
Title
A Simple Sensitivity Analysis Method for
Unmeasured Confounders via Linear Programming
With Estimating Equation Constraints

Author(s) Tang, Chengyao; Zhou, Yi; Huang, Ao et al.

Citation Statistics in Medicine. 2025, 44(3-4), p. e10288

Version Type VoR

URL https://hdl.handle.net/11094/100970

rights This article is licensed under a Creative
Commons Attribution 4.0 International License.

Note

The University of Osaka Institutional Knowledge Archive : OUKAThe University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



Statistics in Medicine

RESEARCH ARTICLE

A Simple Sensitivity Analysis Method for Unmeasured
Confounders via Linear Programming With Estimating
Equation Constraints
Chengyao Tang1 | Yi Zhou1, 2 | Ao Huang3 | Satoshi Hattori1, 4

1Department of Biomedical Statistics, Graduate School of Medicine, Osaka University, Osaka, Japan | 2Beijing International Center for Mathematical Research,
Peking University, Beijing, China | 3Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany | 4Integrated Frontier
Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan

Correspondence: Satoshi Hattori (hattoris@biostat.med.osaka-u.ac.jp)

Received: 7 December 2023 | Revised: 3 November 2024 | Accepted: 5 November 2024

Funding: This research was partly supported by Grant-in-Aid for Challenging Exploratory Research (16K12403) and for Scientific Research (16H06299,
18H03208) from the Ministry of Education, Science, Sports, and Technology of Japan.

Keywords: average treatment effect | linear programming | sensitivity analysis | unmeasured confounders

ABSTRACT
In estimating the average treatment effect in observational studies, the influence of confounders should be appropriately addressed.
To this end, the propensity score is widely used. If the propensity scores are known for all the subjects, bias due to confounders
can be adjusted by using the inverse probability weighting (IPW) by the propensity score. Since the propensity score is unknown
in general, it is usually estimated by the parametric logistic regression model with unknown parameters estimated by solving the
score equation under the strongly ignorable treatment assignment (SITA) assumption. Violation of the SITA assumption and/or
misspecification of the propensity score model can cause serious bias in estimating the average treatment effect (ATE). To relax
the SITA assumption, the IPW estimator based on the outcome-dependent propensity score has been successfully introduced.
However, it still depends on the correctly specified parametric model and its identification. In this paper, we propose a simple
sensitivity analysis method for unmeasured confounders. In the standard practice, the estimating equation is used to estimate
the unknown parameters in the parametric propensity score model. Our idea is to make inferences on the (ATE) by removing
restrictive parametric model assumptions while still utilizing the estimating equation. Using estimating equations as constraints,
which the true propensity scores asymptotically satisfy, we construct the worst-case bounds for the ATE with linear programming.
Differently from the existing sensitivity analysis methods, we construct the worst-case bounds with minimal assumptions. We
illustrate our proposal by simulation studies and a real-world example.

1 | Introduction

In observational studies, it is always crucial to adjust for the
influence of confounders in estimating the average treatment
effect (ATE). If all the confounders are observed and satisfy the
strongly ignorable treatment assignment (SITA) assumption
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[1, 2], one can adjust the effects of confounders by using the
propensity score. With the propensity score, the inverse prob-
ability weighting (IPW) [3, 4] is a popular approach. The IPW
method constructs weights on the observations of each subject,
and then the ATE can be identified by comparing the weighted
outcomes of two groups [5]. In practice, the propensity score is
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unknown. Then, the estimation of the propensity score usually
relies on a parametric model such as the logistic regression
under the SITA assumption. In most observational studies, it
is untestable and implausible that there are no unmeasured
confounders, and then the SITA assumption may fail to hold.
Using the outcome-dependent propensity score is an option to
make inference without the SITA assumption [6, 7]. By incor-
porating the outcome variable in the model of the propensity
score, we can make inferences on the ATE without the SITA
assumption. In general, the outcome-dependent propensity
score is estimated by a parametric logistic regression model
with the observed confounders and the outcome as explana-
tory variables. Thus, model misspecification is still of concern
in the estimation of the outcome-dependent propensity score.
Moreover, it has an unidentifiability issue [8, 9]; that is, the
estimating equation cannot determine the unknown parameters
uniquely in the outcome-dependent propensity score. Then, the
outcome-dependent propensity score cannot solve the issue of
unmeasured confounders completely.

Sensitivity analysis is a useful tool to assess the potential impact
of unmeasured confounders, and many sensitivity analysis
methods have been developed. With the substantially increasing
applications of the propensity score methods in the analysis
of observational studies, there is a growing interest in employ-
ing sensitivity analysis methods in real-data analyses. Typical
sensitivity analysis approaches involve formulating additional
assumptions with regard to the relationships among unmea-
sured confounders, treatment assignments, and outcomes. These
assumptions often take the form of plausible values for param-
eters that cannot be directly estimated from the observed data
and must be set by analysts. Rosenbaum and Rubin [10] and Lin
et al. [11] modeled the mechanism of confounding with both the
measured and unmeasured confounders and then estimated the
treatment effect parameter of interest. Alternatively, Cornfield
et al. [12] and Ding and Vanderweele [13] developed methods
to construct the bounds for the treatment effects to quantify
the magnitude of the unmeasured confounders. These bounds
were designed to elucidate the extent to which unmeasured con-
founders could influence observed causal estimates. Particularly,
when the sensitivity parameters were expressed as risk ratios, the
E-value [14] was introduced and has become a pivotal quantity in
the realm of causal inference in observational studies. While the
E-value can provide a bound without any model specification,
the estimand is restrictive, and the bound is likely to be wide,
which can lead to inefficiency in sensitivity analysis.

For the sensitivity analysis approaches based on the IPW
method to estimate the ATE, Li et al. [15] modeled the mean
between-group differences of potential outcomes to correct bias
in the presence of unmeasured confounders. Shen et al. [16]
proposed an IPW-based sensitivity analysis method by using
two parameters, the variance of the multiplicative errors in the
estimated propensity score and its correlations with the potential
outcomes, to quantify the bias due to unmeasured confounders.
Lu and Ding [17] extended the method of Li et al. [15] into a more
flexible sensitivity analysis framework, which can handle the
IPW, outcome regression, and doubly robust estimators. In addi-
tion, Zhao et al. [18] constructed bounds for the ATE based on
the IPW estimators by incorporating a marginal sensitivity model
[19]. Dorn and Guo [20] further refined this method and gave

sharper bounds. These sensitivity analysis methods can address
the impacts of violation of the SITA assumption by quantifying
potential biases; however, they rely on untestable parametric
assumptions on the departure from the SITA assumption, and it
is practically difficult to set a relevant magnitude of the departure.

In this paper, a simple sensitivity analysis framework for unmea-
sured confounders is proposed. In the standard process of the
confounder adjustment with the outcome-dependent propensity
score, a parametric model for the propensity score is assumed,
and an estimating equation is introduced to estimate its unknown
parameters. Instead of determining a unique model for the
outcome-dependent propensity score, we construct bounds for
the ATE by considering possible propensity scores. We realize
it by removing the parametric model for the propensity score
but still relying on the estimating equation. We introduce an
optimization problem constrained by the estimating equation,
which the true propensity score asymptotically satisfies. The
worst-case bounds for the ATE can be obtained by solving a
linear programming problem. Different from the existing sensi-
tivity analysis methods, the proposed worst-case bounds do not
rely on strong assumptions. By increasing the dimension of the
estimating equations involving many covariates, one can make
the bounds further narrow. Compared with existing sensitiv-
ity analysis methods, the proposed method offers the following
advantages. First, the proposed method can provide worst-case
bounds with minimal assumptions. Second, since the proposed
method is free from the estimated propensity score under the
SITA assumption, its misspecification does not matter. Finally,
the proposed method exhibits computational efficiency as the
optimization problem can be solved by linear programming.

The rest of this paper is organized as follows. In Section 2, we
introduce the basic notations and the standard methods with the
parametric propensity score. In Section 3, some existing sensi-
tivity analysis methods for the IPW estimator are reviewed. In
Section 4, the proposed method for sensitivity analysis is intro-
duced. We investigate the performance of the proposed method
on simulated datasets in Section 5, and illustrate it on a real-world
example in Section 6. In Section 7, we provide a concluding
discussion to summarize the main findings and contributions of
this paper.

2 | Estimation With the Parametric Propensity
Score

2.1 | Notations and the Standard Propensity
Score Analysis

In this paper, we consider estimating the ATE for the overall
mean over the population in an observational study with two
treatment groups. Let 𝑍 be the treatment assignment: 𝑍 = 1
if the subject is in the treated (exposed) group and 𝑍 = 0 if in
the control group. Let 𝑋 be a vector of baseline covariates and
𝑌 be the observed outcome. We follow Rubin’s causal model
framework [21]. Let 𝑌 (1) and 𝑌 (0) be the potential outcomes if
the subjects were assigned to the treated group (𝑍 = 1) and the
control group (𝑍 = 0), respectively. Suppose the observational
study enrolls 𝑛 subjects, and the observed data (𝑌𝑖, 𝑍𝑖, 𝑋𝑖) for sub-
ject 𝑖 (𝑖 = 1, 2, . . . , 𝑛) are available, which are independent and
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identically distributed copies of (𝑌 ,𝑍,𝑋). Denote 𝜇1 = 𝐸[𝑌 (1)]
and 𝜇0 = 𝐸[𝑌 (0)]. The ATE, which is of our primary interest to
estimate, is defined by

𝜓 = 𝜇1 − 𝜇0 = 𝐸[𝑌 (1)] − 𝐸[𝑌 (0)].

In observational studies, owing to the absence of randomization,
the potential influence of confounders should be carefully han-
dled in estimating the ATE. The propensity score is widely used
to adjust the bias due to confounding. The propensity score is
defined by 𝑒(𝑋𝑖) = 𝑃 (𝑍𝑖 = 1|𝑋𝑖). Various methods, such as strat-
ification, matching, and IPW [3, 4, 22], can be employed to adjust
for confounding with the propensity score. The standard propen-
sity analysis is conducted under the following assumptions:

Assumption 1. Consistency: 𝑌 = 𝑍𝑌 (1) + (1 −𝑍)𝑌 (0).

Assumption 2. Positivity: there exists a small positive
parameter 𝛿 such that 0 < 𝛿 ≤ 𝑒(𝑋) ≤ 1 − 𝛿, for each value of the
covariate 𝑋 in the population.

Assumption 3. SITA: (𝑌 (1), 𝑌 (0)) ⫫ 𝑍|𝑋.

Assumption 3 implies that the bias due to confounding can
be adjusted by using 𝑋 in principle. The SITA assumption is
corresponding to the Missing At Random (MAR) in the miss-
ing data analysis context. In this paper, we handle situations in
which the SITA is violated, which is corresponding to the con-
cept of the Missing Not At Random (MNAR) in the missing data
problem. We use the terminologies SITA and MAR interchange-
ably. In practice, the propensity score is unknown, and then some
parametric models, such as the logistic regression model, are
usually assumed. Let logit(𝑒(𝑋𝑖; 𝜃, 𝛼)) = 𝜃 + 𝛼⊤𝑋𝑖. The unknown
parameters are usually estimated by solving the following score
equation:

𝑛∑
𝑖=1

(
1
𝑋𝑖

)(
𝑍𝑖 −

𝑒𝑥𝑝(𝜃 + 𝛼⊤𝑋𝑖)
1 + 𝑒𝑥𝑝(𝜃 + 𝛼⊤𝑋𝑖)

)
= 0 (1)

Let the solution to the score equation for (𝜃, 𝛼) be denoted by
(�̂�, �̂�), and ê(𝑋𝑖) = 𝑒(𝑋𝑖; �̂�, �̂�). Then, we can determine the unique
set of propensity scores for all subjects. In this paper, the propen-
sity score estimated under the SITA assumption is called the
MAR-based propensity score to avoid confusion; another type
of the propensity score is introduced in a later section, which is
called the outcome-dependent propensity score. The IPW estima-
tor for 𝜇1 is defined by

�̂�1 = 1
𝑛

𝑛∑
𝑖=1

𝑍𝑖𝑌𝑖

ê(𝑋𝑖)
(2)

Similarly, we can estimate 𝜇0 with

�̂�0 = 1
𝑛

𝑛∑
𝑖=1

(1 −𝑍𝑖)𝑌𝑖
1 − ê(𝑋𝑖)

(3)

and then the ATE 𝜓 is estimated with

�̂� = �̂�1 − �̂�0.

The aforementioned IPW estimator has an unstabilized form,
which may suffer from extremely large weights when some
propensity scores are very close to one or zero and then can cause
instability in the estimation. The stabilized IPW (SIPW) estima-
tor introduces a stabilization term to the weights, which helps
mitigate the impact of extreme weights. Specifically, the SIPW
estimator for 𝜇1 is defined by

�̂�1,𝑆𝐼𝑃𝑊 =

(
𝑛∑
𝑖=1

𝑍𝑖

ê(𝑋𝑖)

)−1 𝑛∑
𝑖=1

𝑍𝑖𝑌𝑖

ê(𝑋𝑖)
(4)

Similarly, we can estimate 𝜇0 with

�̂�0,𝑆𝐼𝑃𝑊 =

(
𝑛∑
𝑖=1

1 −𝑍𝑖

1 − ê(𝑋𝑖)

)−1 𝑛∑
𝑖=1

(1 −𝑍𝑖)𝑌𝑖
1 − ê(𝑋𝑖)

(5)

and then the ATE 𝜓 is estimated with

�̂�𝑆𝐼𝑃𝑊 = �̂�1,𝑆𝐼𝑃𝑊 − �̂�0,𝑆𝐼𝑃𝑊 .

In this paper, we focus on the SIPW estimator.

If the SITA assumption holds and the model of the propensity
score is correctly specified, the ATE is consistently estimated.
However, the SITA assumption does not hold in the presence of
unmeasured confounders.

2.2 | Estimation With the Outcome-Dependent
Propensity Score

In this section, suppose that the SITA assumption does not nec-
essarily hold in the presence of unmeasured confounder 𝑈 . The
estimation of the ATE using the method in Section 2.1 is no longer
valid.

To address the issue of unmeasured confounders, the
outcome-dependent propensity score approach [23–25] has
been successfully introduced. We define the outcome-dependent
propensity scores by 𝑜1(𝑋𝑖, 𝑌

(1)
𝑖

) = 𝑃 (𝑍𝑖 = 1|𝑋𝑖, 𝑌
(1)
𝑖

) and
𝑜0(𝑋𝑖, 𝑌

(0)
𝑖

) = 𝑃 (𝑍𝑖 = 1|𝑋𝑖, 𝑌
(0)
𝑖

) for subjects in the treated
and control groups, respectively.

One may consider the logistic regression models for
𝑜1(𝑋𝑖, 𝑌

(1)
𝑖

) and 𝑜0(𝑋𝑖, 𝑌
(0)
𝑖

). Let us consider the mod-
els logit(𝑜1(𝑋𝑖, 𝑌

(1)
𝑖

; 𝜃1, 𝛼1, 𝛽1)) = 𝜃1 + 𝛼1⊤𝑋𝑖 + 𝛽1𝑌
(1)
𝑖

and
logit(𝑜0(𝑋𝑖, 𝑌

(0)
𝑖

; 𝜃0, 𝛼0, 𝛽0)) = 𝜃0 + 𝛼0⊤𝑋𝑖 + 𝛽0𝑌
(0)
𝑖

. The score
Equation (1) does not work for estimation of the unknown
parameters in these models, since 𝑌

(𝑧)
𝑖

is observed only for
subjects with 𝑍𝑖 = 𝑧. The unknown parameters in the model of
𝑜1(𝑋𝑖, 𝑌

(1)
𝑖

; 𝜃1, 𝛼1, 𝛽1) can be estimated by solving the following
estimating equation:

𝑛∑
𝑖=1

𝑔(𝑋𝑖)
(

1 −
𝑍𝑖

𝑜1(𝑋𝑖, 𝑌𝑖; 𝜃1, 𝛼1, 𝛽1)

)
= 0 (6)

where 𝑔(𝑋) is a vector of the same dimensions as (𝜃1, 𝛼1, 𝛽1)
and the solution to the estimating Equation (6) is denoted by
(�̂�1

, �̂�
1
, 𝛽

1). Similarly, the unknown parameters in the model of
𝑜0(𝑋𝑖, 𝑌

(0)
𝑖

; 𝜃0, 𝛼0, 𝛽0) can be estimated by solving the following
estimating equation:
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𝑛∑
𝑖=1

𝑔(𝑋𝑖)
(

1 −
1 −𝑍𝑖

1 − 𝑜0(𝑋𝑖, 𝑌𝑖; 𝜃0, 𝛼0, 𝛽0)

)
= 0 (7)

The dimension of 𝑔(𝑋) should be equal to that of (𝜃0, 𝛼0, 𝛽0) to
obtain a solution. The solution to the estimating Equation (7) is
denoted by (�̂�0

, �̂�
0
, 𝛽

0). Denote ô1(𝑋𝑖, 𝑌
(1)
𝑖

) = 𝑜1(𝑋𝑖, 𝑌𝑖; �̂�
1
, �̂�

1
, 𝛽

1)
and ô0(𝑋𝑖, 𝑌

(0)
𝑖

) = 𝑜0(𝑋𝑖, 𝑌𝑖; �̂�
0
, �̂�

0
, 𝛽

0), respectively. We can then
estimate 𝜇1 under the MNAR with

�̂�
𝑀𝑁𝐴𝑅

1,𝑆𝐼𝑃𝑊 =

(
𝑛∑
𝑖=1

𝑍𝑖

ô1(𝑋𝑖, 𝑌
(1)
𝑖

)

)−1 𝑛∑
𝑖=1

𝑍𝑖𝑌𝑖

ô1(𝑋𝑖, 𝑌
(1)
𝑖

)
.

Similarly, we can estimate 𝜇0 under the MNAR with

�̂�
𝑀𝑁𝐴𝑅

0,𝑆𝐼𝑃𝑊 =

(
𝑛∑
𝑖=1

1 −𝑍𝑖

1 − ô0(𝑋𝑖, 𝑌
(0)
𝑖

)

)−1 𝑛∑
𝑖=1

(1 −𝑍𝑖)𝑌𝑖
1 − ô(𝑋𝑖, 𝑌

(0)
𝑖

)
,

and then the ATE is estimated with

�̂�
𝑀𝑁𝐴𝑅

𝑆𝐼𝑃𝑊
= �̂�

𝑀𝑁𝐴𝑅

1,𝑆𝐼𝑃𝑊 − �̂�
𝑀𝑁𝐴𝑅

0,𝑆𝐼𝑃𝑊 .

The SIPW estimator with the outcome-dependent propen-
sity score can consistently estimate the ATE without the
SITA assumption as long as the parametric models for the
outcome-dependent propensity score are correctly specified.
However, estimations with (6) and (7) often encounter an
unidentifiability issue, wherein the model coefficients obtained
through solving the estimating equations may not be uniquely
determined. Miao et al. [9] pointed out that even if the model for
the propensity score has a known parametric form, the model
is not identifiable without specifying a parametric outcome
distribution. A unique solution to the estimating equations is
only achieved when both the outcome model and the propensity
score model are appropriately specified. Specifically, without
additional restrictions or assumptions, solely solving the estimat-
ing Equations (6) is not sufficient to determine the coefficients
(�̂�1

, �̂�
1
, 𝛽

1) uniquely. Therefore, the outcome-dependent propen-
sity score cannot solve the issue of the unmeasured confounder
completely.

3 | Existing Sensitivity Analysis Methods

In this section, we briefly review some existing sensitivity analysis
methods for the IPW estimator.

3.1 | Modeling the Mean Difference of the
Potential Outcomes

Along with the lines of the work by Robins et al. [26, 27],
Brumback et al. [28] proposed to quantify the impact of the
unmeasured confounders by modeling the mean between-group
difference of the potential outcomes, conditional on all
observed covariates. The sensitivity function is defined by
𝑐(𝑧,𝑋) = 𝐸[𝑌 (𝑧)|𝑍 = 1, 𝑋] − 𝐸[𝑌 (𝑧)|𝑍 = 0, 𝑋]. If the SITA
assumption holds, 𝑐(𝑧,𝑋) equals zero. Thus, the sensitivity func-
tion can describe the magnitude of the departure from the SITA
assumption or the impact of the unmeasured confounders. Once

we specify the sensitivity function 𝑐(𝑧,𝑋), one can predict the
mean function of the counterfactual variables conditional on 𝑋

and then estimate the ATE without the SITA assumption. Li et al.
[15] criticized a technical difficulty in defining the sensitivity
function when covariates 𝑋 contain multiple dimensions. Of
note, in practical sensitivity analysis, if 𝑋 is multi-dimensional,
not only the functional form but also the specific coefficients for
each covariate are required to be specified. Such specifications
were criticized to be unlikely to accurately reflect the relationship
between the departure from the SITA assumption and the poten-
tial outcomes. Li et al. [15] proposed a refinement by defining the
sensitivity function as a function of the MAR-based propensity
score: 𝑐(𝑧, 𝑒(𝑋)) = 𝐸[𝑌 (𝑧)|𝑍 = 1, 𝑒(𝑋)] − 𝐸[𝑌 (𝑧)|𝑍 = 0, 𝑒(𝑋)].
The MAR-based propensity score is a one dimension summary of
observed covariates, and this refinement made the specification
of the sensitivity function much simpler.

However, in reality, even with the simplification by Li et al. [15],
it is not an easy task to define a plausible range of sensitivity func-
tions. Furthermore, their method still relies on the estimation of
the MAR-based propensity score. Misspecification of the para-
metric model for the MAR-based propensity score may result in
difficulty in interpreting the results of the sensitivity analysis.

3.2 | The Marginal Sensitivity Model

Tan [19] proposed the marginal sensitivity model, which
describes a relaxation of the SITA assumption. The model
assumes a single sensitivity parameter, which permits the pres-
ence of the unmeasured confounders 𝑈 but restricts the extent
of selection bias that can be attributed to these confounders. One
can specify a parameter 𝜆, and then the following inequality is
supposed to hold:

1∕𝜆 ≤
𝑒(𝑋𝑖, 𝑈𝑖)∕(1 − 𝑒(𝑋𝑖, 𝑈𝑖))

ê(𝑋𝑖)∕(1 − ê(𝑋𝑖))
≤ 𝜆,

where 𝑒(𝑋𝑖, 𝑈𝑖) refers to the true propensity score measuring all
covariates, and ê(𝑋𝑖) refers to the estimated MAR-based propen-
sity score. The single parameter 𝜆, that is, the odds ratio (OR)
between true propensity score and estimated propensity score,
can control the degree of unconfoundedness. When 𝜆 = 1, the
inclusion of additional confounders has no effect on the treat-
ment odds. This implies that the allocation of the treatment is not
influenced by confounding factors. That is, the SITA assumption
holds. Increasing 𝜆 represents the allowance for a stronger extent
to which the SITA assumption is violated. Tan [19] proposed a
sensitivity analysis method to assess how the estimates based on
the nonparametric likelihood change under the violation of the
SITA assumption.

By introducing the marginal sensitivity model, the sensitivity
analysis for unmeasured confounders can be applied to the IPW
estimator under the MNAR. If 𝑈 was observed, one can estimate
𝜇1 with (

𝑛∑
𝑖=1

𝑍𝑖

𝑒(𝑋𝑖, 𝑈𝑖)

)−1 𝑛∑
𝑖=1

𝑍𝑖𝑌𝑖

𝑒(𝑋𝑖, 𝑈𝑖)
(8)

In practice, 𝑈 is unobserved, and �̂�1 in Equation (8) actually
makes no sense. However, under the marginal sensitivity model,

4 of 15 Statistics in Medicine, 2025
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𝜆 can link the unobserved true propensity score and the estimated
MAR-based propensity score, so that it is possible to evaluate
bounds of (8) under some constraints. That is

max or min

(
𝑛∑
𝑖=1

𝑍𝑖

𝑒(𝑋𝑖, 𝑈𝑖)

)−1 𝑛∑
𝑖=1

𝑍𝑖𝑌𝑖

𝑒(𝑋𝑖, 𝑈𝑖)

subject to 1∕𝜆1 ≤
𝑒(𝑋𝑖, 𝑈𝑖)∕(1 − 𝑒(𝑋𝑖, 𝑈𝑖))

ê(𝑋𝑖)∕(1 − ê(𝑋𝑖))
≤ 𝜆1

(9)

where 𝜆1 is the pre-specified constant, which describes the upper
and lower bounds of the discrepancy of the true propensity score
from the estimated MAR-based propensity score for the estima-
tion of 𝜇1. As long as the true propensity score for all the sub-
jects satisfies the constraint, the true 𝜇1 should be bounded by
the minimum and maximum of (9) asymptotically. It is possible
to have an interval for 𝜇0 in a similar way. This method under
the marginal sensitivity model was proposed firstly by Zhao [18].
In this method, the sensitivity parameter 𝜆1 quantifies the extent
to which the SITA assumption is violated. However, it still suf-
fers from defining a plausible range for the sensitivity parameter
and reliance on correct specification of the MAR-based propen-
sity score model.

It was criticized that the interval obtained by (9) may not be
tight, and the interval was asymptotically conservative [20].
Dorn and Guo [20] proposed the quantile balancing method,
a refinement based on the marginal sensitivity model. Let
𝐹 (𝑦|𝑥, 𝑧) = 𝑃 (𝑌 ≤ 𝑦|𝑋 = 𝑥,𝑍 = 𝑧), and the quantile function is
defined by𝑄𝑡(𝑥, 𝑧) = inf{𝑞 ∶ 𝐹 (𝑞|𝑥, 𝑧) ≥ 𝑡}. For bounding 𝜇1, the
quantile balancing method solves the following optimization
problem:

max or min

(
𝑛∑
𝑖=1

𝑍𝑖

𝑒(𝑋𝑖, 𝑈𝑖)

)−1 𝑛∑
𝑖=1

𝑍𝑖𝑌𝑖

𝑒(𝑋𝑖, 𝑈𝑖)
(10)

subject to
𝑛∑
𝑖=1

(
1

�̂�𝜏 (𝑋𝑖, 1)

)(
𝑍𝑖

𝑒(𝑋𝑖, 𝑈𝑖)
−

𝑍𝑖

ê(𝑋𝑖)

)
= 0 (11)

1∕𝜆1 ≤
𝑒(𝑋𝑖, 𝑈𝑖)∕(1 − 𝑒(𝑋𝑖, 𝑈𝑖))

ê(𝑋𝑖)∕(1 − ê(𝑋𝑖))
≤ 𝜆1 (12)

where 𝜏 = 𝜆1

1+𝜆1 and �̂�𝜏 (𝑋𝑖, 1) is estimated with some quan-
tile regression models [20]. Bounding 𝜇0 and the ATE can be
achieved in a similar way. For 𝜇0, we may use an alternative
value 𝜆0 for 𝜆1 in the constraint corresponding to (12). Through-
out this paper, we suppose 𝜆1 = 𝜆0 and the common value is
denoted by 𝜆. The quantile balancing method refined Zhao’s sen-
sitivity analysis method [18] by adding the quantile function
to balance the treatment assignment 𝑍 over the true propen-
sity score at the population level. This additional constraint
based on the estimated quantile function ensured the asymptotic
optimality of the interval obtained by solving (10). Although it
solves asymptotic conservativeness in Zhao’s method [18], it still
suffers from the misspecification of the estimated MAR-based
propensity score. Moreover, the quantile function also requires
specifying some parametric models or machine learning-related
methods.

4 | The Proposed Sensitivity Analysis Method

4.1 | Bounds for ATE With the Estimating
Equation Constraints

We begin with the bound for 𝜇1. Let 𝑒1(𝑋𝑖, 𝑈𝑖) denote the true
propensity score for subjects in the treated group. Let us consider
constructing the upper bound of 𝜇1 by solving the following opti-
mization problem:

𝜇
+
1 = max 1

𝑛

𝑛∑
𝑖=1

𝑍𝑖𝑌𝑖

𝑒1(𝑋𝑖, 𝑈𝑖)
(13)

subject to 𝛿 ≤ 𝑒1(𝑋𝑖, 𝑈𝑖) ≤ 1 − 𝛿 (14)
𝑛∑
𝑖=1

𝑔(𝑋𝑖)
(

1 −
𝑍𝑖

𝑒1(𝑋𝑖, 𝑈𝑖)

)
= 0 (15)

In a similar way, to obtain the lower bound of 𝜇1, let us consider
the following problem:

𝜇
−
1 = min 1

𝑛

𝑛∑
𝑖=1

𝑍𝑖𝑌𝑖

𝑒1(𝑋𝑖, 𝑈𝑖)
(16)

subject to 𝛿 ≤ 𝑒1(𝑋𝑖, 𝑈𝑖) ≤ 1 − 𝛿 (17)
𝑛∑
𝑖=1

𝑔(𝑋𝑖)
(

1 −
𝑍𝑖

𝑒1(𝑋𝑖, 𝑈𝑖)

)
= 0 (18)

The constraints (14) and (17) come from the positivity
assumption (Assumption 2), which is a fundamental assumption
in causal inference. We regard 𝛿 in (14) and (17) as a sensitivity
parameter. The constraints (15) and (18) come from the estimat-
ing equation for the outcome-dependent propensity score (6).
As mentioned, the estimating Equation (6) cannot necessarily
identify the true propensity score model uniquely from a para-
metric model. However, according to the law of large numbers,
it holds that

𝑛∑
𝑖=1

𝑔(𝑋𝑖)
(

1 −
𝑍𝑖

𝑒1(𝑋𝑖, 𝑈𝑖)

)
𝑝

−−→𝐸

[
𝑔(𝑋)

(
1 − 𝑍

𝑒1(𝑋,𝑈 )

)]
= 0

(19)
Then, the true propensity scores should satisfy the constraints
(15) and (18) asymptotically, and therefore, 𝜇1 should be included
in the interval [𝜇−

1 , 𝜇
+
1 ] asymptotically.

Let us consider the inverse of the true propensity score, denoted
by 𝑤1

𝑖
= (𝑒1(𝑋𝑖, 𝑈𝑖))−1, as the decision variable. Then, optimiza-

tion problems (13) and (16) become a linear programming
problem with linear constraints:

min or max 1
𝑛

𝑛∑
𝑖=1

𝑍𝑖𝑌𝑖𝑤
1
𝑖

(20)

subject to 1
1 − 𝛿

≤ 𝑤1
𝑖
≤

1
𝛿

(21)

𝑛∑
𝑖=1

𝑔(𝑋𝑖)(1 −𝑍𝑖𝑤
1
𝑖
) = 0 (22)

Compared to the quantile balancing method, which is non-
linear optimization and requires estimation of the quantile
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functions, our proposal can be solved time-efficiently with the
interior-point method or the simplex algorithm for linear pro-
gramming and then tractable with standard software for math-
ematical programming.

The bound for 𝜇0 can be constructed in a similar way as fol-
lows. Let 𝑒0(𝑋𝑖, 𝑈𝑖) denote the true propensity score for sub-
jects in the control group, and similarly consider the weight
𝑤0

𝑖
= (1 − 𝑒0(𝑋𝑖, 𝑈𝑖))−1 as the decision variable. Then the interval

[𝜇−
0 , 𝜇

+
0 ] can be obtained by solving the following linear program-

ming problem:

min or max 1
𝑛

𝑛∑
𝑖=1

(1 −𝑍𝑖)𝑌𝑖𝑤0
𝑖

(23)

subject to 1
1 − 𝛿

≤ 𝑤0
𝑖
≤

1
𝛿

(24)

𝑛∑
𝑖=1

𝑔(𝑋𝑖)(1 − (1 −𝑍𝑖)𝑤0
𝑖
) = 0 (25)

We obtain bounds for 𝜓 by [𝜇−
1 − 𝜇

+
0 , 𝜇

+
1 − 𝜇

−
0 ].

Generally, in the estimation of the propensity score, the dimen-
sion of 𝑔(𝑋𝑖) should be equal to the number of unknown param-
eters in the parametric model for the propensity score. In the
proposed sensitivity analysis method, one can impose more con-
straints by increasing the dimension of 𝑔(𝑋𝑖), thereby yielding a
narrower bound obtained by the linear programming problems
(20) and (23). 𝑔(𝑋𝑖) can be any function of 𝑋𝑖. Suppose that
there are 𝐾 covariates: 𝑋⊤ = (𝑋𝑖,1, 𝑋𝑖,2, . . . , 𝑋𝑖,𝐾 ). Then, 𝑔(𝑋𝑖)
can be like

𝑔(𝑋𝑖) =

⎛⎜⎜⎜⎜⎜⎝

1
𝑋𝑖,1

⋮

𝑋𝑖,𝐾

⎞⎟⎟⎟⎟⎟⎠
or 𝑔(𝑋𝑖) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
𝑋𝑖,1

⋮

𝑋𝑖,𝐾

𝑋2
𝑖,1

⋮

𝑋2
𝑖,𝐾

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

or 𝑔(𝑋) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
𝑋𝑖,1

⋮

𝑋𝑖,𝐾

𝑋2
𝑖,1

⋮

𝑋2
𝑖,𝐾

⋮

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(26)

As long as the resulting constraints give us feasible solutions to
the optimization problems, the proposed method is expected to
narrow the bound by simply increasing the dimension of 𝑔(𝑋𝑖),
since greater flexibility on the choice of 𝑔(𝑋𝑖) is allowed.

The IPW estimators (2) and (3) do not satisfy the population
boundedness property: the IPW estimator can be beyond the
range of the outcome [29, 30]. On the other hand, the SIPW esti-
mators (4) and (5) satisfy it. The objective functions (13) and (16)
have the form of the IPW estimator. If we set the first element of
𝑔(𝑋𝑖) to be 1, as seen in (26), the IPW estimator agrees with the
SIPW estimator. Consequently, it is sufficient to consider using a
more computationally tractable, unstabilized form as the objec-
tive function and suggested to consider 1 as the first element of
𝑔(𝑋𝑖).

Dorn and Guo [20] also considered the condition (19), but crit-
icized that 𝑔(𝑋𝑖) should involve infinitely many moment con-
ditions. Coupled with the constraint (12), they showed that the

infinitely many constraints can be replaced with a single con-
straint of the quantile balancing (11). This simplification with
the quantile balancing is realized with the OR-based constraint
(12). In practical sensitivity analysis of observational studies, the
bounds for the ATE obtained by optimizing (13) and (16) are
generally compared with a specific threshold, such as zero, to
ensure the robustness of the results. Therefore, there is no need
to introduce an infinite number of constraints, as it is sufficient
to increase the dimension of 𝑔(𝑋𝑖) to ensure the robustness of the
causal inference in an observational study. In addition, the quan-
tile function must be estimated and then be subject to assump-
tions in modeling and estimation, although Dorn and Guo [20]
tried to minimize the risk of misspecification by introducing flexi-
ble models. The authors provide several machine learning-related
estimation methods, which might yield notably different bounds
from each other in their simulation study [20]. One advantage of
the proposed method is that it does not rely on messy estimation
in the quantile regression. Simply by increasing the dimension of
𝑔(𝑋𝑖), we can try to make the bound narrower. It is important
that the proposed method can provide bounds without relying
on the condition (12). We must note that the proposed method
is not completely free from specification of sensitivity parame-
ters; we need to specify 𝛿 in (14) and (17) to ensure bounded-
ness of the maximum and the minimum of (13) and (16), respec-
tively. Although the proposed method shares the challenge of
specifying sensitivity parameters with Li’s method and the quan-
tile balancing method, it differs in that the sensitivity function
𝑐(𝑧, 𝑒(𝑋)) in Li’s method and the parameter 𝜆 in the quantile bal-
ancing method quantify the magnitude of violation from the SITA
assumption, which are very difficult to specify, whereas 𝛿 should
be set sufficiently small, and some insights on its specification can
be obtained by the MAR-based propensity scores estimated with
some parametric model.

4.2 | Bounds for ATE With the Additional
OR-Based Constraints

The bounds may be too wide to give any meaningful information
without (12). If this is the case, the constraint (12) can be incorpo-
rated into the proposed method. For optimization problem (20),
we consider:

min or max 1
𝑛

𝑛∑
𝑖=1

𝑍𝑖𝑌𝑖𝑤
1
𝑖

(27)

subject to
𝑛∑
𝑖=1

𝑔(𝑋𝑖)(1 −𝑍𝑖𝑤
1
𝑖
) = 0

1 + (𝜆1 − 1)ê(𝑋𝑖)
𝜆1ê(𝑋𝑖)

≤ 𝑤1
𝑖
≤

1 + ê(𝑋𝑖)(1∕𝜆1 − 1)
ê(𝑋𝑖)(1∕𝜆1)

(28)

The additional constraint (28) is derived from the marginal
sensitivity model (9), in which ê(𝑋𝑖) refers to the estimated
MAR-based propensity score depending merely on measured
covariates, and 𝜆1 refers to the OR between true propensity score
and the estimated MAR-based propensity score for the estima-
tion of 𝜇1. Note that, after introducing the constraint (28), the
optimization problem remains a linear programming problem.
The constraint (28) defines the range for 𝑤1

𝑖
and can replace the

constraint (21) once 𝜆1 is specified. The positivity assumption is

6 of 15 Statistics in Medicine, 2025
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inherently satisfied, allowing the constraint (21) to be omitted
without affecting the optimization problem’s feasibility or struc-
ture as long as the MAR-based propensity score satisfies the posi-
tivity assumption. With 𝑔(𝑋𝑖) fixed, the addition of the constraint
(28) can further narrow the bound obtained by solving the linear
programming (27). The bound for 𝜇0 can be obtained in a simi-
lar way:

min or max 1
𝑛

𝑛∑
𝑖=1

(1 −𝑍𝑖)𝑌𝑖𝑤0
𝑖

(29)

subject to
𝑛∑
𝑖=1

𝑔(𝑋𝑖)(1 − (1 −𝑍𝑖)𝑤0
𝑖
) = 0

ê(𝑋𝑖)
𝜆0(1 − ê(𝑋𝑖))

+ 1 ≤ 𝑤0
𝑖
≤

𝜆0ê(𝑋𝑖)
1 − ê(𝑋𝑖)

+ 1 (30)

where 𝜆0 refers to the OR between true propensity score and the
estimated MAR-based propensity score for the estimation of 𝜇0.
Similarly, the constraint (30) adequately defines the range for 𝑤0

𝑖

and can replace the constraint (24) without violating the positiv-
ity assumption.

Although the specifications of 𝜆1 and 𝜆0 may require additional
assumptions and prior knowledge, the OR-based constraints (28)
and (30) can be compatible with the estimating equation con-
straints of the proposed method and further narrow the bound
for 𝜇1 and 𝜇0. The proposed method offers flexibility. First, the
proposed method avoids introducing the additional assumptions,
and it provides a worst-case bound that can be narrowed by
increasing the dimension of 𝑔(𝑋𝑖) and including more covari-
ates. Secondly, when the ranges of 𝜆1 and 𝜆0 can be reasonably
determined, a further narrower bound can be achieved. We may
specify different values for 𝜆1 and 𝜆0. In this paper, for sim-
plicity, we use the common value 𝜆 = 𝜆1 = 𝜆0. Furthermore, as
done by Dorn and Guo [20], estimation error for the bounds
can be accounted for by using the bootstrap confidence inter-
vals of the lower and upper bounds. One may hope to make the
bounds tighter by introducing 𝑔(𝑋𝑖) of the higher dimension. A
concern is that putting more variables may lead to unreliable
bounds of less stability. The bootstrap samples would also be use-
ful to evaluate how stable the resulting bounds are: if the num-
ber of the bootstrap samples of feasible solutions of the linear
programming is small, the resulting bounds should be carefully
interpreted.

5 | Simulation Study

5.1 | Data Generation

In this section, we investigate the performance of the proposed
method and compare it with Dorn and Guo’s method [20] based
on the marginal sensitivity model and quantile balancing over
several simulated datasets. The simulation settings followed
Morikawa and Kim’s framework [31], allowing us to evaluate
the performance of the proposed method when encountering
unidentifiability issues. In our simulation, we considered gen-
erating five covariates 𝑋

⊤

𝑖
= (𝑋𝑖,1, 𝑋𝑖,2, 𝑋𝑖,3, 𝑋𝑖,4, 𝑋𝑖,5) from the

normal distribution with

𝑋𝑖,1 ∼  (0, 1)

𝑋𝑖,𝑘+1|𝑋𝑖,𝑘 = 𝑥𝑖,𝑘 ∼ 
(−𝑥𝑖,𝑘

3
, 1
)
, 𝑘 = 1, 2, 3, 4.

Here, {𝑋𝑖,1, 𝑋𝑖,2, 𝑋𝑖,3, 𝑋𝑖,4}were regarded as measured covariates,
while𝑋𝑖,5 was regarded as an unmeasured confounder. By setting
different 𝑎[𝑠]1 in two scenarios (𝑠 = 1, 2), where 𝑎

[1]
1 = 0.0775 and

𝑎
[2]
1 = 0.998, the outcome was generated as follows:

𝜇(1)(𝑥𝑖) = 𝑎
[𝑠]
1 + 0.4𝑥𝑖,1 + 0.4𝑥𝑖,2 + 0.6𝑥𝑖,1𝑥𝑖,2

+ 0.5𝑥𝑖,3 − 0.7𝑥𝑖,4 + 0.2𝑥𝑖,5,

𝜇(0)(𝑥𝑖) = 0.0654 + 0.2𝑥𝑖,1 + 0.1𝑥𝑖,2 + 1.2𝑥𝑖,1𝑥𝑖,2
+ 0.2𝑥𝑖,3 − 0.3𝑥𝑖,4 + 0.6𝑥𝑖,5,

𝑌
(1)
𝑖

|(𝑋𝑖 = 𝑥𝑖) ∼ 
(
𝜇(1)(𝑥𝑖),

1
4

)
,

𝑌
(0)
𝑖

|(𝑋𝑖 = 𝑥𝑖) ∼ 
(
𝜇(0)(𝑥𝑖),

1
4

)
.

The treatment assignment 𝑍𝑖 ∈ {0, 1} was generated by the
Bernoulli distribution with

𝑃 (𝑍𝑖 = 1|𝑋𝑖 = 𝑥𝑖, 𝑌
(1)
𝑖

= 𝑦
(1)
𝑖
)

= 1
1 + exp(−0.904 + 0.5𝑥𝑖,1 + 0.5𝑥𝑖,2 + 0.5𝑥𝑖,3 − 0.2𝑥𝑖,4 − 𝑥𝑖,5 + 0.3𝑦(1)

𝑖
)
.

We simulated 1,000 observational studies with 𝑛 = 1, 000 sub-
jects for each scenario. For each simulated study, the bounds
for the ATE were calculated by the proposed method, as
well as the quantile balancing method [20]. In applying the
quantile balancing method, the linear quantile regression on
{𝑋𝑖,1, 𝑋𝑖,2, 𝑋𝑖,3, 𝑋𝑖,4} was applied. For the constraint (12), we
estimated the MAR-based propensity score ê(𝑋𝑖) by the logistic
regression model with {𝑋𝑖,1, 𝑋𝑖,2, 𝑋𝑖,3, 𝑋𝑖,4} and applied 5-fold
cross-fitting in the estimation of the quantile function. For Sce-
nario 1, the mean of MAR-based propensity score was 0.6682,
with values ranging from 0.0016 to 0.9997. For Scenario 2, the
mean of MAR-based propensity score was 0.6219, ranging from
0.0341 to 0.9950. The application of the quantile balancing
method was conducted by utilizing the R package provided by
Dorn and Guo [20]. The proposed method with (20) and (23) did
not involve any estimation of the MAR-based propensity score.
The OPTMODEL Procedure of SAS (SAS Institute Inc, Cary,
North Carolina) was used for solving the linear programming
problems to obtain the bounds for ATE in the proposed method.
We considered four settings of the specification of 𝑔(𝑋):

1. D1 includes 1, and the linear and quadratic terms for all the
observed covariates;

2. D2 includes D1 plus all two-variable interactions;

3. D3 includes D1 plus the cubic terms for all the observed
covariates and all interactions;

4. D4 includes D3 plus the quartic and quintic terms for
all the observed covariates, 𝑋3

𝑖,4(𝑋𝑖,3 −𝑋𝑖,2)(𝑋𝑖,1 + 3𝑋𝑖,2∕2),
and 𝑋3

𝑖,4(𝑋𝑖,3 −𝑋𝑖,2)∕(𝑋𝑖,1 −𝑋𝑖,3)(𝑋𝑖,1 + 3𝑋𝑖,2∕2).
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5.2 | Performance of the Proposed Method
With the Estimating Equation Constraints

In the proposed method, we considered estimating the bounds for
𝜇1 under the constraints (21) and (22) and for 𝜇0 under the con-
straints (24) and (25). Thus, the validity of the proposed method
would be dependent on the choice of 𝛿. To discuss this point, we
checked the distributions of the true propensity score in the simu-
lated datasets. In the datasets under Scenario 1, with 𝛿 = 0.1, 0.01,
and 0.001, 18.39%, 0.29%, and 0.01% true propensity scores did not
satisfy the conditions (21) and (24), respectively. The correspond-
ing proportions for the datasets under Scenario 2 were 2.47%,
0.01% and 0.00%, respectively. Thus, with 𝛿 = 0.1, the constraints
seemed not to hold, whereas setting 𝛿 = 0.01 or less was relevant.
Table 1 shows the averages of the upper and the lower bounds
and the coverage probability of the bounds for the ATE in the
proposed method with several settings of 𝛿 and 𝑔(𝑋𝑖), where the
coverage probability was defined as the proportion that the lower
and the upper bounds covered the true ATE. The left panels of
Figures 1 and 2 show the boxplots of the lower and upper bounds
for the ATE when 𝛿 was set to 0.01 in the two scenarios, respec-
tively. We computed the averages of 𝑌 (1) and 𝑌 (0) over all sim-
ulated datasets and regarded their subtraction as the true ATE,
which is depicted by a solid horizontal line in Figures 1 and 2. In
Scenario 1, as shown in Table 1 and the left panel of Figure 1, the
proposed method demonstrated excellent performance in terms
of the coverage probability when 𝛿 was set to 0.01 or smaller. For
Scenario 2, as shown in Table 1 and the left panel of Figure 2,
the coverage probability of the bounds was even excellent when
𝛿 was set to 0.1. In addition, the bounds (D2, D3, and D4) in Sce-
nario 2 effectively excluded the null. For the quantile balancing
method, the right panels of Figures 1 and 2 present the boxplots

of the bound for the ATE based on different ORs in the two sce-
narios, respectively; the detailed estimates are summarized in
Table 2. As the decrease of OR, the quantile balancing method
gave a narrower bound with sacrificing the coverage probability.
The proposed method provided feasible solutions for all the 1,000
simulated datasets with different settings of 𝛿 and 𝑔(𝑋𝑖), except
for one setting (Scenario 2, D4, and 𝛿 = 0.1), in which the cover-
age probability was almost 1 among 952 simulated datasets with
feasible solutions and the bounds for ATE were the narrowest. In
this case, the proposed method gave the worst-case bounds with
an average length of 1.09, which was less than the length of the
bound obtained by assuming OR to be 2 in the quantile balancing
method. In words, by increasing the dimension of the function
alone, we could narrow down the length of the bound obtained
by the proposed method to the level of the quantile balancing
method with OR specified as 2. The results complied with our
expectations that (1) the worst-case bound obtained by the pro-
posed method could cover the true ATE without any additional
assumptions and (2) by increasing the dimension of 𝑔(𝑋𝑖), nar-
rowing of our bound could be achieved.

5.3 | Performance of the Proposed Method
With the Additional OR-Based Constraints

To evaluate the effects of extra OR-based constraints in the pro-
posed method, we provided the averages of the lower and upper
bounds for the ATE in the proposed method with several settings
of the OR and 𝑔(𝑋𝑖) in Table 3. The introduction of the OR-based
constraint (28) narrowed the bounds for ATE. Under the same OR
specified as the quantile balancing, for instance, when 𝜆 was set
to be 2, even in the simplest setting D1, the proposed method out-
performed the quantile balancing method in terms of the length

TABLE 1 | Summary of the proposed method with several settings of 𝛿 and 𝑔(𝑋) over 1 000 simulated datasets in two scenarios.

Scenario 1 (True ATE: 0.21) Scenario 2 (True ATE: 1.13)

𝒈(𝑿) 𝜹 Bound* Length** Coverage*** Feasibility**** Bound Length Coverage Feasibility

D1 0.1a [−0.44,1.41] 1.85 1.00 1 000 [0.32,2.41] 2.09 1.00 1 000
0.01b [−1.36,2.12] 3.48 1.00 1 000 [−0.60,3.09] 3.68 1.00 1 000
0.001c [−1.43,2.18] 3.61 1.00 1 000 [−0.93,3.18] 4.11 1.00 1 000

D2 0.1 [0.10,1.08] 0.97 0.93 1 000 [0.90,2.07] 1.17 1.00 1 000
0.01 [−0.38,1.56] 1.94 1.00 1 000 [0.32,2.53] 2.21 1.00 1 000

0.001 [−0.41,1.59] 2.00 1.00 1 000 [0.05,2.57] 2.53 1.00 1 000
D3 0.1 [0.14,1.04] 0.91 0.69 1 000 [0.91,2.05] 1.14 1.00 1 000

0.01 [−0.33,1.50] 1.83 1.00 1 000 [0.34,2.47] 2.13 1.00 1 000
0.001 [−0.35,1.53] 1.88 1.00 1 000 [0.09,2.50] 2.41 1.00 1 000

D4 0.1 [0.21,0.97] 0.75 0.45 1 000 [0.93,2.02] 1.09 0.99 952
0.01 [−0.19,1.37] 1.56 0.95 1 000 [0.36,2.43] 2.07 1.00 1 000

0.001 [−0.21,1.38] 1.59 0.97 1 000 [0.13,2.45] 2.32 1.00 1 000
*The averages of the lower and upper bounds.
**The difference between the averages of the lower and upper bounds.
***The proportion of inclusion of the true ATE between the lower and upper bounds.
****The number of the resampled datasets in the proposed method, in which feasible solution of the linear programming can be obtained.
a18.39% and 2.47% of the true propensity scores did not satisfy the constraints (21) or (24), respectively, in scenarios 1 and 2.
b0.29% and 0.01% of the true propensity scores did not satisfy the constraints (21) or (24), respectively, in scenarios 1 and 2.
c0.01% and 0.00% of the true propensity scores did not satisfy the constraints (21) or (24), respectively, in scenarios 1 and 2.

8 of 15 Statistics in Medicine, 2025
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FIGURE 1 | Boxplots of the lower and upper bounds for ATE obtained by the proposed method (left panel) and the quantile balancing method
(right panel) over 1 000 simulated datasets in Scenario 1. (a) The proposed method (𝛿 = 0.01). (b) The quantile balancing method.

FIGURE 2 | Boxplots of the lower and upper bounds for ATE obtained by the proposed method (left panel) and the quantile balancing method
(right panel) over 1,000 simulated datasets in Scenario 2. (a) The proposed method (𝛿 = 0.01). (b) The quantile balancing method.

TABLE 2 | Summary of the quantile balancing method with several settings of OR over 1 000 simulated datasets in two scenarios.

Scenario 1 (True ATE: 0.21) Scenario 2 (True ATE: 1.13)

𝝀 Bound* Length** Coverage*** Bound Length Coverage

1 [0.01,0.01] / / [1.31,1.31] / /
1.2 [−0.13,0.14] 0.27 0.48 [1.16,1.47] 0.31 0.36
1.5 [−0.29,0.31] 0.61 0.89 [0.98,1.66] 0.68 0.96
2 [−0.51,0.54] 1.04 1.00 [0.74,1.90] 1.17 1.00
3 [−0.81,0.87] 1.68 1.00 [0.40,2.26] 1.85 1.00
5 [−1.22,1.35] 2.57 1.00 [−0.03,2.74] 2.77 1.00

*The averages of the lower and upper bounds.
**The difference between the averages of the lower and upper bounds.
***The proportion of inclusion of the true ATE between the lower and upper bounds.

9 of 15

 10970258, 2025, 3-4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.10288 by T
he U

niversity O
f O

saka, W
iley O

nline L
ibrary on [03/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



TABLE 3 | Summary of the proposed method with several settings of OR and 𝑔(𝑋) over 1 000 simulated datasets in two scenarios.

Scenario 1 (True ATE: 0.21) Scenario 2 (True ATE: 1.13)

𝝀* 𝒈(𝑿) Bound** Length*** Coverage**** Feasibility***** Bound Length Coverage Feasibility

1.5 D1 [−0.05,0.27] 0.32 0.71 273 [1.18,1.57] 0.39 0.33 739
D2 [0.15,0.29] 0.15 0.89 9 [1.41,1.58] 0.17 0.00 94
D3 / / / / [1.41,1.56] 0.15 0.00 1
D4 / / / / / / / /

2 D1 [−0.24,0.46] 0.70 0.97 903 [0.96,1.79] 0.83 0.95 994
D2 [0.11,0.40] 0.29 0.93 385 [1.31,1.68] 0.37 0.01 861
D3 [0.16,0.34] 0.18 0.43 7 [1.35,1.63] 0.27 0.00 170
D4 / / / / / / / /

3 D1 [−0.53,0.76] 1.29 1.00 994 [0.66,2.05] 1.39 1.00 1000
D2 [−0.02,0.57] 0.59 0.99 961 [1.14,1.85] 0.71 0.45 999
D3 [0.07,0.50] 0.43 0.95 461 [1.21,1.78] 0.57 0.15 897
D4 [0.19,0.49] 0.29 1.00 2 [1.26,1.70] 0.44 0.03 37

5 D1 [−0.83,1.05] 1.88 1.00 999 [0.35,2.33] 1.98 1 1000
D2 [−0.17,0.77] 0.94 1.00 996 [0.97,2.02] 1.05 1.00 1000
D3 [−0.06,0.70] 0.76 0.99 928 [1.02,1.96] 0.94 0.95 995
D4 [0.05,0.60] 0.55 0.89 96 [1.13,1.84] 0.71 0.57 284

*𝜆 represents that 𝜆1 and 𝜆0 take the same value.
**The averages of the lower and upper bounds.
***The difference between the averages of the lower and upper bounds.
****The proportion of inclusion of the true ATE between the lower and upper bounds.
*****The number of the resampled datasets in the proposed method, in which a feasible solution of the linear programming can be obtained.

of the bounds. The corresponding lengths of the bounds for ATE
were 1.29 and 1.39 in Scenario 1 and Scenario 2, respectively,
while their counterparts in the quantile balancing method were
1.68 and 1.85. The results shown in Table 3 consistently complied
with our expectations that (1) the OR-based constraint ensured
that the positivity assumption was inherently satisfied and (2) the
introduction of the OR-based constraint could further narrow the
bounds for ATE achieved by increasing the dimension of 𝑔(𝑋𝑖).
We observed that the number of the simulated datasets of fea-
sible solutions was very small with complicated specification of
𝑔(𝑋) and the OR-based constraint of small 𝜆. It suggested that the
OR-based constraints could conflict with the estimating equation
constraints. This implies that tight OR-based constraints may be
replaced with the estimating equation constraints, which are free
from sensitivity parameters.

5.4 | Performance of the Proposed Method
When the Positivity Assumption is Violated

We further considered the simulation in a supplementary sce-
nario where practical violation of the positivity assumption exists
to investigate the performance of the proposed method. Since
the only difference between Scenario 1 and Scenario 2 lies in
the intercept of the outcome 𝑌1, we only consider the modifi-
cation of Scenario 1 in generating datasets. The data generation
process for the covariates 𝑋

⊤

𝑖
= (𝑋𝑖,1, 𝑋𝑖,2, 𝑋𝑖,3, 𝑋𝑖,4, 𝑋𝑖,5) and the

outcome was the same with it was in Scenario 1.The difference
lay in the treatment assignment. Specifically, when the value of
𝑋𝑖,1 was greater than or equal to 1, the corresponding treatment

𝑍𝑖 was 1 with probability 1, indicating a violation of the posi-
tivity assumption. This circumstance may arise in practice; for
example, when a subject’s age exceeds a certain threshold, he/she
will be assigned to the treatment group certainly. In all other
cases, the treatment assignment was generated following Sce-
nario 1. We considered the same settings of the specification of
𝑔(𝑋) as in Section 5.1. The modified one is referred to as Sce-
nario 3.

Table 4 illustrates the results of Scenario 3 by the proposed
method. With D1 and D2, the proposed method had 100% cov-
erage with a reasonable length of the bounds. On the other hand,
with D3 and D4, the proposed method did not have feasible solu-
tions, and therefore the corresponding results were not presented
in Table 4. These results indicated that the proposed method may
not work well when the positivity assumption was violated.

6 | Application

In this section, we apply the proposed method to real-world data
from the TONE study [32]. This study aimed to evaluate the effec-
tiveness of a designated exercise program in preventing dementia
among the elderly. In this study, scores in five cognitive domains
(attention, memory, visuospatial function, language, and reason-
ing) were used to quantify the level of cognition. We considered
estimating the effectiveness of the exercise program on the atten-
tion domain, which was regarded as a continuous variable. The
confounders included age, sex, education level (1∕0: high/low),
and attention scores at the baseline.

10 of 15 Statistics in Medicine, 2025
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TABLE 4 | Summary of the proposed method in a supplementary scenario where the positivity assumption is violated.

Scenario 3 (True ATE: 0.21)

𝒈(𝑿) 𝜹 Bound* Length** Coverage*** Feasibility****

D1 10−2a [−1.14,1.95] 3.09 1.00 1 000
10−10b [−1.25,2.04] 3.29 1.00 1 000
10−30c [−2.74,3.67] 6.41 1.00 1 000

D2 10−2 [−0.23,1.38] 1.60 1.00 1 000
10−10 [−0.27,1.42] 1.68 1.00 1 000
10−30 [−1.21,2.35] 3.56 1.00 1 000

*The averages of the lower and upper bounds.
**The difference between the averages of the lower and upper bounds.
***The proportion of inclusion of the true ATE between the lower and upper bounds.
****The number of the resampled datasets in the proposed method, in which a feasible solution of the linear programming can be obtained.
a16.17% of the true propensity scores did not satisfy the constraints (21) or (24) in Scenario 3.
b15.89% of the true propensity scores did not satisfy the constraints (21) or (24) in Scenario 3.
c0% of the true propensity scores did not satisfy the constraints (21) or (24) in Scenario 3.

In the primary analysis, a total of 935 participants were included,
in which 234 were in the exercise program group and 701 in the
control group. We utilized the IPW estimator to adjust imbal-
ances in covariates between the exercise program and control
groups. In the primary analysis, we used logistic regression to
estimate MAR-based propensity scores, and the unknown param-
eters were estimated by the maximum likelihood method with
the above variables as explanatory variables. The mean of esti-
mated MAR-based propensity score was 0.2503, with values rang-
ing from 0.0116 to 0.8210. Significantly large between-group
imbalances were observed in age, attention scores at baseline,
and education level before weighting inversely by the estimated
MAR-based propensity scores. The between-group imbalances
were effectively eliminated after weighting, indicating that IPW
significantly enhanced balance across the two groups. The IPW
point estimate of the ATE was 4.09 with a 95% confidence inter-
val of [2.97, 5.22]. Therefore, the result of the primary analysis
indicated a significantly positive effect of the exercise program
on the improvement of the attention level. This finding was con-
sistent with some previous randomized controlled trials [33, 34].
However, a meta-analysis of observational studies [35] reported
an insignificantly positive result, suggesting that the robustness
of the positive effects needs further confirmation. Then, a sensi-
tivity analysis was necessary.

In the sensitivity analysis, we estimated the bounds of the ATE
both without and with the OR-based constraints. When there
were no OR-based constraints, considering the range of the esti-
mated MAR-based propensity scores [0.0116, 0.8210], 𝛿 was spec-
ified as 0.01. We applied the proposed method with four settings
of 𝑔(𝑋𝑖):

1. E1 includes 1 and the linear term of all the covariates;

2. E2 includes 1 and the linear and quadratic terms of all the
covariates;

3. E3 includes E2 plus the interaction between age and atten-
tion score at baseline;

4. E4 includes E2 plus all two-variable interactions.

For the quantile balancing method, the quantile function
was estimated using linear quantile regression with 5-fold
cross-fitting with the R package by Dorn and Guo [20]. The result
by the proposed method is given in Table 5. In addition to the
plain bounds, we calculated the confidence intervals of the upper
and lower bounds with 1 000 bootstrap samples. BootLower and
BootUpper refer to the lower and upper bounds of the 95% boot-
strap confidence interval for the lower and upper bounds of ATE,
respectively. The column "Feasibility" refers to the number of the
resampled datasets in which feasible solutions of the linear pro-
gramming in the proposed method can be obtained. At first, we
examined the worst-case bounds based on the proposed method
(20) without the OR-based constraints (Table 5). The resulting
bounds with the four settings of 𝑔(𝑋𝑖) are presented in the row
with 𝜆 = ∕ in Table 5. Even with 𝑔(𝑋𝑖) of a higher dimension
(E4), the lower bound was less than the null value 0, indicating
that the proposed methods did not eliminate concerns on unmea-
sured confounders. Since the length of the bounds was wide and
not necessarily well interpretable, the OR-based constraints were
added, and the bounds were calculated with (27) and (29). The
results with 𝜆 = 2, 3, and 5 are also shown in Table 5. Our pro-
posal indicated that the worst-case bound could exclude the null
if it was supposed that the OR between the true propensity score
and estimated MAR-based propensity score was at most 2. For
reference, we also applied the quantile balancing method. The
corresponding bounds with the OR-based constraints based on
the quantile balancing method (10) are presented in Table 6. The
bounds were similar to ours, and, of note, when subjected to the
same OR-based constraint, our bound was tighter than that of
the quantile balancing method. We noticed that the smaller OR
and greater complexity of 𝑔(𝑋𝑖) caused fewer feasible solutions
of the linear programming in resampled datasets. Without the
additional OR-based constraint, the results of the bootstrap kept
stable and feasible. However, when a small OR was assumed,
occasions to have feasible solutions in resampled datasets drasti-
cally decreased. Thus, the estimating equation constraints are not
necessarily compatible with the OR-based constraints, in partic-
ular when a small 𝜆 is set.

Instead of adding the OR-based constraints, by incorporating
more covariates, we tried to make the bounds tighter. We further
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TABLE 5 | Bounds of the ATE for the attention score in TONE study by the proposed method.

𝒈(𝑿) 𝝀 Lower bound Upper bound Length BootLower* BootUpper* Feasibility**

E1 /*** −10.57 18.30 28.87 −11.50 19.27 1 000
2 0.57 6.61 6.04 −0.41 7.46 981
3 −1.18 8.59 9.77 −2.36 9.49 1 000
5 −3.36 10.93 14.29 −4.85 11.78 1 000

E2 / −9.81 17.75 27.56 −10.83 18.39 1 000
2 1.66 5.50 3.84 −0.19 6.92 360
3 −0.92 8.18 9.10 −1.86 8.84 890
5 −3.19 10.50 13.69 −4.26 11.16 998

E3 / −9.70 17.23 26.93 −10.46 17.49 1 000
2 / / / −0.18 6.70 61
3 −0.40 7.45 7.85 −1.58 8.29 595
5 −3.09 9.91 13.00 −3.76 10.51 965

E4 / −8.74 16.54 25.28 −8.26 16.17 991
2 / / / 0.07 6.19 46
3 −0.25 7.16 7.41 −1.00 7.83 551
5 −2.67 9.48 12.15 −2.96 10.03 913

*The lower and upper bounds of 95% bootstrap confidence interval for the lower and upper bounds of ATE, respectively.
**The number of the resampled datasets in the proposed method, in which feasible solution of the linear programming can be obtained.
***The rows with/in the 𝜆 column show the results without OR-based constraint; in this case, 𝛿 is set to 0.01.

TABLE 6 | Bounds of the ATE for the attention score in TONE study by the quantile balancing method.

𝝀 Lower bound Upper bound Length BootLower* BootUpper*

1 4.09 4.09 / 3.04 5.30
1.2 3.29 4.92 1.63 2.21 6.14
1.5 2.32 5.97 3.64 1.20 7.21
2 1.13 7.29 6.17 −0.01 8.59
3 −0.61 9.15 9.77 −1.85 10.58
5 −2.80 11.56 14.36 −4.25 13.27

*The lower and upper bounds of the 95% bootstrap confidence interval for the lower and upper bounds of ATE, respectively.

included the baseline scores of four other cognitive domains
(memory, visuospatial function, language, and reasoning) as
confounders in the sensitivity analysis. The results by the pro-
posed method without the OR-based constraint (20) are shown
in Table 7. The worst-case bounds for the ATE in Table 7 achieve
great tightness. In some settings (E3 and E4), the worst-case
bounds even excluded the null, thus indicating the robustness
of the primary analysis without any additional OR-based con-
straints. For reference, Table 8 presents the results by the quantile
balancing method with including all cognitive domains. The pro-
posed method could have bounds of less length than the quantile
balancing method when 𝜆 was specified as 3 or 5. Nevertheless,
we observed comparatively small numbers of bootstrap samples
with feasible solutions. Thus, the successful exclusion of the
null with E3 and E4 would be subject to instability, and it could
not eliminate concerns against unmeasured confounders com-
pletely. The instability may come from the conflicts between the
increasing dimensions of 𝑔(𝑋𝑖) and the constraint with 𝛿. In this
analysis, we further explored the impact of varying the 𝛿 on the
feasibility of the bootstrap samples, particularly in challenging

settings (E3, E4) where feasibility was low with 𝛿 = 0.01. For
instance, in the settings of E3 and E4, we observed that reducing
𝛿 from 0.01 to 10−30 resulted in a significant increase in feasibility,
from 323 to 807 and 220 to 743, respectively. On the other hand,
specification of smaller 𝛿 resulted in wider bounds. For example,
in E3 (Table 7), the lower bound was estimated to be -12.13 with
𝛿 = 10−30 (Feasibility: 807), whereas 0.31 with 𝛿 = 10−2 (Feasibil-
ity: 323) and 0.16 with 𝛿 = 10−10 (Feasibility: 331). With 𝛿 = 10−2

and 𝛿 = 10−10, the proposed method successfully excluded the
null value, but the small number of the bootstrap samples with
feasible solutions successfully informed us of caution in interpret-
ing the observed narrow bounds. We also applied the proposed
method with the OR-based constraints; we added the OR-based
constraint to the method reported in Table 7. We observed there
was no feasible solution in almost all the cases of E1–E4. Thus,
we employed a simpler specification of 𝑔(𝑋) consisting of all the
linear terms of variables. With the OR-based constraint of 5.5, we
observed a bound on [1.15, 5.47], whereas the quantile balancing
method provided a similar bound with the OR-based constraint
of 1.2. In practice, this OR value of the constraint was likely to
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TABLE 7 | Bounds of the ATE for the attention score in the TONE study by the proposed method with 𝑔(𝑋) of additional four domains.

𝒈(𝑿) 𝜹 Lower bound Upper bound Length BootLower* BootUpper* Feasibility**

E1 10−2 −6.75 14.93 21.68 −8.84 15.84 1 000
10−10 −7.08 15.67 22.76 −9.12 16.34 1 000
10−30 −22.05 29.50 51.54 −23.93 29.60 1 000

E2 10−2 −2.08 11.14 13.22 −4.29 12.44 657
10−10 −2.23 11.28 13.51 −4.48 12.59 661
10−30 −14.92 23.75 38.67 −16.58 24.54 931

E3 10−2 0.31 8.32 8.01 −3.14 11.33 323
10−10 0.16 8.47 8.31 −3.28 11.46 331
10−30 −12.13 20.88 33.02 −14.34 22.72 807

E4 10−2 0.70 7.82 7.12 −2.45 10.51 220
10−10 0.50 7.98 7.48 −2.61 10.64 226
10−30 −11.92 20.84 32.76 −13.49 22.07 743

*The lower and upper bounds of the 95% bootstrap confidence interval for the lower and upper bounds of ATE, respectively.
**The number of the resampled datasets in the proposed method, in which a feasible solution of the linear programming can be obtained.

TABLE 8 | Bounds of the ATE for the attention score in the TONE study by the quantile balancing method with an additional four domains.

𝝀 Lower bound Upper bound Length BootLower* BootUpper*

1 3.86 3.86 / 2.55 5.20
1.2 3.02 4.69 1.67 1.76 6.04
1.5 2.04 5.76 3.71 0.80 7.17
2 0.77 7.16 6.39 −0.56 8.67
3 −0.97 9.22 10.19 −2.41 10.71
5 −3.23 11.95 15.17 −5.05 13.25

*The lower and upper bounds of the 95% bootstrap confidence interval for the lower and upper bounds of ATE, respectively.

exceed its appropriateness and reasonableness. Thus, applying
the estimating equation constraints would be helpful to obtain a
more interpretable and realistic OR-based constraint.

7 | Discussion

Interest in drawing medical evidence from the real-world data
has been rapidly growing, and the number of papers reporting
results of real-world data analyses with the confounder adjust-
ment has been substantially increasing. The propensity score
analysis is now routinely applied in the analysis of observational
studies. However, almost all the papers only report the results
of the propensity score matching and/or the IPW method by
the propensity score and do not address the important issue
of the unmeasured confounders. Since the issue of residual
confounding is always left as a limitation in the analysis of
observational studies, it is very important to develop sensitivity
analysis methods that are easily applicable and rely on fewer
assumptions. In this paper, we proposed a simple sensitivity anal-
ysis method based on the IPW method. To our best knowledge,
all the existing sensitivity analysis methods for the IPW estimator
rely on some untestable assumptions on the departure from the
SITA assumption. Although they provide very useful tools to
address potential impacts of unmeasured confounders, there
are still concerns with potential violation of the assumption.

The proposed method requires only minimal assumptions and
can construct the bounds for the ATE, completely free from
any quantification of the departure from the SITA assumption.
Although it may not give sufficiently informative bounds of
small width, showing the bounds based on minimal assumptions
would be useful as a basis in addressing the potential impacts
of the residual confounding. The proposed method can easily
incorporate the OR-based constraints for the departure from the
SITA assumption to give tighter bounds. The resulting method
with the additional OR-based constraints corresponds to the
quantile methods by Dorn and Guo [20]. Moreover, the proposed
method can be easily applied with linear programming, avoiding
the estimation of the quantile functions, and empirically, it gave
likely tighter bounds in our simulation study. Comparing with
the elegant theory of the quantile balancing method by Dorn and
Guo [20], the proposed method is based on a very simple idea.
We believe that the proposed method is practical and our strategy
would be useful in addressing the issue of residual confounding.

By incorporating more constraints with 𝑔(𝑋) of higher dimen-
sion, one may have tighter bounds with the proposed method. It
motivates us to collect as many potential confounders as possible
in conducting observational studies. On the other hand, we do
not have any clear guidance on how to define 𝑔(𝑋). Putting more
constraints would be desirable to make the bounds tighter. More
specifically, to conduct a comprehensive sensitivity analysis
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using the proposed method for the unmeasured confounders
in observational studies, we recommend following procedures.
One can begin by determining 𝑔(𝑋) with simple terms, such as
linear terms for all covariates, and gradually consider more com-
plicated terms like quadratic and interaction terms based on the
data and study context. Initially, it is recommended to perform
the proposed sensitivity analysis method without the OR-based
constraint by linear programming to obtain a bound under less
restrictive assumptions. If the resulting bounds can exclude the
null or provide meaningful information, there is no need to incor-
porate the additional OR-based constraint but to consider to spec-
ify a plausibly small value for 𝛿. When a small 𝛿 is specified, the
stability of the bounds may increase, probably at the cost of wider
bounds. On the other hand, when the bounds are wide and not
able to provide meaningful information, the OR-based constraint
can be incorporated to narrow the bounds. Comparing with the
quantile balancing method, the proposed method could provide
narrower bounds with the same OR-based constraints specified.
Thus, the proposed method with the OR-based constraint would
provide less restrictive and then more interpretable results. With
the OR-based constraints incorporated, the positivity assumption
is inherently satisfied. However, complex specifications of 𝑔(𝑋)
and strong OR assumptions may conflict with each other, result-
ing in relatively low feasibility even after the 𝛿 constraint is
removed. This observation is intuitively understandable. The
quantile balancing method successfully introduced a single con-
straint (11) to represent infinitely many balancing properties of
the propensity score with the support of the OR-based constraint
(12). It suggests that the OR-based constraint describes some
parts of the balancing properties of the propensity score and the
quantile balancing recovered some conditions that cannot be
represented as the OR-based constraint. Since our motivation
was basically on the removal of the OR-based constraint, which
may not be easy to interpret, we represent the balancing property
as the estimating equation constraints. We recommend to mon-
itor the number of the bootstrap samples of feasible solutions
in the above steps to evaluate whether the bound is sufficiently
stable or not. In practice, we guide researchers to apply multiple
settings of 𝑔(𝑋) and to report the bootstrap results for these set-
tings in the sensitivity analysis. It is highly motivated to develop
more formal guidance on the choice of 𝑔(𝑋) with certain theo-
retical bases. With the complexity of the problem, we leave this
challenging issue as our future work. In the simulation study,
we observed that the proposed method might not work when the
positivity assumption was violated. Inference under violation of
the positivity assumption is a very important problem. However,
it is beyond the scope of our method.

As noted, our idea is simple: we remove any parametric models
for the propensity score but still rely on the estimating equation
for the propensity score. This simplicity would make us easily
extend the idea to more complicated problems in causal inference
and missing data analysis. This also warrants addressing in future
research.
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