

Title	Borsuk-Ulam type theorems on Stiefel manifolds
Author(s)	Inoue, Akira
Citation	Osaka Journal of Mathematics. 2006, 43(1), p. 183-191
Version Type	VoR
URL	https://doi.org/10.18910/10096
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

BORSUK-ULAM TYPE THEOREMS ON STIEFEL MANIFOLDS

AKIRA INOUE

(Received September 6, 2004, revised December 9, 2004)

Abstract

In this paper, we study the degree of equivariant maps between Stiefel manifolds by using cohomological index theory. As applications, we have some Borsuk-Ulam type theorems on Stiefel manifolds.

1. Introduction

We are concerned with the following classical version of the Borsuk-Ulam theorem:

- (i) If n > k then there is no map $f: S^n \to S^k$ such that f(-x) = -f(x) for all x. This easily follows from the next proposition:
- (ii) Let $f: S^n \to S^n$ be a map of the sphere such that f(-x) = -f(x) for all x. Then deg $f \equiv 1 \pmod{2}$.

Now let S^n denote the standard *n*-dimensional sphere with antipodal \mathbb{Z}_2 -action, then the proposition (ii) implies that for any \mathbb{Z}_2 -map $f: S^n \to S^n$, the degree of f is odd.

Many authors have been contributing to generalizing and extending the Borsuk-Ulam theorem in various ways. E. Fadell-S. Husseini and J. Jaworowski introduced an ideal-valued cohomological index theory, and generalized the Borsuk-Ulam theorem (see [2], [3] and [5]). Let $V_k(\mathbf{R}^m)$ denote the space of orthonormal k-frames in \mathbf{R}^m and O(k) the orthogonal group. If we represent an element of $V_k(\mathbf{R}^m)$ as a column vector $[v_1 \cdots v_k]^T$, and if O(k) is the orthogonal group of $k \times k$ matrices, then $V_k(\mathbf{R}^m)$ is a free O(k)-space under the action induced by matrix multiplication $g[v_1 \cdots v_k]^T$, $g \in O(k)$. In [4], Yasuhiro Hara considered the degree of O(k)-maps $f: V_k(\mathbf{R}^m) \to V_k(\mathbf{R}^m)$.

In this paper, we will consider the degree of $(\mathbf{Z}_2)^k$ -maps $f: V_k(\mathbf{R}^m) \to V_k(\mathbf{R}^m)$ where $(\mathbf{Z}_2)^k = \mathbf{Z}_2 \times \cdots \times \mathbf{Z}_2$ (k times) is the subgroup of O(k) which is diagonally imbedded. We will show

Theorem 3.3. Let $f: V_k(\mathbf{R}^m) \to V_k(\mathbf{R}^m)$ be a $(\mathbf{Z}_2)^k$ -map. Then the degree of f is odd.

²⁰⁰⁰ Mathematics Subject Classification. Primary 55N20; Secondary 57S17.

By a similar way, U(k) acts freely on the complex Stiefel manifold $V_k(\mathbb{C}^m)$. We restrict the U(k)-action on $V_k(\mathbb{C}^m)$ to the subgroup $(\mathbb{Z}_p)^k$ where p is a prime number. Then we will show

Theorem 3.5. Let $f: V_k(\mathbb{C}^m) \to V_k(\mathbb{C}^m)$ be a $(\mathbb{Z}_p)^k$ -map. Then the degree of f is not congruent to zero modulo p.

The author wishes to express his gratitude to Professor Ikumitsu Nagasaki and Professor Yasuhiro Hara for their advice.

2. Index theory

In this section we will recall the definition and basic properties of index theory which was first introduced by Fadell and Husseini and independently by Jaworowski.

Let G be a compact Lie group and X a G-CW complex. We denote the universal principal G-bundle by $EG \to BG$. Then G acts freely on $EG \times X$ by g(e,x) = (ge,gx). We denote the quotient space of this action by $EG \times_G X$. Note that the orbit map $p \colon EG \times X \to EG \times_G X$ is a fiber bundle of the fiber G. The Borel cohomology of X with coefficients in a field K is defined by $H_G^*(X;K) = H^*(EG \times_G X;K)$, where $H^*(\)$ is singular cohomology theory. Let $c_X \colon X \to *$ be a constant map to one-point space. The G-index of X, denoted by $\operatorname{Ind}^G(X;K)$, is an ideal in $H^*(BG;K)$. Ind $G^G(X;K)$ is defined to be the kernel of the homomorphism $\bar{c}_X^* = (\operatorname{id} \times_G c_X)^* \colon H^*(BG;K) = H_G^*(*;K) \to H_G^*(X;K)$. If X is a free G-space, then $\operatorname{Ind}^G(X)$ coincides with the kernel of the homomorphism $H^*(BG) \to H^*(X/G)$ induced from a classifying map $X/G \to BG$ for the free G-action on X. Furthermore for an integer K we set

$$\operatorname{Ind}_k^G(X;\boldsymbol{K}) = \operatorname{Ind}^G(X;\boldsymbol{K}) \cap H^k(BG;\boldsymbol{K}) = \ker\left(\bar{c}_X^* \colon H^k(BG;\boldsymbol{K}) \to H_G^k(X;\boldsymbol{K})\right).$$

The following proposition is a basic property of the G-index.

Proposition 2.1 ([2], [5]). If there exists a G-map $f: X \to Y$, then for any $k \in \mathbf{Z}$

$$\operatorname{Ind}_k^G(X) \supset \operatorname{Ind}_k^G(Y)$$
.

We now consider a basic computation which is important to an application which we give later on.

 $V_k(\mathbf{R}^m)$ denotes the space of orthonormal k-frames in \mathbf{R}^m and O(k) denotes the orthogonal group. Then O(k) acts freely on $V_k(\mathbf{R}^m)$ by the usual action $gv, g \in O(k)$ and v is a column vector representing k-frame. We restrict this action to the subgroup $(\mathbf{Z}_2)^k$ of diagonal matrices with entries ± 1 . Then $V_k(\mathbf{R}^m)$ is also a free $(\mathbf{Z}_2)^k$ -space.

Recall that $B(\mathbf{Z}_2)^k = B\mathbf{Z}_2 \times \cdots \times B\mathbf{Z}_2$ (k times) and

$$H^*(B(\mathbf{Z}_2)^k; \mathbf{Z}_2) = H^*(B\mathbf{Z}_2) \otimes \cdots \otimes H^*(B\mathbf{Z}_2) = \mathbf{Z}_2[t_1, \dots, t_k],$$

where dim $t_i = 1$. Fadell proved the following in [3].

Proposition 2.2. The monomial $t_1^{m-1}t_2^{m-2}\cdots t_k^{m-k}$ does not belong to $\operatorname{Ind}^{(\mathbb{Z}_2)^k}(V_k(\mathbb{R}^m);\mathbb{Z}_2)$.

In particular, since dim $V_k(\mathbf{R}^m) = mk - k(k+1)/2$, we can assert

$$\operatorname{Ind}_{\dim V_{k}(\mathbf{R}^{m})}^{(\mathbf{Z}_{2})^{k}}(V_{k}(\mathbf{R}^{m}); \mathbf{Z}_{2}) \neq H^{\dim V_{k}(\mathbf{R}^{m})}\left(B(\mathbf{Z}_{2})^{k}; \mathbf{Z}_{2}\right).$$

We have an analogous proposition for complex Stiefel manifolds. $V_k(\mathbf{C}^m)$ denotes the space of orthonormal k-frames in \mathbf{C}^m and U(k) denotes the unitary group. Then U(k) acts freely on $V_k(\mathbf{C}^m)$ by the usual action $gv, g \in U(k)$ and v is a column vector representing k-frame. We restrict this action to the subgroup $(\mathbf{Z}_p)^k$ of diagonal matrices with entries p-th root of one and consider $\mathrm{Ind}^{(\mathbf{Z}_p)^k}(V_k(\mathbf{C}^m);\mathbf{Z}_p)$, where p is a prime number.

In case p=2 we show that $t_1^{2(m-1)+1}t_2^{2(m-2)+1}\cdots t_k^{2(m-k)+1}$ is not in $\operatorname{Ind}^{(\mathbf{Z}_2)^k}(V_k(\mathbf{C}^m);\mathbf{Z}_2)$ by induction on k. The computation will be based on the fibration

$$(1) S^{2(m-k)+1} \to V_k(\mathbf{C}^m) \stackrel{\pi}{\to} V_{k-1}(\mathbf{C}^m),$$

where π is the projection on the first k-1 coordinates. Consider the sequence

(2)
$$\mathbf{Z}_2 \to (\mathbf{Z}_2)^k \to (\mathbf{Z}_2)^{k-1},$$

where \mathbb{Z}_2 injects on the last coordinate and $(\mathbb{Z}_2)^k$ projects on the first k-1 coordinates. Dividing out the action of (2) on (1), we obtain

$$RP^{2(m-k)+1} \to V_k(C^m)/(Z_2)^k \to V_{k-1}(C^m)/(Z_2)^{k-1}$$

We then have an induced diagram of fibrations

$$\begin{array}{cccc} \boldsymbol{R}P^{2(m-k)+1} & \xrightarrow{\alpha_{m-k+1,1}} & B\boldsymbol{Z}_{2} \\ & & & & & i_{\infty} \downarrow \\ & V_{k}(\boldsymbol{C}^{m})/(\boldsymbol{Z}_{2})^{k} & \xrightarrow{\alpha_{m,k}} & B(\boldsymbol{Z}_{2})^{k} \\ & & & & p_{\infty} \downarrow \\ & V_{k-1}(\boldsymbol{C}^{m})/(\boldsymbol{Z}_{2})^{k-1} & \xrightarrow{\alpha_{m,k-1}} & B(\boldsymbol{Z}_{2})^{k-1} \end{array}$$

where the $\alpha_{i,j}$ are classifying maps. Recall that our coefficients are \mathbb{Z}_2 , and since i_{∞}^* and $\alpha_{m-k+1,1}^*$ are surjective, $i_m^* : H^*(V_k(\mathbb{C}^m)/(\mathbb{Z}_2)^k) \to H^*(\mathbb{R}P^{2(m-k)+1})$ is surjective.

Thus, the Leray-Hirsch theorem applies and we have a diagram

$$H^*\left(V_{k-1}(\mathbf{C}^m)/(\mathbf{Z}_2)^{k-1}\right) \otimes H^*(\mathbf{R}P^{2(m-k)+1}) \xrightarrow{\varphi_m} H^*\left(V_k(\mathbf{C}^m)/(\mathbf{Z}_2)^k\right)$$

$$\alpha^*_{m,k-1} \otimes \alpha^*_{m-k+1,1} \uparrow \qquad \qquad \alpha^*_{m,k} \uparrow$$

$$H^*\left(B(\mathbf{Z}_2)^{k-1}\right) \otimes H^*(\mathbf{R}P^{\infty}) \xrightarrow{\varphi_{\infty}} H^*\left(B(\mathbf{Z}_2)^k\right)$$

with φ_m and φ_∞ isomorphisms. Then

$$\begin{split} &\alpha_{m,k}^* \left[t_1^{2(m-1)+1} t_2^{2(m-2)+1} \cdots t_k^{2(m-k)+1} \right] \\ &= \alpha_{m,k}^* \circ \varphi_\infty \left[t_1^{2(m-1)+1} t_2^{2(m-2)+1} \cdots t_{k-1}^{2(m-k+1)+1} \otimes t_k^{2(m-k)+1} \right] \\ &= \varphi_m \left[\alpha_{m,k-1}^* \left(t_1^{2(m-1)+1} t_2^{2(m-2)+1} \cdots t_{k-1}^{2(m-k+1)+1} \right) \otimes \alpha_{m-k+1,1}^* \left(t_k^{2(m-k)+1} \right) \right]. \end{split}$$

But $\alpha_{m-k+1,1}^*(t_k^{2(m-k)+1}) \neq 0$ and assuming by induction that

$$\alpha_{m,k-1}^*\left(t_1^{2(m-1)+1}t_2^{2(m-2)+1}\cdots t_{k-1}^{2(m-k+1)+1}\right)\neq 0,$$

we have

$$\alpha_{m,k}^* \left[t_1^{2(m-1)+1} t_2^{2(m-2)+1} \cdots t_k^{2(m-k)+1} \right] \neq 0.$$

Thus $t_1^{2(m-1)+1}t_2^{2(m-2)+1}\cdots t_k^{2(m-k)+1}$ is not in $\ker \alpha_{m,k}^*$.

When p is an odd prime, $H^*(B(\mathbf{Z}_p)^k; \mathbf{Z}_p) = \mathbf{Z}_p[x_1, x_2, \dots, x_k] \otimes E(y_1, y_2, \dots, y_k)$, where $\mathbf{Z}_p[x_1, x_2, \dots, x_k]$ denotes the \mathbf{Z}_p -polynomial algebra on 2-dimensional generators x_i and $E(y_1, y_2, \dots, y_k)$ denotes the \mathbf{Z}_p -exterior algebra on 1-dimensional generators y_i . The ring is graded-commutative, i.e. $xy = (-1)^{\deg(x) \deg(y)} yx$. We next show that $x_1^{m-1}y_1x_2^{m-2}y_2 \cdots x_k^{m-k}y_k$ is not in $\mathrm{Ind}^{(\mathbf{Z}_p)^k}(V_k(\mathbf{C}^m); \mathbf{Z}_p)$ by induction on k. Consider the sequence

(3)
$$\mathbf{Z}_p \to (\mathbf{Z}_p)^k \to (\mathbf{Z}_p)^{k-1}$$
,

where \mathbf{Z}_p injects on the last coordinate and $(\mathbf{Z}_p)^k$ projects on the first k-1 coordinates. Dividing out the action of (3) on (1), we obtain

$$S^{2(m-k)+1}/\mathbb{Z}_p \to V_k(\mathbb{C}^m)/(\mathbb{Z}_p)^k \to V_{k-1}(\mathbb{C}^m)/(\mathbb{Z}_p)^{k-1}$$

We then have an induced diagram of fibrations

$$L_p^{2(m-k)+1} \xrightarrow{\alpha_{m-k+1,1}} BZ_p$$
 $i_m \downarrow \qquad \qquad i_\infty \downarrow$
 $V_k(C^m)/(Z_p)^k \xrightarrow{\alpha_{m,k}} B(Z_p)^k$
 $p_m \downarrow \qquad \qquad p_\infty \downarrow$
 $V_{k-1}(C^m)/(Z_p)^{k-1} \xrightarrow{\alpha_{m,k-1}} B(Z_p)^{k-1}$

where the orbit space $L_p^{2(m-k)+1} = S^{2(m-k)+1}/\mathbf{Z}_p$ is the lens space and the $\alpha_{i,j}$ are classifying maps. Recall that our coefficients are \mathbf{Z}_p , and since i_∞^* and $\alpha_{m-k+1,1}^*$ are surjective, $i_m^*: H^*\big(V_k(\mathbf{C}^m)\big/\big(\mathbf{Z}_p\big)^k\big) \to H^*\big(L_p^{2(m-k)+1}\big)$ is surjective. Thus, the Leray-Hirsch theorem applies and we have a diagram

$$H^{*}\left(V_{k-1}(\boldsymbol{C}^{m})/\left(\boldsymbol{Z}_{p}\right)^{k-1}\right) \otimes H^{*}\left(L_{p}^{2(m-k)+1}\right) \xrightarrow{\varphi_{m}} H^{*}\left(V_{k}(\boldsymbol{C}^{m})/\left(\boldsymbol{Z}_{p}\right)^{k}\right)$$

$$\alpha_{m,k-1}^{*} \otimes \alpha_{m-k+1,1}^{*} \uparrow \qquad \qquad \alpha_{m,k}^{*} \uparrow$$

$$H^{*}\left(B\left(\boldsymbol{Z}_{p}\right)^{k-1}\right) \otimes H^{*}(B\boldsymbol{Z}_{p}) \xrightarrow{\varphi_{\infty}} H^{*}\left(B\left(\boldsymbol{Z}_{p}\right)^{k}\right)$$

with φ_k and φ_{∞} isomorphisms. Then

$$\begin{split} &\alpha_{m,k}^* \left[x_1^{m-1} y_1 x_2^{m-2} y_2 \cdots x_k^{m-k} y_k \right] \\ &= \alpha_{m,k}^* \circ \varphi_{\infty} \left[x_1^{m-1} y_1 x_2^{m-2} y_2 \cdots x_{k-1}^{m-k+1} y_{k-1} \otimes x_k^{m-k} y_k \right] \\ &= \varphi_m \left[\alpha_{m,k-1}^* \left(x_1^{m-1} y_1 x_2^{m-2} y_2 \cdots x_{k-1}^{m-k+1} y_{k-1} \right) \otimes \alpha_{m-k+1,1}^* \left(x_k^{m-k} y_k \right) \right]. \end{split}$$

But $\alpha_{m-k+1,1}^*(x_k^{m-k}y_k) \neq 0$ and assuming by induction that

$$\alpha_{m,k-1}^* \left(x_1^{m-1} y_1 x_2^{m-2} y_2 \cdots x_{k-1}^{m-k+1} y_{k-1} \right) \neq 0,$$

we have

$$\alpha_{m,k}^* \left[x_1^{m-1} y_1 x_2^{m-2} y_2 \cdots x_k^{m-k} y_k \right] \neq 0.$$

Therefore $x_1^{m-1}y_1x_2^{m-2}y_2\cdots x_k^{m-k}y_k$ is not in $\ker \alpha_{m,k}^*$. Thus we have the following result.

Proposition 2.3. (1) The monomial $t_1^{2(m-1)+1}t_2^{2(m-2)+1}\cdots t_k^{2(m-k)+1}$ does not belong to $\text{Ind}^{(\mathbf{Z}_2)^k}(V_k(\mathbf{C}^m); \mathbf{Z}_2)$.

In particular, since dim $V_k(\mathbf{C}^m) = 2mk - k^2$, we can assert

$$\operatorname{Ind}_{\dim V_k(\mathbb{C}^m)}^{(\mathbb{Z}_2)^k}(V_k(\mathbb{C}^m);\mathbb{Z}_2) \neq H^{\dim V_k(\mathbb{C}^m)}\left(B(\mathbb{Z}_2)^k;\mathbb{Z}_2\right).$$

(2) When p is an odd prime, the monomial $x_1^{m-1}y_1x_2^{m-2}y_2\cdots x_k^{m-k}y_k$ does not belong to $\operatorname{Ind}^{(\mathbf{Z}_p)^k}(V_k(\mathbf{C}^m);\mathbf{Z}_p)$.

In particular, since dim $V_k(\mathbb{C}^m) = 2mk - k^2$, dim $x_i = 2$ and dim $y_i = 1$, we can assert

$$\operatorname{Ind}_{\dim V_k(\boldsymbol{C}^m)}^{(\boldsymbol{Z}_p)^k}(V_k(\boldsymbol{C}^m);\boldsymbol{Z}_p) \neq H^{\dim V_k(\boldsymbol{C}^m)}\left(B(\boldsymbol{Z}_p)^k;\boldsymbol{Z}_p\right).$$

3. Borsuk-Ulam type theorems on Stiefel manifolds

Let G be a compact Lie group and X be a free G-CW complex. We denote by X/G the orbit space of X. Note that the orbit map $p: X \to X/G$ is a fiber bundle with fiber G. Following [4], we define the transfer $p_!: H^n(X; \Gamma) \to H^{n-\dim G}(X/G; \Gamma)$ where Γ is a commutative group. Then we have the following.

Lemma 3.1 ([4]). Let X, Y be G-CW complexes and $f: X \to Y$ a G-map. Let $p_X: EG \times X \to EG \times_G X$ and $p_Y: EG \times Y \to EG \times_G Y$ denote the orbit maps. Then the commutativity holds in the diagram:

where $\bar{f} = \operatorname{id} \times_G f \colon EG \times_G X \to EG \times_G Y$ is the induced map from a G-map $\operatorname{id} \times f \colon EG \times X \to EG \times Y$.

Let M be a smooth closed connected oriented G-manifold of dimension n. Suppose that the G-action on M is free. Note that the orbit space M/G is also a manifold of dimension $n-\dim G$ in this case. Let $p\colon M\to M/G$ be the orbit map. Suppose that M/G is orientable over K. Then the transfer $p_!$ of the p is described as $p_!=D_{M/G}^{-1}\circ p_*\circ D_M$ where D is the Poincaré duality isomorphism. Then $p_!\colon H^n(M;K)\to H^{n-\dim G}(M/G;K)$ is an isomorphism.

The following theorem has been essentially proved in [4].

Theorem 3.2 ([4]). Let G be a compact Lie group and let M and N be smooth closed connected G-free manifolds of dimension n which are orientable over K. Assume that the orbit space M/G and N/G are also orientable. Then we have the following.

(1) Suppose $\operatorname{Ind}_{n-\dim G}^G(M; \mathbf{K})$ is not equal to $H^{n-\dim G}(BG; \mathbf{K})$. Then for any G-map $f: M \to N, f^*: H^n(N; \mathbf{K}) \to H^n(M; \mathbf{K})$ is non-trivial.

(2) Suppose that $\operatorname{Ind}_{n-\dim G}^G(N; \mathbf{K})$ is not equal to $\operatorname{Ind}_{n-\dim G}^G(M; \mathbf{K})$. Then for any G-map $f: M \to N$, $f^*: H^n(N; \mathbf{K}) \to H^n(M; \mathbf{K})$ is not injective.

Proof. (1) Assume that there exists a *G*-map $f: M \to N$ such that $f^*: H^n(N; \mathbf{K}) \to H^n(M; \mathbf{K})$ is trivial. By Lemma 3.1, $(p_M)_! \circ f^* = \bar{f}^* \circ (p_N)_!$.

Therefore $\bar{f}^*: H_G^{n-\dim G}(N; \mathbf{K}) \to H_G^{n-\dim G}(M; \mathbf{K})$ is trivial, because $(p_M)_!$ and $(p_N)_!$ are isomorphism and f^* is the trivial homomorphism. Since $c_M = c_N \circ f$,

$$\operatorname{Ind}_{n-\dim G}^{G}(M; \mathbf{K}) = (\bar{c}_{M}^{*})^{-1}(0) = (\bar{c}_{N}^{*})^{-1}((\bar{f}^{*})^{-1}(0)) = H^{n-\dim G}(M; \mathbf{K}).$$

(2) Assume that there exists a G-map $f: M \to N$ such that $f^*: H^n(N; \mathbf{K}) \to H^n(M; \mathbf{K})$ is injective. Then $\bar{f}^*: H^{n-\dim G}_G(N; \mathbf{K}) \to H^{n-\dim G}_G(M; \mathbf{K})$ is injective, using Lemma 3.1 again. Hence

$$\operatorname{Ind}_{n-\dim G}^{G}(N; \mathbf{K}) = \ker \bar{c}_{N}^{*} = \left(\bar{c}_{N}^{*}\right)^{-1}(0) = \left(\bar{c}_{N}^{*}\right)^{-1}\left(\left(\bar{f}^{*}\right)^{-1}(0)\right) = \left(\bar{c}_{M}^{*}\right)^{-1}(0)$$

$$= \operatorname{Ind}_{n-\dim G}^{G}(M; \mathbf{K})$$

As a consequence of Proposition 2.2 and Theorem 3.2 (1) we get the following theorem.

Theorem 3.3. Let $f: V_k(\mathbf{R}^m) \to V_k(\mathbf{R}^m)$ be a $(\mathbf{Z}_2)^k$ -map. Then the degree of f is odd.

Proof. Set $n = \dim V_k(\mathbf{R}^m)$. By Proposition 2.2, $\operatorname{Ind}_n^{(\mathbf{Z}_2)^k}(V_k(\mathbf{R}^m); \mathbf{Z}_2)$ is not equal to $H^n(B(\mathbf{Z}_2)^k; \mathbf{Z}_2)$. Hence $f^* \colon H^n(N; \mathbf{Z}_2) \to H^n(M; \mathbf{Z}_2)$ is non-trivial from assertion (1) of Theorem 3.2.

This theorem implies the following.

Corollary 3.4. If there exists a $(\mathbb{Z}_2)^k$ -map $f: V_k(\mathbb{R}^m) \to V_k(\mathbb{R}^n)$, then $m \le n$.

Proof. Let $f: V_k(\mathbf{R}^m) \to V_k(\mathbf{R}^n)$ be a $(\mathbf{Z}_2)^k$ -map. Assume that m > n. The canonical inclusion $i: V_k(\mathbf{R}^n) \to V_k(\mathbf{R}^m)$ is a $(\mathbf{Z}_2)^k$ -map. Since $i \circ f: V_k(\mathbf{R}^m) \to V_k(\mathbf{R}^m)$ is a $(\mathbf{Z}_2)^k$ -map, the degree of $i \circ f$ is not even. Otherwise, because $(i \circ f)^* = f^* \circ i^*$ and $H^{\dim V_k(\mathbf{R}^m)}(V_k(\mathbf{R}^n); \mathbf{Z}_2) = 0$, $(i \circ f)^*: H^{\dim V_k(\mathbf{R}^m)}(V_k(\mathbf{R}^m)) \to H^{\dim V_k(\mathbf{R}^m)}(V_k(\mathbf{R}^m))$ is trivial. This is a contradiction.

Next if l < k, then we regard $(\mathbf{Z}_p)^l$ as any subgroup of $(\mathbf{Z}_p)^k$. We get a commutative diagram

Then we have

$$H^*_{(\mathbf{Z}_2)^l}(V_k(\mathbf{R}^m)) \xleftarrow{\bar{c}^{r^*}} H^*\left(B(\mathbf{Z}_2)^l\right)$$

$$\pi^* \uparrow \qquad \qquad \rho^* \uparrow$$

$$H^*_{(\mathbf{Z}_2)^k}(V_k(\mathbf{R}^m)) \xleftarrow{\bar{c}^*} H^*\left(B(\mathbf{Z}_2)^k\right).$$

Theorem 3.5. If dim $V_k(\mathbf{R}^m) = \dim V_l(\mathbf{R}^n)$, then for any $(\mathbf{Z}_2)^l$ -map $f: V_k(\mathbf{R}^m) \to V_l(\mathbf{R}^n)$ the degree of f is even.

Proof. We set $d = \dim V_k(\mathbf{R}^m) = \dim V_l(\mathbf{R}^n)$. Then $\pi^* \colon H^d_{(\mathbf{Z}_2)^k}(V_k(\mathbf{R}^m); \mathbf{Z}_2) \to H^d_{(\mathbf{Z}_2)^l}(V_k(\mathbf{R}^m); \mathbf{Z}_2)$ is trivial. Since $\rho^* \colon H^*(B(\mathbf{Z}_2)^k; \mathbf{Z}_2) \to H^*(B(\mathbf{Z}_2)^l; \mathbf{Z}_2)$ is surjective, $\bar{c}^{\prime *} \colon H^d(B(\mathbf{Z}_2)^l; \mathbf{Z}_2) \to H^d_{(\mathbf{Z}_2)^l}(V_k(\mathbf{R}^m); \mathbf{Z}_2)$ is also trivial. Therefore we have $\operatorname{Ind}_d^{(\mathbf{Z}_2)^l}(V_k(\mathbf{R}^m); \mathbf{Z}_2) = H^d(B(\mathbf{Z}_2)^l; \mathbf{Z}_2)$.

Otherwise $\operatorname{Ind}_d^{(\mathbf{Z}_2)^l}(V_l(\mathbf{R}^n); \mathbf{Z}_2) \neq H^d(B(\mathbf{Z}_2)^l; \mathbf{Z}_2)$ from Proposition 2.2. Therefore it follows from Theorem 3.2 (2) that for any $(\mathbf{Z}_2)^l$ -map $f: V_k(\mathbf{R}^m) \to V_l(\mathbf{R}^n)$ the degree of f is even.

Still continuing our complex analogue of the propositions above, we get the following.

Theorem 3.6. Let $f: V_k(\mathbb{C}^m) \to V_k(\mathbb{C}^m)$ be a $(\mathbb{Z}_p)^k$ -map. Then the degree of f is not congruent to zero modulo p.

From this theorem, the following corollary is proved in the same way as Corollary 3.4.

Corollary 3.7. If there exists a $(\mathbf{Z}_p)^k$ -map $f: V_k(\mathbf{C}^m) \to V_k(\mathbf{C}^n)$, then $m \le n$.

Next if l < k, then we regard $(\mathbf{Z}_p)^l$ as any subgroup of $(\mathbf{Z}_p)^k$. Hence $V_k(\mathbf{C}^m)$ is a free $(\mathbf{Z}_p)^l$ -manifold. Then we get the following in the same way as Theorem 3.5.

Theorem 3.8. If dim $V_k(\mathbb{C}^m) = \dim V_l(\mathbb{C}^n)$, then for any $(\mathbb{Z}_p)^l$ -map $f: V_k(\mathbb{C}^m) \to V_l(\mathbb{C}^n)$ the degree of f is congruent to zero modulo p.

REMARK. If k is even, then dim $V_k(\mathbb{C}^m)$ is even. Hence there does not exist a free \mathbb{Z}_p -action on $S^{\dim V_k(\mathbb{C}^m)}$.

Corollary 3.9. If dim $V_k(\mathbb{C}^m) = \dim V_l(\mathbb{C}^n)$, then for any $(S^1)^l$ -map $f: V_k(\mathbb{C}^m) \to V_l(\mathbb{C}^n)$ the degree of f is zero.

References

- [1] H. Cartan and S. Eilenberg: Homological Algebra, Princeton University Press, 1956.
- [2] E. Fadell and S. Husseini: An ideal-valued cohomological index theory with applications to Borsuk-Ulam and Bourgin-Yang theorems, Ergodic Theory Dynamical Systems 8 (1988), 73–85.
- [3] E. Fadell: Ideal-valued generalizations of Ljusternik-Schnierlmann category, with applications; in Topics in Equivariant Topology, (eds. E. Fadell, et al.), Sém. Math. Sup. 108, Press Univ. Montréal, Montréal, 1989, 11–54.
- [4] Y. Hara: The degree of equivariant maps, Topology Appl. 148 (2005), 113–121.
- [5] J. Jaworowski: Maps of Stiefel manifolds and a Borsuk-Ulam theorem, Proc. Edinb. Math. Soc. 32 (1989), 271–279.
- [6] K. Komiya: Borsuk-Ulam theorem and Stiefel manifolds, J. Math. Soc. Japan 45 (1993), 611–626.
- [7] E. Spanier: Algebraic Topology, McGraw-Hill, New York, 1966.

Department of Mathematics Graduate School of Science Osaka University Toyonaka 560-0043, Japan