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Abstract

In the previous paper, the authors gave criteria far1-type singularities on
wave fronts. Using them, we show in this paper that there isiaity between sin-
gular points and inflection points on wave fronts in the petje space. As an ap-
plication, we show that the algebraic sum of 2-inflectionng®i(i.e. godron points)
on an immersed surface in the real projective space is equilet Euler number of
M_. Here M? is a compact orientable 2-manifold, ahl is the open subset d¥l?
where the Hessian of takes negative values. This is a generalization of Bleecker
and Wilson’s formula [3] for immersed surfaces in the affinepace.

1. Introduction

We denote byK the real number fielR or the complex number fiel€. Let n
and m be positive integers. A map: K" — K™ is called K-differentiableif it is a
C*>-map whenK = R, and is a holomorphic map whét = C. Throughout this paper,
we denote byP(V) the K-projective space associated to a vector spécever K and
let 7: V — P(V) be the canonical projection.

Let M" and N"*! be K -differentiable manifolds of dimension and of dimension
n + 1, respectively. The projectified -cotangent bundle

P(T*N™):= | ] P(T;N")
peN“*l

has a canonicaK-contact structure. AX-differentiable mapf: M" — N"*! is called
a frontal if f lifts to a K-isotropic mapL+, i.e., aK-differentiable mapL¢: M" —
P(T*N"Y) such that the imagedL (T M") of the K-tangent bundleT M" lies in the
contact hyperplane field oR(T*N"+1). Moreover, f is called awave frontor a front
if it lifts to a K-isotropic immersionL¢. (In this case,L ¢ is called aLegendrian im-
mersion) Frontals (and therefore fronts) generalize immersi@assthey allow for sin-
gular points. A frontalf is said to beco-orientableif its K-isotropic lift L can lift
up to aK-differentiable map into th&-cotangent bundl@ *N"*+1, otherwise it is said
to be non-co-orientable It should be remarked that, whé+! is a Riemannian mani-
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592 K. SaJI, M. UMEHARA AND K. YAMADA

fold, a front f is co-orientable if and only if there is a globally defined tunormal
vector fieldv along f.

Now we setN"t1 = K"+ Suppose that &-differentiable mapF: M" — K"+1
is a frontal. Then, for eaclp € M", there exist a neighborhodd of p and a map

v: U — (K™ {0}

into the dual vector space&l[*1)* of K"*! such that the canonical pairing- d F(v)
vanishes for anw € TU. We call v a local normal mapof the frontal F. We set
G := m o v, which is called a (locallGauss mapof F. In this setting,F is a front if
and only if

L:=(F, G): U — K"l x P((K"1)¥)

is an immersion. Wherf itself is an immersion, it is, of course, a front. If this iseth

case, for a fixed locak -differentiable coordinate system'(..., x") on U, we set
(1.2) vp: K" 5 v i detFe(p), - - ., Fa(p), v) e K (p e U),
where Fy; := dF/ax! (j =1,...,n) and ‘det’ is the determinant function af"**,

Then we get aK-differentiable mapv: U > p = v, € (K"1)*, which gives a local
normal map ofF.

Now, we return to the case thét is a front. Then it is well-known that the local
Gauss map; induces a global map

(1.2) G: M" — P((K"1)*)
which is called theaffine Gauss mapf F. (In fact, the Gauss mag depends only
on the affine structure ok"*1)
We set
(1.3) hiji=v-Faxg =—va-Fa (,j=1,...,n),

where- is the canonical pairing betwedt"! and K"*1)*, and

9%F _0F v

P = Siix ™ T T o

Then

n
(1.4)  H:= D hjdxdx (dx dx :=(1/2)dX ® dx +dx ® dx'))
i,j=1
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gives aK-valued symmetric tensor od, which is called theHessian formof F asso-
ciated tov. Here, theK-differentiable function

(1.5) h:=detfy;): U > K

is called theHessianof F. A point p € M" is called aninflection pointof F if it
belongs to the zeros dfi. An inflection point p is called nondegeneratéf the de-
rivative dh does not vanish ap. In this case, the set of inflection point¢F) con-
sists of an embedde# -differentiable hypersurface dff near p and there exists a
non-vanishingK -differentiable vector field along I (F) such thatH (&, v) = 0 for all
v € TU. Such a vector field is called anasymptotic vector fieldlong I (F), and
[£] = (&) € P(K™?) is called theasymptotic directionlt can be easily checked that
the definition of inflection points and the nondegeneracy rdfection points are in-
dependent of choice af and a local coordinate system.

In Section 2, we shall define the terminology that
e aK-differentiable vector field; along aK-differentiable hypersurfac& of M" is
k-nondegenerate at ¢ S, and
e 15 meets S at p with multiplicity 1.
Using this new terminology,p (€ I (F)) is called an Ay, i-inflection pointif & is
k-nondegenerate gb but does not meet(F) with multiplicity k + 1. In Section 2,
we shall prove the following:

Theorem A. Let F: M" — K"*! be an immersed -differentiable hypersurface.
Then pe M" is an A, -inflection point(1 < k < n) if and only if the affine Gauss
map G has an A-Morin singularity at p.(See the appendix ¢10] for the definition
of A¢x-Morin singularities which corresponds to JA;-points under the intrinsic formu-
lation of singularities as in the reference given Auded in Proof.)

Though our definition ofAy, 1-inflection points are given in terms of the Hess-
ian, this assertion allows us to defidg, ;1-inflection points by the singularities of their
affine Gauss map, which might be more familiar to readers thandefinition. How-
ever, the new notion K-multiplicity” introduced in the present paper is very udef
for recognizing the duality between singular points andettfbn points. Moreover,
as mentioned above, our definition @&f-inflection points works even whek is a
front. We have the following dual assertion for the previdheorem. LetG: M" —
P((K"t1)*) be an immersion. Thep € M" is an A, -inflection pointof G if it is an
A, 1-inflection point ofv: M™ — (K"*1)* such thatr ov = G. This property does not
depend on a choice af.

Proposition A’. Let F: M" — K" be a front. Suppose that the affine Gauss
mapG: M" — P((K"1)*) is a K-immersion. Then g M" is an A i-inflection point
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of G (L<k=<n)if and only if F has an R,;-singularity at p.(See(1.1) in [10] for
the definition of A,i-singularities)

In the case thaK = R, n = 3 and F is an immersion, ams-inflection point is
known as acusp of the Gauss maf. [2]).

It can be easily seen that inflection points and the asynepdiitections are invariant
under projective transformations. So we can deffg;-inflection points (1< k < n)
of an immersionf: M" — P(K"*?). For eachp € M", we take a locaK -differentiable
coordinate system; x%, ..., x") (C M"). Then there exists K-immersionF: U —
K"*+2 such thatf = [F] is the projection ofF. We set

(1.6) G:U 3 p> Fa(p) A Fe(p) A--- A Fa(p) A F(p) € (K'2)*,

Here, we identify K"*2)* with A\"**K"*2 by

n+1
/\ K'™2 5 03 Aves A vpyr <> detly, . . ., vnpa, %) € (KMT2)*,

where ‘det’ is the determinant function d"t2. Then G satisfies
1.7) G-F=0, G-dF=dG-F =0,

where - is the canonical pairing betwedt"+? and ("*?)*. Since,g:= 7 o G does
not depend on the choice of a local coordinate system, thegtran of G induces a
globally definedK -differentiable map

g =[G]: M" > P((K"*?)"),
which is called thedual front of f. We set
h:=dethi;): U - K (hj := G- Fux = -Gy - Fx),

which is called theHessianof F. The inflection points off correspond to the zeros
of h.
In Section 3, we prove the following

Theorem B. Let f: M" — P(K"*2) be an immersed -differentiable hypersurface.
Then pe M" is an A 1-inflection point(k < n) if and only if the dual front g has an
Ag-singularity at p.

Next, we consider the case Kf=R. In [8], we defined thdail part of a swallow-
tail, that is, anAs-singular point. AnAg-inflection pointp of f: M? — P(R*) is called
positive (resp.negativg, if the Hessian takes negative (resp. positive) valueshentail
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part of the dual off at p. Let p € M? be anAs-inflection point. Then there exists a
neighborhoodJ such thatf (U) is contained in an affine spad®® in P(R*). Then the
affine Gauss mag: U — P(A% has an elliptic cusp (resp. a hyperbolic cusp) if and
only if it is positive (resp. negative) (see [2, p.33]). IM[1UribeVargas introduced a
projective invarianto and studied the projective geometry of swallowtails. Hevptb
that an As-inflection point is positive (resp. negative) if and onlypif> 1 (resp.o < 1).
The property thah as in (1.5) is negative is also independent of the choice afcall
coordinate system. So we can define the set of negative points

M_ = {p € M?; h(p) < O}.
In Section 3, we shall prove the following assertion as aniegqpon.

Theorem C. Let M? be a compact orientable €-manifold without boundary
and f: M2 — P(R*) an immersion. We denote by (if) (resp. i (f)) the number of
positive A-inflection points(resp. negative Ainflection pointy on M? (seeSection 3
for the precise definition ofi(f) and i, (f)). Suppose that inflection points of f con-
sist only of A and As-inflection points. Then the following identity holds

(1.8) iy (f)—iz(f) =2x(M.).

The above formula is a generalization of that of Bleecker &itson [3] when
f(M?) is contained in an affine 3-space.

Corollary D (Uribe-Vargas [13, Corollary 4])Under the assumption cfFheorem C,
the total numberJ (f) + i, (f) of As-inflection points is even.

In [13], this corollary is proved by counting the parity of @op consisting of flec-
nodal curves which bound twés-inflection points.

Corollary E. The same formulg1.8) holds for an immersed surface in the unit
3-sphere 8 or in the hyperbolic3-space H.

Proof. Letw: S — P(R* be the canonical projection. If : M2 - S® is an
immersion, we get the assertion applying Theorem @ tof. On the other hand, if
is an immersion intoH3, we consider the canonical projective embeddingi® — Si
where S is the open hemisphere &. Then we get the assertion applying Theorem C
tomrouo f. ]

Finally, in Section 4, we shall introduce a new invariant 8/2-cusps using the
duality, which is a measure for acuteness using the cldssjckoid.



596 K. SaJI, M. UMEHARA AND K. YAMADA

This work is inspired by the result of Izumiya, Pei and Sanptfét characterizes
A, and Ag-singular points on surfaces iH2 via the singularity of certain height func-
tions, and the result on the duality between space-likeasad in hyperbolic 3-space
(resp. in light-cone), and those in de Sitter space (resfiglt-cone) given by Izumiya
[5]. The authors would like to thank Shyuichi Izumiya for hispressive informal talk
at Karatsu, 2005.

2. Preliminaries and a proof of Theorem A

In this section, we shall introduce a new notion “multigh¢i for a contact of a
given vector field along an immersed hypersurface. Then oavigus criterion for
Ag-singularities (given in [10]) can be generalized to theecia for k-multiple con-
tactness of a given vector field (see Theorem 2.4).

Let M" be aK-differentiable manifold and (Cc M") an embedde -differentiable
hypersurface irM". We fix p € S and take & -differentiable vector field

n: SOV 3qr g€ TyM"

along S defined on a neighborhood C S of p. Then we can construct l&-differential
vector field 7; defined on a neighborhood C M" of p such that the restrictiofj|s
coincides withn. Such any is calledan extension of;. (The local existence of is
mentioned in [10, Remark 2.2].)

DEFINITION 2.1. Letp be an arbitrary point or§, andU a neighborhood ofp
in M". A K-differentiable functionp: U — K is calledadmissiblenear p if it satisfies
the following properties
(1) O:=U N Sis the zero level set op, and
(2) de never vanishes oi®.

One can easily find an admissible function ngarWe sety’ := de(): U — K
and define a subs&, (C O C §) hy

$:={0e0:¢'(q) =0} ={qeO;nq€TyS}

If pe S, theny is said tomeet S with multiplicity?2 at p or equivalently,n is said
to contact S with multiplicity2 at p. Otherwise,n is said tomeet S with multiplicity
1 at p. Moreover, ifdg’(T,O) # {0}, 1 is said tobe 2-nondegenerate at.pThe k-th

multiple contactness ankk-nondegeneracy are defined inductively. In fact, if thh

multiple contactness and the submanifof§jshave been already defined fpr=1,...,k

(S =9), we set

91 :=dg“ (i) U > K (oW :=¢)
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and can define a subset &f by

Sit1:= {0 € S M) = 0} = {q € S 1g € TgSd)-

We say thaty meets S with multiplicity k- 1 at p if n is k-nondegenerate g and
p € Sc+1. Moreover, ifdp®(T,S) # {0}, n is called k + 1)-nondegeneratat p. If 7
is (k + 1)-nondegenerate ai, then S, is a hypersurface of near p.

REMARK 2.2. Here we did not define ‘1-nondegeneracy’ iof However, from
now on, any K-differentiable vector field; of M" along S is alwaysl-nondegenerate
by convention In the previous paper [10], ‘1-nondegeneracy’ (i.e. n@&heracy) is
defined not for a vector field along the singular set but for\emisingular point. If a
singular pointp € U of a front f: U — K" is nondegenerate in the sense of [10],
then the functiom.: U — K defined in [10, (2.1)] is an admissible function, and the
null vector fieldn along S(f) is given. Whenk > 2, by definition, k-nondegeneracy
of the singular pointp is equivalent to the&k-nondegeneracy of the null vector fieid
at p (cf. [10]).

Proposition 2.3. The k-th multiple contactness and k-nondegeneracy are ineth
dependent of the choice of an extensiprof n and also of the choice of admissible
functions as inDefinition 2.1.

Proof. We can take a local coordinate systed X%, ..., x") of M" such that
X" = ¢. Write
N
n.= —,
= ax!
where c;j (j = 1,...,n) are K-differentiable functions. Then we have that =

n J, . — @n
2j=1Cexi ="
Let ¥ be another admissible function defined ©On Then

n
j oy oy oy
"= cl— =" =¢ —.
v ; ox! axn ¢ axn
Thus v’ is proportional top’. Then the assertion follows inductively. ]

Corollary 2.5 in [10] is now generalized into the followingszrtion:

Theorem 2.4. Let n be an extension of the vector fieild Let us assuméd <
k < n. Then the vector fielg is k-nondegenerate at,ut n does not meet S with
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multiplicity k 4+ 1 at p if and only if
o(p)=¢'(p) =--- =" D(p)=0, ¢¥(p)#0,
and the Jacobi matrix oK-differentiable map
A=(p, ¢, ..., %) U - KK
is of rank k at p whereg is an admissibleK-differentiable function and
0= ¢, o= ¢) :=do(@), . .., 9" := de" ().

The proof of this theorem is completely parallel to that ofr@lary 2.5 in [10].

To prove Theorem A by applying Theorem 2.4, we shall review ¢hiterion for
Ay-singularities in [10]. LetU" be a domain irK", and consider a mag: U" — K™
wherem > n. A point p € U" is called asingular pointif the rank of the differ-
ential mapd® is less thamn. Suppose that the singular s8(®) of & consists of a
K-differentiable hypersurfac&l”. Then a vector field; along S is called anull vec-
tor field if d®(n) vanishes identically. In this paper, we consider the aase n or
m=n+ 1. If m=n, we define aK-differentiable function: U" — K by

(2.1) A= det@y, . . ., yn).

On the other hand, ifb: U" — K"*! (m = n+ 1) andv is a non-vanishing-normal
vector field (for a definition, see [10, Section 1]) we set

2.2) A= det@y, . . ., By, V).

Then the singular se§(®) of the map® coincides with the zeros of. Recall that

p € S(®) is called nondegeneratéf di(p) # O (see [10] and Remark 2.2). Both of
two cases (2.1) and (2.2), the functiohsare admissible neap (cf. Definition 2.1),

if p is non-degenerate. Whe®(®) consists of nondegenerate singular points, then it
is a hypersurface and there exists a non-vanishing nulbvdild » on S(®). Such a
vector fieldn determined up to a multiplication of non-vanishiKgdifferentiable func-
tions. The following assertion holds as seen in [10].

Fact 2.5. Suppose m=n and ® is a C*®-map (resp. m=n+ 1 and ® is a
front). Then® has an A-Morin singularity (resp. A..1-singularity) at pe M" if and
only if  is k-nondegenerate at p but does not me@b)Swith multiplicity k+ 1 at p.
(Here multiplicity 1 means thaty meets §b) at p transversallyand 1-nondegeneracy
is an empty conditio.

As an application of the fact fom = n, we now give a proof of Theorem A: Let
F: M" — K" pe an immersed -differentiable hypersurface. Recall that a pome
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M" is called anondegenerate inflection poiift the derivativedh of the local Hessian
function h (cf. (1.5)) with respect toF does not vanish ap. Then the setl (F) of
inflection points consists of a hypersurface, calledittflectional hypersurfaceand the
function h is an admissible function on a neighborhoodmifn M". A nondegenerate
inflection point p is called anAy, i-inflection pointof F if the asymptotic vector field
& is k-nondegenerate gt but does not meek(F) with multiplicity k 4+ 1 at p.

Proof of Theorem A. Let be a map given by (1.1), and: M" — P((K"*1)*)
the affine Gauss map induced fromby (1.2). We set

w = detly, vy, ..., Vg, V),

where ‘det’ is the determinant function oK{*%)* under the canonical identification
(KM1)* >~ K" and &%, ..., x") is a local coordinate system dfi". Then the sin-
gular setS(G) of G is just the zeros ofx. By Theorem 2.4 and Fact 2.5, our criteria
for Acia-inflection points (respAy.1-singular points) are completely determined by the
pair &, 1 (F)) (resp. the pair i, S(G))). Hence it is sufficient to show the following
three assertions (1)—(3).

1) 1(F) = S9).

(2) For each pe I (F), p is a nondegenerate inflection point of F if and only if it is
a nondegenerate singular point gf.

(3) The asymptotic direction of each nondegenerate inflectmintpp of F is equal to
the null direction of p as a singular point df.

Let H=>7",_, hj dxi dx! be the Hessian form oF. Then we have that

hll e h]_n * Vy1
2.3) oo = R B W),
hn]_ hnn % Vyn
0 0 v-Y v
wherev -tv = ZTE(UJ)Z andv = (v%,...,v") as a row vector. Here, we consider a

vector inK" (resp. in K")*) as a column vector (resp. a row vector), d0d denotes
the transposition. We may assume thép) - 'v(p) # 0 by a suitable affine transform-

ation of K", even whenK = C. Since the matrix By, . .., Fy, ) is regular, (1)
and (2) follow by taking the determinant of (2.3). Also by3R.> " ; ahj = 0 for
all j =1,...,n holds if and only ifZ?zlaiUxi = 0, which proves (3). ]

Proof of Proposition A Similar to the proof of Theorem A, it is sufficient to
show the following properties, by virtue of Theorem 2.4.
(1) S(F) = 1(G), that is the set of singular points of F coincides with the set of
inflection points of the affine Gauss map.
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(2) For each pe 1(G), p is a nondegenerate inflection point if and only if it is a
nondegenerate singular point of F.

(3) The asymptotic direction of each nondegenerate inflectmintjcoincides with the
null direction of p as a singular point of F.

Since G is an immersion, (2.3) implies that

1(G) = {p; (Fy, ..., Fw, 'v) are linearly dependent gt}
={p: AM(p) =0} (r:=detFy,..., Fun,W)).

Hence we have (L Moreover, h = detf;;) = 61 holds, where$ is a function on
U which never vanishes on a neighborhood pf Thus (2) holds. Finally, by (2.3),
> j_ibjhj =0fori =1,...,nif and only if >1_, b; Fyi = 0, which proves (3. [

EXAMPLE 2.6 (Ag-inflection points on cubic curves). Lef(t) := '(x(t), y(t)) be
a K-differentiable curve irK?. Thenv(t) := (=y(t), X(t)) € (K?)* gives a normal vec-
tor, and

h(t) = v(t) - 7(t) = det((t), 7 (1))

is the Hessian function. Thus= ty is an Ay-inflection point if and only if

det/(to), (to)) = 0,  detf(to), ¥(to)) # O.

Consideringk? c P(K®) as an affine subspace, this criterion is available for @irve
in P(K®). WhenK = C, it is well-known that non-singular cubic curves iR(C?)
have exactly nine inflection points which are all Aj-type. One special singular cubic
curve is 32—3x% =0 in P(C® with homogeneous coordinates, |y, z], which can be
parameterized ag(t) = [v/2t2, +/3t3, 1]. The image of the dual curve gf in P(C®) is
the image ofy itself, andy has anA;-type singular point [0, 0, 1] and aA,-inflection
point [0, 1, O].

These two points are interchanged by the duality. (The tuali fronts is ex-
plained in Section 3.)

EXAMPLE 2.7 (The affine Gauss map of ay-inflection point). LetF: K3 —
K* be a map defined by

2 w4 w5 w6

t
3
F(u, v, w) = (w, u, v, —u2—%+Uw2+vw3—Z+€—€) (u, v, w € K).

If we defineG: K3 — P(K%) = P((K**) by

G(u, v, w) = [-2uw — Svw? + wd — w* + w®, 2u— w?, v — ws, 1]
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using the homogeneous coordinate systéngives the affine Gauss map &. Then
the Hessiarh of F is

-2 0 2w
detf 0 -3 3w? = 6(2u+ 6vw —w? + 4w —2uw*).
2w 3w? 2u+6vw—3w?+ 4w —5w?

The asymptotic vector field i = (w, w?, 1). Hence we have

h = 6(2u + 6vw — w? + 4w — 2uw?),
h =12( + 6w? —w?), h” =144w, h"” = 144,

where h’ = dh(¢), " = dh'(¢§) and h"” = dh”(§). The Jacobi matrix of i, h’, h”)

at0is
2 * *
0 36 =x |.
0O 0 144

This implies thatt is 3-nondegenerate @tbut does not meet(F) = h=%(0) at p with
multiplicity 4, that is, F has anAs-inflection point at0. On the other handy has the
As-Morin singularity atO. In fact, by the coordinate change
U=2u-w? V=3-w’ W=uw,
it follows that G is represented by a map germ
(U,V, W)~ —(UW + VW2 + W4 U, V).

This coincides with the typical\3-Morin singularity given in (A.3) in [10].

3. Duality of wave fronts
Let P(K"*?) be the @+ 1)-projective space ovef. We denote by ] € P(K"+?)
the projection of a vectox = {(x°, ..., x™1) e K""2\ {0}. Consider a (& + 3)-
submanifold ofK"*+2 x (K"+2)* defined by
C:={(x,y) € K"2x (K™?)*; x.y =0},
and also a (& + 1)-submanifold ofP(K"*2) x P((K"*2)*)

C = {(IX], [y]) € P(K"™?) x P((K™?)*); x-y = 0}
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As C can be canonically identified with the projective tangenndia PTR(K"*2), it
has a canonical contact structure: lzetC — C be the canonical projection, and define
a 1-from

w = Z:(xJ dy! —yldx)),

j=0

which is considered as a 1-form @f. The tangent vectors of the curves— (tx, y)
andt — (x, ty) at (x, y) € C generate the kernel afz. Since these two vectors also
belong to the kernel ofv and dim(kew) = 2n + 2,

IT:= dr(kerw)

is a h-dimensional vector subspace @f,,)C. We shall see thafl is the contact
structure onC. One can check that it coincides with the canonical contaattire of
PTR(K"*?) (= C). Let U be an open subset & ands: U — K"*2x (K"*2)* a section
of the fibrationz. Sincedr o ds is the identity map, it can be easily checked tihat
is contained in the kernel of the 1-forstfw. SinceIl and the kernel of the 1-form
s*w are the same dimension, they coincide. Moreover, supposeptkan(x, y) € C
satisfiesx' # 0 andy! # 0. We then consider a map &% x (K"1)* o~ K"+l x K+
into K2 x (K"2)* o~ K"*2 x K"*2 defined by

@°....,a" 0% ..., b > @°...,at 1,a+ ..., a" b0 ..., b7t 1, L b,

and denote by j the restriction of the map to the neighborhoodmfn C. Then one

can easily check that
n
S |:a)/\(/\ da)):|

does not vanish ap. Thuss';w is a contact form, and the hyperplane fidlddefines

a canonical contact structure @h Moreover, the two projections froi@ into P(K"*?)

are both Legendrian fibrations, namely we get a double Leimmndibration. Letf =
[F]: M" — P(K"*?) be a front. Then there is a Legendrian immersion of the form
L = ([F], [G]): M" — C. Theng = [G]: M" — P((K"*?)*) satisfies (1.6) and (1.7).
In particular,L := 7 (F, G): M" — C gives a Legendrian immersion, arfdand g can

be regarded as mutually dual wave fronts as projectionk.of

Proof of Theorem B. Since our contact structure@rcan be identified with the
contact structure on the projective tangent bundleR{K"+?), we can apply the cri-
teria of Ag-singularities as in Fact 2.5. Thus a nondegenerate singulat p is an
Ag-singular point of f if and only if the null vector fieldp of f (as a wave front) is
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(k — 1)-nondegenerate gi, but does not meet the hypersurfasef) with multiplicity
k at p. Like as in the proof of Theorem A, we may assume ttfatp) - F(p) # 0
and G(p) - 'G(p) # 0 simultaneously by a suitable affine transformatiorkdf?, even
whenK = C. Since E1,..., Fx, F,'G) is a regular i + 2) x (n + 2)-matrix if and
only if f =[F] is an immersion, the assertion immediately follows frore identity

hig ... hin O * Gy

3.1 Py ... Don 0 * =] Gy (Fut, ..., Fu, F,'G). O
o ... 0 0 G-'G G
* ... *x 'F.F 0 'F

Proof of Theorem C. Leg: M2 — P((R%*) be the dual off. We fix p € M?
and take a simply connected and connected neighborhbad p.
Then there are liftsf, §: U — S® into the unit sphereS® such that

f-g=0, df(v)-g=dg(v)-f=0 (@eTU),
where- is the canonical inner product d®* > S°. Since f.f =1, we have
df(v)- f(p) =0 (veT,M?).
Thus
df(TM?) = (¢ € S% ¢ f(p) = ¢ - 6(p) = O},

which implies thatd f(T M?) is equal to the limiting tangent bundle of the framt So
we apply (2.5) in [9] forg: Since the singular se®(g) of g consists only of cuspidal
edges and swallowtails, the Euler number3§§) vanishes. Then it holds that

x(My) + x (M) = x(M?) = x(My) = x(M_) + i3 (f) =i, (f),
which proves the formula. 0

When n = 2, the duality of fronts in the unit 2-spher®® (as the double cover
of P(R%) plays a crucial role for obtaining the classification tren in [6] for com-
plete flat fronts with embedded endsRi. Also, a relationship between the number of
inflection points and the number of double tangents on certiiss of simple closed
regular curves inP(R®) is given in [11]. (For the geometry and a duality of fronts in
&, see [1].) In [7], Porteous investigated the duality betwe-singular points and
A-inflection points wherk = 2, 3 on a surface ir8>.
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4. Cuspidal curvature on 3/2-cusps

Relating to the duality between singular points and inftecipoints, we introduce
a curvature on ®-cusps of planar curves:

Suppose thatNj?, g) is an oriented Riemannian manifolg,: | — M? is a front,
v(t) is a unit normal vector field, antl an open interval. Theh=1ty € | is a 3/2-cusp
if and only if y(tg) = 0 and (7 (to), ¥(to)) # 0, where< is the unit 2-form onM?,
that is, the Riemannian area element, and the dot means Yheiant derivative. When
t =ty is a 3/2-cusp,v(t) does not vanish (iM? = R?, it follows from Proposition A).
Then we take the (arclength) parametemeary (to) so that|v'(s)| = +/g(v'(s), V'(9)) =
1 (sel), wherev = dv/ds. Now we define thecuspidal curvatureuw by

ds
e 2sgn(o),/‘@‘

where we choose the unit norme(s) so that it is smooth arouns = s (S = s(to)).

If w> 0 (resp.u < 0), the cusp is calleghositive (resp.negativg. It is an interest-
ing phenomenon that the left-turning cusps have negatigpidal curvature, although
the left-turning regular curves have positive geodesicvature (see Fig. 4.1). Then it
holds that

(o= 1/Kg)a

s=%

@) _Q00O.50)  _, 200.5) |

POP2 i, 1€2(7 (1), v()] lt=t,
We now examine the case tha#l{, g) is the Euclidean planB?, whereQ(v, w) (v, w €
R?) coincides with the determinant def(w) of the 2x 2-matrix (v, w). A cycloidis a
rigid motion of the curve given by(t) := a(t — sint, 1 — cost) (a > 0), and herea
is called theradius of the cycloid. The cuspidal curvature oft) att € 27Z is equal
to —1/./a. In [12], the second author proposed to consider the cumata the inverse
of radius of the cycloid which gives the best approximatidrthe given 32-cusp. As
shown in the next propositiony? attains this property:

Proposition 4.1. Suppose thay (t) has a3/2-cusp at t=ty. Then by a suitable
choice of the parameter, there exists a unique cycloidtg such that

y () — c(t) = o((t — to)?),

where d(t — t5)®) denotes a higher order term tha — to). Moreovey the square of
the absolute value of cuspidal curvature yoft) at t = tg is equal to the inverse of the
radius of the cycloid c.

Proof. Without loss of generality, we may dgt= 0 andy(0) = 0. Sincet =0 is
a singular point, there exist smooth functica($) andb(t) such thaty (t) = t2(a(t), b(t)).
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(k> 0) (n <0)

Fig. 4.1. A positive cusp and a negative cusp.

Sincet = 0 is a 32-cusp, &(0), b(0)) # 0. By a suitable rotation of, we may assume
that b(0) # 0 anda(0) = 0. Without loss of generality, we may assume théd) > 0.
By settings = t/b(t), y(s) = y(t(s)) has the expansion

y(s) = (@ 8°) + os%) (o #0).

Since the cuspidal curvature changes sign by reflectionR%rit is sufficient to con-
sider the caser > 0. Then, the cycloid

2
ct) := ﬁ(t —sint, 1 — cost)

is the desired one by settirg=t/(3x). ]

It is well-known that the cycloids are the solutions of thedistochrone prob-
lem. We shall propose to call the numbet|/1|?> the cuspidal curvature radiusvhich
corresponds the radius of the best approximating cyatoid

REMARK 4.2. During the second author’s stay at Saitama Universighizumi
Fukui pointed out the followings: Leg(t) be a regular curve ifR? with non-vanishing
curvature functione(t). Suppose that is the arclength parameter pf For eacht = to,
there exists a unique cycloid such that a point om gives the best approximation of
y(t) att = tp (namely c approximatesy up to the third jet atty). The angled(to)
between the axis (i.e. the normal line ofat the singular points) of the cycloid and
the normal line ofy atty is given by

2

K
4.2 Sing = ———,
“2 VR
and the radiua of the cycloid is given by
4 -2
4.3) ai— —KIIJQK
K

One can prove (4.2) and (4.3) by straightforward calcuftetioThe cuspidal curvature
radius can be considered as the limit.
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ADDED IN PROOF. In a recent authors’ preprint, “The intrinsic duality of wea

fronts (arXiv0910. 3456)", Ax.i-Singularities are defined intrinsically. Moreover, the
duality between fronts and their Gauss maps is also exmlaimginsically.
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