lubricant thickness was labeled as the 
lubricant thickness in the analysis. 
 

 
 
 

Fig. 2 Examples of training image of workpiece (bv: brightness value, cov: coefficient of variation). 
 
Image Analysis Conditions. The RGB value of each pixel coordinate in the color captured image 
was converted to the brightness values between 0 (black) and 255 (white). The brightness value was 
set as explanatory variable. The in situ captured images of the die–workpiece contact interface with 
lubricant during forging were classified by random forest using the training images. The importance 
of each explanatory variable for classification of the lubricant thickness was also calculated. In the 
random forest, 70% of the training images were set as the training data, while 30% of the training 
images were set as the validation data. The images were classified by the cross-validation in 1,000 
decision trees with less than 10 layers. 

The analysis area of the captured image was set to 3.0 mm in z direction and 3.0 mm in x direction, 
excluding both ends in the x direction (see Fig. 2). The basic resolution of the training images and 
the in situ captured images was degraded with 150 pixels × 150 pixels (50 px/mm). The basic 
conditions of the training images were 11 classes with classification intervals of 5 m or 10 m and 
50 images for each film thickness in the maximum film thickness with 80 m. 

Classification Accuracy in Machine Learning of Training Images 

Fig. 3 shows the relationship between the classification accuracy of the lubricant thickness and the 
number of images for each lubricant thickness in the training images. Here, the classification accuracy 
is the probability that the validation images are correctly classified into the class of the lubricant 
thickness. The classification accuracy increased with the number of images for each lubricant 
thickness, and the classification accuracy was approximately 75% for 50 images and 100 images for 
each lubricant thickness. In order to increase the classification accuracy to over 90%, several hundred 
or more images for each lubricant thickness, or images with clear characteristics for each lubricant 
thickness, is expected to be required. 

The relationship between the classification accuracy of the lubricant thickness and the number of 
classes of the lubricant thickness in the training images is shown in Fig. 4. Here, the images with 
lubricant thicknesses of 0 m and 80 m were absolutely included at each classification analysis. The 
classes were selected at equal class intervals of the lubricant thickness according to the number of 
classes. The classification accuracy decreased as the number of classes increased, however the 
classification accuracy was kept to be approximately 75% in over five classes (class intervals: thinner 
than 20 m in lubricant thickness). Considering the mean brightness value was changed by 5–10 with 
a change of 5 m in lubricant thickness under the photographic conditions, the difference of 5–10 in 
brightness value is suggested to be classified with approximately 75% accuracy under 11 classes with 
classification intervals of 5 m. 

From the above results, it is concluded that the classification accuracy is approximately 75% with 
5–10 m of classification ability in lubricant thickness for the captured images with 50 px/mm under 
the photographic conditions. 

(a) Mean lubricant thickness: 10 m 
(mean bv: 101, cov of bv: 0.36). 

(b) Mean lubricant thickness: 80 m 
(mean bv: 41, cov of bv: 0.19). 



 

 

  
 
 
 
 
 

Estimation of Lubricant Thickness by Machine Learning of In Situ Captured Images of Die–
Workpiece Contact Interface during Forging 

Fig. 5 shows the predicted results of the lubricant thickness in the in situ captured images of die–
workpiece contact interface during forging. Here, the classification interval of the lubricant thickness 
was 5 m in lubricant thickness of 10–40 m in the prediction by machine learning. For comparison, 
the lubricant thickness predicted from the mean brightness value of the in situ captured image was 
also plotted on the basis of the mean brightness value–lubricant thickness relationship in the training 
images [6]. The relationship was approximated by the Beer–Lambert law [8] in the training images. 
Generally good agreement of the predicted lubricant thickness between the machine leaning and the 
Beer–Lambert approximation was obtained. No specific pixel point (location) for the brightness value 
was found in the importance of brightness value for classification of the lubricant thickness. Therefore, 
the classification of the lubricant thickness was not strongly affected by the brightness value at a 
specific pixel point, so that it is concluded that the lubricant thickness predicted by the machine 
learning almost agrees with the lubricant thickness based on the mean brightness value. 
 

 
Fig. 5 Predicted results of lubricant thickness in in situ captured images of die–workpiece contact 
interface during forging (ML: prediction by machine learning, B–L: prediction by mean brightness 
value–lubricant thickness relationship). 
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Fig. 3 Relationship between classification 
accuracy of lubricant thickness and number 
of images for each lubricant thickness in 
training images. 

Fig. 4 Relationship between classification 
accuracy of lubricant thickness and number 
of classes of lubricant thickness in training 
images. 
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The lubricating behavior during forging was suggested from the predicted lubricant thickness as 
follows. Due to the contact of the lubricated workpiece with the lower die at the start of forging (s2 = 
0 mm), much of the lubricant was squeezed out to the outside of the in situ observed area. As the 
contacting pressure between the lower die and the workpiece increased at s2 = 0–10 mm, the contact 
surface of the workpiece was slightly concaved by trapping the lubricant at the center of the lower 
die–workpiece contact area, which was the in situ observed area. As the results, the lubricant 
thickness increased at s2 = 0–10 mm. On the other hand, the lubricant was stretched by extruding the 
workpiece toward the forward at s2 = 10–13 mm, resulting in the lubricant thickness thinning. 

Conclusions 

In this study, machine learning of the captured images of the lubricated workpiece was performed for 
estimation of the lubricant thickness. Following conclusions were obtained. 
1) The classification accuracy of the lubricant thickness was confirmed to be approximately 75% 

(classification ability: 5–10 m in thickness) in the training images with 22,500 px (50 px/mm). 
2) The in situ captured images of the die–workpiece contact interface with lubricant during forging 

were classified by using the training images. The estimated lubricant thickness almost agreed with 
the lubricant thickness estimated from the mean brightness value of the in situ captured image. 
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