|

) <

The University of Osaka
Institutional Knowledge Archive

Title On time change of symmetric Markov processes

Author(s) |Oshima, Yoichi

Osaka Journal of Mathematics. 1988, 25(2), p.

Citation 411-418

Version Type|VoR

URL https://doi.org/10.18910/10069

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



Oshima, Y.
Osaka J. Math.
25 (1988), 411-418

ON TIME CHANGE OF SYMMETRIC
MARKOV PROCESSES

Yoica:r OSHIMA

(Received February 19, 1987)

1. Introduction

Let X be a locally compact separable metric space and m be an everywhere
dense positive Radon measure on X. Suppose that we are given an irreducible
regular Dirichlet space (£,%) on L?*(X;m). There then corresponds an
m-symmetric Markov process M=(Q, B, X;, P,). Let us fix a positiv Radon
measure p charging not a set of zero capacity. Let A be the positive con-
tinuous additive functional (PCAF) associated with x and set Y,=X(A47Y(?)).
We shall denote by (£, F*) the L*(X; u)-Dirichlet space of M*=(Q, B, Y}, P,).
The purpose of this paper is to characterize the extended Dirichlet space (&%, &%)
of (&%, F"*). The characterization given here is originally discussed by Silverstein
[7], but his proof seems to be insufficient. In the transient case however, Fuku-
shima [3] has established the characterization.

If (€, F) is transient, then its extended Dirichlet space (€, F,) becomes a
Hilbert space continuously embedded in an L'(X; gdm)-space. If M is recur-
rent in the sense of Harris, then the quotient space of <, by the family of con-
stant functions becomes a Hilbert space continuously embedded in an LYX;
gdm)-space. In the latter case, we shall identify &, and the quotient space.
Let Y be the support of 4, ¢ be the restriction operator to ¥ and Fy_y={uec
F,;u=0q.e.on Y}. Let

(1.1) g,, == gx_y+¢ﬂy

be an orthogonal decomposition. Then the main result is, for a suitable choice
of the version, Ft=J* and E*(vu, yu)=E(u, u) for all uc H*.

We shall prove this in section 3 by assuming that M is recurrent in the
sense of Harris. See [3] for the same result in transient case. We believe
that the present generalization to recurrent case is important because recurrent
symmetric Markov processes appear in many applications and besides the pre-
sent additional condition of the Harris property can be checked by a kind of
coerciveness condition on the Dirichlet form ([4]).

In section 4, under the hypothesis that Y=JX, we shall be concerned with
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the regularity property of (£, F*) for general regular Dirichlet space (€, &F). If
C is a core of (&, F), then for general (not necessarily smooth) positive Radon
measure g such that m=<u, (&, C) is closable on L*X; u). But, if x is not a
smooth measure, then the corresponding process cannot be obtained by time
change. In addition to the conditions on p in the first paragraph, if we assume
that p—m is a bounded measure or a measure with finite energy integral, then
(&, F*) becomes the Dirichlet space obtained by the smallest closed extension of
(&, C) on LA(X; w).

The author is grateful to Professor M. Fukushima for his helpful sugges-
tions.

2. Preliminaries

In this section, we shall state some general results for the following sec-
tions. In the next section, we shall restrict the situation to the Harris recurrent

case.
For two PCAFs (®,) and (¥,), we define the kernels V3% and V§ by

Vit f(x) =E, [So exp(—p®,—q¥,) f(X;) d'¥]
and V{=V3%, respectively. When ¥,=t, then we shall set V§i=V3%, Vit=
V4, and V'=V4. If Vi%| f| is bounded a.e. for some =0, then we have the
following generalized resolvent equation ([5]).
(2.1) Vi [—Var fH(p—7) Vi Ver fH(q—s) VEe Vaw f= 0.

Let Y, and Y be the support of x and A4, respectively, that is, Y, is the
smallest closed set outside of which p vanishes and Y is the fine closed set defined
by Y={x; P,[4,>0 for all £>0]=1}. Then YCY, and u(Y.—Y)=0 by [3;
Lemma 5.5.1]. Let oy be the hitting time of ¥ and set Hp(x)=E,[$(X (av))],
then oy=inf {¢; 4,>0} a.s.P, for q.e. x by [2; V. 3.5], and, in particular,

(2.2) Hep(x) = limpVip(x)  for gq.ex.
P>
Let 9 be the class of functions defined by
23)  D=A{Vif;p, ¢>0,feC(X)} ULV f; p, >0, fEC(X)} .

In [5; §5], we proved the following results under the hypothesis that Y=2X,
but, by using (2.2), the same arguments are valid under the present situation.

Lemma 2.1. M* is a p-symmetric normal strong Markov process on Y.

Lemma 2.2. (i) 9CH and yPCF*
(i) D is & -densei in F and v9) is E-dense in F*, where E\(+, <)=E(-, *)+
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(') ')Lz(m) and 8#(') °)=8(" ')+(" ')Lz(ﬂ-)'
(i) Ifus9D, then HueS and

(2.4) E(Hu, Hu) = E*(vyu, yu) .

Since (&, &) is irreducible, so is (€%, F*) by [7]. The extended Dirichlet
space (€, F,) of (€, F) is defined as follows: A function u belongs to &, if there
exists an £-Cauchy sequence {u,} CF such that lim u,=u m-a.e. In this case
E(u, u) is defined by E(u, w)=lim E(u,, u,). "~

If (€, F) is transient, then by [3; p. 67], (€, <,) is a Hilbert space and
there exists a strictly positive function g& LY(X; m) such that

(2.5) Slu(x) | g(%) dm(x)<E(w, u)*> forall ued,.

Also, each function uE<%, has a quasi-continuous (q.c.) modification. If
(fs V°f)12m<<oo then V° fEF, and

(2.6) Ew, VO f) = S u(x) f(x) dm(x)
holds for all ue<F,.

In the remainder of this section, we shall assume that (£, F) is recurrent.
Let C be a measurable subset of X such that 0<<m(C)<Cco and set <I>,=St I(X,)
0

ds. Then (Vg}),z,is the resolvent of the m-symmetric Markov process M¢ given
by the (exp(—®;))-subprocess of M. The L*X; m)-Dirichlet space (£, F€) of
MF is given by

(2.7) FC=F and &Eu,v) = EU, v)+(U 0)12my »

where mg(+)=m(+ N C) ([5]). Since 1=Vy} I is a potential relative to M€, we
see, using (2.7) that 1 belongs to the extended Dirichlet space F¢ of ¢ and
&(1, 1)=0.

Lemma 2.3. For all C such that 0<m(C)<<oo, F¢ is contained in F, and,
conversely, if uc S, then there exists a measurable set C with 0<m(C)<<oco satisfy-
ing usF?.

Proof. Since E(u, u) <E(u, u) for all u€SF by (2.7), the first statement is
obvious. Conversely, if ¥, then there exists an £-Cauchy sequence {u,} of
functions of &F such that lim u,—uw m-a.e. Take the set C so that 0<m(C)<<oo

nro

and {u,} and u are bounded on C. Then, by (2.7), {u,} forms an £°-Cauchy
sequence of functions of €. This implies that u& % ¢.
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Since (£°¢, F°) is a regular transient Dirichlet space, we have the following
Corollary 2.4. Each function of F, has a q.c. modification.

In the followings, all functions of &, are assumed to be quasi-continuous.
In the next section, we will assume that M is recurrent in the sense of Harris
relative to m, that is,

2.8) j: f(X)dt = oo P,as.

for any f =0 such that S f(x) dm(x)>0, for each xX. For the sufficient con-

ditions of this, we shall refer Fukushima [4]. In this case, if we consider &, to
be the quotient space of &, by the family of constant functions and & defined
naturally on it, then (£, &,) becomes a Hilbert space. Moreover, there exists a
strictly positive function g& L'(X; m) and a linear functional I(-) such that

29) [ 1) — 1) g() dm()<E u, s,

for all ue <, ([5]). If M is recurrent in the sense of Harris relative to m, then
so is M* relative to u by Azéma, Duflo and Revuz [1]. Hence (€*, %) becomes
also a Hilbert space.

ReMARK. In view of Lemma 2.3 and the paragraph preceding it, the con-
dition
(2.10) e, and £(1,1)=0
is a necessary condition for an irreducible regular Dirichlet space to be recur-

rent. This is also a sufficient condition ([4]).

3. Characterization of (£", F%)

In this section, we shall assume that M is recurrent in the sense of Harris
relative to m. Then the decomposition (1.1) is well defined. For each meas-
urable set C such that 0<m(C)<<oo, let F§_y={uEF?; u=0q.e. on Y} and

(3.1) G =G v+
be the orthogonal decomposition of (€¢, F¢). Define HC by
(3.2) HC u(x) = E, [exp(—® (o)) #(X(ov))] -

Then, by the result on transient Dirichlet space, the orthogonal projection of
ueF¢ on HE is given by HC u ([3; (5.5.6)]). In the next lemma, we shall show
that the projection of u€, on ¥ is given by Hu.
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Lemma 3.1. If uc4,, then Hu is its orthogonal projection on Si*.

Proof. We may suppose that u is bounded. Let R*~Y be the potential
operator of the process X killed on Y, that is,

R () = B[ f(x) an,
0
then R¥~¥(I.HC u) (x) belongs to & x_y and satisfies
(3.3) E (v, R*Y(IHC u)) = (v, IcH® 4) 2 »
for all veF5_y. Since

R¥-Y(I,HC u) (x) = E, [S:" HC u(X,) d®,]
= B[ Er exp (— (o) X (o)) d]

= I exp(—@(on)+ @) uX(oy) 4]
= Hu(x)—HC u(x) ,
using Lemma 2.3, (2.7), (3.3) and the remark after (3.2), we have
E(v, Hu) = E(v, R (I,HE u)+HE 1) = (v, I.HC u)-+E(v, HE u)
= (v, IcH® u)+&°(v, H® u)—(v, HC u),,, = 0
for all v 4_y under a suitable choice of C. This implies that Hue 4*.

Theorem 3.2. Fi=v Y in the sense Yy H¥ CFY and, conversely, for each
bETY there exists us HY such that yu=¢ p—a.e. In this case,

3.4 E(u,u) = E¢p, ).

Proof. Suppose that u J(¥, then there exists an £-Cauchy sequence {u,}
of functions of 9 such that lim #,=u m-a.e. by Lemma 2.2, Take the set

C so that u, and » are uniformly bounded on C. Then {u,} is an £°-Cauchy
sequence which converges m-a.e. to u. Since (£¢, F°) is transient and regular,
by the 0O-th order version of [3; Theorem 3.1.4], it contains a subsequence
{u,,} which converges to # q.e. Hence we have

(3.5) Yu = il_g} Yi,, q.e.,

and, in particular, the convergence is p-a.e. By Lemma 2.2, {yu,} forms an
&*-Cauchy sequence of functions of *. Thus we have yusF¥.
Suppose, conversely, that ¢ €F;. Then there exists a sequence {u,} of
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functions of 9 such that {yu,} is £*-Cauchy and lim u,=¢ p-a.e. by Lemma 2.2.

Since {Hu,} forms an £-Cauchy sequence of functions of ¥ by (2.4), it con-
verges to some uE (" in (£, F,). We can see using (2.9) that Hu, converges to
u in LY X; gdm) up to an additive constant. By taking a subsequence, we may
assume that Hu, converges to u m-a.e. As in the first part of the proof, there
then exists a subsequence {Hu,,} which converges to u q.e.

Hence we have

vyu = lim yHu,, = lim yu,, = ¢ p-a.e.
k>0 k>oo

4. Minimality of the time changed process

In the preceding section, we put no assumption on the support Y of the
CAF A4 but assumed that M is recurrent in the sense of Harris. Under the
assumption, since Y is not open in general, the regularity of (£*, &*) does not
make sense.

In this section, for general regular Dirichlet space (&, &F), under the as-
sumptions that ¥=X and an additional finiteness condition of u, we shall show
that (€, *) becomes regular. Let C be a core of (&, &), that is, C is a family
of functions of Cy(X) which is uniformly dense in Cy(X) and &,-dense in &.

Theorem 4.1. Suppose that Y=X q.e. and p satisfies one of the following
conditions:
(i) [p—m]| is a finite measure,
(i) |p—m| is a measure with finite energy integral.
Then (E*, F*) is a regular Dirichlet space with C as core.

Proof. Since p is a smooth measure, there exists a strictly positive func-
tion h& LY(X; p) such that

(4.1) [ 106 1h2) duix) = K &, 0y

holds for some constant K and all quasi-continuous function uES (see [3;
Theorem 3.2.3)).

Suppose that uC, there then exists a sequence {u,} of functions of 9 such
that &,(u,—u, u,—u)—0 as n—co by Lemma 2.2. Hence lim u,=u in LY(X; hdy)

n-ro

by (4.1) and, in particular, by choosing a subsequence, lim u,=u p-a.e. This

implies that u€ <% and &*(u, u)=E(u, ). Since ue L*(X; u), we have ucF*
(see [7; Remark 1 after Lemma 1.7]). It thus enough to show that C is £%-dense
in 9 by Lemma 2.2.
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Let u= 9, then there exists a sequence {u,} of functions of C such that lim

n-»oo

E(u,—u, u,—u)=0, by the regularity of (€, F). It then follows that lim u,=u

w-a.e. and lim &*(u,—u, u,—u)=0, as above. It is hence enough to show that
liin #,=u in L*(X; w). Since u is bounded, by truncating u, by an upper bound

of |u(x)|, we may assume that {u,} are uniformly bounded. Then, under the
hypothesis (i), the L*(X; u)-convergence of {u,} to u is obvious. On the other
hand, if (ii) is satisfied, then

(4.2) S Vg1t () | 0| () < K &ty —1, 11— 10)"* ,

for some constant K. Hence lim #,=u in L¥X; |u—m|). This shows that

nroo

{u,} converges to u in L*X; u), since it converges in L*(X; m).

Corollary 1. Let pu be a smooth measure such that Ky =m for some constant
K. If p satisfies (i) or (it) in Theorem 4.1, then (E*, F*) is regular.

Proof. If Ku=m then, the CAF associated with Ky is strictly increasing
and so is A. Hence Y=JX and the result follows from the Theorem.

Corollary 2. Let u be a positive Radon measure such that Km= p for some
constant K. If Y=2X, then (E", F*) is regular.

The proof is obvious, since & <&k holds under the present condition.
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