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On Covering Property of Abstract Rίemann Surfaces

By Zenjiro KURAMOCHI

Let R be an abstract Riemann surface of finite genus belonging
to the class OABy then it is well known that any covering surface on
the w-plane, defined by a non-constant analytic function on R covers
any point except at most a null-set, that is, the boundary of the
surface of OAB on the w-plane. In this paper we shall study Iversen's
and Gross's property, but at present what we can prove is only that a
subclass of OAB has Iversen's property, thus the validity of Iversen's
property of OAB is an open problem.

1) We suppose a conformal metric is given on R, of which a
line element is given by the local parameter ds = \ ( t ) \ d t \ 9 and let O
be a fixed point of R. Denote by Dp the domain bounded by the
point set having a distance p : /o<C°° from O, and suppose for |°<C°°
that the domain Dp is compact, lim Dβ = R, the boundary Γp of Dp is

p=oo

composed of n(p) components, rl, r2, ••• , rn, and that Λ ( p ) is the
largest length of rk (k = 1.2, w,):

/fc = I ds , A(/o) = max
J fc

Put N(p) = max n(p') .

P'^P
Pfluger provedcl) that if

p
lim sup Γ4τr (-^--log N(p)] = oo ,

P=oo L J Λ( jθ) J
Po

then R 6 OAB .

Theorem 1. //

P

lim sup 7τ \ -Γ-/3- —log N(p) — oo (genus of R
p = oo L J Λ.(pJ J

Po

1) A. Pfluger: Sur Γexistence de fonctions non constantes, analytiques, uniformes et

bornees sur une surface de Riemann ouverte, C. R. Acad. Sci. Paris, 230, 1950, pp. 166-168,
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then every connected piece of R over \w — w0\<^S, covers every points
except at most the null-set ^EAE , which is the boundary set of a domain
°f OAB on the w-plane.

Proof. If there exists a lacunary set E, which is being clearly
closed, not contained in EAB in \w — wQ\<^Sy we can construct a
bounded analytic function A(w) in the w-plane except E and regular
on \w — w0\ — S. Define a harmonic function U(w) on \w — wQ\<LS such
that U(w) = real part of A(w) on \w — wQ\=Sy then it is clear that
the conjugate function V(w) of U(w] is bounded on w — w0\^Sand
A(w) — U(fϋ) — iV(u)) = B(w) is bounded on \w — w^\<LS and further
B(w] Φ constant. Consider the closed domain G such that(3) Re(B(w}}
;> 0 : \w — tv0\<S, and let V be the image of G on J?, then V has
relative boundaries 11 , 12 , ••• , lp , ••• , on which the Re B(w] vanishes.

Each /« is non compact, since otherwise $m B(w) is not one valued

on account of j ̂ ^ &>0.

h
Every 4 converges to the boundary of R. Let B(p] be the function

B(w) considered as the function on R, f\ V, p G R f\ V.
Since B(p) : p 6 (R f\ V) is bounded, we can suppose that V is

mapped on the semi-circle I f K l ^ ^ > 0 and every /, is mapped
on the imaginary axis. After Pfluger we introduce in |f|<[l the

hyperbolic metric by the line element defined by ds = ι "ιτ

Consider V in Dp and put Dμ' = Dp f\V . The boundary of Dp' is com-

posed of 4 and 2 Σ r« > where r^ is an arc contained in r4 . Let
ί=l j=l

LI be a segment on imaginary axis connecting two end-points of the

image r{ lying on the imaginary axis, and L\ be image of r{. Then

iii=\ ds^ length of L} .

Let Aj be the area bounded by L{ and L{ . Then by the isope-
rimetric problem

2) In this article, we denote by EAB the null set of OAB on the plane.
3) Without loss of generality we may assume that there exists a point w0 satisfying

the real part of B(WQ) is poritive,
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where

Λ = ΣΛ', Li = ̂ Li.
j j

If rj has no common point with any lt , then we have

Thus

4l? , for every i .

Denote by Ap the area of image of Dp'. Then Ap <1 Σ At , and in
the same manner as used by Pfluger, we have

On the other hand

hence

Ap0

Thus by assumption APQ must be zero, from which the conclusion
follows.

Denote by n(w] the number of sheets of connected piece of R on
\w — to0\<^S over a point w.

Theorem 2. Let R be a Riemann surface belonging to OAB(OAD) of
finite genus and let V be a connected piece on \w — w0\<^p such that
n(w] <: N<^ oo . Then V covers every point except at most a null-set
TΓζF

EAB(EAD).
Denote by DN set of points of projection of V such that n(w) = N.

Then from the lower semi-continuity of n(w), it is clear that ΌN is
an open set and the boundary BN of DN is closed.

1) BN is a totally disconnected set. If it were not so, take a
continuum-component BN

f of BN and a point p such that n(p)= max n(w)
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N, and let v(p] be a neighbourhood of p with boundary /
such that / has at least one component l'(£DN*) of (l—BN'} and v(p]
[\BN'}(^Dsr +! . Since p is covered S times by V, there exists at most S
discs k^ , ~ ,ks'(S' <>S) on # and at least another disc kQ on vy and
V on &0 has at least a connected piece with lacunary of a continuum,
larger than v(p}Γ\B'Ny and at most (N—S) number of relative boun-
dary components Ll ,L2 , ••• , LNf_sr lying on I' (N' — S/ <1 N— S). We

denote such a connected piece by V. Since the genus of R is finite,
it can be mapped by w=f(p) onto a sub-Riemann surface R in the
other closed surface R*. R*— R is a totally disconnected set. Consider

the image of V in R*. Then we can see easily that every image of
^ (i = 1, 2, ••• ,N'-S'} converge to a point of #*, because R*—R is
totally disconnected and ̂  = f "^wί) :peR* is continuous. Denote by

ΐ^the domain on J?* bounded by the image Lέ and by a finite number
of points of a subset of R*—R. On the other hand by assumption
v(p) has a continuum boundary except the projection of Lt , thus we
can define a bounded (Dirichlet bounded) analytic function φ(w(p}}
on v(p} with vanishing real part on Lt. If φ(w(p}} is analytic in

55 iί

I/, it must be a constant, therefore there exists in V, a closed set E
where #>(^) is not regular. Therefore by Neumann's00 method and
by Abel's integral, we can construct a bounded analytic (Dirichlet
bounded) function on R, which contradicts the fact that R^OAB(OAD).

2) Since BN is a totally disconnected closed set, we can take a
neighbourhood V'(p] such that the boundaryC5) of V(p] is completely
contained in DN and enclosing a lacunary set E of the connected
piece. Thus by the same method as above, we can conclude that

Remark 1) If R^OAB(OAD] covers the w-plane a bounded number
of times, then we can see easily that the mapping function is regular
throughout R*, and the function must be an algebraic function.

4) Since E(C(^*~^)) is a closed and totally disconnected set, we can find a domain

D, with relative boundary 3 Z), in V such that D~^)Ef (E^)E')t distance (3 D. relative

boundary of V")>0, and distance (E'. 3 D)>0. Then by Neumann's method, we can construct

a non constant harmonic function ί/ι(/0 such that (Re φ(p*)-U1(p') is harmonic in V,

^ι(^) is harmonic in R* — Dt and the conjugate of Uι(p') is single valued in D, therefore

we can construct a bounded (Diriclet bounded) function with a linear form of Abel's first

kind of integral.

5) V in i?*, above defined, of every connected piece on V(/>) has at most N number

of analytic curves as its relative boundary.



On covering property of abstract Rίemann surfaces 97

Remark 2) We conjecture that every Riemann surface belonging

to 0AB of finite genus has Iversen's property but the present auther

did not succeed to prove it.

Theorem 3. A Riemann surface belonging to OΛB of finite genus

has not necessarily the Gross's property.

Example. Let F0 be the unit-circle \z\<^ 1 with slits S< ' : n = 1, 2,

3, .-. i = 1, 2, - , qn such that (Fig. 1)

,
Pn

i = 1,2,3, •••,£„, ίΛ = 0n : 0>4.

Lemma. Let F" be the unit -circle with slits S™ , and connect FQ with

every F™ on corresponding slits S? crosswise, then we have infinitely many
sheeted covering surface on the unit-circle. If we take qn sufficiently

large, then we have ω(p) = 0, where ω(p) is the harmonic measure of the

boundary of F0 on \z\=l.

Fo

Fig. 1
J : ϊ = 1, 2, ••• , ί0(w) . » = 1, 2, 3,
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Fig. 2

We denote by GjJV+i (n ̂  w) the domain of F0 enclosed by straight
lines A, B and circular arcs C, D such that (Fig. 2)

: 1 —

C: \z\ =

— -̂ arg A == arg S? - arg S? ,
Pn+l

- - ; arg £ = arg S?+1,

Pn+ί

I

arg S?+1 ̂  arg z <, arg S? ,

?+1 ̂  arg 2 ̂  arg S?+1.

Fΐ(Fn

i+l) has a slit S?(S?+1) with edges +Sf, ~SΓ(+S?+1 , -S?+1)
(S? has two edges). We consider ω ( p ) in the surface F?-f-G^n

+1-f F?+1,
where Gj /^i is connected with F? on A by +SΓ, with Fj+1 on β by
-S?+1. Fn

t+G?;?+1 + Fn

t+1 has boundaries C, A ~S?, +S?+1 , (+SΓ~>1),

l — B) and the boundary on \z = 1.
Let be harmonic measure of " >1) -4-(~S?+1

-B) with respect to Then it is clear
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Denote by (F"+G™'ί'V1+.F™+1)* the simply connected domain with
boundaries such that (Fig. 3)

H

E : 1 — arg z = arg

— 1-,
Pn

1 - -

J

K

K'

Pn+1

I = 1 ,

I z \ < 1 , arg z = arg S<+1 ,

arg z <I 2τr ,

and C + D.

be the harmonic measure of E+D + H+I+J+F+C.Let ω**
Then

0 <L ω(/>) ̂  ω*(/>) ̂  ω**(^) . Let Λ be a half of the semi-circle passing

through the point \z\ = -* (2--ί--—-), arg ^ = ̂  (arg S4+ arg S<+1) .
^ \ Pn Pn + i/ ^

1°) T^ value of ω**(p) :p£a.

Suppose (arg Sέ + arg S4+1) = 0 , and let S be a point on a : S
θ ,\θ\<~. To investigate the behaviour of ω**(/>),
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*-s
^—-L

we transform these figures by a linear function w =

Let Cn, Cn+1 be circles such that

C I z I = 1 — C * I z I = 1 — .
A*' w + 1 ' A a + i '

Then Cn , Cw+1 will be mapped on to circles C'n, Cή+1 such that

b-r2ba*r—r a—r^a
l-a2r2

where

l—b2r Ί-bzr'

a - (A)

Pn(2PnPn+ι Pn + i Pn)
~ ~ ~ ~

4 w " f w + 1 + 2 w + 2w

1 "^"^""^"^w+T — χn-\-2a, o, a

w = 0 .
ς\

w = eiθ>': <?/ = arg St.

6) * = e > w = e1'9*' : β/ = arg S<+1.

7) the radius * = 0, z = etθί > orthogonal circle etθl>, —S.

8) the radius 0, eiθ

9) the radius 0, -1 - >

(this circle tends to e~iθ when r -> 1 .

orthogonal circle elθ'2, — S.
ZΓ

orthogonal circle —reiθ, ~,

Let ωβ(2) be the harmonic measure of β (β lies on | z = 1 and arg
Si < arg z <L arg S<+1) with respect to the unit-circle. Then ωβ(z) : z£a

attains its maximum when arg^ = ̂  (arg Sέ + arg S<+1), which implies

that the length of the image of β is largest when arg S == 0, in which
rcase the mapping function is reduced to w = . If we denote by

βf and β$ the end-points of the image β* of /3, then we have



On covering property of abstract Riemonn surfaces 101

arg yβf = tan- sin Θ (1-r2

(-2r)+cos(l +

Fig. 4

then the length of β* is smaller than TT.
Elementary calculation yields from (A) and (B)

If we take θ so small that
9r

(B)

θ<JΊ
\ Ύ "

i.e.,

ά-l

If we consider in 9) the radius 0, —1, then the argument of its
ι reίQ\\ 77-

-= ^-)) is smallest when 0 = _: thus
J. ~~τ~ ι\j I j ~r

arg

and the argument of w — reθ+* is θ + π. Therefore the distance from
w = 0 to the image / is larger than a positive number δ x . The same

fact holds true when — ̂ - <i # <: 0 .

Since ω**(^) attains 1 only on A E, F, H, C, /, and /, and since
the distance from w = 0 to the images of E, D, F, H, C, Iy J has a
positive distance larger than S3, and further since the length of /8*
is less than π, we see that ω** (z) <L S4 <^ 1, where δ4 is a positive
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number whenever S is on a.
2°) F™ has a slit S?. We denote by a' the part of the circle

such that |*| - 1- ̂ Γ"^ , 4- (ar£ s* + arβ S«+ι)+ -?- < arg * <
*

1 V
_ jL (arg Sί-f-arg S4+1) -ί-~ , and denote by ω***(z) the harmonic measure

Δ ί TC

of S4 with respect to the domain (unit-circle — S^). Then clearly ω***(z)
<, S5 < 1 : z e a! and ω(p) ^ ω***(2).

Let ώn(p) be a harmonic function 0 <, ωn(p) <±1 such that ωn(p) = 0
on the boundary of Ff , Ff^y ~ ,Fn and = 1 on the circle on F0 with

radius = 1 -- and on the part of slits S*+1 contained in the part
1 Pn + i

|z|;>l — — — . On the other hand FQ has no common point with

where the projection of ^ is on the circle 1*1 = 1—

Let {Vi(p}} be non negative continuous super-harmonic functions
on F such that Vt(p) <L 1 and lim Vi(p) = 1, and denote V(p) its lower
envelope. Then Ά^o

V(p) ^max(δ 4 ,δ 5 ) on \z\=rn « = 1, 2, - , •
thus

max (δ4 , S5) V(p) , and V(/> ) = 0 .

We denote by F the symmetric surface with respect to the unit

circle and identify the boundary of F^(n:>l) with that of F, then
we have a planer Riemann surface F over the £-plane.

Proposition. F is contained in the class OAB .6)

If there were a non-constant bounded analytic function A(p) =

U(p)+iV(p) on F, where p is the symmetric point o f p with respect
to the unit circle, then we have

U(P) - U(p) = 0 , V(p) - V(P) = 0 ,

which implies the constancy of A ( p } . It is clear that F has not the
Gross's property.

Theorem (W. Gross). Let z = z ( p ) : p £R be a meromorphic function
and let R be a Riemann surface belonging to Oσ . If we denote by p =p(z)
its inverse function, if p =p(z) is regular at zQ9 then we can continuate p(z)
analytically on half lines z = z0 + reίθ (0 <:r<^oo) except a set of θ of
angular measure zero.
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Thus our example is not contained in 0G .
When the genus of an abstract Riemann surface is finite, it is

known
OG = OHB = OHD c OAB c OAD = OABD .

Since there is a Riemann surface of finite genus of 0AD on which
a non-constant bounded analytic function exists, OAD has not neces-
sarily Iversen's property. In the previous7) paper we proved that Oσ

is the only class in which any Riemann surface always has Gross's
property. Now even when we confine ourselves to Riemann surfaces
of finite genus, we know that OG is the maximal class in which
Gross's theorem holds.

Denote by PI , PG the class of Riemann surfaces having Iversen's
or Gross's property respectively. Then

1) Case of infinite genus

2) Case of finite genus

(Received March 16, 1954)

6) T. Kuroda: A property of some open Riemann surfaces and its applications,
Nagoya Math. Journ., Vol. 6 (1953). pp. 77-84.

7) Z. Kuramochi: On covering surfaces, Osaka Math. Journ., vol. 5 (1953). pp. 155-201.






