

Title	On covering property of abstract Riemann surfaces
Author(s)	Kuramochi, Zenjiro
Citation	Osaka Mathematical Journal. 1954, 6(1), p. 93- 103
Version Type	VoR
URL	https://doi.org/10.18910/10072
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

On Covering Property of Abstract Riemann Surfaces

By Zenjiro KURAMOCHI

Let R be an abstract Riemann surface of finite genus belonging to the class O_{AB} , then it is well known that any covering surface on the *w*-plane, defined by a non-constant analytic function on R covers any point except at most a null-set, that is, the boundary of the surface of O_{AB} on the *w*-plane. In this paper we shall study Iversen's and Gross's property, but at present what we can prove is only that a subclass of O_{AB} has Iversen's property, thus the validity of Iversen's property of O_{AB} is an open problem.

1) We suppose a conformal metric is given on R, of which a line element is given by the local parameter $ds = \lambda(t) |dt|$, and let O be a fixed point of R. Denote by D_{ρ} the domain bounded by the point set having a distance $\rho : \rho < \infty$ from O, and suppose for $\rho < \infty$ that the domain D_{ρ} is compact, $\lim_{\rho = \infty} D_{\rho} = R$, the boundary Γ_{ρ} of D_{ρ} is composed of $n(\rho)$ components, r_1, r_2, \cdots, r_n , and that $\Lambda(\rho)$ is the largest length of r_k $(k = 1.2, \cdots n,)$:

$$l_k = \int_{r_k} ds$$
, $\Lambda(\rho) = \max_k l_k$.
 $N(\rho) = \max_{\rho' \leq \rho} n(\rho')$.

Put

Pfluger proved⁽¹⁾ that if

$$\lim_{\rho=\infty} \sup \left[4\pi \int_{\rho_0}^{\rho} \frac{d\rho}{\Lambda(\rho)} - \log N(\rho) \right] = \infty ,$$

then $R \in O_{AB}$.

Theorem 1. If

$$\lim_{\rho=\infty} \sup\left[\pi \int_{\rho_0}^{\rho} \frac{d\rho}{\Lambda(\rho)} - \log N(\rho)\right] = \infty \quad (genus of \ R \leq \infty) \,,$$

¹⁾ A. Pfluger: Sur l'existence de fonctions non constantes, analytiques, uniformes et bornées sur une surface de Riemann ouverte, C. R. Acad. Sci. Paris, 230, 1950, pp. 166-168,

Z. KURAMOCHI

then every connected piece of R over $|w-w_0| < S$, covers every points except at most the null-set ${}^{(2)}E_{AB}$, which is the boundary set of a domain of O_{AB} on the w-plane.

Proof. If there exists a lacunary set E, which is being clearly closed, not contained in E_{AB} in $|w-w_0| \leq S$, we can construct a bounded analytic function A(w) in the w-plane except E and regular on $|w-w_0| = S$. Define a harmonic function U(w) on $|w-w_0| \leq S$ such that U(w) = real part of A(w) on $|w-w_0| = S$, then it is clear that the conjugate function V(w) of U(w) is bounded on $|w-w_0| \leq S$ and A(w)-U(w)-iV(w) = B(w) is bounded on $|w-w_0| \leq S$ and further $B(w) \neq$ constant. Consider the closed domain \overline{G} such that⁽³⁾ $Re(B(w)) \geq 0: |w-w_0| \leq S$, and let V be the image of \overline{G} on R, then V has relative boundaries $l_1, l_2, \dots, l_p, \dots$, on which the Re B(w) vanishes.

Each l_i is non compact, since otherwise $\mathfrak{F}_m \quad B(w)$ is not one valued on account of $\int_{l_i} \frac{\partial Re \quad B(w)}{\partial n} ds > 0.$

Every l_i converges to the boundary of R. Let B(p) be the function B(w) considered as the function on $R \cap V$, $p \in R \cap V$.

Since $B(p): p \in (R \cap V)$ is bounded, we can suppose that V is mapped on the semi-circle $|\xi| < 1$ Re $\xi \ge 0$ and every l_i is mapped on the imaginary axis. After Pfluger we introduce in $|\xi| < 1$ the hyperbolic metric by the line element defined by $ds = \frac{|d\xi|}{1-|\xi|^2}$. Consider V in D_{ρ} and put $D_{\rho}' = D_{\rho} \cap V$. The boundary of D_{ρ}' is composed of l_i and $\sum_{i=1}^{n(\rho)} \sum_{j=1}^{i(1)} r_i^j$, where r_i^j is an arc contained in r_i . Let L_i^j be a segment on imaginary axis connecting two end-points of the image r_i^j lying on the imaginary axis, and \tilde{L}_i^j be image of r_i^j . Then

$$ilde{L}^j_i = \int\limits_{r^j_i} ds \geq ext{length of } L^j_i \, .$$

Let A_j^i be the area bounded by \tilde{L}_i^j and L_i^j . Then by the isoperimetric problem

$$\begin{split} 4A_i^j(A_i^j + \pi) &\leq (\tilde{L}_i^j + L_i^j)^2 \leq 4(\tilde{L}_i^j)^2 ,\\ 4A_i(A_i + \pi) &\leq 4\tilde{L}_i^2 , \end{split}$$

²⁾ In this article, we denote by E_{AB} the null set of O_{AB} on the plane.

³⁾ Without loss of generality we may assume that there exists a point w_0 satisfying the real part of $B(w_0)$ is poritive.

where

$$A_i = \sum_j A_i^j$$
, $ilde{L}_i = \sum_j ilde{L}_i^j$.

If r_j has no common point with any l_i , then we have

$$4A_{\mathbf{j}}(A_{\mathbf{j}}+\pi) \leq \tilde{L}_{\mathbf{j}}^2.$$

Thus

$$4A_i(A_i+\pi) \leq 4\tilde{L}_i^2$$
, for every i .

Denote by A_{ρ} the area of image of $D_{\rho'}$. Then $A_{\rho} \leq \sum A_{i}$, and in the same manner as used by Pfluger, we have

$$4A_{\mathsf{p}}\left(\pi + \frac{A_{\mathsf{p}}}{n}\right) \leq 4\pi (\sum A_i + \sum A_i^2) \leq 4\sum \tilde{L}_i^2 \,.$$

On the other hand

$$\begin{split} \tilde{L}_{i}^{2} &\leq l_{i} \int_{r_{i}} \frac{\left|\frac{d\xi}{dz}\right|^{2}}{(1-|\xi|^{2})^{2}} dz ,\\ &\sum_{i}^{n} \tilde{L}_{i}^{2} \leq \Lambda(\rho) \frac{dA_{\rho}}{d\rho} ,\\ &A_{\rho}\left(\pi + \frac{A_{\rho}}{n}\right) \leq \Lambda(\rho) \frac{dA_{\rho}}{d\rho} , \end{split}$$

.

hence

$$rac{A_{
ho_0}}{\pi+A_{
ho_0}} \leq N(
ho) \, \exp\left(-\pi \, \int\limits_{
ho_0}^{
ho} rac{d
ho}{\Lambda(
ho)}
ight).$$

Thus by assumption A_{ρ_0} must be zero, from which the conclusion follows.

Denote by n(w) the number of sheets of connected piece of R on $|w-w_0| < S$ over a point w.

Theorem 2. Let R be a Riemann surface belonging to $O_{AB}(O_{AD})$ of finite genus and let V be a connected piece on $|w-w_0| < \rho$ such that $n(w) \leq N < \infty$. Then V covers every point except at most a null-set $E_{AB}(E_{AD})$.

Denote by
$$D_N$$
 set of points of projection of V such that $n(w) = N$.
Then from the lower semi-continuity of $n(w)$, it is clear that D_N is
an open set and the boundary B_N of D_N is closed.

1) B_N is a totally disconnected set. If it were not so, take a continuum-component B_N' of B_N and a point p such that $n(p) = \max n(w)$

 $= S: w \in B_N$, and let v(p) be a neighbourhood of p with boundary l such that l has at least one component $l' (\in D_N)$ of $(l-B_N')$ and $v(\rho)$ $(\cap B_{s'}) \subset D_{s'+1}$. Since p is covered S times by V, there exists at most S discs $k_{s'}, \dots, k_{s'}$ (S' \leq S) on v and at least another disc k_0 on v, and V on k_0 has at least a connected piece with lacunary of a continuum, larger than $v(p) \cap B'_N$, and at most (N-S) number of relative boundary components $L_1, L_2, \dots, L_{N'-S'}$ lying on $l' (N'-S' \leq N-S)$. We denote such a connected piece by \tilde{V} . Since the genus of R is finite, it can be mapped by w = f(p) onto a sub-Riemann surface R in the other closed surface R^* . R^*-R is a totally disconnected set. Consider the image of \tilde{V} in R^* . Then we can see easily that every image of L_i $(i = 1, 2, \dots, N' - S')$ converge to a point of R^* , because $R^* - R$ is totally disconnected and $p = f^{-1}(w)$; $p \in R^*$ is continuous. Denote by $ilde{ ilde{V}}$ the domain on R^* bounded by the image L_i and by a finite number of points of a subset of R^*-R . On the other hand by assumption v(p) has a continuum boundary except the projection of L_i , thus we can define a bounded (Dirichlet bounded) analytic function $\varphi(w(p))$ on v(p) with vanishing real part on L_i . If $\varphi(w(p))$ is analytic in $ilde{V}$, it must be a constant, therefore there exists in $ilde{V}$, a closed set Ewhere $\varphi(p)$ is not regular. Therefore by Neumann's⁽⁴⁾ method and by Abel's integral, we can construct a bounded analytic (Dirichlet bounded) function on R, which contradicts the fact that $R \in O_{AB}(O_{AD})$.

2) Since B_N is a totally disconnected closed set, we can take a neighbourhood V'(p) such that the boundary⁽⁵⁾ of V'(p) is completely contained in D_N and enclosing a lacunary set E of the connected piece. Thus by the same method as above, we can conclude that $R \in O_{AB}(O_{AD})$.

Remark 1) If $R \in O_{AB}(O_{AD})$ covers the *w*-plane a bounded number of times, then we can see easily that the mapping function is regular throughout R^* , and the function must be an algebraic function.

⁴⁾ Since $E(\subseteq (R^*-R))$ is a closed and totally disconnected set, we can find a domain D, with relative boundary ∂D , in $\tilde{\tilde{V}}$ such that $D \supseteq E'$ $(E \supseteq E')$, distance $(\partial D$. relative boundary of $\tilde{\tilde{V}} > 0$, and distance $(E', \partial D) > 0$. Then by Neumann's method, we can construct a non constant harmonic function $U_1(p)$ such that $(Re \ \varphi(p) - U_1(p))$ is harmonic in $\tilde{\tilde{V}}$, $U_1(p)$ is harmonic in R^*-D , and the conjugate of $U_1(p)$ is single valued in D, therefore we can construct a bounded (Diriclet bounded) function with a linear form of Abel's first kind of integral.

⁵⁾ \tilde{V} in R^* , above defined, of every connected piece on V'(p) has at most N number of analytic curves as its relative boundary.

Remark 2) We conjecture that every Riemann surface belonging to O_{AB} of finite genus has Iversen's property but the present auther did not succeed to prove it.

Theorem 3. A Riemann surface belonging to O_{AB} of finite genus has not necessarily the Gross's property.

Example. Let F_0 be the unit-circle |z| < 1 with slits $S_i^n: n = 1, 2, 3, \dots; i = 1, 2, \dots, q_n$ such that (Fig. 1)

$$S_i^n : 1 - \frac{1}{p_n} \le |z| < 1$$
, $\arg z = \frac{2\pi i}{q_n}$,
 $i = 1, 2, 3, \dots, q_n$, $p_n = \tilde{a}^n : \tilde{a} > 4$.

Lemma. Let F_i^n be the unit-circle with slits S_i^n , and connect F_o with every F_i^n on corresponding slits S_i^n crosswise, then we have infinitely many sheeted covering surface on the unit-circle. If we take q_n sufficiently large, then we have $\omega(p) \equiv 0$, where $\omega(p)$ is the harmonic measure of the boundary of F_o on |z| = 1.

 $F_i^n: i = 1, 2, \cdots, i_0(n)$. $n = 1, 2, 3, \cdots$

Fig. 1

Z. KURAMOCHI

Fig. 2

We denote by $G_{i,i+1}^{m,n}$ $(n \ge m)$ the domain of F_0 enclosed by straight lines A, B and circular arcs C, D such that (Fig. 2)

$$\begin{aligned} A: \ 1 - \frac{1}{p_n} &\leq |z| \leq 1 - \frac{1}{p_{n+1}}; \ \arg A = \arg S_i^m = \arg S_i^n, \\ B: \ 1 - \frac{1}{p_n} &\leq |z| \leq 1 - \frac{1}{p_{n+1}}; \ \arg B = \arg S_{i+1}^n, \\ C: \ |z| &= 1 - \frac{1}{p_{n+1}}; \ \arg S_{i+1}^n \leq \arg z \leq \arg S_i^n, \\ D: \ |z| &= 1 - \frac{1}{p_n}; \ \arg S_{i+1}^n \leq \arg z \leq \arg S_{i+1}^n. \end{aligned}$$

 $F_i^m(F_{i+1}^n)$ has a slit $S_i^m(S_{i+1}^n)$ with edges ${}^+S_i^m, {}^-S_i^m({}^+S_{i+1}^n, {}^-S_{i+1}^n)$ (S_i^n has two edges). We consider $\omega(p)$ in the surface $F_i^m + G_{i,i+1}^m + F_{i+1}^n$, where $G_{i,i+1}^{m,n}$ is connected with F_i^m on A by ${}^+S_i^m$, with F_{i+1}^n on B by ${}^-S_{i+1}^n$. $F_i^n + G_{i,i+1}^{m,n} + F_{i+1}^n$ has boundaries $C, D, {}^-S_i^m, {}^+S_{i+1}^n, ({}^+S_i^m - A), ({}^-S_{i+1}^m - B)$ and the boundary on |z| = 1.

Let $\omega^*(p)$ be harmonic measure of ${}^-S^m_i + {}^+S^n_{i+1} + ({}^+S^m_i - A) + ({}^-S^n_{i+1} - B)$ with respect to $F^n_i + G^m_{i,i+1} + F^n_{i+1}$. Then it is clear

$$\omega^{*}(p) \geq \omega(p)$$
 .

Denote by $(F_i^n + G_{i,i+1}^{m,n} + F_{i+1}^m)^*$ the simply connected domain with boundaries such that (Fig. 3)

$$\begin{array}{rl} H: & 0 \leq |z| \leq 1 - \frac{1}{p_n}, \ \arg z = \arg S_i \,, \\ E: & 1 - \frac{1}{p_{n+1}} \leq |z| \leq 1 \,, \ \arg z = \arg S_i \,, \\ I: & 0 \leq |z| \leq 1 - \frac{1}{p_n}, \ \arg z = \arg S_{i+1} \,, \\ F: & 1 - \frac{1}{p_{n+1}} \leq |z| \leq 1 \,, \ \arg z = \arg S_{i+1} \,, \\ J: & 0 \leq |z| \leq 1 \,, \ \arg z = \pi + \frac{\arg S_i + \arg S_{i+1}}{2} \,, \\ K: & |z| = 1 \,, \ 0 \leq \arg z \leq \pi \,, \\ K': & |z| = 1 \,, \ \pi \leq \arg z \leq 2\pi \,, \\ & \text{and} \quad C + D \,. \end{array}$$

Let $\omega^{**}(p)$ be the harmonic measure of E+D+H+I+J+F+C. Then

$$\begin{split} 0 &\leq \omega(p) \leq \omega^{*}(p) \leq \omega^{**}(p) \text{. Let } \alpha \text{ be a half of the semi-circle passing} \\ \text{through the point } |z| &= \frac{1}{2} \Big(2 - \frac{1}{p_n} - \frac{1}{p_{n+1}} \Big), \text{ arg } z = \frac{1}{2} \left(\arg S_i + \arg S_{i+1} \right). \end{split}$$

 1°) The value of $\omega^{**}(p): p \in \alpha$.

Suppose $(\arg S_i + \arg S_{i+1}) = 0$, and let S be a point on $\alpha : S = \left(1 - \frac{p_{n+1} - p_n}{2p_n p_{n+1}}\right) e^{i\theta}$, $|\theta| \le \frac{\pi}{4}$. To investigate the behaviour of $\omega^{**}(p)$,

Z. KURAMOCHI

we transform these figures by a linear function $w = \frac{z-S}{1-Sz}$. Let C_n , C_{n+1} be circles such that

$$C_n: |z| = 1 - \frac{1}{p_n}, \quad C_{n+1}: |z| = 1 - \frac{1}{p_{n+1}}$$

Then C_n , C'_{n+1} will be mapped on to circles C'_n , C'_{n+1} such that

$$C'_{n}: \left| w - \frac{a^{2}r - r}{1 - a^{2}r} e^{i\theta} \right| = \frac{a - r^{2}a}{1 - a^{2}r^{2}}, \quad C'_{n+1}: \left| w - \frac{r^{2} - rb^{2}}{1 - b^{2}r} e^{i\theta} \right| = \frac{b - r^{2}b}{1 - b^{2}r},$$

here
$$a = 1 - \frac{1}{p_n}, \quad b = 1 - \frac{1}{p_{n+1}}, \quad r = 1 - \frac{p_{n+1} - p_n}{2p_n p_{n+1}}, \quad \cdots \quad (A)$$

1) distance
$$(C'_n, 0) = \frac{p_n(2p_np_{n+1}-p_{n+1}-p_n)}{4p_n^2p_{n+1}-3p_np_{n+1}+p_n^2+p_{n+1}-p_n}$$

$$= \frac{2-\frac{1}{\tilde{a}^n}-\frac{1}{\tilde{a}^{n+1}}}{4-\frac{3}{\tilde{a}^n}+\frac{1}{\tilde{a}^{n+1}}+\frac{1}{\tilde{a}^{2n}}+\frac{1}{\tilde{a}^{2n+1}}}.$$

2) distance
$$(C'_{n+1}, 0) = \frac{(p_{n+1}+3p_n)p_{n+1}}{p_{n+1}^2+3p_np_{n+1}+p_{n+1}-p_n} = \frac{1-\overline{\tilde{a}}}{1+\frac{1}{\tilde{a}}+\frac{1}{\tilde{a}^{n+1}}-\frac{1}{\tilde{a}^{n+2}}}$$

3

3) $z = S \longrightarrow w = 0$. 4) $z = 0 \longrightarrow w = -S$. 5) $z = e \longrightarrow w = e^{i\theta_1'} : \theta_1' = \arg S_i$. 6) $z = e \longrightarrow w = e^{i\theta_2'} : \theta_2' = \arg S_{i+1}$. 7) the radius $z \stackrel{\frown}{=} 0, z = e^{i\theta_1} \longrightarrow$ orthogonal circle $e^{i\theta_1'}, -S$. 8) the radius $0, e^{i\theta_2} \longrightarrow$ orthogonal circle $e^{i\theta'_2}, -S$. 9) the radius $0, -1 \longrightarrow$ orthogonal circle $-re^{i\theta}, \frac{-1-re^{i\theta}}{1+re^{i\theta}},$ (this circle tends to $e^{-i\theta}$ when $r \rightarrow 1$.)

$$z=1 \longrightarrow w = \frac{1-re^{i\theta}}{1-re^{-i\theta}}: \quad \theta \leq \frac{\pi}{2^2}.$$

Let $\omega^{\beta}(z)$ be the harmonic measure of β (β lies on |z| = 1 and arg $S_i \leq \arg z \leq \arg S_{i+1}$) with respect to the unit-circle. Then $\omega^{\beta}(z) : z \in \alpha$ attains its maximum when $\arg z = \frac{1}{2}$ ($\arg S_i + \arg S_{i+1}$), which implies that the length of the image of β is largest when $\arg S = 0$, in which case the mapping function is reduced to $w = \frac{z-r}{1-rz}$. If we denote by β_1^* and β_2^* the end-points of the image β^* of β , then we have

w

On covering property of abstract Riemonn surfaces

If we take θ so small that (B) $\cos \theta > \frac{2r}{1+r^2}$,

then the length of β^* is smaller than π .

Elementary calculation yields from (A) and (B)

$$heta < \sqrt{rac{ ilde{a}-1}{2 ilde{a}^{n+1}}}$$
 ,

i.e.,

$$q_n > 4\pi \sqrt{rac{2 ilde{a}^{n+1}}{ ilde{a}-1}}$$

If we consider in 9) the radius (, -1), then the argument of its image arg $\left(\left(\frac{-1-re^{i\theta}}{1+re^{-i\theta}}\right)\right)$ is smallest when $\theta = \frac{\pi}{4}$: thus

$$\arg \frac{-1-re^{i\theta}}{1+re^{-i\theta}} \ge 2\left(\tan^{-1}\frac{1+\sqrt{2}}{\sqrt{2}}\right) > \frac{\pi}{2} + \mathcal{E}_{0} \quad \left(\frac{\pi}{4} \ge \theta \ge 0\right),$$

and the argument of $w = re^{\theta + \pi}$ is $\theta + \pi$. Therefore the distance from w = 0 to the image J is larger than a positive number δ_1 . The same fact holds true when $-\frac{\pi}{4} \leq \theta \leq 0$.

Since $\omega^{**}(p)$ attains 1 only on *D*, *E*, *F*, *H*, *C*, *I*, and *J*, and since the distance from w = 0 to the images of *E*, *D*, *F*, *H*, *C*, *I*, *J* has a positive distance larger than δ_3 , and further since the length of β^* is less than π , we see that $\omega^{**}(z) \leq \delta_4 < 1$, where δ_4 is a positive

101

number whenever S is on α .

 2°) F_{i}^{n} has a slit S_{i}^{n} . We denote by α' the part of the circle such that $|z| = 1 - \frac{p_{n+1} - p_n}{2p_n p_{n+1}}$, $\frac{1}{2} (\arg S_i + \arg S_{i+1}) + \frac{\pi}{4} < \arg z < 1$ $-\frac{1}{2}(\arg S_i + \arg S_{i+1}) + \frac{7\pi}{4}$, and denote by $\omega^{***}(z)$ the harmonic measure of S_i with respect to the domain (unit-circle $-S_i$). Then clearly $\omega^{***}(z)$ $\leq \delta_{s} < 1: z \in \alpha' \text{ and } \omega(p) \leq \omega^{***}(z).$

Let $\tilde{\omega}_n(p)$ be a harmonic function $0 \leq \tilde{\omega}_n(p) \leq 1$ such that $\tilde{\omega}_n(p) = 0$ on the boundary of $F_{i_1}^1, F_{i_2}^2, \dots, F^n$ and = 1 on the circle on F_0 with radius $= 1 - \frac{1}{p_{n+1}}$ and on the part of slits S_{n+1}^i contained in the part $|z| \ge 1 - \frac{1}{p_{n+1}}$. On the other hand F_0 has no common point with $F_{i}^{n+1}, F_{i}^{n+2}, \dots$ Thus we see from 1°) and 2°)

$$\widetilde{\omega}_{n}(p) \leq \max(\delta_{4}, \delta_{5}),$$

where the projection of p is on the circle $|z| = 1 - \frac{p_{n+1} - p_n}{2p_n p_{n+1}}$.

Let $\{V_i(p)\}$ be non negative continuous super-harmonic functions on F such that $V_i(p) \leq 1$ and $\lim V_i(p) = 1$, and denote V(p) its lower p = 1 $p \in F_0$ envelope. Then

 $V(p) \leq \max(\delta_4, \delta_5)$ on $|z| = r_n$ $n = 1, 2, \cdots$,

thus

 $V(\mathbf{p}) \leq \max(\delta_{\epsilon}, \delta_{\epsilon}) V(\mathbf{p}), \text{ and } V(\mathbf{p}) \equiv 0.$

We denote by \hat{F} the symmetric surface with respect to the unit circle and identify the boundary of $F_i^n (n \ge 1)$ with that of \hat{F} , then we have a planer Riemann surface \widetilde{F} over the z-plane.

Proposition. \tilde{F} is contained in the class O_{AB} .⁶⁾

If there were a non-constant bounded analytic function A(p) =U(p) + iV(p) on \widetilde{F} , where \widetilde{p} is the symmetric point of p with respect to the unit circle, then we have

$$U(p) - U(\tilde{p}) = 0$$
, $V(p) - V(\tilde{p}) = 0$,

which implies the constancy of A(p). It is clear that \tilde{F} has not the Gross's property.

Theorem (W. Gross). Let $z = z(p) : p \in R$ be a meromorphic function and let R be a Riemann surface belonging to O_{α} . If we denote by p = p(z)its inverse function, if p = p(z) is regular at z_0 , then we can continuate p(z)analytically on half lines $z = z_0 + re^{i\theta}$ $(0 \le r < \infty)$ except a set of θ of angular measure zero.

102

Thus our example is not contained in O_g .

When the genus of an abstract Riemann surface is finite, it is known

$$O_{g} = O_{HB} = O_{HD} \subset O_{AB} \subset O_{AD} = O_{ABD}$$
.

Since there is a Riemann surface of finite genus of O_{AD} on which a non-constant bounded analytic function exists, O_{AD} has not necessarily Iversen's property. In the previous⁷ paper we proved that O_{a} is the only class in which any Riemann surface always has Gross's property. Now even when we confine ourselves to Riemann surfaces of finite genus, we know that O_{a} is the maximal class in which Gross's theorem holds.

Denote by P_I , P_g the class of Riemann surfaces having Iversen's or Gross's property respectively. Then

1) Case of infinite genus

$$P_{I} \supset O_{HB} \supset O_{HP} \supset O_{G}, P_{I} \supset O_{AB}, P_{I} \supset O_{HD}, P_{G} \supset O_{HP}.$$

2) Case of finite genus

$$P_I \stackrel{\cdot}{\supset} O_{AB}, P_I \supset O_{G}, P_I \stackrel{\cdot}{\supset} O_{AD}, P_{G} \supset O_{G}, P_{G} \stackrel{\cdot}{\supset} O_{AB}.$$

(Received March 16, 1954)

⁶⁾ T. Kuroda: A property of some open Riemann surfaces and its applications, Nagoya Math. Journ., Vol. 6 (1953). pp. 77-84.

⁷⁾ Z. Kuramochi: On covering surfaces, Osaka Math. Journ., vol. 5 (1953). pp. 155-201.