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Introduction

For a given CW-spectrum E there is an associated E-homology theory E X=mx
(EANX). A CW-spectrum Y is called E -local if any E,-equivalence 4 — B induces
an isomorphism [B,Y],=~[4,Y],. For any CW-spectrum X there exists an
E -equivalence ip: X — X such that X is E -local. X is called the E ,-localization
of X. Let KO and KU be the real and the complex K-spectrum respectively. There
is no difference between the KO,- and KU ,localizations, and so we denote by
Sk the K ,localization of the sphere spectrem S=X° According to the smashing
theorem [2, Corollary 4.7] the smash product Sy A X is actually the K -localization
of X for any CW-spectrum X.

In this note we shall be interested in the K ,-local type of certain orbit manifolds
D(gy™* introduced as a filtration of a classifying space of the dihedral group D,
in [8]. The manifold D(g)™" is defind as follows: Let g>3 be an odd integer,
and D, the dihedral group generated by two elements a and b with relations
a’=b*=abab=1. Consider the unit spheres S?™*! and S' in the complex
(m+1)-space C™*! and the real (/+1)-space R'*!. Then D, operates freely on
the product space S?"*!x S! by

a-(z,x)=(zexp(2ny/ —1/9),x), b (z,x)=(, —x)
where Z is the conjugate of z. The associted topological quotient spaces
D(q)2m+l,l=(S2m+1 xsl)/Dq=(L(q)2m+1 XSI)/ZZ,
D(gy*™ =(L(g" x §')/ Z, < Digy™* !
are defined where L(g)>"*'=L"(q) is the (2m+ 1)-dimensional lens space modgq
and L(q)*™=L%(q) its 2m-skeleton.
The group KU°D(g)™' is decomposed to a direct sum of KU°-groups of
suspensions of stunted lens spaces modg and mod2 (cf. [5, Theorem

3.9]). Moreover KO°- and J°-groups of D(q)™' have a quite similar direct sum
decomposition (cf. [10] or [7]). In section 1 we shall show that D(g)™! itself has
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such a decomposition as K,-local spectrum. The K,-local type of the stunted
real projective space RP"/RP"=RPy,, has been determined explicitly by
constructing small cell spectra in [13]. In section 2 we shall study the K -local
type of the stunted lens space L(p)"/L(p)’=L(p);., for an odd prime
p. Consequently we can observe the K -local type of D(g)™' more explicitly in
the special case that g is an odd prime p.

1. The K, local type of D(g)™'

Let o/ be the category of abelian groups with stable Adams operations y*
(ke Z)(cf.[4,5.1]). Foran arbitrary set P of primes, let .« p, be the full subcategory
of Zp-modules of the abelian category .. Then the inclusion functor &/ p, < &
has the obvious left adjoint ( )J®Zp,. Assume that P is a finite set of primes. By
the Chinese remainder theorem there exists an integer » such that: r generates
(Z/p*)* for each odd pe P; r=+3 mod 8 when 2€ P; |r|>2 when P is empty. Let
o (p) be the category of Z p-modules with automorphism y” and involution yy ~*. By
[4, 6.4] the forgetful functor .« ) — #/{p, is a categorical isomorphism. Moreover
if 2¢ P then we don’t need the involution ™! in the abelian category o/, (cf.
[3, Proposition 5.7]).

For any prime p let us fix an integer r as above. Denote by Ad, the fiber
of the Y% —1:KO,, — KO, where % is the stable real Adams operation. Then
we have the following cofiber sequences (cf. [2, section 4]):

VRr—1

4 R
Ady — KOy — KO(p)"ElAd(p)

la
Skp) = Adipy = Z71SQ - 'S,

For an odd prime p the first sequence can be replaced by
ve—1

Ad, - KU, — KU(p)"ElAd(p)

because Ad,,, also arises as the fiber of Y¢—1:KUg, — KU, Using this fact we
can easily verify the following lemma (cf. [3, Theorem 9.1]).

Lemma 1.1. Let X and Y be CW-spectra such that KUyX and KUY are odd
torsion groups and KU, X=KU,Y=0. If KU,X and KU,Y are isomorphic in the
abelian category o/ then X and Y have the same K ,local type.

In order to describe the K,-local type of D(g)™' we first consider the lens
space L(g)". Recall that

KU°L(g)>"* '~ KU°L(g)*"=Z[0]/(e™*',(1 + 6)1—1),
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KU'L(gy*"*'~Z, KU'L(g)*"=0

(cf. [6] or [11]) where o=[y]—1 for the canonical line bundle y over L(g)*"*!
(which is induced by the natural surjection n:L(g)*™*! — CP™) or its restriction
over L(g)*™. Therefore the stable Adams operation Y& operates on KU°L(g)*™ as

Yeo=(1+o)f~1.

Since KU°L(g)*™ is an odd torsion group, there exist subgroups 4™ and B™ on
which the conjugation ¢! acts as 1 and —1 respectively (cf. [4, Proposition 3.8])
and a direct sum decomposition KU°L(q)*" =~ A™@®B™ in .. (In this case A™ and
B™ are generated by the elements o+VYc'c and (6—yclo)o+yclo) ™! (i>1)
respectively (cf. [5, Lemma 3.3]).) From [4, Theorem 10.1](or [3, Proposition 8.7])
and [4, Theorem 11.1] there exist certain finite spectra SA™ and SB™ such that
KU%SA™~A™ KU°SB"~B™ and KU'SA™"=KU'SB"=0 in /. Then the lens
space L(g)*™ has the same K ,-local type as SA™V SB™ by Lemma 1.1. We obtain
the KO ,-groups by the Bott and Anderson cofiber sequences as follows:

A™ fori=3 mod 4

B™ fori=1 mod 4
0  otherwise ’

KO,SA™ =~ { .
0 otherwise

, KO,.SB'”;{

Let f: 2™ — L(q)*™ be the attaching map of the top cell in L(g)>*"*!. Consider
the associated map f=(f,fp):Z*" = SA™VSB™ such that [ Af=¢f where
@:SA™V SB™ — Sy ANL(g)*™ is a K ,-equivalence. Since KO,SA™=0 for i#3mod 4,
f.e[Z2™ Sk ASA™] =0 when m is even. Similarly fze[Z?*™, SxASB™]=0 when
m is odd. Therefore L(g)*"*! has the same K,-local type as the cofiber
AN=Cf,)VSB™ when m is odd or C(f)=SA™V C(fg) when m is even. We
shall often denote SA™ and SB™ by SA4 and SB respectively for simplicity.

Lemma 1.2. Let ix: Sy — KO denote the K ,-localized map of the unit1: S — KO.

i) IfI=1 mod 4 then [Z'SA,SxNSA]=0=[Z'SB,Sx A SB], and if I=0mod 4
then 1, :[X'SA,SxNSA] - [Z'SA, KON SA] and 1,:[Z'SB, Sy A SB] - [Z'SB, KO
A SB] are monomorphisms.

ii) IfI=3 mod 4 then [X'SA,Sx NSB]=0=[Z'SB, Sx A\ SA], and if I=2 mod 4
then 1y, :[X'SA,SxNSB] - [Z'SA,KONSB] and 1,:[Z'SB,Sx\SA] — [Z'SB, KO
NSA] are monomorphisms.

Proof. i) There is an exact sequence

[Z!SA4,27'KO,) A SA] — [E'SA, Sy A SA] = [E'S4, KO, A SA].

It is easily verified that [Z'S4, KO A SA]=0 when /=1 or 2 mod 4 because KO;S4 =0
for i#£3 mod 4. Now our result is immediate.
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ii) is shown similarly.

Consider the Z/2-action on L(g)*™ induced by the complex conjugation
t:L(g)*" - L(g)*", [z]~[Z].

By definition t*s=yc'c and yc' operates on SA™ and SB™ as 1 and —1
respectively. Therefore we obtain the following commutative diagram after
replacing the K ,-equivalence ¢:SA4™V SB™ — SxA L(g)*™ suitably necessary:

t

SkAL(@’™ - SkAL(g™

1? 1°
1v(-1)
SA™V SB™ - SA™VSB™.

This can be also proved by induction on m using Lemma 1.2.
For the orbit manifold D(g)™'=(L(q)" x S')/Z, there is a fibering

k p
L(g/" - D(g/™' - RP".

Since the projection p has a right inverse RP'=D(q)°"' = D(g)™" (cf. [5, Lemma 1.7])
we observe that

D(g)™'=RP'V D(g)T

where D(q)7-6=D(g)™'/ RP".
In order to determine the K ,-local type of D(q)?"' by induction on / we need
- the following cofiber sequence (cf. [10]):

-1 ki a
= L(gY™ - D)l ! - D(g)%' - Z'L(g)*™
Note that gm,=VAp:Z'L(g)*™ — Z'L(g)*™ where A,=idV (tAf):Z'L(g)*™V Z'L(q)*"
- X'L(g)*™V Z'L(g)*™ for the antipotal map t of X', p is the comultiplication of

T'L(g)*™ and V is the folding map (cf. [5, Lemma 1.11]). Therefore we may regard
that g;m,: X'SA™V Z!SB™ — 'SA™V X'SB™ is expressed as

_ 0Vv2 ifliseven
WH=9v0  iflis odd.

The KU-cohomology of D(q)3"' is given as follows (cf. [5, Theorem 3.9]):
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[ ‘ even odd
KU°D(g)}" A"®(B"®KU°TY) A™
KU'D(g)}%" 0 A"QKU!'S!.

The components A™ and C"® KU *L' (where C=4 if [ is odd and C=B if [ is even)
are given via the canonical inclusion k: L(g)*™=D(q)}"s° = D(q)i"' and the natural
projection g,: D(q)}"' — X'L(g)*™ respectively.

Proposition 1.3. D(q)3"' has the same K ,-local type as SA™V E'SB™ if [ is
even and SA™V Z!SA™ if | is odd.

Proof. i) The “/=0 mod 4” case: Since the conjugation acts on KU°D(q)}"'
as Yc'=1on A™ and yc'=—1 on B"QKU°T!, KU°D(q)}""' is decomposed to
A™ and B"®KU°Z! in the abelian category «/. From Lemma 1.1, D(g)}"' has
the same K ,-local type as SA™V Z'SB™.

ii) The “/=1 mod 4” case: We consider the following cofiber sequence

-1

q
=1L D@ S Dl L™

Here we can replace X'"'L(g)*" and D(q)i%'"' by Z'"'SAVI'"!'SB and
SAVZ!"1SB respectively from i). We set:

(x z) (u w)
Ty_q4= N =
-1 y2 q1-1 b 1

where all of x,---,v and w become trivial if they are carried from [X,SxA Y] into
[X,KOAY] via the map 1x:Sx— KO. From Lemma 1.2 x and u must be

.. . 0 ..
trivial. Sinceq,_ 7 _, =< ,y and w are also trivial. Thus we can express as

02

. _<0 z) _(0 0>
1-1= 02) qd-1= v 1)

Consider the following commutative diagram:
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780
TUISA S SA - SAVE'SA - ¥'sd
! l ! |
S ISAVEISE S SAVE-ISE > SgAD@R S SISAVE'SE
! !

2
T!"1SB ~ x!"'SB

Now we can determine the K,-local type of D(g)i"' as desired and we can take

15 01
k=), q= .
’<00> g <00)

As is shown in ii) we can express as

iii) The “/=3 mod 4” case:
00
Qi+ 1 =( ) Our result is proved similarly to the case ii).

iv) The “/=2mod 4” case: From Lemma 1.2 we can set n,_1=<(2) x>‘
y

01 20 . L .
Since q,_, =(0 O) and q,_ln,_1=<0 0), y is trivial. For the canonical inclusion

k:L(g)™ — D(g)7:6"' we notice that k| SA=(1,%):S4 - SAVE'*'SA. Then x must
be trivial because k,;, km,_;=0. Now our result is immediate.

ReMARK. For the case iv) the subgroup A™ < KU°D(q)?"' is the image of
representation ring of D, (cf. [5, Section 2]). Therefore KU°D(q)i7%' is also
decomposed to A™ and B"®KU°Z! in o/. Then we can prove the case iv) in a

similar way to the case i).

Let RPmI'\*1=RP™*!*1/RP™ be the stunted real projective space. Consider
the following commutaive diagram:
Zm+l+ 1

l‘/o lv

Zm+l+l

Bo
Em+1 N ZIRP:+' - ZIRP:III

I l l

m+1+ 1

B
zm+1 - ElRP:-i-H-l — EIRPM+1

where f[’s are the bottom cell inclusions and y’s are the top cell attaching
maps. Recall that K ,-local type of 'RP3:{}" has the same K,-local type as a
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certain small cell spectrum VSZ /2" such that KU,VSZ/2"~Z /2" on which Yz ! =1
and KU,VSZ/2"=0 (see [13, Theorem 2.7] for details). Then X!RP3i}3"+1
T'RPET3" and T'RPEI3"*! have the same K,-local types as the cofibers
of the associated maps y:E**2"*1 L, ySZ/2" B:Tx%2 5VSZ/2" and BoVy,:
T2s+2y p2st2ntl , yYG7 /2" respectively, which are given explicitly in [13, Theorems
27, 2.9, 3.8]. Using these associated maps we can give the K,-local type of
D(q)iw+ ', as follows.

Theorem 1.4.  D(q)}"s" "' has the same K ,-local type as the spectra tabled below:

m [ D(g)ie
even odd SA™V ZISA™V ZmRpm it
even  even SA™V CZ' fg, =™ 1y)
odd even ZISB™V C(f, ™1 p)
Ja 0
odd  odd C 0 zHf,

Zm—lﬂo Zm 1y,

Proof. We have the following cofiber sequence (cf. [5, Lemma 1.12]):
F
= IRPREL! - Dig)s' - D@ .

Here we may use SA™V Z'SC™ instead of D(q)}"' by virtue of Proposition 1.3.  When
m is odd we consider the KZ[1/2],-localization of the following commutative
diagram:

S
22m N L(q)lm — L(q)2m+1
lko lk lk
F
E"IRPRIY o D@ — Dghtnt !

where k and k, are the canonical inclusions. Then we may regard as
1b
ko=(1,0):Z2m > 2my I IRPRHIYL f=(f,.0): 22" - S4A™V SB™ and k=(0 0):
SA™V SB™ —» SA™V Z'SC™. Therefore F|X?™ is expressed as (f,,0):T*™— SA™
vEiscm,
When m+/ is even we consider the KZ[1/2],-localization of the following
commutative diagram:
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S
22m+l - ZIL(q)2m - ZIL(q)2m+1

ly lm lm
F
ym-= lRPzill+l — D(q 2ml - D(q)f:ré+1,l

where 7 is the top cell attaching map and =, is the natural projection. Then we
may regard as y=(0,1):Z2m* 5 EZmoIRpmtl VIt £ (£.,0): T2 L TISC™
VE'SC™ where C'=B if [ is odd and C’'=4 if [ is even, and n,=<(2) ):Z'SC"’
*
VEIISC™ —» SA™V EISC™.  Therefore F|Z?™*' is expressed as (0,2f;):Z?m*!
- SA™VE!'SC™.  Consequently D(q)i%*"! has the same KZ[1/2],-local type as
SA™VESA™, SA™VE'C(fy), C(f)VZI'SB™ and C(f)VI'C(f,) according as
(m,1)=(0,1), (0,0), (1,0) and (1,1) mod 2 respectively. From the previous observation
we can determine the K ,-local type of D(q)}"%" ' as desired.

Let n and k be integers such that 0<n<m and 0<k</ We set:
D(g)yii=D(@)™" [ (D(g)™*~' v D(g)"~ ).

This space is the Thom complex of a canonical bundle over D(g)" ™' ~* when n
iseven. We shall extend Proposition 1.3 and Theorem 1.4 to the case of D(g)['y. In
order to state the extended theorem we express the K,-local type of the stunted
lens space L(q)y.=L(q)"/L(q)" as follows: L(q)z,,+l has the same K-local type
as SA™V SB" where the conjugation acts as /¢ ' =1 on KU°SAT~ AT and y¢c' = —1
on KU°SBr=~By. L(g)srt!, L(g)3m , and L(g)3m}} have the same K ,-local types
as the cofibers of the following maps respectively:

f=(fA,fB)122m—’ AV SBy,
g=(24,8p):Z*"* " >S4}V SBy;
fVg:Zimyz2ntl o, S4my SBr.

Here f,=0 if m is even and fz=0 if m is odd, and g,=0 if n is even and gz=0
if n is odd.

Let (Z*) be Z* if k is odd and * if k is even. Then we can choose the map
BVy:ZI(EFHYV(EY 5> VSZ /2! so that its cofiber C(BVy) has the same K ,-local
type as Z'RP.,, where i depends on k and /.

Theorem 1.5. i) D(q)3m!,, has the same K local type as T*SE]'VE'SCY
where C=A if | is odd and C=B if | is even, and E=A if k is even and E=B
if k is odd.

i) D(g)imttd, D(@)imt, . and D(q)imi}i have the same K, -local types as the
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cofibers of the following maps respectively:
F:X=Zm(EZmtkyy gm=1(gmtitly , FkSEmY EISCMV 2"~ 'VSZ [ 2},
G: Y=xr+1(zrtkyygn(entitly o SESEMV EISCV 2"V SZ /2,
H:XVY > Z*SE"VIISCrV I VSZ/2IVE" V' SZ ) 2

which are expressed as the following matrices:

0 0

f 0 g 0 fe 8k
= ~ ~ 0 fc 0 g
F = 0 fc |, G = 0 g ), H = By 0 0
B v B v 00 p v

where the maps BVy and B'VYy are taken such that the cofibers C(BV7y) and
C(B'V y') have the same K ,-local types as T"RPn 1LY and " ' RPI LYY respectively.

Proof. The casei)is proved similarly to the proof of Proposition 1.3. Consider
the following cofiber sequences (cf. [7, Lemma 3.11]).

F
m—1 m-+1+ 1 2m,l 2m+1,]
)Y RPLTG = D(@)ans 16— D(@)ans 1k
G
n n+1+1 2m,l 2m,l
Y'RPLGT — D@znv 1 D(q)2n+2,k'

By a similar argument to the proof of Theorem 1.4 we can show that the cofibers
C(F) and C(G) have the same K,-local types as the cofibers C(F) and C(G)
respectively. Moreover the cofiber C(H) has the same K,-local type as
CAFV G)=D(@)3 1k -

REMARK. S. Ko6no has independently studied the KO*- and J*-groups of
D(gq)™! in [7]. According to his computations the KO*- and J *-groups of D(g)r"
are also decomposed to the KO*- and J*-groups of the stunted lens spaces mod g
and mod2 when n is odd; but there is a case the J*-group doesn’t necessarily
have such a decomposition when # is even.

2. The K local type of L(p);

In this section p denotes an odd prime. Recall that the groups n;Sk,, =n.Sk®Z,
are isomorphic to the following: Z, for i=0; Q/Z,,=Z/p* for i= —-2; Z/p" for
i= —1 mod 2(p —1) with i# — 1 where r=v,(i+ 1)+ 1; and 0 otherwise (cf. [2]). For
t>0 with v,(f)>r—1 there exists an element «,,:X*?"~ V"1 5 3% of order p" in
the image of J-homomorphism J:#,SO — 7, X% Let SZ/p” be the Moore spectrum
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of type Z/p", and i,:X° > SZ/p" and j,:SZ/p" - T! denote the bottom cell
inclusion and the top cell projection. Then there exists an Adams’ K ,-equivalence

A, X VSZ /"~ SZ /p"

such that j A4, ,i,=«,, (see [1, Section 12]). For simplicity we shall often omit the
subscript r such as i=i,, j=j, and a,=a,, when r=v,(f)+ 1.

Let X be a CW-spectrum such that KU, X~Z/p" and KU, X=0. We fix an
integer k such that it generates (Z/p?)*. Then the Adams operation Y% on KU, X
is expressed as Yt =k for some integer ¢ because k also gererates (Z/p")*. This
implies that X has the same K ,-local type as £*SZ /p" for some t (0<t<p"~'(p—1))
(cf. [4, Proposition 10.5]).

Theorem 2.1. Let m and n be integers such that m—n=r(p—1)+s (0<s<p—1,
r>0). The function e(k,j) is defined by e(k,j)=2kp’—1 when j>0 and
e(k, —1)=2k—1. Then L(p)jr,, has the same K,-local type as

-1
p\/ ze(n + i,r(i))Sz/pr(i) +1

i=1
where r())=r if i<s and r()=r—1 if i>s.

Proof. If m=n+1 then L(p)3"1? is actually X?"*'SZ/p. Assume that
L(p)37,, has the same K,-local type as the desired wedge sum of Moore
spectra. Consider the following cofiber sequence

4
IIMSZ [p - Lp)inss — Lp)5 1

It is easily verified that [Z?™SZ/p, SgAZeC*irdSZ /pr®@*17=0 for i#s+1.
Therefore the K,-localized map g may be expressed as g=(0,---,0,g,4,0,-:-,0)
where g, :Z2"SZ /p - SxAZentstir-D§7 /b Recall that

s+1 p—1
KU_Lpit=@Z/r"'® @ Z/p
i=1

i=s+2
(cf. [6] or [11]). Hence KU_,C(g,,,) must be Z/p'*'! on which yk&

=1/k"***! mod p and y£*P=y¥. This implies that C(g,, ) has the same K ,-local
type as Ze(n+s+ l,r)Sz/pr+ 1'

REMARK. Recall that each M € o/, is a direct sum of its subobject M e T'4%,
for i=0,1,---,p—2 (see [3, Proposition 3.7]). We can assert that KU_,L(p)3",,

p_l i . . .
=@ Z/p®*! as an abelian group gives rise to a decomposition in ./ because
i=1
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Z'L(p)ir., is modp decomposable (see [10, Proposition 9.6]) and its Atiyah-
Hirzebruch spectral sequence collapses. Using this result we may also obtain the
above theorem immediately.

In order to investigate the K ,-local type of L(p)3™! ! we shall describe generators
of the group [E*?~V-1SZ/p, S,ASZ/p"). We first assume that t>0 and put
g=v,()+1. For the map a,=a,,:X*P V"1 530 of order p? its coextention
&=, ,:Z*?~ 1 > SZ/p%is given by A, ji,. Using the obvious map n=n,,:SZ/p*
- SZ/p" we obtain a generator nd, (denoted simply by &) in the group
[Z2@=D S ASZ /p 1= Z /p™"*9 such that jd,,=a,, if g<r and j,&,,=p? "a,, if
g>r. The map i,«, generates the group [Z?**~ V=1 §ASZ /p 1= Z/p™"r9 We
may assume that o, , =p?~ o, : Z2®~ D=1 , 30 Then its extension &, , : ¢~ V157
/p — X° is given by j,A, n; .. Note that p~ ‘i, =(t, A7, )iy : Z*P~ V"1 - §Z/p".
Now we can give two generators of the group

[Z2r=D=18Z /p, SKASZ[p1=Z |p®Z/p

for t>0 as follows (cf. [1, Theorem 12.11]): the first component is generated by
& Jjy; the second component is generated by i, , and a,An according as r>gq
and r<gq respectively. Moreover it is easily verifed that these generators have
the following relations: i&, ,=d,j, for r<gq, i =&, +o,An for r=qg; and
& ji=o,An for r>gq.

Consider the group 7m_,,,—y)-1Skp for t>0. Since & =A, i, T~
— SZ /p® we obtain a K ,-equivalence e,: 2'®~V*! - ((&,) such that e,j,=icA4, , and
Jjce,=p? for the canonical inclusion ic:SZ/p? — C(d@,) and the canonical projection
Jo: Q@) —» E*P~b*1 Moreover there exists a K,-equivalence A_,,:SZ/p?
- X 'C@)ASZ/p? such that (1Aj)A_, ,=ic. Set a_,=iciy:Z*®~ V715 A_3°
=X~ 2r~D-1(g) which may be regarded as a generator of the group
T_2ep—1)-19k(p)- BY using a_, instead of «, in the previous discussion we can
give two generators of the group [Z~2°¢~V-18Z /p S ASZ/p1=Z/p®Z/p for
t>0 when SZ/p" is replaced by A_,SZ/p'=2"2¢-V"1CQ&)ASZ/p".

Denote by L!; (¢#0) the spectrum constructed as the cofiber of the map
g, An:Z2P- V187 /n —+ ASZ /p" where ASZ/p"=SZ/p" for t>0. Recall that
KUyClo)=Z®Z and KU,Cli,x)=Z@®Z/p" on which the Adams operations Y&
act as

. 1/k'e—D 0
Ye= tp—1 tp—1
(l—k(" ))/qu(p ) 1
with g=v,()+1 and KU,C(a)=KU,(,%)=0 (cf. [1]). Then the KU,-group of
L}, is given as follows:
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1kt~ o)

t o~ ro ok __
KUL, 1 =Z/p®Z]/p"; wc_(p"l(l K@)/ pajo=1 |

KU1L:’1 =O.

For a given specturm X, we shall denote by AX a CW-spectrum having the same
K ,-local type as X.

Proposition 2.2. Assume that t#0 and put q=v,()+1 and t=xp?~'. Let
1:S— Sx be the unit of Syx. For each map g:T*P~V-1ASZ /p - ASZ/p" its
cofiber C(g) has the same K -local type as the following specturm:

i) The “q=r" case: SZ/p"NVZ*?~USZ /p when 1Ng=0; T*P~VSZ/p"*! when
INg=0,,j; Li, when iNg=o,Am; and Z2®~*SZ /p"*1 when iAg= o, An+ud,j
for a unit u of Z/p where w=—u"'xp"" ' if g>r and w=(1—u"Yxp !
if g=r,

ii) The “g<r” case: SZ [p"N X*P~VSZ /p when 1Ng=0, SZ/p"** when1\g=id, ,;
Lt when iNg=8,,; and Z*P~VSZ |p™*! when 1\g=id, , +ud,j for a unit u of
Z/p where w=up"~'.

Proof. Use the following commutative diagram:

y2up-1) _ y2tp—1)
° ¢
gi
FAP-D-1 5 ASZ /P - Clg) - THED
I I i |

g .
zzr(p—l)—ISZ/p - ASZ/p' N C(g) - EZt(p—l)SZ/p'

i) It is sufficient to show the case g=o, An+ud,,j. Note that gi=p"~'ia, and
(p):Z—> Z®Z/p'. Hence we

¢4 KU Z2®~ D KU, C(p" Yi,,) is expressed as
u

obtain that
KU CR)=Z/p™*Y h=(1,—pu™"):Z®Z/p" > Z/p""",

and that % on KU,C(g) behaves as y&=1/k'"~V—p"(1 —k'®~ V) /ptuk'®~ D, Put
kP '=14yp and t=xp?™!. Then Yl=1—xppi+u‘xyp'=1—zyp"=1/k*®" 1
where z=—u"'x if ¢g>r and z=(1—u"Y)x if g=r.

i) From the relation &, ,j=a, A= it follows that C(&,.)=L; . Since C(i%, ,)

has the same K,-local type as SZ/p"*' we can take ¢*=(II’>:Z—»Z®Z/1)'

~ KU, Cl(in,,;) when u=0, and generally ¢ , = (1 N p' . ):Z —Z®Z/p". Therestof
P
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proof is similar to 1i).

We shall next describe generators of the group
[Z7'SZ/p, SkNSZ/p1=Z|p®Z|p.

Set B,=(d;,A)ic:Z7'SZ/p—>AoSZ/p"=X"2**'SZ /p" A\C(@,) where i.:SZ/p
— C(&,) is the canonical inclusion. Using the relations ici,=o_,; and (¢; Al)a_,
=(j,A1)B,i;, we obtain that

N .. K 1 0
KU C(Bi)=Z®Z/p"; wc_(p'_z(k""l—l)/k”_l 1>~

Therefore B, is a generator of the group [Z7'SZ/p, SxASZ/p'] and another
generator is cleary ij,;. Note that iz A, is identified with the element p"~!ij, of
the group [Z7'SZ/p, KOASZ/p"] where ix:Sx = KO is the K ,-localized map of
the unit of KO.

So we replace the generator 8, by B,—i;j; when r=1. Denote by L?, the
spectrum constructed as the cofiber of the map f,. The KU,-group of L?, is
given as follows:

1 0
0 ~ r. k _
KUOLr,1=Z/p®Z/p ’ wc_(p’_z(k"_l—l)/kp—l 1)

KU,L?, =0.

r1

Similarly to Proposition 2.2 we can show the following proposition.

Proposition 2.3. Let 1: S — Sk be the unit of Sy. For each map g: X" 'ASZ /p
— ASZ [p" its cofiber C(g) has the same K ,-local type as the following spectrum
SZ/p'NSZ|p when 1Ng=0; SZ/p"*' when 1Ag=ij; LY, when 1Ag=p,; and
T2e-wS7Z /o™ when 1A g=PB,+uij for a unit u of Z/p where w=u"'p"" ! if r>1
and w=—u"! if r=1.

Set g=v,(f)+1 and a=min(r,v,(t)+1) for t#0. Denote by M;, N; and P,
(t#0) the spectra constructed as the cofibers of the maps p® lia,:X2P~ D1
- ASZ/p", p* oy, ZHPV7ISZ /p" 5 AZC and (1Amy 418 2P0 S5 ASZ
/p"t! respectively. Evidently N}=X*®~YVDM! where DX denotes the Spanier-
Whitehead dual of X. For ¢ >0 we consider the following commutative diagram:
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=1SZ/p = 271SZ/p’

X b
3 2tp—1) _:: SZ/p - C(&t,l)
I I !

Z2t(p—l)_> SZ/pr+l — P:.

The map ¢ may be regarded as «_, j,: X~ 'SZ/p" - C(d,,). Therefore P has the
same K,-local type as T?~D*IN=! when g<r and T*?~V*1yS§Z/p" when
g>r. This relation still holds in the case of t<0 similarly. In the t=0 case
MQ=%° and M is defind as the cofiber of the map B,i;:Z~ ' - A,SZ/p" when
r>1. We may also define N? and P? by the equalities: N°=X"'P°=DMP.

Theorem 2.4. Let n and m be integers such that m—n=r(p—1)+s (0 <s<p—1,
r>0). Put t=r—(n+s+10)p " 2+p 3+ --+1) and I=n @' 4+p 3+ +1)
where we understand p"~2+4p 34 ... +1=0 when r<1. The function e(k,j) is
defined by e(k,j)=2kp’—1 when j>0 and e(k,—1)=2k—1. Then
i) Lp)srt! has the same K -local type as the following spectrum:

( \/ Ze(n+i,r(i))S2/pr(i)+1)v2e(n+s+l,r—1)Mr! when m+1$0 mod pr,

1<i<p-1t,i#s+1

Lp)im, v z2m+t! when m+1=0 mod p".
ii) L(p)i" has the same K -local type as
(VPZZEe0 OIS Z O+ 1)V SN ywhen n#0 mod p,
L(p)3m, VX2 when n=0 mod p".
Proof. i) Consider the following commutative diagram:
x2m 1’ LpYomsr = Lpints
I I !

S2SZ/p > LV — LOEHT -

As is shown in the proof of Theorem 2.1 the bottom cofiber sequence is essentially
given by the following cofiber sequence:

8s+1
Zzt(p—l)—lsz/p N A,SZ/p'—'Ez(p—l)wASZ/pH'l
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where w=(n+s+1)p""!. In the r#0 case we set g=v,()+1. Note that
m+1=w mod p" when g>r, m+1=w—t mod p" when ¢g=r, and m+1#0 mod p"
when g<r because m+1=tp—1)+w. On the other hand, it is immediate that
r=2, n+s=1 and hence m+1=w=2p in the t=0 case. Since the cofiber
C(g,+ ) has the same K local type as £*P~"SZ/p"*! we can determine the
form of g,,, uniguely up to K, -equivalence, by means of Propositions 2.2 and
2.3. In fact the map g, is chosen as follows: &,,j if “g>r and w=0 mod p”™
or “g=r and w=¢ mod p"’; o, An+ud,,j if “9>r and w#0 mod p™ or “¢g=r and
w#t mod p™’; i&, if “g<r and w=0 mod p"”; id, +ud, j if “g<r and w#0 mod p"”;
and B, +uij if “¢4=0" where ueZ/p is a suitable unit. Therefore the cofiber
C(g+ 1)) has the same K -local type as M; when m+1#0 mod p', but it has the
same K ,-local type as the wedge sum SZ/p"VE*?~D when m+1=0 mod p".

ii) Consider the following cofiber sequence

h
Lp)iw = L)z = Z2"* 1.
The dual map Dh has already been given in i), so our result is immediate.

REMARK. In the case ii) we may assert that L(p)3y has the same K,-local
type as the wedge sum T ~DPp v\ /PZ2Femtirdgz / pr@+1 in any cases.

Theorem 2.5. Let rs.tlelk,j) and r(i) be the integers given in Theorem 2.4
which depend on m and n, and put t=r+1—n(p" '+ .- +1), A=n@EP" "1+ --- +1).
Then L(p)¥m*! has the same K -local type as the following specrum X:

i) When m+1=0mod p", X=L(p)dmy xm+1,
ii) When n=0 mod p’, X=L(p)im} vz
iii) When m+1, n£0 mod p" and m—n+1£0 mod p—1,

X=( \/ Ze(n+i,r(i))sz/pr(i)+l)vze(n+s+l,r—l)M:Vz2ner'

1<isp—1l,i#s+1

iv) When m+1, n#£0 mod p" and m—n+1=0 mod p—1,

( \/ Ze(n+i,r(i))sz/pr(i)+l)vZe(n,r)c(pa—lir+1atvu&_l‘l).

1<i<p-2

where a=min(v,(t)+ 1, r+1) and ue Z/p is a suitable unit.

Proof. The cases i), ii) and iii) are immediately shown by use of Theorem
24. To show the case iv) we consider the following commutative diagram:
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T = pm
Y !

20 5 1ppn, S Lo
l v !

o Lt - Lt

By Theorem 2.1 we may decompose L(p)3r—, as the wedge sum \/PZ2E°"+i0SZ
/P VE™ISZ [pt!. From Theorem 2.4 i) we can take map f,_, =p° lio,: Z*"
— X2 1A SZ /p*! with 2w—1 =e(n,r)=2np"— 1 because 7 #0 in the case iv). Since
Z?"N} has the same K-local type as ¥~ 'P* we may take g,_, =u(1Am)d_, :
F2-1, 32w-1A_,SZ/p" for some unit ue Z/p. Then the (p—1)-th component
of L(p)sm*! has the same K -local type as the cofiber of the map

PPl Vu(l Am)d_,  :E2mVE T 5 B2WTIA §7 /prtd

after compositing suitable K,-equivalences A.X°— AX% and A_,2° - A X° for
some integer v if necessary (cf. [14]).

REMARK. Recall that the J-group is given as the cokernel of y*—1. Note that

Z/p*®Z /pmnan forg<s

2t(p— 1) psl ~
Je Nr®Z(p)={Z/pq—s+1+min(r,v)®Z/ps—l fOI'qZS

where g=v,()+1, s=v,(l)+1 and v=v,(/—#)+1 (=s when ¢>s) and J'N/®Z,, =0
for i#0 mod 2(p—1). Applying Theorems 2.1 and 2.4 ii) we can compute J *L(p)2™
and hence J*L(p)?™*! immediately although they have already been calculated in
[9]. Note that the K,-local type of L(p)?™ is classified by the J-group J*L(p)?™
(cf. [3, Lemma 6.7]).
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