



|              |                                                                             |
|--------------|-----------------------------------------------------------------------------|
| Title        | Noncoprime action and character correspondences                             |
| Author(s)    | Navarro, Gabriel                                                            |
| Citation     | Osaka Journal of Mathematics. 1993, 30(2), p. 159-169                       |
| Version Type | VoR                                                                         |
| URL          | <a href="https://doi.org/10.18910/10076">https://doi.org/10.18910/10076</a> |
| rights       |                                                                             |
| Note         |                                                                             |

*The University of Osaka Institutional Knowledge Archive : OUKA*

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Navarro, G.  
Osaka J. Math.  
30 (1993), 159–169

## NONCOPRIME ACTION AND CHARACTER CORRESPONDENCES

Gabriel NAVARRO

(Received January 22, 1991)

### 1. Introduction

In [7], Nagao extended the Glauberman Correspondence to the non-coprime case by restricting the attention to the  $S$ -invariant  $p$ -defect zero characters of a finite group  $G$  acted by a finite  $p$ -group  $S$ . Concretely, if  $G$  is a complemented normal subgroup of  $\Gamma$  and  $C$  is a set of representatives of  $G$ -conjugacy classes of complements of  $G$  in  $\Gamma$ , Nagao showed that there exists a natural bijection from the set of  $\Gamma$ -invariant  $p$ -defect zero characters of  $G$  onto  $\bigcup_{S \in C} \{p\text{-defect zero characters of } C_G(S)\}$ , whenever  $\Gamma/G$  is a  $p$ -group.

Now we want to make no assumptions on  $\Gamma/G$  (although we will end up making some assumptions on  $G$ ) and still show that there exists a natural map from some subset of the  $\Gamma$ -invariant characters of  $G$  (those who have  $p$ -defect zero for the primes dividing  $|\Gamma/G|$ ) into  $\bigcup_{S \in C} \text{Irr}(C_G(S))$ .

As we mention, we pay for this extra generality: we impose some conditions on  $G$  ( $G$  must be  $\pi$ -separable for the set of primes  $\pi$  dividing  $|\Gamma/G|$ ). Also, although defect zero characters of  $G$  will map into defect zero characters of  $C_G(S)$  it will not be true, in general, that our map is onto (think on a  $\pi$ -group acted by another  $\pi$ -group with trivial fixed points subgroup). This will be the case, however, when the Hall  $\pi$ -subgroups of  $\Gamma$  are nilpotent (as it happens in Nagao's case). When  $\Gamma/G$  is a  $p$ -group (and  $G$  is  $p$ -solvable) we will certainly show that our map coincides with Nagao's.

The key point in this note is to consider an interesting subset of the irreducible characters of a finite group  $G$  acted by a finite group  $S$  whose order is non-necessarily coprime to  $|G|$ . If  $\text{Ind}_S(G) = \{\chi \in \text{Irr}(G) \text{ such that } \chi = \mu^G, \text{ where } \mu \text{ is an } S\text{-invariant character of an } S\text{-invariant subgroup } H \text{ of } G \text{ with order coprime to } S\}$ , then there exists a natural one to one map from  $\text{Ind}_S(G)$  into  $\text{Irr}(C_G(S))$ . We will show that the image of  $\chi \in \text{Ind}_S(G)$  is  $\mu^{*C_G(S)}$ , where  $\mu^* \in \text{Irr}(C_H(S))$  is the Glauberman-Isaacs correspondent of  $\mu \in \text{Irr}_S(H)$ . Of course, one of the problems in this note will be to show that if  $\mu$  induces irreducibly to  $G$ , then  $\mu^*$  induces irreducibly to  $C_G(S)$  (this was done in [6] when the

$(|G|, |S|)=1$ . Now, of course, we are not assuming that the orders of  $G$  and  $S$  are coprime).

This work has been done during a stay of the author at the University of Wisconsin-Madison supported by a Fulbright-Ministerio de Educacion y Ciencia fellowship. I would like to thank the Mathematics Department for its hospitality.

## 2. Preliminaries

While Nagao makes use of general block theory for proving his correspondence, the tools we use here to prove ours are basically our main result in [6] and Isaacs  $\pi$ -theory. Since modular theory for sets of primes is only available for  $\pi$ -separable groups we have to restrict ourselves from the very beginning to this class of groups.

If  $S$  acts on  $G$  coprimely, let us denote by  $*: \text{Irr}_S(G) \rightarrow \text{Irr}(C_G(S))$  the Glauberman-Isaacs correspondence. Next is our main result in [6].

**(2.1) Theorem.** *Suppose that  $S$  acts on  $G$  coprimely and assume that  $H$  is an  $S$ -invariant subgroup of  $G$ . If  $\mu \in \text{Irr}_S(H)$  induces  $\mu^G \in \text{Irr}(G)$  then  $(\mu^G)^* = \mu^{*C_G(S)}$ .*

Proof. See Theorem A of [6].

If  $\pi$  is any set of primes, let us say that  $\chi \in \text{Irr}(G)$  has  $\pi$ -defect zero if  $\chi(1)_\pi = |G|_\pi$  (i.e.,  $\chi$  has  $p$ -defect zero for any prime  $p$  in  $\pi$ ).

The following are easy properties of  $\pi$ -defect zero characters.

### (2.2) Proposition.

(a) *Let  $H$  be a subgroup of  $G$  and let  $\mu \in \text{Irr}(H)$  with  $\mu^G = \chi \in \text{Irr}(G)$ . Then  $\chi$  has  $\pi$ -defect zero if and only if  $\mu$  has  $\pi$ -defect zero.*

(b) *If  $N$  is a normal subgroup of  $G$  and  $\chi \in \text{Irr}(G)$  has  $\pi$ -defect zero, then every irreducible constituent of  $\chi_N$  has  $\pi$ -defect zero.*

Proof. See, for instance, (3.2) of [1].

The next result is less trivial. The referee has found a shorter proof of it by using projective representations.

**(2.3) Theorem.** *Suppose that  $\chi$  is a  $\pi$ -defect zero character of a  $\pi$ -separable group  $G$ . If  $\chi_{O_{\pi'}(G)}$  is homogeneous, then  $G$  is a  $\pi'$ -group.*

Proof. Let  $(U, \theta)$  be a maximal  $\pi$ -factorable subnormal pair of  $G$  below  $\chi$  (see (3.1) and (3.2) of [4]). Now, since  $U$  is subnormal in  $G$  and  $\chi$  has  $\pi$ -defect zero, by (2.2.b) it follows that  $\theta$  has  $\pi$ -defect zero. Because  $\theta$  is  $\pi$ -factorable, by definition, we can write  $\theta = \alpha\beta$ , where  $\alpha \in \text{Irr}(U)$  is  $\pi$ -special and  $\beta \in \text{Irr}(U)$

is  $\pi'$ -special. Let  $H$  be a Hall  $\pi$ -subgroup of  $U$ . Then  $|H|=\theta(1)_\pi=\alpha(1)$ . Now, since  $\alpha$  is  $\pi$ -special, by Proposition (6.1) of [2],  $\alpha_H$  is irreducible. By degrees, necessarily  $H=1$  and thus  $U\subseteq O_{\pi'}(G)$ . Since the irreducible characters of  $O_{\pi'}(G)$  are obviously  $\pi$ -factorable, by maximality  $U=O_{\pi'}(G)$ . (This shows that the maximal  $\pi$ -factorable subnormal pairs below a  $\pi$ -defect zero character are of the form  $(O_{\pi'}(G), \theta)$ . By (4.5) of [4],  $\theta$  is  $G$ -invariant if and only if  $G$  is a  $\pi'$ -group. This proves the theorem.

In [4], for  $\pi$ -separable groups,  $G$ , Isaacs constructed a canonical set of irreducible complex characters,  $B_\pi(G)$ , whose restrictions to the classes of the  $\pi$ -elements of  $G$  behave like the irreducible Brauer characters (this set of “irreducible” restrictions is denoted by  $I_\pi(G)$  ([5]) and, of course, when  $\pi=p$ ,  $I_\pi(G)=IBr(G)$ ).

The way of defining  $B_\pi(G)$  is complicated. Basically, for each  $\chi\in\text{Irr}(G)$  (where  $G$  is a  $\pi$ -separable group), Isaacs associates to  $\chi$ , in a canonical way, a pair  $(W, \gamma)$ , where  $W\subseteq G$ ,  $\gamma\in\text{Irr}(W)$  is  $\pi$ -factorable and  $\gamma^G=\chi$  (see (4.6) of [4]). The pair  $(W, \gamma)$  is uniquely determined up to  $G$ -conjugacy and the pairs  $(W, \gamma)$  in the  $G$ -class are called the nuclei for  $\chi$ .  $B_\pi(G)$  are those  $\chi\in\text{Irr}(G)$  such that  $\gamma$  is  $\pi$ -special.

It is well known that  $p$ -defect zero characters restricted to the  $p$ -regular classes are irreducible Brauer characters. The same happens for  $\pi$ -defect zero characters.

(2.4) **Theorem.** *If  $\chi\in\text{Irr}(G)$  has  $\pi$ -defect zero, where  $G$  is a  $\pi$ -separable group, then  $\chi\in B_{\pi'}(G)$ .*

**Proof.** Let  $(W, \gamma)$  be a nucleus for  $\chi$ . Since  $\gamma^G=\chi$ , by (2.2a),  $\gamma$  has  $\pi$ -defect zero. Since  $\gamma$  is  $\pi$ -factorable, the same argument used in (2.3) tells us that  $W$  is a  $\pi'$ -group. Therefore  $\gamma$  is  $\pi'$ -special and thus  $\chi\in B_{\pi'}(G)$ .

### 3. The set $\text{Ind}_S(G)$

For convenience let us write our hypothesis.

(3.1) **Hypothesis.** Suppose that  $S$  acts on  $G$  and let  $\Gamma=GS$  be the semi-direct product. If  $\pi$  is the set of primes dividing  $|S|$ , we will assume that  $G$ , and therefore  $\Gamma$ , is  $\pi$ -separable.

We will denote by  $\text{Ind}_S(G)=\{\chi\in\text{Irr}(G)$  such that  $\chi=\mu^G$ , where  $\mu$  is an  $S$ -invariant character of an  $S$ -invariant subgroup  $H$  of  $G$  with  $(|H|, |S|)=1\}$ .

If  $\chi\in\text{Ind}_S(G)$ , then  $\chi(1)_\pi=|G|_\pi$  and thus  $\chi$  has  $\pi$ -defect zero. Therefore, by (2.4),  $\chi\in B_{\pi'}(G)$ . Since  $\Gamma/G$  is a  $\pi$ -group and  $\chi$  is  $\Gamma$ -invariant, by (6.3) of [4],  $\chi$  has a unique extension  $\hat{\chi}\in B_{\pi'}(\Gamma)$ .

Our first (easy) objective is to show that if  $\chi\in\text{Ind}_S(G)$  then  $\chi$  has some

$S$ -invariant constituent upon restriction to a normal subgroup. The following will be widely generalized in Section 5.

(3.2) **Theorem.** *If  $\chi \in \text{Ind}_S(G)$  and  $Y$  is a normal  $S$ -invariant  $\pi'$ -subgroup of  $G$ , then  $\chi_Y$  has some  $S$ -invariant irreducible constituent.*

Proof. Write  $\chi = \mu^G$ , where  $\mu \in \text{Irr}_S(H)$ ,  $H$  is  $S$ -invariant and  $(|H|, |S|) = 1$ . Then  $HY$  is also  $S$ -invariant and has order coprime with  $|S|$ . Now  $\mu^{HY} \in \text{Irr}_S(HY)$  and by (13.27) of [3],  $(\mu^{HY})_Y$ , and hence  $\chi_Y$ , has an  $S$ -invariant irreducible constituent.

Now we want to distinguish some of the  $S$ -invariant irreducible constituents of  $\chi_Y$ , where  $\chi \in \text{Ind}_S(G)$  and  $Y$  is as in (3.2). We will say that  $\alpha \in \text{Irr}_S(Y)$  is good for  $\chi \in \text{Ind}_S(G)$  if there exists an  $S$ -invariant  $\pi'$ -subgroup  $H$  of  $G$  containing  $Y$  with some  $\mu \in \text{Irr}_S(H|\alpha)$  such that  $\mu^G = \chi$ . Observe that in Theorem (3.2) it is shown that there exists a good constituent for any  $\chi \in \text{Ind}_S(G)$ .

We need an immediate fact about good constituents.

(3.3) **Proposition.** *Let  $\chi \in \text{Ind}_S(G)$ , let  $Y$  be a normal  $S$ -invariant  $\pi'$ -subgroup of  $G$  and let  $\alpha \in \text{Irr}_S(Y)$  be an irreducible constituent of  $\chi_Y$ . Then  $\alpha$  is good for  $\chi$  if and only if the Clifford correspondent of  $\chi$  over  $\alpha$  lies in  $\text{Ind}_S(T)$  where  $T = I_G(\alpha)$  is the stabilizer of  $\alpha$  in  $G$ .*

Proof. Let  $\eta \in \text{Irr}(T|\alpha)$  be the Clifford correspondent of  $\chi$  over  $\alpha$  (i.e.,  $\eta^G = \chi$ ). If  $\alpha$  is good for  $\chi$  we may choose an  $S$ -invariant  $\pi'$ -subgroup  $H$  of  $G$  with  $\mu \in \text{Irr}_S(H)$  over  $\alpha$  and with  $\mu^G = \chi$ . Since  $T \cap H$  is the inertia subgroup of  $\alpha$  in  $H$ , we pick  $\tau \in \text{Irr}_S(T \cap H|\alpha)$  with  $\tau^H = \mu$ . Then  $\tau^G = \chi$  and by the uniqueness of the Clifford correspondent,  $\tau^T = \eta$ . This shows that  $\eta \in \text{Ind}_S(T)$ . On the other hand, if  $\eta = \delta^T$ , where  $\delta \in \text{Irr}_S(J)$  and  $J$  is a  $\pi'$ -subgroup of  $T$ , then  $(\delta^{JY})^G = \chi$  and since  $\delta^{JY}$  lies over  $\alpha$ ,  $\alpha$  is good for  $\chi$ .

A key result in this paper will be to show that good constituents for  $\chi \in \text{Ind}_S(G)$  are  $C_c(S)$ -conjugate. This is something which requires, we believe, a nontrivial amount of  $\pi$ -theory.

First of all we need the following application of Glauberman's Lemma (13.8 and 13.9 of [3]).

(3.4) **Lemma.** *Suppose that  $S$  acts on  $G$  coprimely. Let  $N \subseteq M \subseteq G$  be normal  $S$ -invariant subgroups of  $G$ , and let  $\chi \in \text{Irr}_S(G)$  lying over  $\theta \in \text{Irr}_S(N)$ . Then there exists  $\eta \in \text{Irr}_S(M)$  lying under  $\chi$  and over  $\theta$ .*

Proof. See Lemma (2.3) of [8].

(3.5) **Theorem.** *Assume (3.1). Suppose that  $\chi \in \text{Ind}_S(G)$  and let  $\theta \in \text{Irr}_S(Y)$  be a good constituent for  $\chi$ , where  $Y$  is a normal  $S$ -invariant  $\pi'$ -subgroup*

of  $G$ . Then there exists a nucleus  $(V, \gamma)$  of  $\hat{\chi}$  with  $YS \subseteq V$  and with  $\gamma_Y$  containing  $\theta$ . Also,  $(V \cap G, \gamma_{V \cap G})$  is a nucleus for  $\chi$  and  $V \cap G$  is a  $\pi'$ -group.

**Proof.** We argue by induction on  $|G|$ . First of all we claim that there exists an  $S$ -invariant pair  $(U, \alpha)$ , where  $U=O_{\pi'}(G)$ , with  $(Y, \theta) \leq (U, \alpha) \leq (G, \chi)$  and with  $\alpha$  good for  $\chi$ . To prove the claim, suppose that  $\chi=\mu^G$ , where  $\mu \in \text{Irr}_S(H)$ ,  $H$  is an  $S$ -invariant  $\pi'$ -subgroup of  $G$  and  $\mu_Y$  contains  $\theta$ . Now consider  $\mu^{HU} \in \text{Irr}_S(HU)$ . By the previous Lemma we may choose  $\alpha \in \text{Irr}_S(U)$  over  $\theta$  and under  $\mu^{HU}$ . Certainly  $\alpha$  is good for  $\chi$  and this proves the claim.

Now  $(U, \alpha)$  is a  $\pi$ -factorable subnormal pair of  $\Gamma$  below  $\hat{\chi} \in B_{\pi'}(\Gamma)$ . By (3.2) of [4], we may choose  $(X, \eta)$  a maximal  $\pi$ -factorable subnormal pair of  $\Gamma$  such that  $(U, \alpha) \leq (X, \eta) \leq (\Gamma, \hat{\chi})$ . By (5.2) of [4], observe that  $\eta$  is  $\pi'$ -special. Since  $|X: X \cap G|$  is a  $\pi$ -number and  $\eta$  has  $\pi'$ -degree, we have that  $\eta_{X \cap G}$  is irreducible. Since  $X \cap G \triangleleft X$ , by (4.1) of [2],  $\eta_{X \cap G}$  is also  $\pi'$ -special and, in particular,  $\pi$ -factorable. As it was said in the proof of (2.3), since  $\chi$  has  $\pi$ -defect zero, we know that  $(U, \alpha)$  is a maximal  $\pi$ -factorable subnormal pair below  $\chi$ . Therefore  $U=X \cap G$  and hence  $X/U$  is a  $\pi$ -group. By Lemma (6.1) of [4],  $S$  fixes  $X$ . Since  $\eta_{X \cap G}=\alpha$  and  $X/U$  is a  $\pi$ -group,  $\eta$  is the unique  $\pi'$ -special character of  $X$  over  $\alpha$  ((6.1) of [2]). Therefore  $\eta$  is  $S$ -invariant and by the same reasons,  $T \cap G=I_G(\alpha)$ , where  $T=I_{\Gamma}(X, \eta)$  (see (4.4) of [4]). Observe that  $S \subseteq T$ .

Now, by (4.4) of [4], we can find  $\psi \in \text{Irr}(T|\eta)$  such that  $\psi^r=\hat{\chi}$  and notice that  $(\psi_{T \cap G})^G=\chi$  and that  $\psi_{T \cap G}$  is the Clifford correspondent of  $\chi$  over  $\alpha$ . Since  $\alpha$  is good for  $\chi$ , by (3.3), then  $\psi_{T \cap G} \in \text{Ind}_S(T \cap G)$ .

We want now to apply an inductive hypothesis, so we must check that  $\theta$  is good for  $\psi_{T \cap G}$ . But this is easy: since by (3.3)  $\alpha$  is good for  $\psi_{T \cap G}$  and  $\theta$  lies under  $\alpha$ , certainly  $\theta$  is good for  $\psi_{T \cap G}$ . Now, since  $\psi \in B_{\pi'}(T)$  (because, by definition, the nuclei for  $\psi$  are nuclei for  $\hat{\chi}$ ), it follows that  $\psi_{T \cap G}=\hat{\psi}$ . If  $T \triangleleft G$ , the theorem follows by induction.

If  $\alpha$  is  $G$ -invariant, by (2.3),  $G$  is a  $\pi'$ -group,  $\hat{\chi}$  is  $\pi'$ -special (because  $\hat{\chi}$  has  $\pi'$ -degree and lies in  $B_{\pi'}(\Gamma)$ , (5.4) of [4]), and hence  $\hat{\chi}$  is  $\pi$ -factorable. Then,  $V=\Gamma$  and this proves the theorem.

We will give a more general result of the following in Section 5. Now we prove what we really need to show the existence of our correspondence.

**(3.6) Corollary.** *Assume (3.1). Let  $\chi \in \text{Ind}_S(G)$  and let  $\alpha$  and  $\beta \in \text{Irr}_S(O_{\pi'}(G))$  be good for  $\chi$ . Then  $\alpha$  and  $\beta$  are conjugate in  $C_G(S)$ .*

**Proof.** By Theorem (3.5), there exist nuclei  $(V, \gamma)$  and  $(W, \eta)$  for  $\hat{\chi}$  such that  $S \subseteq V \cap W$  and with  $\gamma_{O_{\pi'}(G)}$  and  $\eta_{O_{\pi'}(G)}$  containing  $\alpha$  and  $\beta$ , respectively. Since  $(O_{\pi'}(G), \alpha)$  and  $(O_{\pi'}(G), \beta)$  are maximal  $\pi$ -factorable pairs below  $\chi$ , and

$(V \cap G, \gamma_{V \cap G})$  and  $(W \cap G, \eta_{W \cap G})$  are nuclei for  $\chi$ , it follows that  $\gamma_{O_{\pi'}(G)}$  and  $\eta_{O_{\pi'}(G)}$  are multiples of  $\alpha$  and  $\beta$ , respectively. Now by (3.2) of [4],  $(V, \gamma)^g = (W, \eta)$ , for some  $g \in G$ . Since  $S^g$  and  $S$  are Hall  $\pi$ -subgroups of  $W = (W \cap G)S$ , it follows that  $S^{gw} = S$ , for some  $w \in W \cap G$ . Then  $gw \in C_G(S)$  and  $\gamma^{gw} = \eta^w = \eta$ . Therefore,  $\alpha^{gw} = \beta$ , as wanted.

#### 4. A correspondence of characters

We need an easy Lemma.

(4.1) **Lemma.** *Suppose that  $S$  acts on  $G$  and let  $Y$  be a normal  $S$ -invariant subgroup of  $G$  with  $(|Y|, |S|) = 1$ . If  $\theta \in \text{Irr}_S(Y)$  then  $I_G(\theta) \cap C_G(S) = I_{C_G(S)}(\theta^*)$ .*

Proof. By naturality, if  $\alpha$  is any automorphism of  $YS$  fixing  $S$ , we have that  $(\theta^*)^* = (\theta^*)^*$ .

(4.2) **Theorem.** *Assume (3.1) and suppose that  $H$  is an  $S$ -invariant subgroup of  $G$  with  $(|H|, |S|) = 1$ . Let  $\alpha \in \text{Irr}_S(H)$  with  $\alpha^G \in \text{Irr}(G)$ . Then  $(\alpha^*)^{C_G(S)} \in \text{Irr}(C_G(S))$ . Also, if  $J$  is another  $S$ -invariant subgroup of  $G$  with  $(|J|, |S|) = 1$  and  $\beta \in \text{Irr}_S(J)$  is such that  $\beta^G \in \text{Irr}(G)$ , then  $\alpha^G = \beta^G$  if and only if  $(\alpha^*)^{C_G(S)} = (\beta^*)^{C_G(S)}$ .*

Proof. We argue by induction on  $|G|$ . Let  $U = O_{\pi'}(G)$ ,  $K = HU$  and  $\mu = \alpha^K \in \text{Irr}_S(K)$ . By Theorem A of [6], we have that  $\mu^* = \alpha^{*C_K(S)} \in \text{Irr}(C_K(S))$ .

Now let  $\theta \in \text{Irr}_S(U)$  be an irreducible constituent of  $\mu_U$ . Since  $\alpha^G$  has  $\pi$ -defect zero and  $\theta$  is a constituent of  $(\alpha^G)_U$ , by (2.3), it follows that  $T = I_G(\theta) < G$  or  $G$  is a  $\pi'$ -group. In the latter case,  $K = G$  and  $\alpha^{*C_G(S)} = \alpha^{*C_K(S)}$  is irreducible. So we may assume that  $T < G$ .

Since  $T \cap K = I_K(\theta)$ , let  $\delta \in \text{Irr}(T \cap K | \theta)$  with  $\delta^K = \mu$ . By uniqueness, notice that  $\delta$  is  $S$ -invariant. Again, by Theorem A of [6],  $\delta^{*C_K(S)} = \mu^*$  is irreducible. Now,  $\delta^T \in \text{Irr}(T)$ ,  $T \cap K$  is an  $S$ -invariant subgroup of  $T$  with  $(|T \cap K|, |S|) = 1$  and by induction,  $\delta^{*C_T(S)} = (\delta^T)^*$  is irreducible. Since  $\delta$  lies over  $\theta$ , by (5.3) of [9],  $\delta^*$  lies over  $\theta^*$ . By (4.1),  $C_T(S) = I_{C_G(S)}(\theta^*)$  and hence  $\delta^{*C_G(S)} \in \text{Irr}(C_G(S))$ . Now,  $\alpha^{*C_G(S)} = \mu^{*C_G(S)} = \delta^{*C_G(S)}$  is irreducible.

Now, suppose that  $J$  is another  $S$ -invariant subgroup of  $G$  with  $(|J|, |S|) = 1$  and that  $\beta \in \text{Irr}_S(J)$  is such that  $\beta^G \in \text{Irr}(G)$ . Let  $L = JU$  and let  $\eta = \beta^L \in \text{Irr}_S(L)$ . Let  $\nu \in \text{Irr}_S(U)$  be an irreducible constituent of  $\eta_U$  and let  $I = I_G(\nu)$ . Since  $I \cap L = I_L(\nu)$ , we may choose  $\tau \in \text{Irr}(I \cap L | \nu)$  with  $\tau^L = \eta$ . By Theorem A of [6], we have that  $\beta^{*C_L(S)} = \eta^* = \tau^{*C_L(S)}$ .

Suppose first that  $\alpha^G = \beta^G = \chi$ . We want to show that  $\alpha^{*C_G(S)} = \beta^{*C_G(S)}$ , and certainly, we may replace  $(L, \eta)$  and  $(K, \mu)$  by  $C_G(S)$ -conjugates. Now  $\chi \in \text{Ind}_S(G)$  and  $\nu$  and  $\theta$  are good constituents for  $\chi$ . By (3.6), we know that  $\nu$  and  $\theta$  are  $C_G(S)$ -conjugate. So we may assume in fact that  $\nu = \theta$  and hence  $I = T$ .

Also,  $\delta^T = \tau^T$ , because both are the Clifford correspondents of  $\chi$  over  $\theta = \nu$ .

If  $T = G$ , then  $G$  is a  $\pi'$ -group, and then  $\alpha^{*C_G(S)} = \chi^* = \beta^{*C_G(S)}$ , by Theorem A of [6]. If  $T < G$ , by induction,  $\delta^{*C_T(S)} = \tau^{*C_T(S)}$ , and then  $\alpha^{*C_G(S)} = \delta^{*C_G(S)} = \tau^{*C_G(S)} = \beta^{*C_G(S)}$ .

Suppose now that  $\alpha^{*C_G(S)} = \beta^{*C_G(S)} = \varepsilon$ . Since both  $\theta^*$  and  $\nu^*$  lie under  $\varepsilon$ , it follows that  $\theta^* = \nu^*$  for some  $c \in C_G(S)$ . Then  $\theta^c = \nu$  and certainly we may assume that  $\theta = \nu$ . In this case,  $\delta^{*C_T(S)} = \tau^{*C_T(S)}$ , because  $C_T(S) = I_{C_G(S)}(\theta^*)$  and both are the Clifford correspondents of  $\varepsilon$  over  $\theta^*$ . If  $G$  is a  $\pi'$ -group, by Theorem A of [6], we have that  $(\alpha^G)^* = (\beta^G)^*$  and then  $\alpha^G = \beta^G$ . Otherwise,  $T < G$  and by induction,  $\delta^T = \tau^T$  and hence  $\alpha^G = \delta^G = \tau^G = \beta^G$ .

By Theorem (4.2), we have defined an injective map (which we will continue denoting by  $*$ ) from  $\text{Ind}_S(G)$  into  $\text{Irr}(C_G(S))$ . The image of this map is in the set of  $\pi$ -defect zero characters of  $C_G(S)$ , but we do not know exactly what it is in general. We will have control on it, however, when the Hall  $\pi$ -subgroups of  $\Gamma$  are nilpotent. Another observation is that we have assumed  $\pi$ -separability on  $G$ . Is this really necessary? Since the relationship between Glauberman-Isaacs correspondents is so tight, perhaps Theorem (4.2) is true with complete generality.

## 5. Clifford theory and the correspondence

Suppose that  $\chi \in \text{Ind}_S(G)$  and let  $N$  be a normal  $S$ -invariant subgroup of  $G$ . When  $N$  is a  $\pi'$ -group, we distinguish in  $\text{Irr}_S(N)$  the good constituents of  $\chi_N$ . Now, in more generality, we say that  $\theta \in \text{Irr}_S(N)$  is *good* for  $\chi \in \text{Ind}_S(G)$  if  $\theta$  lies under  $\chi$  and the Clifford correspondent of  $\chi$  over  $\theta$  lies in  $\text{Ind}_S(I_G(\theta))$ . By (3.3), observe that when  $N$  is a  $\pi'$ -group the new definition agrees with that in Section 3.

Now we give a Clifford type theorem for  $\text{Ind}_S$ -characters. It also extends Corollary (3.6).

(5.1) **Theorem.** *Assume (3.1). Let  $\chi \in \text{Ind}_S(G)$  and let  $N$  be a normal  $S$ -invariant subgroup of  $G$ . Then there exists a good  $\theta \in \text{Irr}_S(N)$  for  $\chi$  and all of them are conjugate in  $C_G(S)$ . Also, good constituents are  $\text{Ind}_S$ -characters.*

**Proof.** We argue by induction on  $|G|$ . Let  $Y = O_{\pi'}(N)$  and let  $\alpha \in \text{Irr}_S(Y)$  be good for  $\chi$ . Let  $\mu \in \text{Ind}_S(T)$  be the Clifford correspondent of  $\chi$  over  $\alpha$  and observe that if  $\delta$  is any irreducible constituent of  $\mu_{T \cap N}$ , then  $\delta^N \in \text{Irr}(N)$  and  $I_G(\delta^N) \cap T = I_T(\delta)$ , by Clifford theory.

Suppose first that  $N = Y$ . By (3.2) and (3.3), in this case we only have to prove that if  $\alpha$  and  $\beta$  are two good irreducible constituents of  $\chi_N$ , then  $\alpha$  and  $\beta$  are  $C_G(S)$ -conjugate. By (3.5), we know that there exists  $S$ -invariant nuclei  $(V, \gamma)$  and  $(W, \eta)$  for  $\chi$ , where  $V$  and  $W$  are  $\pi'$ -groups, such that  $\alpha$  and  $\beta$  are

irreducible constituents of  $\gamma_N$  and  $\eta_N$ , respectively. Now the same argument given in (3.6) shows us that  $(V, \gamma^c) = (W, \eta)$ , for some  $c \in C_G(S)$ . Therefore,  $\alpha^c$  and  $\beta$  are two  $S$ -invariant irreducible constituents of  $\eta_N$ . By Glauberman's Lemma (13.9) of [3], in the action in (13.27) of [3],  $\alpha^c$  and  $\beta$  are  $C_W(S)$ -conjugate and hence  $C_G(S)$ -conjugate.

Now suppose that  $Y < N$  and hence  $T < G$  (if  $\alpha$  is  $G$ -invariant, since every irreducible constituent of  $\chi_N$  has  $\pi$ -defect zero, by (2.3),  $Y = N$ ). Then, by induction,  $\mu_{T \cap N}$  has some good irreducible constituent, all of them are  $C_T(S)$ -conjugate and lie in  $\text{Ind}_S(T \cap N)$ . If  $\delta$  is any one of them, notice that  $\delta^N \in \text{Ind}_S(N)$ . Let  $I = I_G(\delta^N)$  and let  $\varepsilon \in \text{Irr}(I \cap T | \delta)$  be with  $\varepsilon^T = \mu$ . Since  $\delta$  is good for  $\mu$ , it follows that  $\varepsilon \in \text{Ind}_S(I \cap T)$ . Now,  $\varepsilon^G = \chi \in \text{Irr}(G)$ ,  $\varepsilon^I \in \text{Irr}(I | \delta^N)$  is the Clifford correspondent of  $\chi$  over  $\delta^N$  and also  $\varepsilon^I \in \text{Ind}_S(I \cap T)$ . Therefore,  $\delta^N$  is good for  $\chi$  and lies in  $\text{Ind}_S(N)$ .

Now suppose that  $\tau \in \text{Irr}_S(N)$  is also good for  $\chi$  and let  $\psi \in \text{Irr}(I_G(\tau))$  the Clifford correspondent of  $\chi$  over  $\tau$ . Let  $\alpha_o \in \text{Irr}_S(Y)$  be a good constituent for  $\psi$  and observe that  $\alpha_o$  is good for  $\chi$  and that  $\alpha_o$  lies under  $\tau$ . By the first part of the proof,  $\alpha_o$  is  $C_G(S)$ -conjugate to  $\alpha$  and hence it is no loss of generality to assume that  $\alpha_o = \alpha$ . Since  $\alpha$  is good for  $\psi$ , let  $\xi \in \text{Ind}_S(I_G(\tau) \cap T)$  over  $\alpha$  be such that  $\xi^{I_G(\tau)} = \psi$ . Then  $\xi^T = \mu$ , by the uniqueness of the Clifford correspondents and, since  $(\xi_{T \cap N})^N$  is a multiple of  $\tau$ , again we have that  $\xi_{T \cap N}$  is a multiple of some  $\phi \in \text{Irr}(T \cap N)$  with  $\phi^N = \tau$ . Now, since  $I_G(\tau) \cap T = I_T(\phi)$ , it follows that  $\phi$  is good for  $\mu$ . By induction,  $\phi = \delta^c$  for some  $c \in C_G(S)$ . Then  $(\delta^N)^c = (\delta^c)^N = \phi^N = \tau$  and the theorem is proved.

Now we want to relate normal subgroups and the correspondence.

**(5.2) Theorem.** *Assume (3.1). Let  $N$  be a normal  $S$ -invariant subgroup of  $G$  and let  $\theta \in \text{Ind}_S(N)$  be invariant in  $G$ . If  $\chi \in \text{Ind}_S(G)$ , then  $[\chi_N, \theta] \neq 0$  if and only if  $[\chi_{C_N(S)}^*, \theta^*] \neq 0$ .*

**Proof.** We argue by induction on  $|G|$ . Suppose first that  $N$  is a  $\pi'$ -group. Since  $\chi \in \text{Ind}_S(G)$ , by the very definition, we may find an  $S$ -invariant pair  $(W, \gamma)$  with  $N \subseteq W$ , with  $W$  a  $\pi'$ -group and with  $\gamma^G = \chi$ . Then  $\chi^* = \gamma^{*C_G(S)}$ . Notice that  $[\chi_N, \theta] \neq 0$  if and only if  $[\gamma_N, \theta] \neq 0$ . By (5.3) of [9],  $[\gamma_N, \theta] \neq 0$  if and only if  $[\gamma_{C_N(S)}^*, \theta^*] \neq 0$ . Since  $\theta^*$  is  $C_G(S)$ -invariant (because  $((\theta^*)^x = (\theta^*)^*$  for any automorphism  $x$  of  $NS$  fixing  $S$ ),  $[\gamma_{C_N(S)}^*, \theta^*] \neq 0$  if and only if  $[\chi_{C_N(S)}^*, \theta^*] \neq 0$ , as wanted.

Suppose now that  $Y = O_{\pi'}(N) < N$  and let  $\alpha \in \text{Irr}_S(Y)$  be good for  $\chi$ . Let  $T = I_G(\alpha)$  and, by (3.3), let  $\mu \in \text{Ind}_S(T)$  the Clifford correspondent of  $\chi$  over  $\alpha$ . Observe, again, that if  $\delta$  is any irreducible constituent of  $\mu_{T \cap N}$ , then  $\delta^N \in \text{Irr}(N)$  and  $I_G(\delta^N) \cap T = I_T(\delta)$ , by Clifford theory. By the definition of the map we have that  $\chi^* = (\mu^*)^{C_G(S)}$  and  $(\delta^N)^* = (\delta^*)^{C_N(S)}$ . Also  $T < G$ .

Suppose first that  $\theta$  lies under  $\chi$ . Since  $(\mu^{TN})_N$  is a multiple of  $\theta$ ,  $\mu_{T \cap N}$  is a multiple of some  $\delta \in \text{Irr}(T \cap N)$ , where  $\delta$  is the Clifford correspondent of  $\theta$  over  $\alpha$ . By (5.1), observe that  $\delta \in \text{Ind}_S(T \cap N)$ . By induction, we have that  $\mu^*$  lies over  $\delta^*$ . Since  $\mu^{*C_G(S)} = \chi^*$  and  $\delta^{*C_G(S)} = \theta^*$ ,  $\chi^*$  lies over  $\theta^*$ , as wanted.

Suppose now that  $\chi^*$  lies over  $\theta^*$ . We know that  $\theta^*$  is  $C_G(S)$ -invariant, and thus  $\chi_{C_N(S)}^*$  is a multiple of  $\theta^*$ . By (5.1), let  $\eta \in \text{Ind}_S(N)$  be under  $\chi$ . By the first part of the proof,  $\eta^*$  lies under  $\chi^*$ . Therefore,  $\eta^* = \theta^*$  and hence  $\eta = \theta$ , as wanted.

With the help of Theorem (5.2), we can now show that if the Hall  $\pi$ -subgroups of  $\Gamma$  are nilpotent, then  $\text{Ind}_S(G)^*$  is exactly the set of  $\pi$ -defect zero characters in  $\text{Irr}(C_G(S))$ .

Firxt, we need an easy fact about  $B_\pi$ -characters.

(5.3) **Lemma.** *Let  $G$  be a  $\pi$ -separable group and let  $\chi \in B_\pi(G)$ . Suppose that  $1 = G_0 \triangleleft G_1 \triangleleft \cdots \triangleleft G_s = G$  is a normal series of  $G$  where every  $G_i/G_{i+1}$  is a  $\pi$ -group or a  $\pi'$ -group. If  $\chi_{G_i}$  is homogeneous for every  $i$ , then  $\chi$  has  $\pi$ -degree.*

**Proof.** We argue by induction on  $|G|$ . Write  $\chi_{G_1} = e\theta$ , where  $\theta \in B_\pi(G_1)$  (by (7.5) of [4]) and  $\theta$  has  $\pi$ -degree by induction. If  $G/G_1$  is a  $\pi$ -group, then  $e$  is a  $\pi$ -number and so is  $\chi(1)$ . If  $G/G_1$  is a  $\pi'$ -group, by (6.5) of [4],  $e=1$  and the result follows.

(5.4) **Theorem.** *Assume (3.1). Let  $\alpha \in \text{Irr}(C_G(S))$  be a  $\pi$ -defect zero character. If the Hall  $\pi$ -subgroups of  $\Gamma$  are nilpotent, there exists  $\chi \in \text{Ind}_S(G)$  with  $\chi^* = \alpha$ .*

**Proof.** Let  $N$  be a normal  $S$ -invariant subgroup of  $G$  and suppose that  $\alpha_{C_N(S)}$  is not homogeneous. Let  $\nu \in \text{Irr}(C_N(S))$  be a constituent of  $\alpha_{C_N(S)}$  and let  $\tau \in \text{Irr}(I|\nu)$  be such that  $\tau^{C_G(S)} = \alpha$ , where  $I = I_{C_G(S)}(\nu)$ . By (2.2),  $\nu$  and  $\tau$  have  $\pi$ -defect zero. By induction, let  $\theta \in \text{Ind}_S(N)$  be such that  $\theta^* = \nu$  and write  $T = I_G(\theta)$ . Since  $T \cap C_G(S) = I < C_G(S)$ , it follows that  $T < G$ . By induction, let  $\psi \in \text{Ind}_S(T)$  be such that  $\psi^* = \tau$ . By (5.2),  $\psi$  lies over  $\theta$  and hence  $\psi^G \in \text{Irr}(G)$ . By the definition of  $\text{Ind}_S(G)$  and the map,  $\psi^G \in \text{Ind}_S(G)$  and  $(\psi^G)^* = (\psi^*)^{C_G(S)} = \tau^{C_G(S)} = \alpha$ . So we may assume that for any normal  $S$ -invariant subgroup  $N$  of  $G$ ,  $\alpha_{C_N(S)}$  is homogeneous.

Since  $\Gamma$  is  $\pi$ -separable, we may produce a normal series in  $C_G(S)$  with  $\pi$  or  $\pi'$ -factors by intersecting with  $C_G(S)$  a chief series of  $\Gamma$ . Thus, by (2.4) and (5.3),  $\alpha$  has  $\pi'$ -degree. Since  $\alpha$  has  $\pi$ -defect zero, it follows that  $C_G(S)$  is a  $\pi'$ -group. If  $G$  itself is a  $\pi'$ -group the Theorem is true by the Glauberman-Isaacs Correspondence. Otherwise, if  $H > 1$  is an  $S$ -invariant Hall  $\pi$ -subgroup of  $G$ , since  $HS$  is nilpotent, we have  $C_H(S) > 1$ , which is a contradiction.

Finally, we point out that when  $S$  is a  $p$ -group (and  $G$  is  $p$ -solvable) our

map coincides with Nagao's. If we assume (3.1) and  $C$  is a complete set of representatives of  $G$ -conjugacy classes of complements of  $G$  in  $\Gamma$ , first we show that the set of  $\Gamma$ -invariant  $\pi$ -defect zero characters of  $G$  is exactly the disjoint union  $\bigcup_{Q \in C} \text{Ind}_Q(G)$ . Secondly, we will show that if  $P, Q \in C$ , and  $C_G(P) = C_G(Q)$  has a  $p$ -defect zero character then  $P = Q$ . Nagao's map will be the "disjoint union" of our maps.

If  $\chi$  is a  $\Gamma$ -invariant  $\pi$ -defect zero character of  $G$ , we know that  $\chi \in B_{\pi'}(G)$  and that there is a unique  $\hat{\chi} \in B_{\pi'}(\Gamma)$  extending  $\chi$ . If  $(V, \gamma)$  is a nucleus for  $\hat{\chi}$  then by (6.2) of [4],  $(V \cap G, \gamma_{V \cap G})$  is a nucleus for  $\chi$ , where  $V \cap G$  is a  $\pi'$ -group (because  $\chi$  has  $\pi$ -defect zero). Now, if  $Q$  is a Hall  $\pi$ -subgroup of  $V$ , then  $V = (V \cap G)Q$  with  $Q \cap G = 1$  and hence  $Q$  is a complement of  $G$  in  $\Gamma$  (because  $(\gamma^{\Gamma})_G$  is irreducible). By conjugating by an appropriate element we may assume that  $Q \in C$  and therefore, that  $\chi \in \text{Ind}_Q(G)$ . Also, if  $\chi \in \text{Ind}_P(G) \cap \text{Ind}_Q(G)$ , where  $P, Q \in C$ , by (3.5), we know that  $P$  and  $Q$  are Hall  $\pi$ -subgroups of two nucleus of  $\hat{\chi}$ . By (3.5), the nuclei of  $\hat{\chi}$  are  $\Gamma$ -conjugate. Since  $GP = GQ = \Gamma$ , it follows that  $Q$  and  $P$  are  $G$ -conjugate, as wanted.

For the second part, since groups with a  $p$ -defect zero character have no nontrivial normal  $p$ -subgroups, it suffices to show the following.

(5.5) **Lemma.** *Suppose that  $G$  is a normal complemented subgroup of  $\Gamma$ , where  $\Gamma/G$  is a  $p$ -group. Let  $P$  and  $Q$  be complements of  $G$  in  $\Gamma$  and assume that  $C_G(P) = C_G(Q) = D$ . If  $O_p(D) = 1$ , then  $P$  and  $Q$  are  $G$ -conjugate.*

Proof. Let  $M = C_{\Gamma}(D)$ . Since  $M$  contains both  $P$  and  $Q$ ,  $M = P(M \cap G) = Q(M \cap G)$ . Now,  $C_{M \cap G}(Q) = D \cap M \cap G = C_D(D) = Z(D)$  is a  $p'$ -group. Now we claim that  $|M \cap G|$  is not divisible by  $p$ , and observe that if the claim is proved, by the Schur-Zassenhaus Theorem, the lemma follows. Let  $T$  be a Sylow  $p$ -subgroup of  $M$  containing  $Q$ . Then  $T \cap M \cap G$  is a  $Q$ -invariant Sylow  $p$ -subgroup of  $M \cap G$ . If  $M \cap G$  is divisible by  $p$ , then  $C_{T \cap M \cap G}(Q)$  is nontrivial and this is a contradiction with the fact that  $C_{M \cap G}(Q)$  is a  $p'$ -group.

To end, by (12.1) of [7], it suffices to prove the following. (Recall that in the Glauberman correspondence, when the group acting is a  $p$ -group, the correspondent of  $\chi$  is the unique irreducible constituent  $\chi^*$  of  $\chi_{C_G(s)}$  with multiplicity not divisible by  $p$ . Also  $[\chi_{C_G(s)}, \chi^*] \equiv 1 \pmod{p}$  ((13.14) and (13.21) of [3])).

(5.6) **Theorem.** *Assume (3.1) with  $S$  a  $p$ -group. Let  $\chi \in \text{Irr}_S(G)$  and let  $\eta \in \text{Ind}_S(G)$ . Then  $[\chi_{C_G(s)}, \eta^*] \equiv [\chi, \eta] \pmod{p}$ .*

Proof. Write  $\eta = \delta^G$ , where  $\delta \in \text{Irr}_S(J)$  and  $J$  is an  $S$ -invariant  $\pi'$ -subgroup of  $G$ . Since  $\chi_J$  is  $S$ -invariant, we certainly may write

$$\chi_J = \Delta + \sum_{\Lambda \in \Delta} a_{\Lambda} (\sum_{\mu \in \Lambda} \mu),$$

where every irreducible constituent of  $\Delta$  is  $S$ -invariant, and  $\Lambda$  is the set of the nontrivial  $S$ -orbits of irreducible constituents of  $\chi_J$ . If we pick  $\mu_\Lambda \in \Lambda$  for every  $\Lambda \in \Lambda$ , we may write

$$\chi_{C_J(S)} = \Delta_{C_J(S)} + \sum_{\Lambda \in \Lambda} a_\Lambda |\Lambda| (\mu_\Lambda)_{C_J(S)}.$$

Now  $[\chi_{C_G(S)}, \eta^*] = [\chi_{C_G(S)}, (\delta^*)^{C_G(S)}] = [\chi_{C_J(S)}, \delta^*] \equiv [\Delta_{C_J(S)}, \delta^*] \equiv [\Delta, \delta] \pmod{p}$ , where the last congruence follows by (13.14) and (13.21) of [3].

Since  $\delta$  is  $S$ -invariant,  $[\Delta, \delta] \equiv [\chi_J, \delta] = [\chi, \eta] \pmod{p}$ , as wanted.

---

### References

- [1] A. Espuelas, G. Navarro: *Blocks of small defect*, Proc. Amer. Math Soc. **114** (1992), 881–885.
- [2] D. Gajenragadkar: *A characteristic class of finite  $\pi$ -separable groups*, J. Algebra **59** (1979), 237–259.
- [3] I.M. Isaacs: *Character Theory of Finite Groups*, Academic Press, New York, 1976.
- [4] I.M. Isaacs: *Characters of  $\pi$ -separable groups*, J. Algebra, **86** (1984), 98–128.
- [5] I.M. Isaacs: *Fong characters in  $\pi$ -separable groups*, J. Algebra **99** (1986), 89–107.
- [6] I.M. Isaacs, G. Navarro: *Character correspondences and irreducible induction and restriction*, J. Algebra **140** (1991), 131–140.
- [7] H. Nagao, Tsushima Y.: *Representations of Finite Groups*, Academic Press, New York, 1990.
- [8] G. Navarro: *Action and Invariant character degrees*, To appear in J. Algebra.
- [9] T.R. Wolf: *Character correspondences in solvable groups*, Illinois J. Math. **22** (1978), 327–340.

Facultat de Matemàtiques,  
University of Valencia,  
Burjassot, Valencia 46100,  
Spain

