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Introduction

Weakly stable ideals generalize the squarefree stable ideals introduced in [3]
which are the squarefree analogue of stable ideals first considered by Eliahou and
Kervaire [6] whose resolution they constructed explicitly. Their result was used and
generalized by many authors. The interest in these ideals is due to the fact that stable
ideals include the class of standard Borel-fixed ideals which play an important role
in Grobner basis theory.

Our motivation to study weakly stable ideals was to enlarge the class of square-
free ideals with linear resolution. Indeed, we show that weakly stable ideals which
are generated by monomials of the same degree have linear resolutions. There are
not so many classes of such squarefree monomial ideals known. Froberg [8] clas-
sified the squarefree monomial ideals generated in degree 2 with linear resolution,
Bruns and Hibi [5] studied monomial ideals with pure resolution, Hibi [10] dis-
cussed a certain class of monomial ideals with linear resolution, and finally there is
the Eliahou—Kervaire resolution [6] for stable ideals and its squarefree analogue;
see [3] and [7]. In the particular case that the stable or squarefree stable ideal is
generated by monomials of the same degree this resolution is linear. A similar result
is obtained by Hulett and Martin [12] for generalized lexsegment ideals.

In the first section we consider general weakly stable ideals, which of course may
not have linear resolutions, and compute their graded Betti numbers. The crucial
observation is that the generators of a weakly stable ideal can be ordered such that
the ideal generated by each partial sequence is again weakly stable.

In the second section we study weakly stable ideals generated by monomials
of the same degree. From our main theorem in Section 1 it follows already that
they have a linear resolution. However in this section we give a more combinatorial
argument for the linearity of the resolution, and describe it in terms of Koszul
homology following the method developed in the papers [1] and [2]. To do this we
compare the weakly stable ideal I with its stable closure I°t, that is, the smallest
stable ideal which contains the given ideal I. It turns out that the resolution of I
may be viewed as a subcomplex of the resolution of I5¢,
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In [2] Aramova and Herzog showed how to compute the differentials in the res-
olution once the cycles of the Koszul complex are known whose homology classes
form a basis of the Koszul homology. This computation is particularly simple for
stable ideals, since in that case the generating cycles can be chosen to be all mono-
mials of the form ue;, A...Ae;, where u is a monomial. This is no longer the case
for weakly stable ideals. However we succeed to describe the Koszul homology of
Klz1,...,z,]/I as the kernel of a very explicit map whose entries are only 0 and
+1. This kernel can easily be computed in each particular case. We demonstrate this
by an example.

It would be, of course, of great interest to describe all (squarefree) monomial
ideals with linear resolution (even though the linearity may depend on the base
field) and to determine the possible Betti numbers of such ideals.

1. The Betti numbers of weakly stable ideals

Let I be an ideal generated by squarefree monomials in the polynomial ring A =
K|z1,...,z,] over a field K. Denote by G(I) the unique minimal set of monomial
generators of I. For a monomial u € A, we write Supp(u) for the set of all ¢ such
that z; divides u, and set m(u) = max{s : i € Supp(u)}, v’ = u/Tpy(w)-

DEFINITION 1.1. A squarefree monomial ideal [ is called weakly stable if for
every squarefree monomial u € I the following condition (%) is satisfied:
(x) For every integer £ ¢ Supp(u) such that £ < m(u'), there exists an integer
¢ € Supp(u) with ¢ > ¢ such that z,(u/z;) € I.

Note that if I is a squarefree stable ideal [3], then I is weakly stable.

Lemma 1.2. The ideal I is weakly stable if for every uw € G(I) condition (%)
holds.

Proof. Letwv € I be a squarefree monomial, and let £ ¢ Supp(v) be an integer
with ¢ < m(v'). We can assume that v ¢ G(I), therefore w = v/z; € I for some
i € Supp(v). If ¢ > m(v’), then zp(v/z;) € I with ¢ > ¢ and the lemma is proved.
So, let i < m(v'). Arguing by induction on degv, we may assume that w satisfies
condition (x). Since m(w’) = m(v’) > ¢, one has zyw/x; € I for some j > £,
J € Supp(w). Hence, we obtain z,v/x; = (zow/x;)x; € I. 0

ExampLE 1.3.  Let I be the ideal of A = Kz, 22,23, %4,Z5,T¢] Which is
generated by the squarefree monomials x;z223, T1Z2T5, T123%4, T1T3T6, T1L4T5,
T1T5T6, T2X3T4, T2X3TE, T2X 45, L3TL 4T, L3TL5T6 and TyT5T6. Then I is a weakly
stable ideal. We remark that there exists no permutation 7 of {1,2,3,4,5,6} such
that I” is a squarefree stable ideal, where I7 is the ideal generated by the squarefree
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monomials T, (q)Tr(b)Tr(c) With z,zpzc € 1.

Throughout this paper, we consider the following term order of the square-
free monomials in A: u < v if either degu < degv or degu = degwv and
lg = Jgr-+-»rls+1 = Js+1, ts < Js for some 1 < s < g, where u = z;, ...z,
UZ.ZL‘jl ....’L']'q.

For a graded A-module M, denote by H(M) the homology of the Koszul com-
plex of M with respect to z1,...,Z,. Since H;(M) = Tor{* (M, K), the graded Betti
numbers of M are §;;(M) = dimg H;(M);. We consider also the graded Poincaré
series Pr(s,t) = 32, ;50 Bij (M)t's? of M.

Theorem 1.4. Let I be a weakly stable ideal with G(I) = {u1,...,um} where
Uy < Ug < o0 < Up,. Setag =degug forl <k <m,

Ai = {t ¢ Supp(uk) : ziug € (u1,...,ux—1)}, Ri=(A4/(zt,t € Ag))(—ak)

for2 <k <m, and Ay = 0. Then

(a) For every i,j > 0, one has B;;(I) = >}, Bij(Rx) with B;j(Ry) = 0 for
J # ax + i, and Bia, +i(Rk) = (‘Ai'“l) for 2 < k < m. In particular, the Betti
numbers of I are independent of the base field K.

(b)  Pi(s,t) = Sy, s (1 + ts)l,

First we show the following

Lemma 1.5. LetJ and I = (J,v) be weakly stable ideals with G(I) = G(J) U
{v} and degv > degu for every w € G(J). Then I|/J = A/(z¢,t € A) where
A = {t ¢ Supp(v) : zv € J}.

Proof. Since I/J = A/(J : v), it suffices to prove that (J : v) = (z4,t € A).
First we note that if t < m(v’) and ¢t ¢ Supp(v), then ¢ € A. Indeed, the ideal J
being weakly stable, one has z;v/z; € J for some ¢ > t, i € Supp(v), therefore
zv € J.

Let now y be a monomial generator of the ideal (J : v). Then yv = wb for some
squarefree monomial w € J and some monomial b € A. Since y is a generator, it
follows that y and b have no common factor. Therefore y divides w, v = (w/y)b
and Supp(y) N Supp(v) = 0. Hence the desired equality follows if we show that
degy = 1.

Assume degy > 2. Let w be the smallest squarefree monomial in J with degw =
degwv such that yv = wb for some monomial b € A. Since y is a generator of (J : v),
one has zyv ¢ J for each ¢ € Supp(y), therefore, as we noted above, t > m(v’)
for each ¢t € Supp(y). We have w = (v/b)y and m(b') < m(v') < m(y’) < m(w').
Since J is weakly stable, we obtain that @ = x,,,yw/x; € J for some i > m(b),
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i € Supp(w). But then yv = w(x;b/Ty ) With @ < w, which is a contradiction.
Hence degy = 1, and the lemma is proved. O

Lemma 1.6. Let I be a weakly stable ideal with G(I) = {u1,...,un} where
U < Up < -+ < Upy. Then Iy, = (uy,...,ux) is weakly stable ideal for every k,
1<k<m.

Proof. By 1.2 it is enough to show that each u € G(I}) satisfies condition (x).
Let £ < m(u'), ¢ ¢ Supp(u). Since I is weakly stable, we have v = zpu/z; € I for
some ¢ > £ with ¢ € Supp(u), and v < u. Then v = wb for some w € G(I) with
degw < degw, so that w < u. Therefore w € G(I}) and v € I. O

Proof of Theorem 1.4. By 1.6, Iy = (uy,...,ux) is weakly stable ideal for
every k, 1 < k < m. Assume that (a) is true for I;_1, 2 < k < m. We will show that
it is true for the ideal I;.

By 1.5 we have an exact sequence of graded A-modules

0—- 11— I, — R,—0
which gives a long exact sequence of Koszul homology
i+1(Rk) — Hi(Ik—l) — Hi(Ik) — Hi(Rk) > ...,

Set Ds; = {a1 +4,a2+74,...,as + i} for 1 < s < m and 7 > 0. By assumption,
Bij(Ii—1) = X571 Bi;(R,) and Bij(Ix_1) = 0 if j ¢ Dy_1;. Therefore, if j ¢ Dg.,
then B;;(Ix—1) = 0 and B;;(Rx) = 0, so that 3;;(Ix) = 0. Let now j € Dj ;. Then
J < arp+i < ap+i+1, hence Biy1;(Rr) = 0. Moreover, if §;;(Ri) # 0, then
J=ar+1i>ap_1+1¢> a1 +i—1,so that §;_y;(Ix_1) = 0. Thus, for every
J € Dy ; we have the exact sequence

) 0 — H;(Ix-1); — Hi(Ix); — Hi(Ry); — 0

Using the induction hypothesis, from this sequence we obtain the required equality
for 3;;(Ix). This completes the proof of (a).
(b) follows immediately from (a). ]

2. Weakly stable ideals with linear resolution

In this section we consider weakly stable ideals generated by monomials of the
same degree. It follows immediately from 1.4 that these ideals have a linear resolu-
tion. Alternatively we present a proof of this fact which is based on Froberg’s result
[8] and Hochster’s formulas [11]. Further we describe the maps of the resolution
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in terms of Koszul cycles. We remark that in general we are not able to construct
the cycles explicitely using the exact sequences (1) (cf. the proof of 1.4), and in
many particular cases it is easier to find the cycles using the map described in 2.2(b)
below.

Recall that for a homogeneous ideal J C A = K|z, ..., z,], the graded minimal
free resolution of A/J over A is called g-linear, if for every ¢ > 1 one has §;;(A/J) =
0 for every j # q + ¢ — 1. In this case, we say also that J has a linear resolution.

If I is a weakly stable ideal and all generators of I have the same degree g, then
we call I weakly stable of degree q.

Theorem 2.1. Suppose that an ideal I of A = K|[x1,x2,...,%s] is weakly
stable of degree q. Then, a minimal free resolution of A/I over A is g-linear.

Proof. We refer the reader to [4], [9], [11] and [13] for algebra and combi-
natorics on simplicial complexes. Let A be a simplicial complex on the vertex set
V = {z1,%2,...,2Z} and I the ideal of A which is generated by the squarefree
monomials &;, T;, - %, 1 < i1 <idg <+ <1 <m, with {z;,,24y,..., 2.} € AT
W C V,then Aw := {0 € A : 0 C W}. Let H;(Aw; K) denote the i-th reduced
simplicial homology group of A with the coefficient field K.

First of all, let an ideal I of A be weakly stable of degree 2 and A the simplicial
complex on V with I = In. What we must prove is that the 1-skeleton of A is a
chordal graph [8]; see also [5, p. 1206]. Suppose that the 1-skeleton of A has a
cycle I' of length at least 4 with no chord. Let 1 < £ < n denote the least integer
with zo € T'. If zoz; and zex; belong to I, then £ < 4, £ < j and z;z; ¢ I'. Hence
z;x; € I, while zox; € I and x,x; € I, a contradiction.

Suppose that an ideal I of A is weakly stable of degree ¢ with ¢ > 3. Again,
choose the simplicial complex A on V' with I = Ia, and set A; = Ay _(;,}, Az =
stara({z1}) and A’ = linka({z1}). Then, the ideal In, of A’ = K[z2,z3,...,Zx]
is either a weakly stable ideal of degree ¢ or In, = (0). Since the ideal Ia: of
A" = K|za,x3, . ..,%y] is generated by the squarefree monomials u in 2, z3,...,Zn
with z,u € I, it follows from (%) with t = 0 and ¢ = 1 that Ia/ is generated by
the squarefree monomials x;, z;, - x;,_,, 2 < iy < i < --+ < 441 < n, with
T T4, Ty, - Ti,_, € I. Hence, the ideal Ia- of A’ is weakly stable of degree ¢ — 1. By
virtue of [11, Theorem (5.1)], a minimal free resolution of A/I over A is g-linear
if and only if H;(Aw;K) = 0 for every subset W of V and for each i # q — 2.
Now, the induction hypothesis enables us to assume that I;Ii((Al)W;K) = 0 and
H;_1(Aly; K) = 0 for every subset W of V — {z;} and for each i # ¢ — 2. If
z1 € W, then Aw = (A;)w. Hence Hi(AW; K) = 0 for every subset W of V — {z;}
and for each ¢ # ¢ — 2. If x; € W, then (Az)w is contractible; in particular,

H;((A2)w; K) = 0 for every i. Thus, since A; UA; = A and A; N Ay = A/ the
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reduced Mayer—Vietoris exact sequence
guarantees ﬂi(AW; K) =0 for each i # q — 2 as required. O

For an A-module M, denote by K(M) = K(x; M) the Koszul complex of
M with respect to the sequence x = zi,...,z, of indeterminates and, as be-
fore, by H(M) the homology of K(M). Set e, = e, A ... A e;, where 0 =
{j1,---»di}>» 51 < ... < Ji so that the differential d of K;(M) is given by
d(e,) = ZjEU(—l)“("’j):vjea\j, where a(o,j) = |{t € o : t < 7}|.

We will denote the image of a monomial u € A in any quotient ring of A again
by wu.

Let I C A be a weakly stable ideal of degree gq. Then I is contained in a
squarefree stable ideal. Denote by I°t the stable closure of I, that is, the smallest
squarefree stable ideal in A which contains I. Note that I** is also generated by
monomials of degree q.

According to [3], for every i > 0, a basis of H;(A/I") is given by the homology
classes of the cycles

2 e, ueGI), |r|=i, max(t)=m(u), 7N Supp(w)="0

and the differential d; of the minimal free resolution F = A ® H(A/I®) of A/I*
is given by (cf. also [1]):

di(f(o;u)) = Z(*l)a(”’j)(—wjf(a\j;U) + T f(o\ J;25u)),
where

flosu) =1® [ves A e,
u € G(I%),|o| =i — 1,max(c) < m(u),o N Supp(u) = 0,

is the basis of F;, and where we set f(o;u) = 0 if max(c) > m(u).

Let {v1,...,vs} = G(I**) \ G(I) be all the monomials in the minimal set of
monomial generators of It which do not belong to I. We may assume these mono-
mials are numerated so that v; < vo < .-+ < vg with respect to the order used in
Section 1. Set Jy=I and for1 <k <s

Je = L,v1,...,08); Yr =2y, = {t & Supp(vk) : Trvk € Ji—1}-

Theorem 2.2. Let I be a weakly stable ideal of degree q, and let I°t be its
stable closure. Then
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(a) Foreveryi>1, B;(A/T) = Sy (M%) = Bi(A/1%%) — S5, (Px) where the

sets Ay are defined in 1.4, and B;(A/I°") = 3 c (1ot (=),

i—1
(b) For everyi > 1, one has an exact sequence of vector spaces

0 — Hi(A/T) — H(A/T") S @) Hi1((A/ (w1t € Sx))(—q)) — O,
k=1

where the map <) is defined on the basis (2) of H;(A/I°t) by

v(e)= D (1) en

tep(Tiu)

with p(T;u) = {t € 7 : v’ € {v1,...,0:}, 7\ t C g, }.
(¢c)  The minimal free resolution AQ H(A/I) of A/I is a subcomplex of the minimal
[ree resolution A @ H(A/It) of A/Tt.

To show this theorem we need the following:

Lemma 2.3. Let I C A be a weakly stable ideal of degree q. Let U be the set
of all monomials of the form v'z; which do not belong to I, where u € G(I) andl
is any integer with m(u') <1 < m(u). Then G(I*') = G(I)U U.

Proof. Since (G(I),U) C I*, it is enough to show that (G(I),U) is a stable
ideal. Take first any generator v € G(I) and let [ be an arbitrary integer such that
l ¢ Supp(u) and I < m(u). We have to show zju’ € GI)UU. If m(v') <1 < m(u),
then z;u’ € G(I) UU, so we can assume | < m(u’). Since I is weakly stable, one
has u; = zju/z; € I for some j € Supp(u) such that | < j < m(u). If j = m(u),
then z;u’ = w1, so it remains to consider the case j < m(u). Then m(u;) = m(u),
and zju’ = z;u}. If m(u}) < j, then z;u} € G(I) U U, otherwise us = zjui/xy € I
for some k € Supp(u) with j < k < m(u). Now we may argue for uy similarly as
for u;. Proceeding in this way, finally we obtain z;u’ € G(I)UU.

Let now v = v'z; € U. Then | = m(v). Let k < | be any integer such that
k ¢ Supp(v). Since u € G(I) and k < m(u), we have already shown that zu’ €
G(I)UU. But zxv' = zxu/, and this completes the proof. U

Lemma 2.4. - The ideal Jy, is weakly stable for 0 < k < s.

Proof. It is enough to show that J = J; is weakly stable. We have only to
check that v = v; has the weakly stable property. By 2.3, v = v/z; for some u € G(I)
and m(v') < ! < m(u). Let i < m(u’), i ¢ Supp(u). Since I is weakly stable and
u € I, one obtains that w = z;u/xz; € I for some j € Supp(u) such that i < j. If
j = m(u), then z;v/z; = z;u’ = w and the proof is completed. So, assume j < m(u).
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Then ! < m(w), and z;v/z; = zyw’ € I**. Butsince w < u, we have zjw’ < zju’ = v,
therefore we conclude that z;w’ € I. O

Proof of Theorem 2.2.  The first equality for 3;(A/I) follows immediately
from 1.4(a).

For each k, 1 < k < s, setting Ay = (A4/(zt,t € Zk))(—q), by 1.5 we have an
exact sequence of graded A-modules

0—>Jk_1—>Jk——+Ak—>0
which gives a long exact sequence of Koszul homology
-+ = Hit1(Ax) —» Hi(Jk—1) = Hi(Jx) — Hi(Ak) — - -

The ideals J; and Jx_; being weakly stable (cf. 2.4), by 2.1 they have linear res-
olutions. On the other hand, Ay also has a linear resolution over A shifted by gq.
Therefore, for each ¢ > 0, considering the above long sequence in degree q + 7, we
obtain that it splits into the exact sequences

0 — Hi(Jk—1) — Hi(Jx) — H;i(Ax) — 0.

Since for an ideal J C A one has H;(J) = H;;1(A/J), for each ¢ > 1 we get the
exact sequence

(3) 0 — H;(A/Jp—1) — Hi(A/Ji) 25 Hi_1(Ay) — 0.

This proves the second equality for B;(A/I) in (a). The equality for 3;(A/I%)
follows from (2).

(b) Note that for 1 < k <'s, H;_1(A) has a basis consisting of the homology
classes of the cycles e,, ¢ C g, |o| = i — 1. We will show that Keryp = H;(A/I).
Define a linear map vy : H;(A/I°%) — H;_1(Ag) on the basis (2) by: ¥x([u'e;]) =
(—=1)2" Ve \s] if zu' = v for some ¢t € 7 and if 7\t C Zk; Yr([u'es]) = 0
otherwise. Then ¢ = Y ;_, ¥, so that [z] € Kery if and only if v, ([z]) = 0 for
1 < k < s. Therefore, the equality Kery) = H;(A/I) will follow if we show that for
1 < k < s the restriction of ¢, on H;(A/Jy) coincides with the map ¢ defined
in (3). Let z = Y_ ¢, yu'e, with ¢,,, € K represent a cycle in K;(A/Ji), where the
[w'e] belong to the monomial basis (2) of H;(A/I°). Then 0(2) = 3, | ,1=i_1 bp€p,
where b, = Ztgp,uec(zst)(—l)a(p’t)cput,uf'ftu/ € Ji. Let bymodJx_1 = €(b,)vk. Then
ok([2]) = [32,, pj=i—1 €(Bp)en] = 2_ 5, €(bp)lep], where the second equality follows
from the fact that all €(b,) € K. On the other hand, ¥([2]) = > cru¥([u'er]) =
chzk (Ztep Zuec(lst),:c,u'=vk(_1)a(p’t)cput,u)[ep] = or([2]).

To show (c) we recall from [1] the method to construct the maps ¥; of the reso-
lution of an A-module M from its Koszul cycles in the particular case when M has



WEAKLY STABLE IDEALS 753

a linear resolution. For @ € K;(M) and 1 < j < n there is a unique decomposition
a = a;—e;Amj(a) with aj, m;(a) € K(x;; M), where X; = &1,...,Zj—1,Zj41,.- -, Zn.
Then, given 1 ® [2] € A® H;(M), we have 9;(1® [2]) = 37, z; ® [m;(2)].

Let z = Y c;uu'e, with ¢, € K represent a cycle in K;(A/I), where the
[v'e;] belong to the monomial basis (2) of H;(A/I®"). Since the function 7; is
linear for each j, one has m;(z) = 3 cum;(u'e;), therefore 377, x; ® [m;(2)] =
> Cru Py 2 ®[mj(u'er)] = di([2]). This shows that the maps of the resolution of
A/I are the restrictions of the maps d; of the resolution of A/I*%%. J

We conclude with 2 examples.

ExaMmpLE 2.5. Consider the ideal I C K][zy,...,x¢| generated by zizoxs,
T1X2xs, T1T3T4, T1T3T6, L1L4T5, T2T3Ts, T3T4Ts and zzxsze. Then I is weakly
stable, and G(I*') = G(I) U {v1,vq,v3} where vy = z1x924, v2 = T 7375 and
v3 = zax3z4. It follows that ¥1 = {3,5}, X3 = {2,4,6} and ¥3 = {1,5}. Therefore,
using formula 2.2(a) we obtain

Ba(A/T) =19—-T=12, B3(A/I)=11-5=86, PB4(A/])=2-1=1.

Next we give the matrix of the map

Hy(A/1°) % Hay(Ay) D Hz(42) D Ha(4s)

with respect to the basis of H3(A/I%t) consisting of the homology classes of the
cycles 21 = X1X2€3€4€5, 29 = X1T3€E2€4€5, 23 = T1T3€E2€E5€E6, 24 — T1X3€4€5€6, Z5 —
T2X3€1€4€5, 26 — T1T4€2€3€5, 27 = T3XL4€1€2€5, 28§ = L3X5€1€2€6, 29 = T3T5€1€4€6,
210 = I1T3€2€4€¢ and 211 = I3T5€2€4€¢, and the basis of H2(A1)®H2(A2)
@ H»(As) given by the homology classes of the cycles eses, ezeq, €266, €ses and
€1€5.

-1 0 O 0 0 1. 0 00 OO
0 1 0 0 0 0 0 0 O0 OO
0 0 -1 0 0 0 0 1 0 0 O
0 0 0 -1 0 0 O 0100
0 0 O 0 -1 0 -1 0 0 0O

Therefore a basis of H3(A/I) is given by the homology classes of the cycles
21 +2z6, 23+28, 24+29, 25—27, Z10, 211

Note that H3(A/I) has no basis consisting only of the homology classes of mono-
mial cycles.
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Similarly one computes Hy(A/I) and Hs(A/I). The cycles for Hy(A/I) which
are not of the form w'ejen(y), u € G(I), are z re4e5 — T1T4€2€5, T1T3€5€6 —
I3T5€1€¢ and ToX3€4€5 — T3T4€2€5.

Finally, H4(A/I) is generated by [1‘11’362646566 - $3$5€1€2€4€6], and also has
no monomial basis.

We could consider the stable closure of a weakly stable ideal which is gen-
erated by monomials of different degrees. However, the following simple example
shows that in general H;(A/I) cannot be considered as a subspace of H;(A/I®).

ExAaMPLE 2.6. Consider the ideal I C K|[z1,...,zs] generated by u; = z1z224,
Uy = T1T3Tq, U3 = T1T2T3T5, Uy = T2T3T4xs and us = zox3z4x6. Then I is weakly
stable and I°t = (I, z1z273). Here Ay = {2}, A3 = {4}, Ay = {1} and A5 = {1,5},
so that by 1.4 B24(A/I) = 1 and Ba5(A/I) = 4. On the other hand, H(A/I)
has a basis consisting of the homology classes of z; = z1zoezeq, 20 = TiT3€0€4,
23 = ToX3T4€1€5, 24 = ToX3Tee1€g and 25 = ToX3T4€566. USiIlg the exact sequence
(1), we obtain that the homology classes of z; — 25, 23, 24, 25 and z = TizoT3€e4€5
form a basis of Hy(A/I). Note that [z] maps to 0 in Hy(A/I).
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