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Nobusawa developed the notion of a I'-ring which is more general than a
ring. He obtained an analogue of the Wedderburn theorem for simple I'-ring
with minimum condition on one-sided ideals. Recently, Barnes weakened slight-
ly the defining conditions for a I'-ring, introduced the notions of prime ideals,
primary ideals and radical for a T'-ring, and obtained analogues of the classical
Noether-Lasker theorems concerning primary representations of ideals for I'-
rings. In this paper, the notion of primitivity is extended to I'-ring. 'The class
of primitive I'-rings having non-zero minimal left ideals is a natural extension
of the class of simple I'-rings satisfying the minimum condition on one-sided
ideals. The main theorem here gives a characterization of these I'-rings as cer-
tain I'-rings of continuous semi-linear transformations. This is a generalization
of the well known structure theorem for primitive rings given by Jacobson as well
as the result of Nobusawa for simple I'-rings.

2. Continuous semi-linear transformations. In this section we gather toge-
ther the basic facts of continuous semi-linear transformations that will be used in
the sequel of this paper.

Let (V,W) be a pair of dual spaces over a division ring D. That is, V' is a left
vector space over D and W is a total vector subspace of the conjugate space of V.
If veV, we W, we use the notation (v, w) for the image vw in D. There is an
associated topology on ¥V, a subbase at zero consisting of the kernels of the func-
tionals in W. The resulting topology is called the W-topology of V.

A mapping T of a left vector space V over a division ring D into a left vector
space V' over a division ring D’ is called a semi-linear transformation if 7" is a
group homomorphism of (¥, +) into (¥, +) and if there exists an isomorphism
o of D onto D’ such that for all vV, deD, we have (dv)T=(d°)(vT). When
we wish to indicate o explicitly, we shall speak of the ‘‘semi-linear transfor-
mation (7, o).

Suppose that (V, W) and (V’, W’) are pairs of dual vector spaces over D and
D’ respectively and (7, o) is a semi-linear transformation of 7 into V’. The
mapping T* of W’ into W is called an adjoint of T if (o7, w’)" ' =(v, w’'T*)
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holds for all vV and w'€W’. In this case, clearly (T*,o7") is a semi-linear
transformation of W’ into W. We shall denote by L(V, W; V', W’) or simply
by L(V, V'), the additive group of all continuous semilinear transformations of
V, topologized by W-topology, into V", topologized by W’-topology. We shall
also denote by F(V, W; V', W’) or simply by F(V, V"), the subgroup of .L(V, V")
consisting of all continuous semi-linear transformations of ¥ into V' of finite
rank.

In the case that D’=D, V and V"’ are of finite dimensions 7 and 7 respective-
ly, and o is the identity mapping on D, then L(V,V")=%F(V,V’) is the additive
group of all m X n matrixes over D. In the case that D=D’', V=V', W=W",
and o is the identity mapping on D, then L(V, V') is the ring of all continuous
linear transformations on V topologized by W-topology, and is known to be a
primitive ring with minimal one-sided ideals.

The following two theorems are basic throughout our discussion. The
proofs can be found in [3] and will be omitted.

Theorem 2.1. Let (V,W) be a pair of dual vector spaces over a division ring
D and f is linear functional on V. Then f is a continuous mapping of V, topolo-
gized by W-topology, into D, topologized by discrete topology if and only if there ex-
ists w e W such that vf=(v, w) for all ve V.

Theorem 2.2. Let (V,W) and (V',W’) be pairs of dual vector spaces over
division rings D and D’ respectively. A semi-linear transformation (T,o) of V
into V' is continuous if and only if it has an adjoint (T*,o7%).

The next theorem is an analogue of Proposition 1 of [3, p. 74].

Theorem 2.3. Let (V,W) and (V' ,W') be pairs of dual spaces over division
rings D and D' respectively. A semi-linear transformation (T, c)sF(V,V') if and
only if there exist w; s W, v';€ V', i=1,2,...,n, such that vT=3(v, w;)°v;’, for all
vel.

Proof. Assume that TeS(V,V’). Let {2, v,/ ..., v,’} be a basis of VT
over D’. 'Then for each veV, vT=3¢,(v)v;’, where ¢ (v)eD’, i=1,2,...,n,
is uniquely determined. The mapping v— ¢;(¥)° " is a linear functional on V.
Also this mapping is composed of continuous mappings 7, a linear functional on
VT,and o™'. Hence it is continuous. By Theorem 2.1 there exists w; = W, such
that ¢,(v)" '=(2v, w;), or ¢,(v)=(v, w;)° for each i=1,2,...,n. Thus, vT=
(v, w;)°v;.

Conversely, if T is a mapping of V into V' of this form. It is clear that
T is a semi-linear transformation of finite rank. Let 7* be the mapping of W’
into W defined by @’ T*=Sw,(v;", w’)" . Then we can see easily that (v7,w")=
(v, w' T*)°, for all v€V, w'&W’. Consequently, T* is an adjoint of 7, and
hence T is continuous.
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3. T-rings. Let M and T" be two abelian additive groups. If, for all
x,y, 2 M and a, BET, the following conditions are satisfied,

(1) xay is an element of M,

(2) (x+y)az=xaz+yaz,

x(a+ B)z=xaz+xBz,
xa(y+2)=xay+xaz,

(3) (xay)Bz=xa(yBz),

Then following Barnes [1] M is called a I"-ring. We may note that Oay=x0y
=xa0=0 for all x,yeM and x<T.

If the defining conditions for a I'-ring are strengthened to

(1) =zayisan element of M, ax/ is an element of T,

(2') same as (2),

(37 (xay)Br=x(ayB)s=xa(yBs),

(4") xay=0 for all x, y& M implies =0,
we then have a I"-ring in the sense of Nobusawa [4].

A T-ring M in the sense of Nobusawa is simple if, for any nonzero elements
x, yE M, there exists v ET, such that xyy=+0.

An additive subgroup I of M is a right (left) ideal of M if ITMCI(MTI
c1.) Here ITM denotes the set of all finite sums Za;v;x;, where a;€1, v; €T,
x;M. IfIisbotha left and a right ideal of M, then I is a two-sided ideal or
simply an ideal of M. A non-zero right (left) ideal I of M is minimal if the
only right (left) ideal of M contained in I are 0 and I itself.

Let M be a T"-ring and let F be the abelian free group generated by the set of
all ordered pairs (7, x), where y&T', x&M. Let A be the group of all those
elements Sm(7v;, x;) in F satisfying Zm;xy;x;=0 for all x& M, where m,;’s are
integers. Denote by R the factor group F/A, and by [v, x] the coset A+(v, x).
Every element in R can then be expressed as a finite sum =[vy;, ;). Also it can
be verified easily that [a, x]4[8, x]=[a+B, ¥] and [a, x]+[a, y]=[a, x+],
for all a, BT, and x, ye M.

Now, define a multiplication in R by

Zila, %:]2;[8;55 ¥,] = 2 sl %:8,y;] -

Clearly, the multiplication is well defined and R forms a ring. Furthermore, if
we define a composition on M X R into M by x Z[a;, x;]=Sxa;x;, for x& M, and
S[a;, x;]ER, then M forms a right R-module. We shall call R the right operator
ring of the I'-ring M. Using similar pattern, we may construct a left operator
ring L of M so that M is a left L-module. (L, ) is the factor group G/B, where
G is the abelian free group generated by the set of all ordered pairs (x, v) with
x&M and v €T, and B is the subgroup of G consisting of all elements Sm(x;, ;)
with the property that Zm;x;y;x=0 for all x&M. Without causing any ambi-
guity we shall denote by [x, v] the coset B-(x, v). The multiplication in L is
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defined by 3,[x;, 2] 2,y ,, B;]=2s ;[%:0:y;, B,]. It might be worth to note that
I is a right (left) ideal of M if and only if I is a R-submodule (L-submodule)
of M.

Let M be aT-ringand SCM. For any positive integer #, we shall denote
by S” the set ST'ST'---T'S (all finite sums Zx,¥,X,7, **Vn_X» With x;E S, v, €T).
If ACT, we shall denote by [S, A] the set of all finite sums Z[x;, 7;], where
x%,€8, v;€A. The notation [A, S] will be defined analogously.

An one-sided ideal I of M is strongly nilpotent if I"=0 for some positive
integer 7.

Theorem 3.1. Let M be a T'-ring. If M has no non-zero strongly nilpotent
left ideals then M has no non-zero strongly niplotent right ideals.

Proof. Let I be a non-zero strongly nilpotent right ideal of M and I”=0.
Then K=1I1+4MT1 is a left ideal of M. By induction on £, it can be shown that
Kt cI*4MTI* and hence K"CI"+MTI"=0, so K is a non-zero strongly
nilpotent left ideal of M.

Theorem 3.2. Let M be a I'-ring, and I be a minimal left ideal of M. Then
either I*=0, or I=Mvye for some v =T, e I, where eye=e.

Proof. If I*+0, then there exist y =T, a1, such that Iya=1, so e exists
in I such that eya=a. Thus we have eyeya=eya, or (eye—e)ya=0. Let
K={xcI: xya=0}. Clearly K is a left ideal of M properly contained in I.
Hence, K=0, so eye—e=0, or e=erye.

Theorem 3.3. Let M be a T'-ring, and eye=e, where e M, vyET. Then
Mvye is a minimal left ideal of M if and only if Lle, v] is a minimal left ideal of L,
where L is the left operator ring of M.

Proof. Assume that Mrye is minimal. If I is a non-zero left ideal of L con-
tained in Le, 7], then 04=leC MTeye=MTe. By the minimality of MTe, we
obtain Je=MTe. Hence, I=I[e, y]=Lle, v], and L[e, v] is minimal.

Conversely, assume that L[e, ¥] is a minimal left ideal of L. If I is a non-
zero left ideal of M contained in Mwye, then 0=[I, y]S[M, v][e, Y1<Lle, v].
By the minimality of L[e, v], we obtain [/, v]=L[e, ¥]. Consequently, I=1Ive
=MTeye=MTe, and MTe is minimal.

Theorem 3.4. Let M be a T-ring. If Mvye is a minimal left ideal of M,
where e M, yET, and eye=e, then
(1) R[v, €] is a minimal left ideal of R,
(i) [e, v]Lle, ¥] #s a division ring.
(i11) [v, e} R[7, €] is a division ring,
where R and L are respectively the right and left operator rings of M.,
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Proof. To prove (i), let I be a non-zero left ideal of R contained in R[y, e].
From 0= MI=MI[vy, e] < Mre, we have MI=Mrye, and R[vy, e]=RICI. Thus
R[y, e]=1, and RJ[y, €] is minimal.

(ii) and (iii) are immediate consequences of Theorem 3.3 and (i) of this

theorem (see [3, p. 65]).

Theorem 3.5. Let M be a T'-ring having no non-zero strongly nilpotent one-
sided ideal. If D=l[e, v]Lle, ] is a division ring, where eye=e, then Mye is a
minimal left ideal of M, where L is the left operator ring of M.

Proof. It is easy to see that if M has no non-zero strongly nilpotent one-
sided ideals, then L has no non-zero nilpotent one-sided ideals. Hence if D is a
division ring then Ll[e, v] is a minimal left ideal of L. By Theorem 3.3, Mve
is therefore a minimal left ideal of M.

We should note that Theorems 3.1, 3.2, 3.3, and 3.5 all remain true if we
replace L by R, R by L, left by right, right by left, Mve by eyM, L[e, v] by [v, €]R,
and R[v, €] by [e, ¥]L at the same time.

We conclude this section by the following

Theorem 3.6. Let M be a T-ring having no non-zero strongly nilpotent one-
sided ideals. Let L and R be respectively the left and right operator rings of M. If
eye=e, where e M, y T, then the following statements are equivalent:

(i) Mee is a minimal left ideal of M,
(i1) eyM is a minimal right ideal of M,
(iit) L[e, v] is a minimal left ideal of L,
(iv) [v, €]R is a minimal right ideal of R,
(v) [e, v] L is a minimal right ideal of L,
(vi) Ry, e] ts a minimal left ideal of R,

(vii) [e. ¥]1L[e, v] is a division ring,

(viii) [, e]R[v, €] is a division ring.

Moreover, the division rings [e, ¥]L[e, v] and [y ,e]R[v, €] are isomorphic if
any of the above statements occurs.

Proof. The equivalence of the above eight statements is an immediate
consequence of Theorems 3.1 through 3.5. We shall show now that D=lJe, 7]
Lle, 7] is isomorphic to D'=[v, e]R[v, e]. Note that every element of D can be
expressed as [e, v][x, 7] [e, ¥] for some x=M. Consider the mapping o of D
onto D’ defined by ([e, ¥][x, Y1[e, ¥Y])o=[v, €][v, x][v, €]. The mapping o is well
defined, for if [e, ¥][x, ¥1[e, v]1=[e, Y1[¥, Y1le, ¥] then [e, ¥][x—y, ¥][e, ¥]1=0.
This implies Myey(x—y)ye=Mrey(x—y)yeye=0, or [v, e][v, x—y][v, e]=0.
Hence [v, ][y, x][v, e]=[7, e][v, y][v, €]. The reader can easily verify that ¢ is
an isomorphism of D onto D’,



170 J. Lun

4. Primitive I'-rings. Let M be a I'-ring and L and R be respectively
the left and right operator rings of M. M is said to be left (right) primitive if
(i) L(R) is a left (right) primitive ring, and (ii) ¥I'M=0 (MTx=0) implies x=0.

Theorem 4.1. Let M be a left primitive T-ring. If I, and I, are two non-
zero left ideals of M, then I,.T'1,%0.

Proof. Let N be a faithful irreducible left L-module. Then there exists
v €T, such that [I,, y]N =0, for otherwise, [I,, I']=0 would imply I,I’'M=0
and I,=0. Since [[,, ¥y]N is an L-submodule of N and N is irreducible, we
have [I,, yY]JN=N. Now suppose contrarily that I,I'],=0. Then [I,, T][N=
[1,, T][1,, yY]N=[I,T1,, vy]N=0. It would follow that [,, I'|=0, or I,I'M=0,
so 1,=0.

From Theorems 3.1 and 4.1, we immediately have

Corollary. A left primitive T-ring has no non-zero strongly nilpotent one-
sided ideals.

Theorem 4.2. Let M be a T-ring having minimal one-sided ideals. Then
M is left primitive if and only if M is right primitive.

Proof. By the left-right symmetricity, it will suffice to show that left primi-
tivity implies right primitivity. Let us assume that M is a left primitive I'-ring,
and that Mve is a minimal left ideal of M, eye=e. Then by Theorem 3.6,
[v, e]R is a minimal right ideal of R and hence is an irreducible right R-module,
where R is the right operator ring of M. We assert further that [y, e] Ris faithful
as a R-module. For, if [y, €]R Z[v;, x;]=0, where =[vy;, x;]ER, then (M[v, e])
T(MZ[v;, %;])=0, while M[v, ¢]+=0 and MZ[y;, x;] are left ideals of M.
Hence by Theorem 4.1, M3[v;, x;]=0 or 3[v;, x;]=0. Thus R is a right
primitive ring. Moreover, if MTx=0, x& M, then (xI'M)*=0. Since M has
no non-zero strongly nilpotent right ideals, xI'//=0. By the left primitivity of
M, x=0. Therefore, M is a right primitive I'-ring. 'This completes the proof.

Now, let M be a I'-ring and M’ be a I''-ring. If 0 is a group isomorphism
of M onto M’ and ¢ is a group isomorphism of I" onto T’ then the pair (6, ¢) is
called an isomorphism of I'-ring M onto T''-ring M’ if (xay)0=(x0)(ad)(y0)
for all x,yeM, a<T.

The definition here for isomorphism is slightly general than that given by
Barnes [1] in which he assumed I'=T"', and ¢ is the identity mapping on T".

A T-ring M and a I''-ring M’ are said to be isomorphic if there exists an
isomoprhism (6, ¢) of M onto M’. In this case if M is a T'-ring in the sense of
Nobusawa, then, for a’, B8'€T", x’M’, the composition a'x’3’ can be intro-
duced so that M’ forms a I''-ring in the sense of Nobusawa, and (axG)p=(a¢)
(x0)(B¢) holds for all o, BET, x=M.

Now we are ready to prove the main theorem,
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Theorem 4.3. Let M be a T-ring. Then M is a left primitive T-ring (in
the sense of Nobusawa) having minimal one-sided ideals if and only if there exist two
pairs of dual spaces (V,W) and (V',W’) over isomorphic division rings D and D’
respectively, such that M is isomorphic to a T'-ring M', where F(V,V')CTM'<
LV, V') and F(V',V)ST'C L(V', V), and the composition xay for x,yeM’',
a T is the composition of mappings. Moreover, F(V,V') is the unique minimal
two-sided ideal of M'.

Proof. Sufficiency. Assume that (V, W) and (V’', W’) are pairs of dual
spaces over D and D’ respectively, and M is a T-ring with F(V,V')SM<
LWV, V), F(V',VYST < L(V',V). Let o be the isomorphism of D onto D’.
Let O+9,/€V’ and I={xs L(V,V'): Vx={v,">}, where <{v,”> denotes the
subspace of ' generated by v," over D’. Then clearly I is a non-zero left ideal
of the I'-ring M. Now, we claim that I is minimal. Suppose K=0 is a left
ideal of M contained in I. Let yeK and y40. By Theorem 2.3, there exists
w, e W, w,+0, such that vy=(v, w,)°v,". Let x be an arbitrary element in [
and vx=(v, w,)°v,", where w,&W. By the non-degeneracy of bilinear forms
on dual spaces, there exist v, V, w,” = W’, such that (v,, w,)=1 and (v,’, w," )=1.
Define v,€F(V',V) by v'y,=(v’, w,’) 'v,, for all vV, v’'€V’. It is easy
to see that vxy,y=uvx for all veV. Hence x=xv,yeK. Thus K=I, and [
is minimal. To show that I being an irreducible L-module is faithful, we
assume that 0=2[x;, v;,]€L and Z[x;, v;,]I=0 (where L is the left operator ring
of M). Then there exists z&M, v,€V, such that v,3x;v;2+0, and hence
there exists w;"e W’ such that (v, 2x;7;2, w;')=1. Let v,&V, w, W, so that
(v w)=1, and let yET, xI be defined by v'y=(v’, w;')" " v,, and va=
(v, w,)°v,’, for all v’€V’ and vEV. By noting that zyxsI, we obtain 0=
v,(Z[x;, vi] 2yx)=0v0=1,, a contradiction. Thus I is a faithful left L-module.
Also it is clear that ¥xI'M=0 implies x=0. Therefore, M is a left primitive
T-ring.

Now we shall show that (¥, I’) is the unique minimal two-sided ideal of
M. It will be sufficient to show that every non-zero ideal of M contains every
continuous semi-linear transformation of rank one, since, according to Theorem
2.3, each x & F(V, V') can be expressed as a sum of finitely many x,’s in F(V, V")
of rank one.

Let K be an arbitrary non-zero ideal of M and 0+x=K. Letye%(V,V’)
be of rank one, say vy=(v, w,)°v;’, for all v V. Let v,V such that v,x30.
Then there exist w,’€W’, w,eW, such that (v,x, w,")=1, and (v, w,)=1.
Let x, x, €M, yET be defined by vx,=(v, w,)’(v,x), va,=(v, w,)°v,’, v'y=
(v, wl’)c’_l'vl, for all €V, v'eV’. Then it is easy to see that x,yxyx,—y.
Hence yeK, and F(V, V') K. Therefore, F(V, V') is the unique minimal
ideal of M.

It remains to show that M is a I"-ring in the sense of Nobusawa. Let 0=
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v€&€T, and v,’€ V"’ with v,’y=+0. Then there exists w& W such that (v,"v, w)
=1. Define x€M by vx=(v, w)°v,” for all v V. We obtain (v,v)xyx=
v,’%0. Hence, ¥yx+0, and M is a T-ring in the sense of Nobusawa.

Necessity. The proof of this part is similar to that of Jacobson structure
theorem for primitive ring given by Kaplansky, but is slightly complicated. We
assume that M is a left primitive T'-ring having minimal left ideals in the sense
of Nobusawa. Let /=0 be a minimal left ideal of M. By the Corollary to
Theorem 4.1, I°+0 and hence by Theorem 3.2, I=Me, eye=e for some e< M.
v&€T. From Theorem 3.6, D=[e, y]LJe, v], D'=[v, e]R[v, €] are isomor-
phic division rings, where L and R are respectively the left and right operator
rings of M. Consider that V'=[e, yY]L and W=Ll[e, v] are respectively left
and right vector spaces over D and that V'=[y, ¢]R and W'=R][v, e] are respec-
tively left and right vector spaces over D’. Clearly V=[e, '] and W'=[T, e].
Now we define non-degenerate bilinear mappings of V' X W into D and of V' X
W' into D’ by
([e, al, Z[y:, Bille, v1)=[e, ] Z[ys, Bille, 7], and
([v, el Z[as, %51, [, e])=[v, e] Z[e;, %:][e, €], for all
a €T, 3[y;, B;]EL and Z[a;, ]J€R. Consequently, (V,W) and (V', W’) are
pairs of dual vector spaces over D and D’ respectively. Let
a: [e, v][*, ¥1le, ¥]1—[7, €e][v, #][7, €] be the isomorphism of D onto D’. For
each x& M, we define the mapping 7T,.: V— V' by [e, a]T,=[v, €][a, x] for all
[e, x]€V. We can see easily that T, is a semi-linear transformation. Moreover,
T, is a continuous mapping of V, topologized by W-topology, into V’, topologized
by W’-topology. In fact, for a, BT,

(le, )T, [8, D)=L, elle, A1[8, el=[v, ellv, eaxBelly, €]

2([e» fy][eax,Be, 'y][e, 7])02([& al, [, ﬁ][e’ 'y])a-:([e’ al, [/8’ e] Tx*)w’
where T, *: W’ —W defined by [B, €]T,*=][x, B][e, ¥]

is a semi-linear transformation.

Hence, by Theorem 2.2, T, _L(V, V").

Let 8: M— L(V,V"’) be defined by x0=T,. Clearly, 6 is a group homo-
morphism. Moreover, 0 is one-to-one. For, if T,=T,, where 0 is the zero
element in M, then [v, €][a, x]=0 for all a=T, so we have MyeI'’x=0, and
hence (xI'"MvyeyM)*=0. Since M has no non-zero strongly nilpotent right
ideals, xT'MyeyM=0, or [x, T][M, v][e, v]=0 in L. Let N be a faithful
irreducible left L-module. Then [M, v][e, Y]LN is a non-zero L-submodule of
N and hence [M, v][e, Y]ILN=N. Thus, 0=[x, T'][M, v][e, vY]LN=[x, T']N,
so [x, T']=0, or xI'M=0. Hence by the primitivity of M, x=0. Thus, §is a
group monomorphism of M into .L(V, V).

Similarly, for each a €T, we may define T, L(V', V) by ([v, ] Z[a;, x;]) T,
=[e, Sa;x;a]. Also the mapping ¢: a—T, is a group monomorphism of T’
into V', V). 'That ¢ preserves addition is obvious. We shall show that ¢
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is one-to-one. To this end, we assume that T,,= T, where 0 is the zero element
in I. Then [¢, T][M, a]=0, so el'MaM=0. It follows that (MaMTe)*=0,
and hence MaMTe=0. By the irreducibility of N again, we have L[e, Y]N=N,
so 0=[M, alL[e, Y]N=[M, a]N. Consequently, [M, a]=0, or MaM=0.
Using the Nobusawa’s condition (4'), we get a=0.

It is also easy to see that T,,,=T,T,T,, or (xax)0=(x8)(ap)(yf) for all
a€<T, and x, ye M.

It remains to show that MO F(V', V) and T$22F(V', V). We shall show
MOF(V,V'). That T¢2F(V', V) can be verified similarly. Let TeS(V,
V') be of rank one, say VT={[v, e]=[B;, y,]>, the subspace of V' generated by
[v, e]Z[B,, y,;] over D’. By Theorem 2.3, there exists =[x;, a;][e, v]E W, such
that, for all =T,

le, a]T = ([e, al, Z[x:, ai]le, ¥])°[7, €]Z[B;, ¥;]
= ([e, a]Z[x;, aille, Y1) [ €1 2B ¥,]
= ([e’ fy][Eeax,-a,-e, 'Y][e’ 'y])c ['71 e] 2[181" yj]
= [v, ellv, Zeax;aze][, e]lv, €2[B;, ¥,
= [, ella, 2 mc:eB8,y;] = [e, a]T.,
where x=3; x;a;eQ;y;. Thus T=T,, M@ contains all continuous semilinear

transformations of rank one, and hence M2DF(V,V'). This completes the
proof.
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