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Connected AR for Combating COVID-19

Tatsuya Amano, Hirozumi Yamaguchi, and Teruo Higashino

Mobile Computing Lab., Osaka University, Japan
https://mc.net.ist.osaka-u.ac.jp/en/

Abstract—Combating COVID-19 requires everyone to be
aware of her surrounding situations, which may lead to the
risk of infection, such as the density of persons nearby, fever
status, and cleanliness of objects like doorknobs. Nevertheless,
most of such situations are invisible to humans and are not
recognized by them. This motivates us to leverage start-of-the-art
wearable AR/MR devices such as Microsoft Hololens with high-
capable sensing technologies to understand our activity space.
This article addresses our challenges to recognize such situations
by wearable AR/MR devices. Furthermore, we design a secure
platform named SCARP (Secure Connected AR Platform) to
share the detected information among those people who reside in
the spatial space, in a privacy-aware fashion if the data is privacy-
sensitive (such as body temperature). The significant feature of
SCARP is it does not require those people to register their
personally identifiable digital IDs (such as email addresses) to
access the platform and obtain the secured information. We hope
this concept helps to reduce the risk of COVID-19 infection in
such places as restaurants, airports, stations, and shopping malls
and bring new normal there.

Index Terms—COVID-19, secure platform, wearable AR de-
vice, situational awareness, privacy-awareness

I. INTRODUCTION

The dramatic sophistication and miniaturization of Aug-
mented Reality (AR) or Mixed Reality (MR) devices have
brought a lot of successes in industrial uses cases such as
infrastructure maintenance, product design and assembly and
building construction where efficacy of work and the safety
of workers have been increased [1]]. Generally, the abilities
of people are augmented by the 2D/3D spatial sensing and
recognition functions of AR devices, which are or will be
equipped with RGB/depth cameras, inertial sensors, and 5G
or faster wireless communications devices. Our idea is to
leverage AR/MR devices with spatial computation functions
supported by data-rich sensors to detect, share and visualize
risky situations, involving surrounding humans, objects, and
environments to prevent COVID-19 infection.

To this end, in this article, we firstly introduce our developed
AR/MR application prototypes, (i) social distance measure-
ment, (ii) fever detection, and (iii) touched object detection.
Secondly, leveraging these applications, we introduce a secure
platform named SCARP (Secure Connected AR Platform) for
sharing the situations in a privacy-aware, anonymous fashion if
the detected information is privacy-sensitive. The platform has
been tested in a lab environment to demonstrate its capabilities
and effectiveness.

© 2020 IEEE. This is the submitted version of a paper later published as:
T. Amano, H. Yamaguchi, and T. Higashino, ”"Connected AR for Combating
COVID-19,” IEEE Internet of Things Magazine, vol. 3, no. 3, pp. 46-51,
October 2020. DOI: 10.1109/I0TM.0001.2000149
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Fig. 1. Secure platform involving AR glasses wearers and smartphone
users. Information such as distance between persons, their fever (high body
temperature) and touched objects are stored in a spatial database on a secure
cloud server. Private data can only be accessed by the intended users.

We assume use case scenarios where employees and owners
of restaurants, security guards in shopping malls, and admin-
istrative staff in office/schools wear AR/MR glasses. In the
social distance measurement application, the state-of-the-art
object recognition techniques such as YOLOv4 are exploited
to recognize the surrounding persons and their locations in
the wearer’s vision. In the fever detection application, using
plug-in thermography cameras, the body temperatures of the
detected persons in the above social distance measurement ap-
plication are measured and those with high fever are identified.
In these applications, the detected information is highlighted
in the wearer’s vision through the AR/MR glasses to allow
the wearer to take appropriate actions. The touched object
detection application is enabled by the glasses with 3D depth-
sensing functions (e.g., Microsoft Hololens). By detecting the
wearer’s hands and the objects in the surroundings from the
depth data, the wearer’s touching activities and the touched
objects can be detected.

Based on these applications, we design SCARP, a secure
platform to allow us to share the situations in the same space
(Fig. E]) It contains a spatial database, which can store infor-
mation about people and objects in the 3D space with their
attributes. Examples of people-relevant information are people
locations, distances among them, their densities, and their
body temperatures, while those of object-relevant are object
locations, types, and touch-frequencies. All these information
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are stored in the spatial database and are accessible via AR
devices in the place. If a wearer detects personal information
such as the body temperature of a nearby person, it should
not be public to everybody in the space but be private to the
person, to let her/him be aware of the situation. The wearer
can set a privacy level to each information to be posted to the
database. We consider three privacy levels, public, local and
private, which are referred to as levels 0, 1 and 2, respectively
(the details are explained in Section [[I). To secure level
2 information, the wearer posts the private information to
the spatial database with a signature that is unique to the
target person. Then the platform allows only the person who
owns the signature to access the information without revealing
her/his private ID. We leverage the attitude of smartphones
as a signature — matching the attitude signature of the tar-
get’s smartphone estimated by computer vision techniques
running on the wearer’s AR device and that calculated by the
smartphone’s inertial sensors. Our platform also implements a
protocol to send a message to notify the private information
to the person’s smartphone in a secure, anonymous fashion.
Consequently, AR wearers can share public, local, and private
information captured by the AR devices with the right people
in the right way.

This article shows the proof of the above concept by de-
signing and implementing those applications and the platform.
We wish our platform is helpful for administrators who should
prevent COVID-19 infections in their managed spaces such as
restaurants, airports, and shopping malls, securing customers’
and visitors’ private information.

II. AR APPLICATIONS FOR SITUATION RECOGNITION

In this section, we introduce our applications for situation
awareness by AR devices.

A. Social Distance Measurement

It has been widely recognized that social distancing is vital
to prevent infection. However, people often forget it when they
enjoy/concentrate on their activities such as shopping, eating,
and talking. Measuring the distance between persons in public
space and letting them be aware of it will help to prevent
unintentional violations of social distancing.

As illustrated in Fig. [[a), a wearer of AR glasses (e.g.,
an employee of restaurants, shop owner, or security guard)
can measure the distance between herself and others, the gaps
between them, and the level of overcrowding. This function
is implemented using start-of-the-art object recognition like
YOLOV4. The locations of detected persons in the vision are
transformed into spatial coordinates, relying on the angle and
direction tracking function of the AR device. Such location
information of persons will be shared via a spatial database.

B. Fever Detection

Detecting persons with high fever in public space will help
to reduce the risk of infection. Notably, such a function will
be required by administrative persons at stations, airports, and
SO on.

Leveraging the AR’s person detection function described in
the previous section, we assume the AR device has a thermog-
raphy camera as a plug-in sensor. It tracks a detected person’s
body temperature, which adds a vital attribute to the person’s
information. As illustrated in Fig. Ekb), we have demonstrated
in our lab environment that a person wearing EPSON Moverio
smart glasses and a FLIR ONE thermography camera detects
persons in the space and their body temperatures. This also
demonstrates part of our person identification function based
on smartphone attitude matching, which will be explained in
Section

C. Touched Object Detection

People intentionally and unintentionally touch their sur-
rounding objects such as doorknobs, walls, desks, shelves, and
many other items in offices, shops, and restaurants. Monitoring
and visualizing what, where, and how often people touch will
motivate the staff to sanitize the hands and things periodically.

Hand touch detection can be implemented using AR glasses
with depth sensors (or MR glasses) like Microsoft Hololens.
Figure [2(c) shows our Hololens application prototype that
records the touched points and the number of touches.
Hololens provides two crucial APIs, the spatial mapping API,
and the hand tracking API. These APIs provide the 3D location
and 3D meshes of the surrounding objects and hands, and
combining them makes it possible to detect the objects touched
by the AR wearer. The application can also visualize the
number of touches and the touched places in the wearer’s
vision. It also displays “dirty levels” of the hands based on
the number of touches.

III. SCARP — SECURE CONNECTED AR PLATFORM

The core component of SCARP is a spatial database. The
database contains the 3D model of a target space, where
information on people and objects in the space and their at-
tributes can be stored. As already explained, all the information
recognized by the AR applications in Section [II] is sent to
the spatial database on a secure cloud for information sharing
purposes.

When an AR wearer posts information, one of the three
privacy levels, O (public), 1 (local), and 2 (private) is set to
control the access. As illustrated in Fig. m crowded locations,
the average distance between persons, and places where peo-
ple frequently touch are level O information (public), which
should be disclosed for public safety and convenience. Some
information, such as locations of items and shelves, are level
1 information (local), which is not necessary to be public but
is shared by those who reside in the place. Spatial anchors,
which link a particular entry in the spatial database and the
corresponding location in the physical space, enable this access
control based on the physical space. Recent AR technologies,
including Microsoft Hololens, Google ARCore, and Apple AR
Kit, provide spatial anchor APIs. These APIs allow AR/mobile
users to store spatial information to the database using spatial
image features captured by cameras as keys. They also enable
other people to use the anchors to retrieve the information.
Finally, since person-relevant information such as abnormal
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Fig. 2. AR applications for situation recognition.

body temperatures, social distancing violation, and not wear-
ing masks are very personal, it should be level 2 (private) and
be accessible only by the intended persons. To realize this,
similarly with the spatial anchor concept, it is necessary to
set a link between the target persons and their features. Using
the features as keys, only these persons with keys can access
the private information. Since using private features like facial
information as keys causes severe privacy invasion, we design
the concept of “human anchor”, which is a privacy-preserving
way of publishing and subscribing information anonymously.
This is explained in the following section.

IV. HUMAN ANCHOR — CONCEPT AND DESIGN

A human anchor works like a key to secure personal
information (level 2 information), which is recognized by
the AR applications but should be private to an intended
individual. The necessary procedure of data storing/retrieving
using a human anchor is the following. (i) An AR wearer
detects a person with her/his personal information, such as
body temperature. (ii) The wearer also obtains her/his human
anchor from the RGB camera as our AR applications assume
computer vision to recognize the persons in the wearer’s
scenes. (iii) The wearer uploads the obtained information
to the spatial database with the human anchor information.
(iv) Assuming that only the target person has her/his human
anchor information, she/he can access the stored data and other
cannot.

Table [I] summarizes popular authentication methods that
have been considered so far, and personal features such as
faces, irises, and unique gaits are useful in the authentication
of persons. However, revealing personal features to the system
is not preferable. Wireless beacons such as BLE beacons can
be used as proof of presence. However, they do not fit with
our purpose since our objective is to identify the persons in the
AR wearer’s vision. Instead, we focus on a smartphone held
by a target person and use smartphone attitudes as a human
anchor. The attitudes can be estimated from computer vision
at an wearer side, and calculated from its inertial sensors at a
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Fig. 3. Smartphone attitude signature as a human anchor.

target person side. Assuming only the smartphone holder can
obtain the inertial sensor readings, we guarantee that only the
target person can access the information.

Figure [3] shows how the smartphone attitude is measured
on the smartphone, and is estimated from an AR device. In
the proposed platform, the smartphone attitude is defined as
its angles formed by three axes with the direction of gravity.
Each AR wearer continues detecting and tracking persons
in her/his vision, by combining a fast and accurate object
detection algorithm YOLOv4 [9] and an online real-time
tracking algorithm DeepSORT [[10]. Once a person is detected,
the regions of her/his hands and the hand-held smartphone are
detected using YOLOv4. Then the shape mesh of the hand
with the smartphone is generated from each captured image,
utilizing the state-of-the-art DNN-based hands and objects
reconstruction method [11]. By identifying the smartphone’s
three axes in the obtained shape mesh and estimating gravity
direction using the camera angle, the smartphone attitude can
be estimated at a wearer side. Our preliminary experiment
confirmed that the attitude estimation errors are mostly within
10 degrees on each axis. Meanwhile, at a target person side, the



TABLE I

IDENTIFICATION/AUTHENTICATION FEATURES

Feature Authenticating Device | Authenticated Subject | Time Temporary IDs
Face Camera Human immediate No
Fingerprint Fingerprint Reader Human immediate No
Iris Camera Human immediate No
. Human No
Gait [2], 3] Camera Smartphone 10 seconds Yes
Wi-Fi
Gesture [4], [5] Human a few seconds | Yes
Camera
Trajectory [6] LiDAR Human 10 seconds Yes
Proximity BLE Smartphone/Device immediate No
Radio [7], [8] BLE Smartphone immediate Yes
Device Attitude (Proposed) | Vision Smartphone immediate Yes

smartphone attitude is captured by Gravity Sensor API. This
API provides the gravitational accelerations applied to each
axis measured by acceleration sensors, and the smartphone
attitude can be calculated by applying arccosine to the ratio
of each axis’s gravitational acceleration to the magnitude of
gravitational acceleration.

For efficiency, each AR wearer transmits BLE beacons to
let the surrounding smartphone users know her/his presence
and activity. After knowing it, each smartphone, who wishes
to access the information, continues capturing the smartphone
attitudes by its accelerometers. By transmitting a series of
attitudes with timestamps, access to an exactly-matched entry
is granted to the smartphone.

V. AcCCESS PROTOCOL USING HUMAN ANCHOR

Human anchors can be used to identify the target persons’
smartphones in the vision, but it is necessary to secure the
platform when we employ the human anchor system. For
example, if an AR device wearer is an attacker, she/he can
post spam messages to a particular person as many as she/he
wishes. Even worse, the attacker can steal the posted private
information of other persons as she/he can generate human
anchors of persons in the scene. To cope with these situations,
we design an access protocol exploiting human anchors and
the public-key infrastructure. In the following, an AR wearer
who posts a person’s information to the spatial database is
referred to as uploader agent or simply uploader, and a
smartphone user trying to obtain information posted by the
uploader is referred to as retriever agent or retriever for
simplicity of explanation.

A. Protocol Overview

The database access protocol between an uploader and a
retriever is illustrated in Fig. ] Besides these two players,
there are a spatial database, and a trusted identification server
with two databases called ID store and key store.

Firstly, the retriever continuously generates a random ID
with a timestamp. This is used as its user ID (denoted as
UID). UID should be long enough to avoid ID collisions. The
retriever records the UID on its local storage and also registers
for the key-store with its public key at regular intervals. When
the uploader captures the situation, it generates a random ID
(referred to as AR ID and denoted as AID) and broadcasts it

via BLE or some proximity communication methods. Once
the retriever receives the AID and if it wants information that
will be posted by the uploader, it measures the accelerometers
to generate its human anchor, and sends it to the ID store,
with the received AID, the latest UID, and the timestamp. The
uploader also captures the retriever’s human anchors from a
series of RGB images and sends it to the ID-store as a query.
In response to the submitted query, the ID store compares
the received human anchors with stored ones and returns the
corresponding UID to the uploader. The uploader queries the
key store for the retriever’s public key using the UID. After
obtaining the public key, it encrypts the information with the
key and uploads the encrypted information associated with
the UID to the spatial database. The retriever can retrieve the
information from the database anytime using the UID, and the
information can be decrypted using the corresponding private
key.

B. Protocol Validation

Given privacy concerns, the following three threats should
be taken into account.

o Threat-I: Spoofing. An attacker mimics a retriever and
retrieves her/his information from the spatial database.

o Threat-II: Remote Spamming. An attacker uploads a num-
ber of spam messages to the spatial database from a
remote site.

o Threat-IIl: Tracing/Stalking. An attacker tracks a retriever
in physical and cyber spaces by exploiting her/his human
anchor.

In this section, we validate how the designed protocol resolves
the above threats.

Firstly, regarding spoofing (Threat-I), if there is a malicious
retriever who can completely mimic the behavior of the
surrounding victim’s smartphone attitudes, it can steal the
information intended to the victim. This can be avoided by
using a more extended sequence of human anchors because
it becomes harder to mimic the behavior as the sequence
length becomes longer. Secondly, the protocol is protected
from remote spamming (Threat-II) as it introduces a proximity
detection and temporary UID. More concretely, when the
uploader stores information about a retriever, we may set
expiration time and dates to human anchors and UIDs so that
the related messages and entries can be made invalid after
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Fig. 4. Database access protocol between an uploader and a retriever.

a certain period. The retriever can also intentionally make
them invalid at any time, depending on their privacy concerns.
Finally, UID’s periodical change prevents the uploader, the
identification server, and the database from tracking users in
cyberspace (Threat-III).

Public-key cryptography can prevent any interception, man-
in-the-middle attacks, and leaking information. For example,
the identification server and key-store know all user IDs
and can retrieve the database, while they cannot decrypt any
encrypted entities. Only the retriever that the uploader has
intentionally specified via human anchors can decrypt them.

We note that passing the uploader’s encrypted user ID via
the database allows the retriever to obtain the uploader’s public
key. With passing the user ID and public key, uploaders can
add a digital signature, which prevents the information from
being tampered.

VI. DEMONSTRATION
A. Fever Detection in SCARP

We have prototyped the three applications, and have used
the fever detection application to demonstrate SCARP. The
demonstration video has been posted on our Web site [[12].

As shown in Fig. 5] we have tailored Android-based smart
glasses, EPSON Moverio BT-300, to be equipped with an RGB
camera and a mobile thermography camera (FLIR ONE). The
AR wearer can see both RGB and thermal views through the
system, and can choose any person in the view as a retriever.
Image processing is performed on the connected PC with
NVIDIA GeForce GTX 1080 GPU and Intel Xeon E5-1680
v3@3.20GHz CPU. The RGB frame rate was about 10fps.

In this environment, we asked three subjects in a room to
hold their smartphones with an Android app to access the
spatial database, detected these subjects in the RGB view, and
measured their body temperatures using the thermal view.

The demonstrated scenario is that there was one with a high
fever (target person) among three persons, and the detected
temperatures are uploaded. Finally, only the target person
receives a notification about the fever from the system to let
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him/her be aware of the fever and take appropriate action.
This may be realized by the administrative staff of the space
wearing AR glasses, who go around to detect those with high
temperatures.

B. User Identification Accuracy

In the same experiment, we measured the ratio of successful
and unsuccessful identifications for 5 minutes. About 3,000
video frames were obtained as human anchors.

The identification failures are classified into three types.
The first one is identification denial, which indicates a pair of
smartphones with the same attitudes exist, and hence, an AR
wearer cannot distinguish them by their attitudes. The second
one is false rejection, which means no attitude matching is
found, although there exists one. False rejection may occur
due to the error of attitude estimation by an AR wearer. The
last one is false acceptance, which indicates a matching is
wrong. The false acceptance is fatal for SCARP since it results
in disclosing private information to someone else.

These ratios may be affected by the “angular slack value”
used in the smartphone attitude matching procedure. In this
experiment, the smartphone attitudes are matched if the an-
gular difference of the captured and measured axes is less
than 10 degrees in each axis. Smaller this slack value is, the
identification denial and false acceptance ratios become more
modest, while the false rejection ratio becomes larger.

From the experimental result, the human anchors of all
the three subjects were obtained by the AR wearer in 2,190
frames, which means 73% of the total time was successful
in user identification. As a breakdown of the failures, 10%
were identification denial due to the collision of identification
features, and 17% were false rejections. We would like to
emphasize that the false acceptance did not occur in this
experiment. Achieving zero false acceptance while keeping a
reasonable identification successful ratio is the most significant
feature in privacy preservation.

Consequently, we have proved that the intended subject with
a high fever could successfully obtain his information through
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the experiment. By investigating user identification success
and failure ratios and the breakdown of the latter, we have
also shown that the achieved success ratio was reasonable and
false identification did not occur with three subjects who acted
similarly, sitting down nearby and using smartphones.

VII. RESEARCH CHALLENGES
A. Image Processing at Edge Devices

To pursue more privacy, the captured images should be
processed in edge devices, i.e., AR glasses, without sending
them to a cloud server. In our application demonstration, we
used a workstation for image processing using deep neural
networks such as Yolo and DeepSort. However, running them
on small AR glasses is still a big challenge. Model compres-
sion approaches are promising to run DNNs in a resource-
limited environment [13]]. Moreover, the dedicated hardware
chips such as Goya/Gaudi by Habana Lab. will help speed
up the executions. By leveraging such hardware and software
techniques, real-time detection should be realized to fully
utilize AR devices’ potentials.

B. Leveraging Various Sensors

We may employ various types of sensors in our platform
to enhance the capability of spatial recognition. For example,
conversation levels can be detected by a microphone of the
AR device to let those people be aware of the risk. A black-
light can highlight environmental dirty-levels in a dark place
and is effective if it is co-used with our touch detection
application. Enriching the spatial database by aggregating all
such information related to COVID-19 will contribute to the
analysis of potential risks of infection — how our living space
is dirty and how it should be sanitized.

One of the advantages of SCARP is that it can recognize not
only the environment but also the information about people in
the space, being aware of privacy constraints. This means that
SCARP can deal with any human-relevant private information.
With more advanced sensors, it might be possible to recognize
humans’ biological information in the surroundings (such as
heart sounds, fatigue, and headache) that cannot be seen by
human eyes. Recently, wireless sensing has been more popular
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where millimeter waves can remotely monitor heartbeats and
so on [14], [15]. Incorporating state-of-the-art sensing tech-
nologies will bring new applications and research issues to be
addressed — more strict privacy-preserving and consideration
of social acceptance.

VIII. CONCLUSIONS

We have introduced an approach of recognizing and visu-
alizing situations around us, that cannot directly be seen by
our eyes, using AR technology. By collecting the information
in a single spatial database, people can know the public
information such as congestion levels of floors and shops
and the average social distance. The spatial database is a
projection of the real world into cyberspace, and AR/MR
devices can create a lot of useful information to prevent
COVID-19 infection. The real-world phenomena and objects
are associated with their physical positions via spatial anchors
in the spatial database, and personal information is tagged
by human anchors. To cope with issues such as tracking and
stalker risks and privacy invasion by collecting more personal
data, we have designed a platform named SCARP that enables
secure access to the spatial database. We have prototyped three
AR applications to incorporate the physical world things and
phenomena into the cyberspace and demonstrated the fever
detection system using a thermography camera. Again, we
wish our AR-based situation awareness system can be realized,
and the proposals and proof of concepts in this article will help
combat COVID-19.
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