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ABSTRACT
Restricted mean survival time (RMST) is gaining attention as a measure to quantify the treatment effect on survival outcomes in
randomized clinical trials. Severalmethods to determine sample size based on theRMST-based tests have been proposed.However,
to the best of our knowledge, there is no discussion about the power and sample size regarding the augmented version of RMST-
based tests, which utilize baseline covariates for a gain in estimation efficiency and in power for testing no treatment effect. The
conventional event-driven study design based on the logrank test allows us to calculate the power for a given hazard ratio without
specifying the survival functions. In contrast, the existing sample size determination methods for the RMST-based tests relies
on the adequacy of the assumptions of the entire survival curves of two groups. Furthermore, to handle the augmented test, the
correlation between the baseline covariates and the martingale residuals must be handled. To address these issues, we propose
an approximated sample size formula for the augmented version of the RMST-based test, which does not require specifying the
entire survival curve in the treatment group, and also a sample size recalculation approach to update the correlations between the
baseline covariates and the martingale residuals with the blinded data. The proposed procedure will enable the studies to have the
target power for a given RMST difference even when correct survival functions cannot be specified at the design stage.

1 Introduction

In randomized clinical trials designed to compare two treatments
with a time-to-event outcome, the logrank test is extensively
used for testing equality of the two event time distributions. To
summarize the treatment effect magnitude, the hazard ratio (HR)
is widely used, which is estimated with the Cox proportional
hazards (PH) model (Cox 1972). The logrank test and the HR are
used together and in this paper, this approach is referred to as
the logrank-HR approach. On the other hand, the PH assumption
the Cox PH model requires is not necessarily satisfied in prac-

tice. Concerning the inappropriateness of the PH assumption,
inference procedures for many kinds of semiparametric non-PH
models have been developed, including the accelerated failure
time model (Jin et al. 2003; Wei 1992), the proportional odds
model (Cheng et al. 1995), and the additive hazards model (Lin
and Ying 1994). These inference procedures were found to per-
form well in some practical situations. On the other hand, these
semiparametric models also rely on some specific assumptions
regarding the relationship between two event time distributions,
such as additive hazards or proportional odds assumptions, and
then are also subject to misspecification similar to the Cox
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PH model. They have been rarely employed in confirmatory
randomized clinical trials; instead the logrank-HR approach has
been routinely used (Uno et al. 2020).

Many recent clinical trials of immunotherapies for cancer
reported that the Kaplan–Meier curves of the two treatment
arms are almost identical up to a certain time point from the
randomization and after the time point, the two curves separated,
indicating that the immunotherapy improved patients’ survival
(Guimaraes et al. 2020; Reck et al. 2016). This late-onset efficacy
reflects themechanism of the immunotherapy; a certain duration
is needed for the immunotherapy to act on the immune system.
In this case, violation of the PH assumption is essential from
the viewpoint of the mechanism of the therapy. It motivates
statisticians to consider more closely how to analyze the primary
time-to-event endpoint in confirmatory randomized clinical trials
without assuming the PH assumption (non-PH). Uno et al. (2014)
contrasted the pros and cons of severalmeasures for the treatment
effect alternative to the HR, including difference and ratio of
the restricted mean survival time (RMST), which is the mean
survival time truncated at a specific study time and calculated
as the area under the survival curve from 0 to the truncation
time point (Royston and Parmar 2011;2013; Tian et al. 2018;
Uno et al. 2014;2015). Difference and ratio of RMSTs of the
two groups can be good between-group contrast measures with
clear clinical interpretation. These measures can be estimated
nonparametrically without imposing any modeling assumptions,
and thus are robust. This model-free property would be very
attractive in confirmatory randomized clinical trials because
the statistical analysis specified in the study protocol (CPMP
2003) would always give the interpretation intended in the study
protocol; the HR does not have this property once the PH
assumption is violated. With the awareness of the issues of the
HR, the RMST is gaining more attention in the clinical research
community and is starting to be utilized in practice. A study
where the RMST-based analysis was used as the primary analysis
can also be found (Guimaraes et al. 2020).

Although our primary focus is on the augmented tests based
on the RMST, in which efficacy and power are improved with
baseline covariates, we begin with the standard tests; we refer
to the test and estimate without covariates incorporated to
improve efficiency and power simply as the standard test and
estimate, respectively. There are several methods for calculating
sample sizes available for the standard tests contrasting the RMST
difference between two comparative groups. Royston and Parmar
(2013) showed a simulation-based method to determine the
sample size for RMST. Uno et al. (2015) discussed a simulation-
based method specifically for noninferiority trials. Luo et al.
(2019) and Eaton et al. (2020) discussed the use of an asymptotic
power formula. These power calculation approaches require
users to specify the entire survival curves of the two groups,
and some simple parametric distributions have been assumed
conventionally. For example, in Guimaraes et al. (2020), the
exponential distribution was assumed and the rate parameter
of the exponential distribution was determined so that the 1-
year survival rate became 0.855. If another parametric model, for
example, a log-normalmodel, was used for the power calculation,
the resulting power would be different from the one based on
the exponential distribution even if the 1-year survival rate was
0.855. For estimating the sample size more accurately, one may

assume piecewise exponential distributions instead of simple
parametric distributions as Luo et al. (2019) proposed. However,
in practice, it would be still challenging to accurately specify
the entire survival curves at the design stage due to limited
information about the treatment. If the specified survival curves
are inaccurate, the sample size based on RMST-based tests may
be under/overestimated because the power formula involves the
entire survival curves of two groups (Eaton et al. 2020; Luo et al.
2019).

On the other hand, the power formula for the logrank test, or
equivalentHR-based tests (Schoenfeld et al. 1981) does not involve
the entire survival curves but only a required number of events,
anticipated HR, and type 1 error rate. Thus, when the logrank test
is used as the primary analysis, the final analysis is supposed to
be conducted when the required number of events is observed to
achieve the planned power. This is called an “event-driven study”
design and has been almost routinely used for decades (Collett
2004). This approach still requires users to specify the entire
survival curves of two groups, the anticipated accrual profile, and
the follow-up duration to calculate the total number of subjects
to enroll. Misspecification of the survival curves may lead to
unexpected delays in the final analysis. However, because the
final analysis is performed when the required number of events
is observed and the power of the logrank test depends on only
the number of observed events, misspecification of the survival
curves would not affect the power of the study. This is a practical
advantage of using the logrank test against RMST-based tests and
weighted logrank tests (Yuan et al. 2020).

The potential usefulness of baseline covariates in the primary
statistical analysis has been argued for a long time (DiRienzo and
Lagakos 2001; Pocock et al. 2002; Tsiatis et al. 1985). However, in
most clinical trials, no or only a few baseline covariates are incor-
porated in the primary analysis; due to potentialmisspecification,
regression analyses are hardly used and only limited number of
covariates are adjustedwith stratified analysis. The augmentation
approach is gainingmuch interest, inwhich covariates are used to
reduce variations of estimators by attaching an augmented term
to the estimators or the estimating equations (Hattori et al. 2022;
Jiang et al. 2019; Lu and Tsiatis 2008; Tian et al. 2012; Tsiatis
et al. 2008; Zhang 2015; Zhang et al. 2008). With randomization,
the addition of the augmented term does not lead any bias
to estimators and does not require any additional assumptions
for validity. For the RMST-based tests, Tian et al. (2012) and
Jiang et al. (2019) discussed the inference procedure. However,
to the best of our knowledge, there has been no discussion about
power and sample size calculations for the RMST-based tests with
the augmentation.

In this paper, we sought to develop a procedure that does not
require a correct specification of survival functions and censoring
distributions at the design stage but can allow the study to achieve
a target power for detecting a given RMST difference. We handle
this problem under the same assumptions as the event-driven
design with the logrank test; although the common censoring
assumption between the two groups is not required for the
analysis, it is supposed to obtain a simple procedure for sample
size calculation. We derive the asymptotic power formula under
a local alternative, which is useful in a blinded review. For the
standard test, with this formula, given the target type 1 error rate
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and the power, the sample size is determined by an anticipated
difference in RMST, the survival distribution of the control group,
and censoring distribution. For the augmented test, in addition to
these quantities, a correlation among baseline covariates and the
martingale residuals should be set. To determine the quantities
needed for the sample size calculation, one may utilize data from
existing clinical data sets, such as past clinical trials. We refer
to such a data set as the reference data, whereas the study we
are designing is called the target study. This approach can be
taken at the design stage. If the quantities determined through the
reference data are similar to those for the target study, the power
based on the proposed formula will be accurate for the target
study. Otherwise, it will not be accurate. Therefore, along with
the power formula, we also propose a method to recalculate the
sample size in themiddle of the studywith the blinded data. Since
this sample size calculation is performed without breaking the
blindness of the assigned treatment, the integrity of the study will
be intact and the impact on the type I error rate will be negligible.

The organization of the paper is as follows. Although our develop-
ment covers the augmented RMST-based test, our consideration
on sample size calculationwould be useful evenwith the standard
RMST-based test. In Section 2.1, we begin with summarizing the
asymptotic properties of the standard test for the RMST differ-
ence, and in Section 2.2, introduce the augmented RMST-based
test. In Section 3, we derive the asymptotic power formula under
a local alternative. In Section 4.1, we demonstrate the sample size
calculation at the design-stage with the power formula for the
standard test and the augmented tests. It is followed by a proposal
of a mid-trial sample size modification procedure in Section 4.2.
In Section 5, we report results of a simulation study. In Section 6,
we demonstrate the application of the proposed methods to real
data. We conclude our paper bymentioning some limitations and
the potential future direction of the research in Section 7. All the
theoretical arguments are given in the Appendix.

2 RMST-Based Tests

2.1 The Standard Test Based on the RMST
Difference

Suppose we are interested in designing a randomized clinical
trial with a time-to-event endpoint. We call the clinical trial the
target study. We consider a two group comparison and let 𝑍 be
a binary random variable with 𝑃(𝑍 = 1) = 𝜋, which represents
the treatment allocation and is coded as 1 and 0 if a subject is
allocated to the treatment and control groups, respectively. We
only consider equal allocation cases; 𝜋 = 0.5. Let 𝑇 and 𝐶 be a
failure time of interest and potential censoring time, respectively.
The failure time 𝑇 may be right-censored by 𝐶 and then 𝑋 =
min (𝑇, 𝐶) and Δ = 𝐼(𝑇 ≤ 𝐶) are observable. A vector of baseline
covariates is denoted by 𝑉. From randomization, we assume

𝐂𝐨𝐧𝐝𝐢𝐭𝐢𝐨𝐧𝟏 ∶ 𝑉 ⟂ 𝑍,

where for arbitrary random variables𝐴1 and𝐴2,𝐴1 ⟂ 𝐴2 implies
independence of 𝐴1 and 𝐴2. In addition, we assume the standard
assumption in survival analysis;

𝐂𝐨𝐧𝐝𝐢𝐭𝐢𝐨𝐧𝟐 ∶ 𝐶 ⟂ 𝑇|𝑍,

where for arbitrary random variables 𝐴1, 𝐴2, and 𝐴3, 𝐴1 ⟂ 𝐴2|𝐴3

implies that 𝐴1 and 𝐴2 are conditionally independent given 𝐴3.

We assume that 𝑛 subjects are enrolled in the study. Let 𝑛 i.i.d.
copies of (𝑋, Δ, 𝑍, 𝑉𝑇) denoted by (𝑋𝑖, Δ𝑖, 𝑍𝑖, 𝑉

𝑇
𝑖
), 𝑖 = 1, 2, … , 𝑛

and observed, where the subscript 𝑖 represents the 𝑖th subject.
Let 𝑆𝑧(𝑡) = 𝑃(𝑇 ≥ 𝑡|𝑍 = 𝑧) be the survival function of the group
𝑧 = 0, 1. Denote the corresponding hazards and cumulative
hazards function by 𝜆𝑧(𝑡) and Λ𝑧(𝑡), respectively. The counting
process and the at-risk process are denoted by 𝑁𝑖(𝑡) = 𝐼(𝑋𝑖 ≤
𝑡, Δ𝑖 = 1) and 𝑌𝑖(𝑡) = 𝐼(𝑋𝑖 ≥ 𝑡), respectively. The RMST over the
interval [0, 𝜏] for 𝑍 = 𝑧 is defined as 𝜃𝑧 = 𝐸{𝑚𝑖𝑛(𝑇, 𝜏)|𝑍 = 𝑧} =
∫ 𝜏

0
𝑆𝑧(𝑡)𝑑𝑡, where 𝜏 is a truncation time. Suppose we employ the

RMST to summarize the treatment effect and the truncation time
𝜏 is predefined in the protocol. The RMST is estimated by 𝜃̂𝑧 =∫ 𝜏

0
𝑆̂𝑧(𝑡)𝑑𝑡, where 𝑆̂𝑧(𝑡) is the Kaplan–Meier estimator for 𝑆𝑧(𝑡).

To compare the two treatments, the RMST difference can be used,
which is defined by 𝜃 = 𝜃1 − 𝜃0. It is estimated by 𝜃̂ = 𝜃̂1 − 𝜃̂0. As
shown in Appendix A, the asymptotic variance of

√
𝑛(𝜃̂ − 𝜃) is

given by

𝜎2 = ∫
𝜏

0

{∫ 𝜏

𝑡
𝑆1(𝑢)𝑑𝑢}

2

𝐸{𝐼(𝑋 ≥ 𝑡)𝑍}
𝑑Λ1(𝑡) + ∫

𝜏

0

{∫ 𝜏

𝑡
𝑆0(𝑢)𝑑𝑢}

2

𝐸{𝐼(𝑋 ≥ 𝑡)(1 − 𝑍)}
𝑑Λ0(𝑡).

(1)

By replacing the unknown quantities in (1) with their consistent
estimators, it is consistently estimated by

𝜎̂2
1 = ∫

𝜏

0

{∫ 𝜏

𝑡
𝑆̂1(𝑢)𝑑𝑢}

2

𝑌̄1(𝑡)
𝑑Λ̂1(𝑡) + ∫

𝜏

0

{∫ 𝜏

𝑡
𝑆̂0(𝑢)𝑑𝑢}

2

𝑌̄0(𝑡)
𝑑Λ̂0(𝑡), (2)

where 𝑌̄1(𝑡) = 𝑛−1 ∑𝑛

𝑖=1 𝐼(𝑋𝑖 ≥ 𝑡)𝑍𝑖 , 𝑌̄0(𝑡) = 𝑛−1 ∑𝑛

𝑖=1 𝐼(𝑋𝑖 ≥
𝑡)(1 − 𝑍𝑖), and Λ̂𝑧(𝑡) = ∫ 𝑡

0

∑𝑛

𝑖=1 𝐼(𝑍𝑖 = 𝑧){𝑛𝑌̄𝑧(𝑢)}
−1𝑑𝑁𝑖(𝑢) is

the Nelson–Aalen estimate for Λ𝑧(𝑡). Alternatively, 𝜎2 is also
consistently estimated by 𝜎̂2

2 = 𝑛−1 ∑𝑛

𝑖=1 𝐻̂
2
𝑖
, where

𝐻̂𝑖 = −∫
𝜏

0

∫ 𝜏

𝑡
𝑆̂1(𝑢)𝑑𝑢

𝑌̄1(𝑡)
𝑍𝑖𝑑𝑀̂1,𝑖(𝑡)

+ ∫
𝜏

0

∫ 𝜏

𝑡
𝑆̂0(𝑢)𝑑𝑢

𝑌̄0(𝑡)
(1 − 𝑍𝑖)𝑑𝑀̂0,𝑖(𝑡), (3)

where 𝑀̂𝑧,𝑖(𝑡) = 𝑁𝑖(𝑡) − ∫ 𝑡

0
𝐼(𝑋𝑖 ≥ 𝑢)𝑑Λ̂𝑧(𝑢) is the counting pro-

cess martingale for 𝑍 = 𝑧. The consistency of 𝜎̂2
2 to 𝜎̂2 is given

in Appendix A. We refer the test based on 𝜃̂ as the standard
RMST test.

2.2 Augmented Test for the RMST Difference

The augmented version of the RMST difference is defined as

𝜃̂𝑎𝑢𝑔(𝑐) = 𝜃̂ − 1

𝑛

𝑛∑
𝑖=1

(𝑍𝑖 − 𝜋)𝑐𝑇𝑉𝑖,

= 𝜃̂ − 𝐴𝑈𝐺(𝑐), (4)

where 𝑐 is a vector of the same dimension as 𝑉 (Tian et al.
2012). As argued in Section 2.1, the first term of (4) consistently
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estimates the true RMST difference 𝜃. For any 𝑐, the expectation
of the second term is zero fromCondition 1. Then (4) consistently
estimates the true RMST difference for any fixed 𝑐. It is true
even if 𝑐 is date-dependent as long as it converges to a constant
in probability. Since 𝜃̂ is a special case of 𝜃̂𝑎𝑢𝑔(𝑐) with 𝑐= 0, by
choosing a relevant value of 𝑐, one may have a more efficient
estimator than 𝜃̂. We determine 𝑐 that minimizes the variance.
The resultingminimizer is denoted by 𝑐, which can be obtained by
projecting the influence function of 𝜃̂ onto the subspace of 𝐿2(𝑑𝑃)

spanned by {(𝑍 − 𝜋)𝑉}, where 𝑑𝑃 is the probability measure of
the underlying probability space and 𝐿2(𝑑𝑃) is the Hilbert space
of all the square-integrable functions on the probability space. As
argued in Appendix B, it is given by

𝑐 =
{
𝜋(1 − 𝜋)

𝑛∑
𝑖=1

𝑉𝑖𝑉
𝑇
𝑖

}−1

×
𝑛∑
𝑖=1

(𝑍𝑖 − 𝜋)𝑉𝑖

[
− 𝑍𝑖 ∫

𝜏

0

∫ 𝜏

𝑡
𝑆̂1(𝑢)𝑑𝑢

𝑌̄1(𝑡)
𝑑𝑀̂1𝑖(𝑡)

+ (1 − 𝑍𝑖)∫
𝜏

0

∫ 𝜏

𝑡
𝑆̂0(𝑢)𝑑𝑢

𝑌̄0(𝑡)
𝑑𝑀̂0𝑖(𝑡)

]
. (5)

Let 𝜃̂𝑎𝑢𝑔 = 𝜃̂𝑎𝑢𝑔(𝑐). Then, 𝜃 is estimated by 𝜃̂𝑎𝑢𝑔 consistently and
more efficiently than 𝜃̂. The asymptotic variance of

√
𝑛(𝜃̂𝑎𝑢𝑔 − 𝜃)

is consistently estimated by 𝜎̂2
𝑎𝑢𝑔 = 𝑛−1 ∑𝑛

𝑖=1{𝐻̂𝑖 − (𝑍𝑖 − 𝜋)𝑐𝑇𝑉𝑖}
2

(see Appendix B).

3 Power Formula for the Standard and
Augmented RMST Tests

To obtain a simple expression of the local power, we assume an
additional condition,

𝐂𝐨𝐧𝐝𝐢𝐭𝐢𝐨𝐧𝟑 ∶ 𝐶 ⟂ 𝑍.

This condition is assumed in the widely used power formula
for the event-driven study by the logrank test (see exercise
4.7 of Fleming and Harrington 1991). Then, the variance (1) is
represented as

𝜎2 = ∫
𝜏

0

{∫ 𝜏

𝑡
𝑆1(𝑢)𝑑𝑢}

2

𝜋𝑆1(𝑡)𝐺(𝑡)
𝑑Λ1(𝑡) + ∫

𝜏

0

{∫ 𝜏

𝑡
𝑆0(𝑢)𝑑𝑢}

2

(1 − 𝜋)𝑆0(𝑡)𝐺(𝑡)
𝑑Λ0(𝑡),

(6)

where 𝐺(𝑡) = 𝑃(𝐶 > 𝑡) is the common survival function of the
censoring time 𝐶. Since 𝑐 is derived by the orthogonal projection
of the influence function, it holds that

lim
𝑛→∞

𝑉𝑎𝑟(
√
𝑛(𝜃̂𝑎𝑢𝑔 − 𝜃)) = lim

𝑛→∞
𝑉𝑎𝑟(

√
𝑛(𝜃̂ − 𝜃))

− lim
𝑛→∞

𝑉𝑎𝑟(
√
𝑛𝐴𝑈𝐺(𝑐))

= 𝑄1 − 𝑄2.

Note that 𝑄1 agrees with 𝜎2 in (6). Suppose we are interested in
testing the null hypothesis that the survival functions are com-
monbetween the groups. It is denoted by𝐻0 ∶ log 𝜆1(𝑡)∕𝜆0(𝑡) = 0.

We consider the local alternative𝐻1 ∶ log 𝜆1(𝑡)∕𝜆0(𝑡) = 𝛿(𝑡)∕
√
𝑛,

where 𝛿(𝑡) is a deterministic function of time providing a specific
alternative hypothesis of interest.

Under this alternative,
√
𝑛(𝜃̂ − 𝜃𝑎𝑙𝑡) asymptotically has a zero-

mean normal distribution with variance 𝜎2 in Equation (6),
where

𝜃𝑎𝑙𝑡 =
𝜂√
𝑛
= 1√

𝑛 ∫
𝜏

0

{
∫

𝑣

0

𝛿(𝑢)𝜆0(𝑢)𝑑𝑢

}
𝑆0(𝑣)𝑑𝑣.

Under the local alternative and Conditions 2 and 3, it holds
that 𝑆1(𝑡) = 𝑆0(𝑡) + 𝑜(1), Λ1(𝑡) = Λ0(𝑡) + 𝑜(1), 𝑀1,𝑖(𝑡) =
𝑀0,𝑖(𝑡) + 𝑜𝑝(1), 𝐸{𝐼(𝑋 ≥ 𝑡)𝑍} = 𝑆1(𝑡)𝐺(𝑡)𝜋 = 𝑆0(𝑡)𝐺(𝑡)𝜋 + 𝑜(1),
and 𝐸{𝐼(𝑋 ≥ 𝑡)(1 − 𝑍)} = 𝑆0(𝑡)𝐺(𝑡)(1 − 𝜋). Applying these
identities to (6), we can approximate𝑄1 by𝑄1 = 𝜎2 = 𝜎1

2 + 𝑜𝑝(1),
where

𝜎̃2
1 =

1

𝜋(1 − 𝜋) ∫
𝜏

0

{∫ 𝜏

𝑡
𝑆0(𝑢)𝑑𝑢}

2

𝑆0(𝑡)𝐺(𝑡)
𝑑Λ0(𝑡), (7)

and then from the Slutsky’s theorem (Ferguson 1996), it holds that√
𝑛(𝜃̂ − 𝜃𝑎𝑙𝑡) asymptotically follows 𝑁(0, 𝜎1

2).

In Appendix C, we show that when 𝜋 = 1∕2, it holds that

𝑄2 = 𝜋(1 − 𝜋)𝑒2, (8)

where

𝑒2 = 𝐸

{
∫

𝜏

0

∫ 𝜏

𝑡
𝑆0(𝑢)𝑑𝑢

𝑆0(𝑡)𝐺(𝑡)
𝑑𝑀0(𝑡)𝑉

𝑇

}
{𝐸(𝑉𝑉𝑇)}−1

×𝐸

{
∫

𝜏

0

∫ 𝜏

𝑡
𝑆0(𝑢)𝑑𝑢

𝑆0(𝑡)𝐺(𝑡)
𝑑𝑀0(𝑡)𝑉

}
, (9)

and 𝑀0(𝑡) = 𝑁(𝑡) − ∫ 𝜏

0
𝑌(𝑢)𝑑Λ0(𝑢) is the martingale residuals

under the null hypothesis. Thus, the variance of 𝜃̂𝑎𝑢𝑔 is asymp-
totically approximated by 𝑣2𝑎𝑢𝑔 = {𝜎̃2 − 𝜋(1 − 𝜋)𝑒2}∕𝑛. Then, the
local power for a two-sided 𝛼 level test is given by

Φ(𝑧𝛼∕2 − 𝜃𝑎𝑙𝑡∕𝑣𝑎𝑢𝑔) + 1 − Φ(𝑧(1−𝛼∕2) − 𝜃𝑎𝑙𝑡∕𝑣𝑎𝑢𝑔). (10)

If one uses the standard test, which is based on 𝜃̂, the power is
approximately calculated by setting 𝑒2 = 0, or

Φ(𝑧𝛼∕2 − 𝜃𝑎𝑙𝑡∕𝑣) + 1 − Φ(𝑧(1−𝛼∕2) − 𝜃𝑎𝑙𝑡∕𝑣), (11)

where 𝑣2 = 𝜎̃2∕𝑛.

Note that these power formulas, (10) and (11), are derived based
on the local alternative hypothesis. These might not provide
precise approximation of the power when the treatment effect is
large. However, this approximated approach is more convenient
than the one using (1) for practice. For example, for the power
calculation of the standard test, we need to specify the entire
survival curves from the two groups (𝑆1(𝑡) and 𝑆0(𝑡)), and 𝐺(𝑡),
when we use the approach based on 𝜎2. On the other hand,
the approximated approach using 𝜎̃2

1 requires us to specify only
a between-group difference in RMST (𝜂), 𝐺(𝑡), and the entire
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survival curve from the control group (𝑆0(𝑡)). This feature would
be attractive to users since they would not have sufficient data to
estimate the survival time distribution, especially in the treatment
group at the study design stage.

4 Sample Size Calculation

4.1 Sizing at the Design Stage

In this subsection, we discuss sample size calculation for a
randomized clinical trial with the RMST-based test at the design
stage. We begin with the case in which the standard RMST-based
test is used for the primary analysis with two-tailed significance
level of 0.05. We define the target sample size to maintain
the target power 1 − 𝛽 for the minimum clinically meaningful
difference 𝜃𝑎𝑙𝑡. As given in (11), the power depends on the survival
function of the control group 𝑆0(𝑡) and the censoring distribution
𝐺(𝑡). To accurately estimate the sample size achieving the target
power, one needs to carefully specify 𝑆0(𝑡) and𝐺(𝑡)with available
information at the design stage. Suppose we are planning a target
studywith the reference data, for example, frompast clinical trials.
When information for the control group is available, from the
definition of 𝜎̃2

1 in (7), one can approximately calculate the power
by estimating 𝑆0(𝑡) and 𝐺(𝑡) with the Kaplan–Meier method. If
(almost) all the subjects are not dropped out from the study, the
censoring is administrative and 𝐺(𝑡) can be determined by the
design parameters such as accrual rate and accrual period. It can
be used instead of estimation.

Next, we consider the case in which the augmented RMST test
is used. To do so, we need to estimate 𝑒2. It depends on the
martingale residuals under the null, which is free from the
treatment allocation 𝑍. Then, one can estimate 𝑣2𝑎𝑢𝑔 with a data
set of only the control group. Suppose we have 𝑛+ subjects in the
reference data and the samenotation to Section 2 is used.Note that
𝑍 = 0 for all the subjects. Then, the predicted power is obtained by
replacing unknown quantities in (9). That is, it can be estimated
by

𝑒2 = 1

𝑛+

𝑛+∑
𝑖=1

∫
𝜏

0

∫ 𝜏

𝑡
𝑆̂0(𝑢)𝑑𝑢

𝑌̄0(𝑡)
𝑑𝑀̂0,𝑖(𝑡)𝑉

𝑇
𝑖

{ 𝑛+∑
𝑖=1

𝑉𝑖𝑉
𝑇
𝑖

}−1

×
𝑛+∑
𝑖=1

∫
𝜏

0

∫ 𝜏

𝑡
𝑆̂0(𝑢)𝑑𝑢

𝑌̄0(𝑡)
𝑑𝑀̂0,𝑖(𝑡)𝑉𝑖.

4.2 Mid-Trial Sample Size Determination

As demonstrated in Section 4.1, specification of the survival and
censoring distributions 𝑆0(𝑡) and 𝐺(𝑡) can be influential on the
calculation of the predicted power for the standard and the aug-
mented tests. Furthermore, as seen in formula (9), the predicted
power of the augmented test depends on the variance–covariance
matrix of the covariates 𝑉 and the martingale residuals. It is
crucial to accurately specify the quantities in the sample size
formula to ensure an accurate power calculation for the target
study. However, it may be challenging to derive precise estimates
for these quantities from the reference data that are available at the
design stage. With the notable feature that the power formulas

(10) and (11) are free from the treatment allocation 𝑍, one can
estimate the local power with the mid-trial blinded data set by
pooling the data sets of the two treatment groups. To be specific,
we propose to conduct a blind review at an early stage in the target
study with 𝑛𝑚𝑖𝑑 (𝑛𝑚𝑖𝑑 < 𝑛) subjects followed up to 𝜏 and then
calculate the predicted power for 𝑛 subjects with estimated 𝜎̃2 and
𝑒2. We can determine the sample size for the statistical analysis
with the predicted power to be the target power, say 0.8. Since all
the adaptations are made under a blinded review, it would avoid
under- or overpowered studies, maintaining integrity of the study
with the nominal type 1 error rates.

5 Simulation Study

5.1 Data Generation

We conducted a simulation study investigating the accuracy and
effectiveness of the proposed power calculation methods. In this
subsection, we explain how to generate three kinds of data sets
(sData 1-3). We considered a randomized clinical trial to compare
two treatment groups with a time-to-event endpoint.

Let 𝑏1 and 𝑏2 be independent randomvariables following the stan-
dard normal distribution. We generated two kinds of continuous
covariates𝑉1 = 𝑏1 + 𝜖1 and𝑉2 = 𝑏2 + 𝜖2, where 𝜖1 and 𝜖2 followed
the standard normal distribution independently. Independence
among 𝑏1, 𝑏2, 𝜖1, and 𝜖2 was assumed.

To examine the performance of our proposed method, we gen-
erated the failure time 𝑇, which might be associated with the
baseline covariates 𝑉1 and 𝑉2 and followed the exponential
distribution (sData 1 and sData 2) or the piecewise exponential
distribution (sData 3) marginally (not conditionally on the base-
line covariates). The sData 1 and sData 2were generated from the
marginal PH model under the null hypothesis of no treatment
effect and the alternative hypothesis, respectively, as follows. The
failure time 𝑇 was generated from the model,

log 𝑇 = log {𝜆0(1 − 𝑍) + 𝜆1𝑍} + log (− log𝑈), (12)

where 𝑍 was a binary random variable independent of 𝑉1 and
𝑉2, which represented the randomized treatment allocation with
𝑃(𝑍 = 1) = 1∕2.𝑈 was a random variable, which might or might
not be dependent on 𝑉1 and 𝑉2 and had the marginal uniform
distribution on (0,1). Thus, the failure time distributions for𝑍 = 1

and 𝑍 = 0 were the exponential distribution with the hazard 𝜆1
and 𝜆0, respectively. The hazard 𝜆0 is determined so that the
corresponding 5-year survival rate was 0.2, and 𝜆1 is determined
to satisfy so that the HR 𝜆1∕𝜆0 was 1 (sData 1) or 0.7 (sData 2).
The random variable 𝑈 was generated under the following two
settings; [a] 𝑈 = Φ3(𝑏1 + 𝑏2 + 𝜖) and [b] 𝑈 = Φ1(𝜖), where 𝜖 is
a standard normal random variable independent of 𝑏1 and 𝑏2
and Φ𝑚(.) is the cumulative distribution function of the zero-
mean normal distribution with the variance of 𝑚. Note that the
model (12) is an accelerated failure timemodelwith the error term
𝜀 = log (− log𝑈). Since 𝑈 follows the uniform distribution on
(0,1)marginally, 𝜀 follows the standard extreme value distribution
and then the failure time 𝑇 follows the exponential distribution.
Therefore, both under [a] and [b], the failure time 𝑇 satisfies
the marginal Cox PH model. Under [a], 𝑇 was dependent
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TABLE 1 Empirical powers of the standard and augmented RMST-based tests and the average predicted powers calculated at the design stage with
the reference data over 10,000 simulated data sets; Power means empirical powers, cPP and mPP are the predicted power with the correctly matched
and incorrectly matched reference data, respectively.

Data set Status Dependence True Test Power cPP mPP

sData1a Null v1, v2 0 Augmented 0.052 NA NA
Standard 0.054 NA NA

sData1b Null None 0 Augmented 0.055 NA NA
Standard 0.053 NA NA

sData2a PH v1, v2 0.514 Augmented 0.925 0.939 0.903
Standard 0.842 0.860 0.873

sData2b PH None 0.514 Augmented 0.843 0.863 0.862
Standard 0.843 0.860 0.860

sData3a nonPH v1, v2 0.514 Augmented 0.910 0.906 0.903
Standard 0.820 0.817 0.872

sData3b nonPH None 0.514 Augmented 0.821 0.821 0.863
Standard 0.819 0.817 0.860

on covariates, whereas it was not under [b]. Suppose we are
interested in comparing the two groups using the RMST with
𝜏 = 5. In sData 1, there was no treatment effect and then the true
RMST difference was 0. In sData 2, the true RMST difference was
0.514. The sData 3 were generated under the non-PH. For 𝑍 = 0,
the failure time 𝑇 was generated from the same model as the
sData 1, the exponential distribution of the hazard 𝜆0. For 𝑍 = 1,
in a similar way to sData 1, 𝑇 was generated from the piecewise
exponential distribution, in which the hazard was 𝜆0 for 𝑡 < 1

and was a different value 𝜆2 for 1 ≤ 𝑡, so that the resulting true
RMST difference was 0.514. The potential censoring time 𝐶 was
generated from the uniform distribution on (0, 8). The data set
sData1with [a] is referred as sDATA 1a. Similar notations are used
for other combinations. For each combination, 10,000 sets of 500
subjects were generated.

The sData 1 to sData 3 were regarded as the target study. We
generated two kinds of reference data for each sData. One is from
the same distribution of the control group, which is referred as
correctly matched. The other was from a biased sampling from the
control group; subjects of 𝑉1 < 1 and 𝑉2 < 1 were only sampled,
which is referred as mis-matched. Correspondingly to the data
sets for the target study, 10,000 sets of the reference data were
generated, each of which included 200 subjects.

5.2 Accuracy of the Predicted Power Calculated
With the Reference Data at the Design Stage

In Table 1, empirical powers of the standard and augmented
RMST tests of 𝑛 = 500 based on 10,000 simulation data sets are
presented. Summaries of the predicted power calculated with
the correctly matched and mis-matched reference data are also
demonstrated. The empirical sizes were very close to the nominal
level of 5% and inclusion of the augmentation term did not lead
to inflation of the type 1 error rates. The augmented test had
certain gains in power for data sets in which the failure time
had dependence of 𝑣1 and 𝑣2 (sData 2a and 3a). The average

of the predicted power with the correctly matched reference data
(denoted by cPP) was close to the corresponding empirical power.
On the other hand, those with the mis-matched reference data
(mPP) were not necessarily close.

5.3 Validity of Adaptive Choice of Sample Size
Under a Mid-Trial Blinded Review of the Target
Study

As observed in Section 5.2, if the reference data do not reflect the
distributional structure of the target study, the predicted power
might not approximate the power of the target study accurately.
To the simulation data sets, we applied the proposed mid-trial
sample size evaluation procedure in Section 4.3. At a mid-trial
blinded review with 𝑛𝑚𝑖𝑑 = 100 or = 200, we estimated 𝑆0(𝑡) and
𝐺(𝑡) with the pooled data of the two treatment groups. Then, we
calculated the predicted power with 𝑛 = 𝑛𝑚𝑖𝑑, 𝑛𝑚𝑖𝑑 + 10, 𝑛𝑚𝑖𝑑 +
20, … and decided the minimum sample size with the predicted
power higher than the target power 0.8 as the sample size for the
final analysis. Empirical sizes and powers of the blinded adaptive
sample size re-estimation procedure were shown in Table 2
with 𝑛𝑚𝑖𝑑 = 100 and = 200, respectively. The results for sData 1
indicated that the empirical sizes were close to the nominal level
of 0.05 in all the scenarios. From the results for sData 2 and sData
3, the empirical powers were very close to the target power 0.8.
Overall, the proposed method successfully controlled the power.

We also made a similar evaluation for the augmented RMST-
based test with the covariates 𝑉1 and 𝑉2. We selected the final
sample size of the predicted power 0.8 by the augmented test
and the results are summarized in Table 2. It indicated that
the empirical sizes were close to the nominal level and the
empirical powers were also close to the target one. Thus, these
results suggested that the blinded adaptive sample size choice
procedure successfully controlled the power maintaining the
validity. Table 2 shows the distributions of the sample size selected
by the mid-trial blinded review. With augmentation, the number
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TABLE 2 Empirical powers of the standard and augmented RMST-based tests conducted at the adaptively selected sample size with the predicted
power with the earliest 𝑛𝑚𝑖𝑑 subjects under the blind review and summary of sample sizes over 10,000 simulated data sets.

RMST
difference Adaptively selected sample size

𝒏𝒎𝒊𝒅 Test Status True Target Dependence Data set Power Min q1 Median q3 Max

100 Standard Null 0 0.514 v1, v2 sData1a 0.052 180 390 420 440 640
None sData1b 0.055 210 390 420 450 570

PH 0.514 0.514 v1, v2 sData2a 0.801 200 420 440 470 630
None sData2b 0.789 210 420 440 470 610

Non-PH 0.514 0.514 v1, v2 sData3a 0.799 190 450 470 500 650
None sData3b 0.793 200 450 470 500 630

Augmented Null 0 0.514 v1, v2 sData1a 0.056 130 280 310 340 470
None sData1b 0.056 190 380 410 440 550

PH 0.514 0.514 v1, v2 sData2a 0.793 140 310 330 360 480
None sData2b 0.781 200 410 430 460 610

Non-PH 0.514 0.514 v1, v2 sData3a 0.786 190 440 460 490 630
None sData3b 0.794 150 330 360 380 500

200 Standard Null 0 0.514 v1, v2 sData1a 0.053 280 410 430 450 570
None sData1b 0.053 270 410 430 450 540

PH 0.514 0.514 v1, v2 sData2a 0.814 330 440 450 470 570
None sData2b 0.802 330 440 450 470 580

Non-PH 0.514 0.514 v1, v2 sData3a 0.810 320 470 480 500 600
None sData3b 0.803 380 470 480 500 600

Augmented Null 0 0.514 v1, v2 sData1a 0.053 210 300 320 340 450
None sData1b 0.055 270 410 430 445 530

PH 0.514 0.514 v1, v2 sData2a 0.810 230 330 340 360 450
None sData2b 0.799 330 430 450 470 570

Non-PH 0.514 0.514 v1, v2 sData3a 0.813 250 350 370 390 490
None sData3b 0.802 380 460 480 500 590

of sample size might be reduced substantially. Variations of the
calculated sample sizes were smaller with 𝑛𝑚𝑖𝑑 = 200 than with
𝑛𝑚𝑖𝑑 = 100.

6 Examples

6.1 Colon Data

In this section, we illustrate our proposingmethod with a data set
from a randomized clinical trial to compare efficacy and safety
of the three adjuvant therapies of levamisole alone, levamisole
plus fluorouracil (5-FU), and no therapy (observational group) in
resected stage B and C colorectal carcinoma (Laurie et al. 1989;
Moertel et al. 1990), which is available as the 𝑐𝑜𝑙𝑜𝑛 data set in
the R package SURVIVAL. We pretend to conduct a randomized
clinical trial to compare levamisole plus 5-FU and levamisole
alone, which is the target study. We regard the data set of the
observational group in the colon data set as the natural history
data set available when designing the target study and use it as
the reference data.

Suppose we compare the overall survival between the levamisole
plus 5-FU group and levamisole alone by using the standard
RMST-based test with the two-tailed significance level of 0.05.We
define 𝜏 = 1825 (days) and set the minimum clinically important
difference as 150 (days)with respect to theRMST-difference. After
excluding subjects with missing values in the covariates listed in
Section 6.2, the observational group of the colon data contained
305 subjects. It is important to note that while the survival
function in the observational group may differ from that in the
levamisole-alone group, we have used the observational group
as the reference data for illustrative purposes in this example. In
practice, it is crucial to select the reference data carefully unless
the mid-trial re-evaluation is conducted. Among the 305 subjects,
164 died. Estimating 𝑆0(𝑡) and 𝐺(𝑡) in (7) with the reference data,
we evaluated the predicted powers with the formula (11). We set
the target power 0.8. As presented in Table 3, with 𝑛 = 490, the
predicted power wasmore than 0.8 to detect the RMST-difference
𝜃𝑎𝑙𝑡 = 150 (days).

To see how influential the specification of 𝑆0(𝑡) and 𝐺(𝑡) is on the
calculation of the predicted power, we calculated the predicted
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TABLE 3 Predicted powers of the standard and augmented RMST-
based test with the four selected covariates using the observational group
of the colon data as the reference datawith two-tailed 5% significance level
and 𝑛 = 490 to detect the true RMST difference of 150 (days). The bolded
parts indicate the sample size required to achieve a target power of 0.8 for
each method.

Standard Augmented

n
Design
stage

Blind
review

Design
stage

Blind
review

360 0.676 0.666 0.776 0.711
370 0.688 0.678 0.787 0.723
380 0.700 0.690 0.798 0.734
390 0.711 0.701 0.808 0.745
400 0.722 0.712 0.818 0.756
410 0.732 0.722 0.827 0.766
420 0.743 0.733 0.836 0.776
430 0.752 0.743 0.844 0.785
440 0.762 0.752 0.852 0.795
450 0.771 0.761 0.860 0.803
460 0.780 0.771 0.867 0.812
470 0.789 0.779 0.874 0.820
480 0.797 0.788 0.881 0.828
490 0.805 0.796 0.887 0.836
500 0.813 0.804 0.893 0.843

power with the exponential distributions for 𝑆0(𝑡) and 𝐺(𝑡) with
the same 5-year survival rates as those from the Kaplan–Meier
estimates, respectively. The 5-year survival and censoring proba-
bilities 𝑆0(1825) and 𝐺(1825) were estimated as 0.520 and 0.965
with the Kaplan–Meier method. If we assume the exponential
distributions for the survival and censoring distributions, the
corresponding hazard parameterswere 𝜆𝑆 = 3.58 × 10−4 and 𝜆𝐺 =
1.95 × 10−5, respectively. The predicted power based on these
exponential survival and censoring distributions with 𝑛 = 490

was 0.759 to detect the RMST difference of 150 (days), suggesting
that inappropriate specification of 𝑆0(𝑡) and𝐺(𝑡) can lead to over-
or underestimation of the sample size.

Based on the calculation with the reference data, we set 𝑛 =
490 as the target sample size. Concerning discrepancy between
the reference data and the target study, we applied the mid-trial
re-evaluation procedure following the method in Section 4.3.
The predicted powers with a randomly selected 200 subjects are
shown in Table 3. With 𝑛 = 500, the predicted power attained the
target power 0.8.

Next, we determined the target sample size using the augmented
RMST-based test. Moertel et al. (1990) reported several prog-
nosis factors in their Table 1 including 𝑒𝑥𝑡𝑒𝑛𝑡 of local spread
(submucosa, muscle, serosa, contiguous structures), the number
of lymph nodes with detectable cancer, differentiation of tumor
(well, moderate, poor), obstruction of colon by tumor, perforation
of colon, adherence to nearby organs as well as sex and age.

TABLE 4 Predicted powers of the standard and augmented RMST-
based tests with the colon data as the reference data;# implies the number
of covariates included in the augmented term, 𝑃𝑜𝑤𝑒𝑟 is the predicted
power with 𝑛 = 490, which has the power of 0.8 for the standard RMST-
based test. 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 indicates the covariates of maximum gain in power
by adding sequentially. For example, in the augmented logrank test with a
single covariate, nodes had the maximum value of 𝑒2 and +differentiation
implies differentiation gave themaximumgain in the value of 𝑒2 by adding
a single covariate to nodes.

Step Variables 𝒆𝟐 Power

0 0.805
1 +differentiation 228207.8 0.821
2 +nodes 865255.6 0.867
3 +local 1136876 0.886
4 +sex 1159761 0.887
5 +obstruction 1164897 0.888
6 +perforation 1166504 0.888
7 +age 1166505 0.888
8 +adherence 1166509 0.888

To determine the covariates included in the augmented term,
we used a stepwise variable increase method. In the first stage,
we considered the augmented RMST-based test with a single
covariate and selected the covariate attaining the maximum 𝑒2
over all covariates. In the second stage, we selected the covariate
providing the maximum gain in 𝑒2 by adding to the covariate
selected in the first stage. This step was continued until all
covariates were included in the model. In Table 4, the covariates
selected in the process and the predicted power with 𝑛 = 490 are
shown. In the first stage, nodes had the maximum gain in 𝑒2. In
the second stage, we evaluated gains in 𝑒2 by adding one more
covariate to nodes, and selected differentiation. Table 4 indicates
that improvement in powerwas saturated at stage 3; the predicted
power with the set of covariates of nodes, differentiation, and
extent was almost the same as that with all eight covariates. As
seen in Equation (9), the inverse of 𝐸(𝑉𝑉𝑇)must be taken to cal-
culate the predicted power. Thus, unnecessary variables should
not be included in the augmented term to avoid a colinearity
problem. In the present case, we selected three covariates.

In Table 3, the predicted powers of the augmented test with the
three covariates based on the reference data are shown; with 𝑛 =
390, the predicted power attained the target power of 0.8. The
results of the mid-trial re-evaluation at 𝑛𝑚𝑖𝑑 = 200 are also shown
in Table 3, indicating that 𝑛 = 450 attains the target power of 0.8
and is suggested as the sample size with which the final statistical
analysis is conducted. In this example, we observed that the
recommended sample size with the mid-trial blinded evaluation
might be so different from that with the reference data for the
augmented test. We compared the RMSTs of the two groups with
𝑛 = 450 subjects and summarized the results of the estimation in
Table 5. The standard estimate of the RMST difference was 131.6
(95% confidence interval (CI): 25.1, 239.2) days. The augmented
one with the selected three covariates gave the estimate 135.3
(95% CI: 32.4, 238.2). The addition of the augmentation term
made the length of the confidence interval certainly shorter.
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TABLE 5 Results of comparison of the RMST difference of the two
treatments in the colon data with 𝑛 = 450 based on the standard and
augmented tests; “augmented (selected)” and “augmented (all)” imply the
augmented test with the three selected covariates and that with all the
eight covariates, respectively.

Method
RMST

difference (SE) 95%CI 𝒑-value

Standard 131.6 (54.9) (25.1, 239.2) 0.016
Augmented (selected) 135.3 (52.5) (32.4, 238.2) <0.001
Augmented (all) 134.5 (52.2) (32.3, 236.8) <0.001

The augmented estimate with all eight covariates had a similar
standard error to that with the selected three covariates as
suggested in Table 4.

6.2 The Oak Study

The Poplar study is an open-label Phase 2 study to compare the
efficacy and safety of atezolizumab with docetaxel for non-small
cell lung cancer (Fehrenbacher et al. 2016). Two hundred and
eighty seven subjects were enrolled and were randomly assigned
to one of the two treatments. The primary endpoint was overall
survival and the HR of atezolizumab to docetaxel was estimated
as 0.73 (95% CI: 0.53, 0.99; p = 0.040). It was followed by the
Oak study, which was a large-scale randomized confirmatory
Phase 3 study to compare atezolizumab with docetaxel for non-
small cell lung cancer (Rittmeyer et al. 2017). Eighty hundred
and fifty patients were randomized to one of the two treatments.
The HR of atezolizumab to docetaxel was estimated as 0.73 (95%
CI: 0.62, 0.87; p< 0.001). As seen in fig. 3A for the Poplar study
(Fehrenbacher et al. 2016) and fig. 2A for theOak study (Rittmeyer
et al. 2017), there were delayed responses of immunotherapy
observed and then the PH assumption did not seem to hold. We
used these two studies (Fehrenbacher et al. 2016; Rittmeyer et al.
2017) for illustrating our proposed methods.

The RMST difference with 𝜏 = 18 (months) was estimated as 1.22
(−0.23, 2.67) with p = 0.099 in the Poplar study. We created an
example study using the Oak study and the Poplar study. We
regarded theOak study as the target study, and the Poplar study as
the reference data. Here, we used the control group in the Poplar
study as the reference data. We set the RMST difference with
𝜏 = 18 (months) as the treatment contrast and set 1.5 months as
the target RMST difference. We begin with the standard RMST
test. By estimating 𝑆0(𝑡) and 𝐺(𝑡) with the reference data, the
sample size attaining 1 − 𝛽 = 0.9with a two-tailed 5% significance
level was calculated as 710. We re-evaluated the sample size with
the mid-trial blinded sample size re-estimation of the Oak study,
in which randomly selected 𝑛𝑚𝑖𝑑 = 200 subjects were used. With
the estimates of 𝑆0(𝑡) and 𝐺(𝑡) at the mid-trial re-estimation, the
sample size was calculated as 860. The Poplar study (Phase 2)
was conducted under a similar study protocol to the Oak study
(Phase 3); in both studies, the control treatment was docetaxel,
the primary endpoint was the overall survival, and the treatments
were continued until disease progression. Thus, use of the Poplar
study as the reference datawould be relevant. On the other hand,
this may not be typical; Phase 2 studies often have a shorter

TABLE 6 Predicted powers of the standard and augmented RMST-
based tests with the Poplar study data as the reference data; # implies the
number of covariates included in the augmented term, 𝑃𝑃 is the predicted
power with 𝑛 = 710, which has the power of 0.9 for the standard RMST-
based test. 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 indicates the covariates of maximum gain in power
by adding sequentially. For example, in the augmented logrank test with a
single covariate, nodes had the maximum value of 𝑒2 and +differentiation
implies differentiation gave themaximumgain in the value of 𝑒2 by adding
a single covariate to nodes.

Step Variable 𝒆𝟐 Power

0 0.900
1 +metastasis 15.259 0.907
2 +age 72.743 0.933
3 +smoke 91.191 0.940
4 +sex 103.727 0.945
5 +histology 109.419 0.947
6 +race 114.078 0.949
7 +blSLD 115.638 0.950
8 +ecogger 116.686 0.950
9 +prioritrt 116.686 0.950

follow-up duration than the Phase 3 study. If this is the case, one
should be careful about whether the survival function and the
censoring distribution up to the truncation time 𝜏, which is used
in the target study, can be well estimated with the reference data.

Next, we considered the augmented test for the RMST differ-
ence as the primary analysis and evaluate the power. We used
eight covariates for augmentation; the number of metastatic
site (metastasis), age at baseline (age), smoking status (current,
previous and never) (smoke), sex (sex), histology (Non-small cell
lung cancer, Squamous cell cartinoma) (histology), race (White,
Asian, others) (race), ECOG performance status (0 or 1) (egoggr),
baseline sum of the longest diameters (blSLD), and the number of
prior chemotherapies (1 or 2) (priortrt). We applied the stepwise
variable increase method introduced in Section 6.1 to select
the variables included in the augmented term. The history of
the selection is presented in Table 6, in which the variable
selected at each stage and the predicted power with n = 710
are presented. The predicted power seemed to be saturated at
step 5. Then, we selected the five variables of metastasis, age,
smoke, sex, and histology. When we included these, the predicted
power was 0.947. The number of subjects attaining the target
power 0.9 was calculated as 580 with the five covariates. The
augmentation could reduce the number of subjects substantially.
We re-evaluated the predicted power at the blinded review with
the 200 subjects in the Oak study. The sample size assuring the
target power 0.9 was calculated as 750.

The Poplar and the Oak studies shared many inclusion criteria.
However, there was a substantial difference between the pre-
dicted power calculation at the design stage with the Poplar study
data and the mid-trial blinded sample size re-estimation with the
Oak study data. The latter only allowed to enroll stage IIIB and
IV patients. It might be influential on the association between
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TABLE 7 Results of comparison of the RMST difference of the two
treatments in the Oak data based on the standard and augmented tests
with 𝑛 = 580, which was determinedwith the reference data andwith 𝑛 =
750, which was determined with the mid-trial sample size re-estimation.

n Method
RMST

difference (SE) 95%CI 𝒑-value

580 Standard 0.985 (0537) (−0.067, 2.038) 0.066
Augmented 1.052 (0.511) (0.050, 2.053) 0.040

750 Standard 1.107 (0.466) (0.193, 2.021) 0.018
Augmented 1.102 (0.448) (0.225, 1.979) 0.014

covariates and the overall survival.We applied a regressionmodel
for the RMST difference with the inverse probability censoring
weighted method (Tian et al. 2014). We observed that ℎ𝑖𝑠𝑡𝑜𝑙𝑜𝑔𝑦
was significantly associated with the overall survival in the Oak
study, but not in the Poplar study. Such a difference of prognosis
between the studies might affect the predicted power calculation.
In Table 7, we show the RMST differences estimatedwith 𝑛 = 580

or 𝑛 = 750 subjects. With 𝑛 = 580, significance was marginal and
the mid-trial sample size recalculation seemed to successfully
adjust the sample size.

7 Discussion

In randomized clinical trials with a time-to-event endpoint,
the logrank-HR approach is routinely used. An advantage of
this strategy is applicability of the event-driven study design,
where the final analysis is conducted when the number of
observed events from the study reaches the target. This approach
achieves the target power to detect a given HR, if the PH
assumption is correct. Whether the survival functions of both
groups are correctly specified or not does not affect the power
of the final analysis by logrank test or HR-based tests. On
the other hand, the power of the conventional RMST-based
test may be under- or overestimated if the survival functions
are not correctly specified at the design stage. This may be
a challenge when it is used for confirmatory clinical trials
(Yuan et al. 2020).

In this paper, we used a local power formula for the RMST-
based test and proposed a method to determine the timing of the
final analysis, which resulted in the target power for detecting
the target effect size. Our method is based on the idea of the
blinded sample size calculation, which is one of themost accurate
adaptive design techniques with minimal risk of violation of
study integrity (FDA Guidance for Industry 2016;2019). The
success of our method was based on the fact that the local
power does not depend on the treatment allocation once the
target treatment effect in terms of the RMST difference is fixed.
There may be a concern that the local power formula does not
provide an accurate approximation to the power when the target
treatment effect is large. If the target treatment effect is large,
the required sample size would be very small. In general, the
proposed method is recommended to apply when the number of
subjects is not too small. Nevertheless, we contend that this issue
does not pose a significant concern within our methodology, as

blinded sample-size re-estimation is typically implemented with
a sufficiently large number of subjects. The proposed method
would eliminate a drawback of the conventional RMST-based
design and might make it more feasible to design confirmatory
studies with the RMST.

We demonstrated two applications. In the first example of the
colon data, the two chemotherapy groups were regarded as
comparative groups of the target study and the reference data
was artificially created from the observational arm of the same
study. Since the reference data was one of the randomized
arms in reality, distributions of covariates should be similar.
Despite this, the predicted power with the reference data was
not necessarily close to the predicted power with the mid-trial
sample size recalculation. The situation in the second example
can occur frequently; Phase 3 studies are designed with results
of Phase 2 studies with similar inclusion criteria. We observed
a substantial difference between the predicted power at the
design stage calculated with the Phase 2 study and the mid-
trial blinded sample size recalculation. These inconsistencies
might happen due to inconsistencies of the associations between
covariates and overall survival. If the associations between the
failure time and the covariates in the target study are much
weaker than those expected at the design stage, the sample size
calculated at the design stage can be too optimistic, resulting in
underpowered studies. Inconsistency in the survival functions
or the censoring distributions can also occur in practice and
result in inaccurate sample size calculation at the design stage.
For example, the reference data may have a shorter follow-
up duration than the target study resulting in inappropriate
estimates for the survival function and the censoring distribu-
tion and then inadequacy of the reference data. Thus, careful
consideration on the choice of the reference data is required
at the design stage and re-evaluation of the sample size with
updated predicted powers at mid-trial blinded reviews is highly
recommended to adjust potentially inappropriate estimates at the
design stage and assure the target power for the target treatment
effect.

The key idea of the proposed method was to estimate the local
power with blinded data, which was called the predicted power.
Recently, Hattori et al. (2022) proposed a method to determine
the number of subjects to conduct a testing hypothesis with the
augmented version of the logrank test. The predicted power was
monitored and the analysis was conducted at the date when the
predicted power attained the target power. For the augmented
logrank test, the predicted power increases as the number of
events does over time. On the other hand, for the RMST-based
tests, the predicted power is not always the case since it uses only
information up to the truncation time 𝜏. Therefore, it would not
be appropriate to monitor the timing of analysis based on the
predicted power for RMST. Instead, the predicted power should
be evaluated at an interim look of blinded data. We should be
careful in the choice of the number of subjects 𝑛𝑚𝑖𝑑 for the
blinded review accounting for the truncation time and the rate
of enrollment of subjects; if the truncation time is long and
the rate of enrollment is high, all the subjects determined at
the design stage may have already been enrolled at the blinded
review and if this is the case, it may be challenging to increase
the sample size. To obtain stable recalculated sample sizes,
rather larger 𝑛𝑚𝑖𝑑 would be better. Thus, the choice of 𝑛𝑚𝑖𝑑
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should be determined on the balance between the stability of
the recalculation and feasibility of increasing sample size. Estab-
lishing more concrete guidance would be an important research
topic.

As argued, we assume that the truncation time 𝜏 is fixed and
prespecified in the protocol. We believe that in confirmatory
comparative clinical trials, the truncation time should be pre-
specified. On the other hand, data-dependent choice of 𝜏 is
discussed by some papers (Horiguchi et al. 2018; Zhao et al.
2016). Our method cannot be applied to this case and it would
be warranted to examine how to ensure the target power for
the target RMST difference with a data-dependent truncation
time.

In confirmatory clinical trials, interim analysis is widely used to
consider early establishment of efficacy and early stopping of the
study. For the RMST, Lu and Tian (2021) discussed the group
sequential interim analysis methodology. Its extension to the
augmented version would be beneficial in practice with potential
reduction of sample size. Our current development is limited to
the blinded consideration. Further research is warranted on using
the proposed method in combination with unblinded interim
analysis methodology.
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Appendix A: Consistency of 𝝈̂𝟐
𝟏
and 𝝈̂𝟐

𝟐

From the martingale representation of the Kaplan–Meier estimator, it
holds that

√
𝑛𝑧{𝑆̂𝑧(𝑡) − 𝑆𝑧(𝑡)} = −𝑆𝑧(𝑡)

√
𝑛𝑧𝑛

−1
𝑛∑
𝑖=1

∫
𝑡

0

𝑑𝑀𝑧,𝑖(𝑢)

𝑌̄𝑧(𝑢)
+ 𝑜𝑝(1),

where 𝑌̄1(𝑢) = 𝑛−1
∑𝑛

𝑖=1 𝐼(𝑋𝑖 ≥ 𝑢)𝑍𝑖 and 𝑌̄0(𝑢) = 𝑛−1
∑𝑛

𝑖=1 𝐼(𝑋𝑖 ≥ 𝑢)(1 −
𝑍𝑖). With this representation, simple algebraic manipulation entails that

√
𝑛(𝜃̂1 − 𝜃1) =

√
𝑛√
𝑛1 ∫

𝜏

0

√
𝑛1{𝑆̂1(𝑡) − 𝑆1(𝑡)}𝑑𝑠

≃ − 1√
𝑛

𝑛∑
𝑖=1

𝑍𝑖 ∫
𝜏

0

∫ 𝜏

𝑢
𝑆1(𝑠)𝑑𝑠

𝐸{𝐼(𝑋𝑖 ≥ 𝑢)𝑍𝑖}
𝑑𝑀1,𝑖(𝑢). (A1)

Similarly,

√
𝑛{𝜃̂0 − 𝜃0} ≃ − 1√

𝑛

𝑛∑
𝑖=1

(1 − 𝑍𝑖)∫
𝜏

0

∫ 𝜏

𝑢
𝑆0(𝑠)𝑑𝑠

𝐸{𝐼(𝑋𝑖 ≥ 𝑢)(1 − 𝑍𝑖)}
𝑑𝑀0,𝑖(𝑢).

(A2)

The standard moment calculus of the counting process martingale
(Fleming and Harrington 1991) derives the asymptotic variance 𝜎2 and
the consistency of 𝜎̂2

2
.

Appendix B: Derivation of 𝒄̂ and Consistency of 𝝈̂𝟐
𝒂𝒖𝒈

From (A1) and (A2),

√
𝑛{𝜃̂𝑎𝑢𝑔(𝑐) − 𝜃} =

√
𝑛{𝜃̂ − 𝐴𝑈𝐺(𝑐) − 𝜃}

≃
1√
𝑛

𝑛∑
𝑖=1

[
∫

𝜏

0

{−𝑍𝑖 ∫ 𝜏

𝑢
𝑆1(𝑠)𝑑𝑠

𝐸{𝐼(𝑋𝑖 ≥ 𝑢)𝑍𝑖}
𝑑𝑀1,𝑖(𝑢)

+ ∫
𝜏

0

(1 − 𝑍𝑖) ∫ 𝜏

𝑢
𝑆0(𝑠)𝑑𝑠

𝐸{𝐼(𝑋𝑖 ≥ 𝑢)(1 − 𝑍𝑖)}
𝑑𝑀0,𝑖(𝑢)

}

− 𝑐𝑇(𝑍𝑖 − 𝜋)𝑉𝑖

]
.

Then, the variance of
√
(𝑛)(𝜃̂𝑎𝑢𝑔(𝑐) − 𝜃) converges to

𝐸

[
∫

𝜏

0

{−𝑍 ∫ 𝜏

𝑢
𝑆1(𝑠)𝑑𝑠

𝐸{𝐼(𝑋 ≥ 𝑢)𝑍}
𝑑𝑀1(𝑢) +

(1 − 𝑍) ∫ 𝜏

𝑢
𝑆0(𝑠)𝑑𝑠

𝐸{𝐼(𝑋 ≥ 𝑢)(1 − 𝑍)}
𝑑𝑀0(𝑢)

}

−𝑐𝑇(𝑍 − 𝜋)𝑉

]2

.

A simple algebraic manipulation gives us the minimizer as

𝑐∗ = [𝐸{(𝑍 − 𝜋)2𝑉𝑉𝑇}]−1

× 𝐸

[
(𝑍 − 𝜋)𝑉

{−𝑍 ∫ 𝜏

𝑢
𝑆1(𝑠)𝑑𝑠

𝐸{𝐼(𝑋 ≥ 𝑢)𝑍}
𝑑𝑀1(𝑢)

+ ∫
𝜏

0

(1 − 𝑍) ∫ 𝜏

𝑢
𝑆0(𝑠)𝑑𝑠

𝐸{𝐼(𝑋 ≥ 𝑢)(1 − 𝑍)}
𝑑𝑀0(𝑢)

}]
,
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which is consistently estimated by 𝑐 from the standard law of large

number. It holds that 𝑛−
1

2
∑𝑛

𝑖=1(𝑍𝑖 − 𝜋)𝑐𝑇𝑉𝑖 = 𝑛
− 1

2
∑𝑛

𝑖=1(𝑍𝑖 − 𝜋)𝑐𝑇∗ 𝑉𝑖 +
𝑜𝑝(1). Then, by the standard central limit theorem, the asymptotic
normality of

√
𝑛(𝜃̂𝑎𝑢𝑔 − 𝜃) and the consistency of 𝜎̂2𝑎𝑢𝑔 holds.

Appendix C: Derivation of (7)

From (5), it holds that

√
𝑛𝐴𝑈𝐺(𝑐) = 𝑐𝑇

1√
𝑛

𝑛∑
𝑖=1

(𝑍𝑖 − 𝜋)𝑉𝑖 (C1)

= 1

𝑛

𝑛∑
𝑖=1

(𝑍𝑖 − 𝜋)𝑉𝑖

[
−𝑍𝑖 ∫

𝜏

0

∫ 𝜏

𝑢
𝑆1(𝑠)𝑑𝑠

𝐸{𝐼(𝑋𝑖 ≥ 𝑢)𝑍𝑖}
𝑑𝑀1,𝑖(𝑢)

+(1 − 𝑍𝑖)∫
𝜏

0

∫ 𝜏

𝑢
𝑆0(𝑠)𝑑𝑠

𝐸{𝐼(𝑋𝑖 ≥ 𝑢)(1 − 𝑍𝑖)}
𝑑𝑀0,𝑖(𝑢)

]
(C2)

×
{
𝜋(1 − 𝜋)

1

𝑛

𝑛∑
𝑖=1

𝑉𝑖𝑉
𝑇
𝑖

}−1
1√
𝑛

𝑛∑
𝑖=1

(𝑍𝑖 − 𝜋)𝑉𝑖. (C3)

By simple algebra, (C2) equals to

− 1

𝑛

𝑛∑
𝑖=1

(𝑍𝑖 − 𝜋)2𝑉𝑇
𝑖 ∫

𝜏

0

[ ∫ 𝜏

𝑢
𝑆1(𝑠)𝑑𝑠

𝐸{𝐼(𝑋𝑖 ≥ 𝑢)𝑍𝑖}
𝑑𝑀1,𝑖(𝑢)

+
∫ 𝜏

𝑢
𝑆0(𝑠)𝑑𝑠

𝐸{𝐼(𝑋𝑖 ≥ 𝑢)(1 − 𝑍𝑖)}
𝑑𝑀0,𝑖(𝑢)

]

−𝜋 1

𝑛

𝑛∑
𝑖=1

(𝑍𝑖 − 𝜋)𝑉𝑇
𝑖 ∫

𝜏

0

∫ 𝜏

𝑢
𝑆1(𝑠)𝑑𝑠

𝐸{𝐼(𝑋𝑖 ≥ 𝑢)𝑍𝑖}
𝑑𝑀1,𝑖(𝑢) (C4)

+(1 − 𝜋)
1

𝑛

𝑛∑
𝑖=1

(𝑍𝑖 − 𝜋)𝑉𝑇
𝑖 ∫

𝜏

0

∫ 𝜏

𝑢
𝑆0(𝑠)𝑑𝑠

𝐸{𝐼(𝑋𝑖 ≥ 𝑢)(1 − 𝑍𝑖)}
𝑑𝑀0,𝑖(𝑢). (C5)

As argued in the Section 3.2, 𝑆1(𝑡) = 𝑆0(𝑡) + 𝑜(1), Λ1(𝑡) = Λ0(𝑡) + 𝑜(1),
𝑀1,𝑖(𝑡) = 𝑀0,𝑖(𝑡) + 𝑜𝑝(1), 𝐸{𝐼(𝑋 ≥ 𝑡)𝑍} = 𝑆1(𝑡)𝐺(𝑡)𝜋 = 𝑆0(𝑡)𝐺(𝑡)𝜋 =
𝑜(1), and𝐸{𝐼(𝑋 ≥ 𝑡)(1 − 𝑍)} = 𝑆0(𝑡)𝐺(𝑡)(1 − 𝜋).With these relationships,

(𝐶4) ≃ − 1

𝑛

𝑛∑
𝑖=1

(𝑍𝑖 − 𝜋)𝑉𝑇
𝑖 ∫

𝜏

0

∫ 𝜏

𝑢
𝑆0(𝑠)𝑑𝑠

𝑆0(𝑢)𝐺(𝑢)
𝑑𝑀0,𝑖(𝑢)

and

(𝐶5) ≃
1

𝑛

𝑛∑
𝑖=1

(𝑍𝑖 − 𝜋)𝑉𝑇
𝑖 ∫

𝜏

0

∫ 𝜏

𝑢
𝑆0(𝑠)𝑑𝑠

𝑆0(𝑢)𝐺(𝑢)
𝑑𝑀0,𝑖(𝑢),

and thus (C4) plus (C5) is 𝑜𝑝(1). Then, it holds

(𝐶2) ≃ − 1

𝑛

𝑛∑
𝑖=1

(𝑍𝑖 − 𝜋)2𝑉𝑇
𝑖 ∫

𝜏

0

[
1

𝜋(1 − 𝜋)

∫ 𝜏

𝑢
𝑆0(𝑠)𝑑𝑠

𝑆0(𝑢)𝐺(𝑢)
𝑑𝑀0,𝑖(𝑢)

]

≃ − 1

𝜋(1 − 𝜋)
𝐸

[
(𝑍 − 𝜋)2 ∫

𝜏

0

∫ 𝜏

𝑢
𝑆0(𝑠)𝑑𝑠

𝑆0(𝑢)𝐺(𝑢)
𝑑𝑀0(𝑢)𝑉

𝑇

]

= −𝐸

[
∫

𝜏

0

∫ 𝜏

𝑢
𝑆0(𝑠)𝑑𝑠

𝑆0(𝑢)𝐺(𝑢)
𝑑𝑀0(𝑢)𝑉

𝑇

]
(C6)

where the last equality holds since (𝑍𝑖 − 𝜋)2 = 1∕4 = 𝜋(1 − 𝜋) alge-
braically when 𝜋 = 1∕2. In (𝐶3), 𝑛−1

∑𝑛

𝑖=1 𝑉𝑖𝑉
𝑇
𝑖
≃ 𝐸(𝑉𝑉𝑇) and from

Condition 1

𝑉𝑎𝑟

(
1√
𝑛

𝑛∑
𝑖=1

(𝑍𝑖 − 𝜋)𝑉𝑖

)
≃ 𝜋(1 − 𝜋)𝐸(𝑉𝑉𝑇).

Then, 𝑉𝑎𝑟(
√
𝑛𝐴𝑈𝐺2) asymptotically agrees with (8).
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