| Title | The K*-Local type of the orbit manifold <br> $\left(S^{2} \mathrm{~m}+^{1} \times \mathrm{S}^{1}\right) /$ Dq by the dihedral group Dq |
| :---: | :--- |
| Author(s) | Nishimura, Yasuzo |
| Citation | Osaka Journal of Mathematics. 1996, 33(3), p. <br> $775-791$ |
| Version Type | VoR |
| URL | https://doi.org/10.18910/10099 |
| rights |  |
| Note |  |

Osaka University Knowledge Archive : OUKA
https://ir. library.osaka-u.ac.jp/

# THE $K_{*}$-LOCAL TYPE OF THE ORBIT MANIFOLD $\left(S^{2 m+1} \times S^{\prime}\right) / D_{q}$ BY THE DIHEDRAL GROUP $D_{q}$ 

Yasuzo NISHIMURA

(Received September 6, 1995)

## Introduction

For a given $C W$-spectrum $E$ there is an associated $E$-homology theory $E_{*} X=\pi_{*}$ $(E \wedge X)$. A $C W$-spectrum $Y$ is called $E_{*}$-local if any $E_{*}$-equivalence $A \rightarrow B$ induces an isomorphism $[B, Y]_{*} \cong[A, Y]_{*}$. For any $C W$-spectrum $X$ there exists an $E_{*}$-equivalence $t_{E}: X \rightarrow X_{E}$ such that $X_{E}$ is $E_{*}$-local. $X_{E}$ is called the $E_{*}$-localization of $X$. Let $K O$ and $K U$ be the real and the complex $K$-spectrum respectively. There is no difference between the $K O_{*}$ and $K U_{*}$-localizations, and so we denote by $S_{K}$ the $K_{*}$-localization of the sphere spectrem $S=\Sigma^{0}$. According to the smashing theorem [2, Corollary 4.7] the smash product $S_{K} \wedge X$ is actually the $K_{*}$-localization of $X$ for any $C W$-spectrum $X$.

In this note we shall be interested in the $K_{*}$-local type of certain orbit manifolds $D(q)^{m, l}$ introduced as a filtration of a classifying space of the dihedral group $D_{q}$ in [8]. The manifold $D(q)^{m, l}$ is defind as follows: Let $q \geq 3$ be an odd integer, and $D_{q}$ the dihedral group generated by two elements $a$ and $b$ with relations $a^{q}=b^{2}=a b a b=1$. Consider the unit spheres $S^{2 m+1}$ and $S^{l}$ in the complex $(m+1)$-space $C^{m+1}$ and the real $(l+1)$-space $R^{l+1}$. Then $D_{q}$ operates freely on the product space $S^{2 m+1} \times S^{l}$ by

$$
a \cdot(z, x)=(z \exp (2 \pi \sqrt{-1} / q), x), \quad b \cdot(z, x)=(\bar{z},-x)
$$

where $\bar{z}$ is the conjugate of $z$. The associted topological quotient spaces

$$
\begin{gathered}
D(q)^{2 m+1, l}=\left(S^{2 m+1} \times S^{l}\right) / D_{q}=\left(L(q)^{2 m+1} \times S^{l}\right) / Z_{2}, \\
D(q)^{2 m, l}=\left(L(q)^{2 m} \times S^{l}\right) / Z_{2} \subset D(q)^{2 m+1, l}
\end{gathered}
$$

are defined where $L(q)^{2 m+1}=L^{m}(q)$ is the $(2 m+1)$-dimensional lens space $\bmod q$ and $L(q)^{2 m}=L_{0}^{m}(q)$ its $2 m$-skeleton.

The group $K U^{0} D(q)^{m, l}$ is decomposed to a direct sum of $K U^{0}$-groups of suspensions of stunted lens spaces $\bmod q$ and $\bmod 2$ (cf. [5, Theorem 3.9]). Moreover $K O^{0}$ - and $J^{0}$-groups of $D(q)^{m, l}$ have a quite similar direct sum decomposition (cf. [10] or [7]). In section 1 we shall show that $D(q)^{m, l}$ itself has
such a decomposition as $K_{*}$-local spectrum. The $K_{*}$-local type of the stunted real projective space $R P^{m} / R P^{n}=R P_{n+1}^{m}$ has been determined explicitly by constructing small cell spectra in [13]. In section 2 we shall study the $K_{*}$-local type of the stunted lens space $L(p)^{m} / L(p)^{n}=L(p)_{n+1}^{m}$ for an odd prime p. Consequently we can observe the $K_{*}$-local type of $D(q)^{m, l}$ more explicitly in the special case that $q$ is an odd prime $p$.

## 1. The $K_{*}$-local type of $D(q)^{m, l}$

Let $\mathscr{A}$ be the category of abelian groups with stable Adams operations $\psi^{k}$ $(k \in Z)$ (cf. [4, 5.1]). For an arbitrary set $P$ of primes, let $\mathscr{A}_{(P)}$ be the full subcategory of $Z_{(P)}$-modules of the abelian category $\mathscr{A}$. Then the inclusion functor $\mathscr{A}_{(P)} \subset \mathscr{A}$ has the obvious left adjoint ()$\otimes Z_{(P)}$. Assume that $P$ is a finite set of primes. By the Chinese remainder theorem there exists an integer $r$ such that: $r$ generates $\left(Z / p^{2}\right)^{*}$ for each odd $p \in P ; r= \pm 3 \bmod 8$ when $2 \in P ;|r| \geq 2$ when $P$ is empty. Let $\mathscr{A}_{(P)}^{r}$ be the category of $Z_{(P)}$-modules with automorphism $\psi^{r}$ and involution $\psi^{-1}$. By [4, 6.4] the forgetful functor $\mathscr{A}_{(P)} \rightarrow \mathscr{A}_{(P)}^{r}$ is a categorical isomorphism. Moreover if $2 \notin P$ then we don't need the involution $\psi^{-1}$ in the abelian category $\mathscr{A}_{(P)}^{r}$ (cf. [3, Proposition 5.7]).

For any prime $p$ let us fix an integer $r$ as above. Denote by $A d_{(p)}$ the fiber of the $\psi_{R}^{r}-1: K O_{(p)} \rightarrow K O_{(p)}$ where $\psi_{R}^{k}$ is the stable real Adams operation. Then we have the following cofiber sequences (cf. [2, section 4]):

$$
\begin{aligned}
A d_{(p)} & \xrightarrow{\xi} K O_{(p)} \xrightarrow{\psi_{R}^{r}-1} K O_{(p)} \rightarrow \Sigma^{1} A d_{(p)} \\
& \xrightarrow{l_{A} A} A d_{(p)} \rightarrow \Sigma^{-1} S Q \rightarrow \Sigma^{1} S_{K(p)} .
\end{aligned}
$$

For an odd prime $p$ the first sequence can be replaced by

$$
A d_{(p)} \rightarrow K U_{(p)} \stackrel{\psi_{C}^{r}-1}{\rightarrow} K U_{(p)} \rightarrow \Sigma^{1} A d_{(p)}
$$

because $A d_{(p)}$ also arises as the fiber of $\psi_{c}^{r}-1: K U_{(p)} \rightarrow K U_{(p)}$. Using this fact we can easily verify the following lemma (cf. [3, Theorem 9.1]).

Lemma 1.1. Let $X$ and $Y$ be $C W$-spectra such that $K U_{0} X$ and $K U_{0} Y$ are odd torsion groups and $K U_{1} X=K U_{1} Y=0$. If $K U_{0} X$ and $K U_{0} Y$ are isomorphic in the abelian category $\mathscr{A}$ then $X$ and $Y$ have the same $K_{*}$-local type.

In order to describe the $K_{*}$-local type of $D(q)^{m, l}$ we first consider the lens space $L(q)^{m}$. Recall that

$$
K U^{0} L(q)^{2 m+1} \cong K U^{0} L(q)^{2 m} \cong Z[\sigma] /\left(\sigma^{m+1},(1+\sigma)^{q}-1\right),
$$

$$
K U^{1} L(q)^{2 m+1} \cong Z, \quad K U^{1} L(q)^{2 m}=0
$$

(cf. [6] or [11]) where $\sigma=[\gamma]-1$ for the canonical line bundle $\gamma$ over $L(q)^{2 m+1}$ (which is induced by the natural surjection $\pi: L(q)^{2 m+1} \rightarrow C P^{m}$ ) or its restriction over $L(q)^{2 m}$. Therefore the stable Adams operation $\psi_{c}^{k}$ operates on $K U^{0} L(q)^{2 m}$ as

$$
\psi_{C}^{k} \sigma=(1+\sigma)^{k}-1
$$

Since $K U^{0} L(q)^{2 m}$ is an odd torsion group, there exist subgroups $A^{m}$ and $B^{m}$ on which the conjugation $\psi_{C}^{-1}$ acts as 1 and -1 respectively (cf. [4, Proposition 3.8]) and a direct sum decomposition $K U^{0} L(q)^{2 m} \cong A^{m} \oplus B^{m}$ in $\mathscr{A}$. (In this case $A^{m}$ and $B^{m}$ are generated by the elements $\sigma+\psi_{c}^{-1} \sigma$ and $\left(\sigma-\psi_{c}^{-1} \sigma\right)\left(\sigma+\psi_{c}^{-1} \sigma\right)^{i-1}(i \geq 1)$ respectively (cf. [5, Lemma 3.3]).) From [4, Theorem 10.1](or [3, Proposition 8.7]) and [4, Theorem 11.1] there exist certain finite spectra $S A^{m}$ and $S B^{m}$ such that $K U^{0} S A^{m} \cong A^{m}, K U^{0} S B^{m} \cong B^{m}$ and $K U^{1} S A^{m}=K U^{1} S B^{m}=0$ in $\mathscr{A}$. Then the lens space $L(q)^{2 m}$ has the same $K_{*}$-local type as $S A^{m} \vee S B^{m}$ by Lemma 1.1. We obtain the $K O_{*}$-groups by the Bott and Anderson cofiber sequences as follows:

$$
K O_{i} S A^{m} \cong\left\{\begin{array}{ll}
A^{m} & \text { for } i \equiv 3 \bmod 4 \\
0 & \text { otherwise }
\end{array}, \quad K O_{i} S B^{m} \cong\left\{\begin{array}{ll}
B^{m} & \text { for } i \equiv 1 \bmod 4 \\
0 & \text { otherwise }
\end{array} .\right.\right.
$$

Let $\bar{f}: \Sigma^{2 m} \rightarrow L(q)^{2 m}$ be the attaching map of the top cell in $L(q)^{2 m+1}$. Consider the associated map $f=\left(f_{A}, f_{B}\right): \Sigma^{2 m} \rightarrow S A^{m} \vee S B^{m}$ such that $l_{K} \wedge \bar{f}=\varphi f$ where $\varphi: S A^{m} \vee S B^{m} \rightarrow S_{K} \wedge L(q)^{2 m}$ is a $K_{*}$-equivalence. Since $K O_{i} S A^{m}=0$ for $i \neq 3 \bmod 4$, $f_{A} \in\left[\Sigma^{2 m}, S_{K} \wedge S A^{m}\right]=0$ when $m$ is even. Similarly $f_{B} \in\left[\Sigma^{2 m}, S_{K} \wedge S B^{m}\right]=0$ when $m$ is odd. Therefore $L(q)^{2 m+1}$ has the same $K_{*}$-local type as the cofiber $C(f)=C\left(f_{A}\right) \vee S B^{m}$ when $m$ is odd or $C(f)=S A^{m} \vee C\left(f_{B}\right)$ when $m$ is even. We shall often denote $S A^{m}$ and $S B^{m}$ by $S A$ and $S B$ respectively for simplicity.

Lemma 1.2. Let $l_{K}: S_{K} \rightarrow K O$ denote the $K_{*}$-localized map of the unit $l: S \rightarrow K O$.
i) If $l \equiv 1 \bmod 4$ then $\left[\Sigma^{l} S A, S_{K} \wedge S A\right]=0=\left[\Sigma^{l} S B, S_{K} \wedge S B\right]$, and if $l \equiv 0 \bmod 4$ then $l_{K_{*}}:\left[\Sigma^{l} S A, S_{K} \wedge S A\right] \rightarrow\left[\Sigma^{l} S A, K O \wedge S A\right]$ and $l_{K_{*}}:\left[\Sigma^{l} S B, S_{K} \wedge S B\right] \rightarrow\left[\Sigma^{l} S B, K O\right.$ $\wedge S B]$ are monomorphisms.
ii) If $l \equiv 3 \bmod 4$ then $\left[\Sigma^{l} S A, S_{K} \wedge S B\right]=0=\left[\Sigma^{l} S B, S_{K} \wedge S A\right]$, and if $l \equiv 2 \bmod 4$ then $l_{K_{*}}:\left[\Sigma^{l} S A, S_{K} \wedge S B\right] \rightarrow\left[\Sigma^{l} S A, K O \wedge S B\right]$ and $l_{K_{*}}:\left[\Sigma^{l} S B, S_{K} \wedge S A\right] \rightarrow\left[\Sigma^{l} S B, K O\right.$ $\wedge S A]$ are monomorphisms.

Proof. i) There is an exact sequence

$$
\left[\Sigma^{l} S A, \Sigma^{-1} K O_{(p)} \wedge S A\right] \rightarrow\left[\Sigma^{l} S A, S_{K(p)} \wedge S A\right] \xrightarrow{l K_{t}}\left[\Sigma^{l} S A, K O_{(p)} \wedge S A\right] .
$$

It is easily verified that $\left[\Sigma^{l} S A, K O \wedge S A\right]=0$ when $l \equiv 1$ or $2 \bmod 4$ because $K O_{i} S A=0$ for $i \not \equiv 3 \bmod 4$. Now our result is immediate.
ii) is shown similarly.

Consider the $Z / 2$-action on $L(q)^{2 m}$ induced by the complex conjugation

$$
t: L(q)^{2 m} \rightarrow L(q)^{2 m}, \quad[z] \mapsto[\bar{z}] .
$$

By definition $t^{*} \sigma=\psi_{c}^{-1} \sigma$ and $\psi_{c}^{-1}$ operates on $S A^{m}$ and $S B^{m}$ as 1 and -1 respectively. Therefore we obtain the following commutative diagram after replacing the $K_{*}$-equivalence $\varphi: S A^{m} \vee S B^{m} \rightarrow S_{K} \wedge L(q)^{2 m}$ suitably necessary:

$$
\begin{array}{ccc}
S_{K} \wedge L(q)^{2 m} & \stackrel{t}{\rightarrow} & S_{K} \wedge L(q)^{2 m} \\
\uparrow^{\varphi} & & \uparrow^{\varphi} \\
S A^{m} \vee S B^{m} \xrightarrow{1 \vee(-1)} & S A^{m} \vee S B^{m} .
\end{array}
$$

This can be also proved by induction on $m$ using Lemma 1.2.
For the orbit manifold $D(q)^{m, l}=\left(L(q)^{m} \times S^{l}\right) / Z_{2}$ there is a fibering

$$
L(q)^{m} \xrightarrow{k} D(q)^{m, l} \xrightarrow{p} R P^{l} .
$$

Since the projection $p$ has a right inverse $R P^{l}=D(q)^{0, l} \subset D(q)^{m, l}($ cf. [5, Lemma 1.7]) we observe that

$$
D(q)^{m, l}=R P^{l} \vee D(q)_{1,0}^{m, l}
$$

where $D(q)_{1,0}^{m, l}=D(q)^{m, l} / R P^{l}$.
In order to determine the $K_{*}$-local type of $D(q)_{1,0}^{2 m, l}$ by induction on $l$ we need the following cofiber sequence (cf. [10]):

$$
\Sigma^{l-1} L(q)^{2 m} \xrightarrow{\pi_{l-1}} D(q)_{1,0}^{2 m, l-1} \xrightarrow{k_{l}} D(q)_{1,0}^{2 m, l} \xrightarrow{q_{l}} \Sigma^{l} L(q)^{2 m} .
$$

Note that $q_{l} \pi_{l}=\nabla \lambda_{l} \rho: \Sigma^{l} L(q)^{2 m} \rightarrow \Sigma^{l} L(q)^{2 m}$ where $\lambda_{l}=\operatorname{id} \vee(\tau \wedge t): \Sigma^{l} L(q)^{2 m} \vee \Sigma^{l} L(q)^{2 m}$ $\rightarrow \Sigma^{l} L(q)^{2 m} \vee \Sigma^{l} L(q)^{2 m}$ for the antipotal map $\tau$ of $\Sigma^{l}, \rho$ is the comultiplication of $\Sigma^{l} L(q)^{2 m}$ and $\nabla$ is the folding map (cf. [5, Lemma 1.11]). Therefore we may regard that $q_{l} \pi_{l}: \Sigma^{l} S A^{m} \vee \Sigma^{l} S B^{m} \rightarrow \Sigma^{l} S A^{m} \vee \Sigma^{l} S B^{m}$ is expressed as

$$
q_{l} \pi_{l}= \begin{cases}0 \vee 2 & \text { if } l \text { is even } \\ 2 \vee 0 & \text { if } l \text { is odd. }\end{cases}
$$

The $K U$-cohomology of $D(q)_{1,0}^{2 m, l}$ is given as follows (cf. [5, Theorem 3.9]):

| $l$ | even | odd |
| :---: | :---: | :---: |
| $K U^{0} D(q)_{1,0}^{2 m, l}$ | $A^{m} \oplus\left(B^{m} \otimes K U^{0} \Sigma^{l}\right)$ | $A^{m}$ |
| $K U^{1} D(q)_{1,0}^{2 m, l}$ | 0 | $A^{m} \otimes K U^{1} \Sigma^{l}$. |

The components $A^{m}$ and $C^{m} \otimes K U^{*} \Sigma^{l}$ (where $C=A$ if $l$ is odd and $C=B$ if $l$ is even) are given via the canonical inclusion $k: L(q)^{2 m}=D(q)_{1,0}^{2 m, 0} \subset D(q)_{1,0}^{2 m, l}$ and the natural projection $q_{l}: D(q)_{1,0}^{2 m, l} \rightarrow \Sigma^{l} L(q)^{2 m}$ respectively.

Proposition 1.3. $D(q)_{1,0}^{2 m, l}$ has the same $K_{*}$-local type as $S A^{m} \vee \Sigma^{l} S B^{m}$ if $l$ is even and $S A^{m} \vee \Sigma^{l} S A^{m}$ if $l$ is odd.

Proof. i) The " $l \equiv 0 \bmod 4$ " case: Since the conjugation acts on $K U^{0} D(q)_{1,0}^{2 m, l}$ as $\psi_{c}^{-1}=1$ on $A^{m}$ and $\psi_{c}^{-1}=-1$ on $B^{m} \otimes K U^{0} \Sigma^{l}, K U^{0} D(q)_{1,0}^{2 m, l}$ is decomposed to $A^{m}$ and $B^{m} \otimes K U^{0} \Sigma^{l}$ in the abelian category $\mathscr{A}$. From Lemma $1.1, D(q)_{1,0}^{2 m, l}$ has the same $K_{*}$-local type as $S A^{m} \vee \Sigma^{l} S B^{m}$.
ii) The " $l \equiv 1 \bmod 4$ " case: We consider the following cofiber sequence

$$
\Sigma^{l-1} L(q)^{2 m} \xrightarrow{\pi_{l-1}} D(q)_{1,0}^{2 m, l-1} \xrightarrow{k_{l}} D(q)_{1,0}^{2 m, l} \xrightarrow{q_{l}} \Sigma^{l} L(q)^{2 m} .
$$

Here we can replace $\Sigma^{l-1} L(q)^{2 m}$ and $D(q)_{1,0}^{2 m, l-1}$ by $\Sigma^{l-1} S A \vee \Sigma^{l-1} S B$ and $S A \vee \Sigma^{I-1} S B$ respectively from i). We set:

$$
\pi_{l-1}=\left(\begin{array}{ll}
x & z \\
y & 2
\end{array}\right), \quad q_{l-1}=\left(\begin{array}{cc}
u & w \\
v & 1
\end{array}\right)
$$

where all of $x, \cdots, v$ and $w$ become trivial if they are carried from [ $X, S_{K} \wedge Y$ ] into $[X, K O \wedge Y]$ via the map $t_{K}: S_{K} \rightarrow K O$. From Lemma $1.2 x$ and $u$ must be trivial. Since $q_{l-1} \pi_{l-1}=\left(\begin{array}{ll}0 & 0 \\ 0 & 2\end{array}\right), y$ and $w$ are also trivial. Thus we can express as

$$
\pi_{l-1}=\left(\begin{array}{ll}
0 & z \\
0 & 2
\end{array}\right), \quad q_{l-1}=\left(\begin{array}{ll}
0 & 0 \\
v & 1
\end{array}\right) .
$$

Consider the following commutative diagram:

$$
\begin{array}{cccccc}
\Sigma^{l-1} S A & \xrightarrow{0} & S A & \rightarrow & S A \vee \Sigma^{l} S A & \rightarrow \\
\Sigma^{l} S A \\
\downarrow & \downarrow & \downarrow & & \downarrow \\
\Sigma^{l-1} S A \vee \Sigma^{l-1} S B & \xrightarrow{\pi_{l-1}} S A \vee \Sigma^{l-1} S B & \rightarrow & S_{K} \wedge D(q)_{1,0}^{2 m, l} & \rightarrow & \Sigma^{q_{l}} S A \vee \Sigma^{l} S B \\
\downarrow & & \downarrow & & \\
\Sigma^{l-1} S B & \stackrel{2}{\cong} & \Sigma^{l-1} S B & &
\end{array}
$$

Now we can determine the $K_{*}$-local type of $D(q)_{1,0}^{2 m, l}$ as desired and we can take

$$
k_{l}=\left(\begin{array}{ll}
1 & b \\
0 & 0
\end{array}\right), \quad q_{l}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) .
$$

iii) The " $l \equiv 3 \bmod 4$ " case: As is shown in ii) we can express as $q_{l+1}=\left(\begin{array}{ll}0 & 0 \\ v & 1\end{array}\right)$. Our result is proved similarly to the case ii).
iv) The " $l \equiv 2 \bmod 4$ " case: From Lemma 1.2 we can set $\pi_{l-1}=\left(\begin{array}{ll}0 & x \\ 2 & y\end{array}\right)$. Since $q_{l-1}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ and $q_{l-1} \pi_{l-1}=\left(\begin{array}{ll}2 & 0 \\ 0 & 0\end{array}\right), y$ is trivial. For the canonical inclusion $k: L(q)^{m} \rightarrow D(q)_{1,0}^{m, l+1}$ we notice that $k \mid S A=(1, *): S A \rightarrow S A \vee \Sigma^{l+1} S A$. Then $x$ must be trivial because $k_{l+1} k_{l} \pi_{l-1}=0$. Now our result is immediate.

Remark. For the case iv) the subgroup $A^{m} \subset K U^{0} D(q)_{1,0}^{2 m, l}$ is the image of representation ring of $D_{q}$ (cf. [5, Section 2]). Therefore $K U^{0} D(q)_{1,0}^{2 m . l}$ is also decomposed to $A^{m}$ and $B^{m} \otimes K U^{0} \Sigma^{l}$ in $\mathscr{A}$. Then we can prove the case iv) in a similar way to the case i).

Let $R P_{m+1}^{m+l+1}=R P^{m+l+1} / R P^{m}$ be the stunted real projective space. Consider the following commutaive diagram:

where $\beta$ 's are the bottom cell inclusions and $\gamma$ 's are the top cell attaching maps. Recall that $K_{*}$-local type of $\Sigma^{1} R P_{2 s+1}^{2 s+2 n}$ has the same $K_{*}$-local type as a
certain small cell spectrum $\nabla S Z / 2^{n}$ such that $K U_{0} \nabla S Z / 2^{n} \cong Z / 2^{n}$ on which $\psi_{c}^{-1}=1$ and $K U_{1} \nabla S Z / 2^{n}=0$ (see [13, Theorem 2.7] for details). Then $\Sigma^{1} R P_{2 s+1}^{2 s+2 n+1}$, $\Sigma^{1} R P_{2 s+2}^{2 s+2 n}$ and $\Sigma^{1} R P_{2 s+2}^{2 s+2 n+1}$ have the same $K_{*}$-local types as the cofibers of the associated maps $\gamma: \Sigma^{2 s+2 n+1} \rightarrow \nabla S Z / 2^{n}, \beta: \Sigma^{2 s+2} \rightarrow \nabla S Z / 2^{n}$ and $\beta_{0} \vee \gamma_{0}$ : $\Sigma^{2 s+2} \vee \Sigma^{2 s+2 n+1} \rightarrow \nabla S Z / 2^{n}$ respectively, which are given explicitly in [13, Theorems 2.7, 2.9, 3.8]. Using these associated maps we can give the $K_{*}$-local type of $D(q)_{1,0}^{2 m+1, l}$, as follows.

Theorem 1.4. $\quad D(q)_{1,0}^{2 m+1, l}$ has the same $K_{*}$-local type as the spectra tabled below:

| $m$ | $l$ | $D(q)_{1,0}^{2 m+1, l}$ |
| :---: | :---: | :---: |
| even | odd | $S A^{m} \vee \Sigma^{l} S A^{m} \vee \Sigma^{m} R P_{m+1}^{m+l+1}$ |
| even | even | $S A^{m} \vee C\left(\Sigma^{l} f_{B}, \Sigma^{m-1} \gamma\right)$ |
| odd | even | $\Sigma^{l} S B^{m} \vee C\left(f_{A}, \Sigma^{m-1} \beta\right)$ |
| odd | odd | $C\left(\begin{array}{cc}f_{A} & 0 \\ 0 & \Sigma^{l} f_{A} \\ \Sigma^{m-1} \beta_{0} & \Sigma^{m-1} \gamma_{0}\end{array}\right)$ |

Proof. We have the following cofiber sequence (cf. [5, Lemma 1.12]):

$$
\Sigma^{m-1} R P_{m+1}^{m+l+1} \xrightarrow{F} D(q)_{1,0}^{2 m, l} \rightarrow D(q)_{1,0}^{2 m+1, l} .
$$

Here we may use $S A^{m} \vee \Sigma^{l} S C^{m}$ instead of $D(q)_{1,0}^{2 m, l}$ by virtue of Proposition 1.3. When $m$ is odd we consider the $K Z[1 / 2]_{*}$-localization of the following commutative diagram:

where $k$ and $k_{0}$ are the canonical inclusions. Then we may regard as $k_{0}=(1,0): \Sigma^{2 m} \rightarrow \Sigma^{2 m} \vee \Sigma^{m-1} R P_{m}^{m+l+1}, f=\left(f_{A}, 0\right): \Sigma^{2 m} \rightarrow S A^{m} \vee S B^{m}$ and $k=\left(\begin{array}{ll}1 & b \\ 0 & 0\end{array}\right)$ : $S A^{m} \vee S B^{m} \rightarrow S A^{m} \vee \Sigma^{l} S C^{m}$. Therefore $F \mid \Sigma^{2 m}$ is expressed as $\left(f_{A}, 0\right): \Sigma^{2 m} \rightarrow S A^{m}$ $\vee \Sigma^{l} S C^{m}$.

When $m+l$ is even we consider the $K Z[1 / 2]_{*}$-localization of the following commutative diagram:

$$
\begin{array}{cccc}
\Sigma^{2 m+l} & \xrightarrow{f} \Sigma^{l} L(q)^{2 m} & \rightarrow \Sigma^{l} L(q)^{2 m+1} \\
\downarrow^{\gamma} & & \downarrow^{\pi_{l}} & \\
\Sigma^{m-1} R P_{m+1}^{m+l+1} & \downarrow^{\pi_{l}} \\
\hline & D(q)_{1,0}^{2 m, l} & \rightarrow D(q)_{1,0}^{2 m+1, l}
\end{array}
$$

where $\gamma$ is the top cell attaching map and $\pi_{l}$ is the natural projection. Then we may regard as $\gamma=(0,1): \Sigma^{2 m+l} \rightarrow \Sigma^{m-1} R P_{m+1}^{m+l} \vee \Sigma^{2 m+l}, f=\left(f_{C}, 0\right): \Sigma^{2 m+l} \rightarrow \Sigma^{l} S C^{m}$ $\vee \Sigma^{l} S C^{\prime m}$ where $C^{\prime}=B$ if $l$ is odd and $C^{\prime}=A$ if $l$ is even, and $\pi_{l}=\left(\begin{array}{ll}0 & * \\ 2 & *\end{array}\right): \Sigma^{l} S C^{m}$ $\vee \Sigma^{l} S C^{\prime m} \rightarrow S A^{m} \vee \Sigma^{l} S C^{m}$. Therefore $F \mid \Sigma^{2 m+l}$ is expressed as $\left(0,2 f_{c}\right): \Sigma^{2 m+l}$ $\rightarrow S A^{m} \vee \Sigma^{l} S C^{m}$. Consequently $D(q)_{1,0}^{2 m+1, l}$ has the same $K Z[1 / 2]_{*}$-local type as $S A^{m} \vee \Sigma^{l} S A^{m}, \quad S A^{m} \vee \Sigma^{l} C\left(f_{B}\right), \quad C\left(f_{A}\right) \vee \Sigma^{l} S B^{m}$ and $C\left(f_{A}\right) \vee \Sigma^{l} C\left(f_{A}\right)$ according as $(m, l) \equiv(0,1),(0,0),(1,0)$ and $(1,1)$ mod 2 respectively. From the previous observation we can determine the $K_{*}$-local type of $D(q)_{1,0}^{2 m+1, l}$ as desired.

Let $n$ and $k$ be integers such that $0 \leq n \leq m$ and $0 \leq k \leq l$. We set:

$$
D(q)_{n, k}^{m, l}=D(q)^{m, l} /\left(D(q)^{m, k-1} \cup D(q)^{n-1, l}\right) .
$$

This space is the Thom complex of a canonical bundle over $D(q)^{m-n, l-k}$ when $n$ is even. We shall extend Proposition 1.3 and Theorem 1.4 to the case of $D(q)_{n, k}^{m, l}$. In order to state the extended theorem we express the $K_{*}$-local type of the stunted lens space $L(q)_{n+1}^{m}=L(q)^{m} / L(q)^{n}$ as follows: $L(q)_{2 n+1}^{2 m}$ has the same $K_{*}$-local type as $S A_{n}^{m} \vee S B_{n}^{m}$ where the conjugation acts as $\psi_{c}^{-1}=1$ on $K U^{0} S A_{n}^{m} \cong A_{n}^{m}$ and $\psi_{c}^{-1}=-1$ on $K U^{0} S B_{n}^{m} \cong B_{n}^{m} . \quad L(q)_{2 n+1}^{2 m+1}, L(q)_{2 n+2}^{2 m}$ and $L(q)_{2 n+2}^{2 m+1}$ have the same $K_{*}$-local types as the cofibers of the following maps respectively:

$$
\begin{aligned}
& f=\left(f_{A}, f_{B}\right): \Sigma^{2 m} \rightarrow S A_{n}^{m} \vee S B_{n}^{m} ; \\
& g=\left(g_{A}, g_{B}\right): \Sigma^{2 n+1} \rightarrow S A_{n}^{m} \vee S B_{n}^{m} ; \\
& f \vee g: \Sigma^{2 m} \vee \Sigma^{2 n+1} \rightarrow S A_{n}^{m} \vee S B_{n}^{m} .
\end{aligned}
$$

Here $f_{A}=0$ if $m$ is even and $f_{B}=0$ if $m$ is odd, and $g_{A}=0$ if $n$ is even and $g_{B}=0$ if $n$ is odd.

Let $\left\langle\Sigma^{k}\right\rangle$ be $\Sigma^{k}$ if $k$ is odd and $*$ if $k$ is even. Then we can choose the map $\beta \vee \gamma: \Sigma^{1}\left\langle\Sigma^{k}\right\rangle \vee\left\langle\Sigma^{l}\right\rangle \rightarrow \nabla S Z / 2^{i}$ so that its cofiber $C(\beta \vee \gamma)$ has the same $K_{*}$-local type as $\Sigma^{1} R P_{k+1}^{l}$ where $i$ depends on $k$ and $l$.

Theorem 1.5. i) $D(q)_{2 n+1, k}^{2 m, l}$ has the same $K_{*}$-local type as $\Sigma^{k} S E_{n}^{m} \vee \Sigma^{l} S C_{n}^{m}$ where $C=A$ if $l$ is odd and $C=B$ if $l$ is even, and $E=A$ if $k$ is even and $E=B$ if $k$ is odd.
ii) $D(q)_{2 n+1, k}^{2 m+1, l}, D(q)_{2 n+2, k}^{2 m, l}$ and $D(q)_{2 n+2, k}^{2 m+1, l}$ have the same $K_{*}$-local types as the
cofibers of the following maps respectively:

$$
\begin{aligned}
& \tilde{F}: X=\Sigma^{m}\left\langle\Sigma^{m+k}\right\rangle \vee \Sigma^{m-1}\left\langle\Sigma^{m+l+1}\right\rangle \rightarrow \Sigma^{k} S E_{n}^{m} \vee \Sigma^{l} S C_{n}^{m} \vee \Sigma^{m-1} \nabla S Z / 2^{i}, \\
& \tilde{G}: Y=\Sigma^{n+1}\left\langle\Sigma^{n+k}\right\rangle \vee \Sigma^{n}\left\langle\Sigma^{n+l+1}\right\rangle \rightarrow \Sigma^{k} S E_{n}^{m} \vee \Sigma^{l} S C_{n}^{m} \vee \Sigma^{n} \nabla^{\prime} S Z / 2^{j}, \\
& \tilde{H}: X \vee Y \rightarrow \Sigma^{k} S E_{n}^{m} \vee \Sigma^{l} S C_{n}^{m} \vee \Sigma^{m-1} \nabla S Z / 2^{i} \vee \Sigma^{n-1} \nabla^{\prime} S Z / 2^{j}
\end{aligned}
$$

which are expressed as the following matrices:

$$
\tilde{F}=\left(\begin{array}{cc}
f_{E} & 0 \\
0 & f_{C} \\
\beta & \gamma
\end{array}\right), \quad \tilde{G}=\left(\begin{array}{cc}
g_{E} & 0 \\
0 & g_{C} \\
\beta^{\prime} & \gamma^{\prime}
\end{array}\right), \quad \tilde{H}=\left(\begin{array}{cccc}
f_{E} & 0 & g_{E} & 0 \\
0 & f_{C} & 0 & g_{C} \\
\beta & \gamma & 0 & 0 \\
0 & 0 & \beta^{\prime} & \gamma^{\prime}
\end{array}\right)
$$

where the maps $\beta \vee \gamma$ and $\beta^{\prime} \vee \gamma^{\prime}$ are taken such that the cofibers $C(\beta \vee \gamma)$ and $C\left(\beta^{\prime} \vee \gamma^{\prime}\right)$ have the same $K_{*}$-local types as $\Sigma^{m} R P_{m+k+1}^{m+l+1}$ and $\Sigma^{n+1} R P_{n+k+1}^{n+l+1}$ respectively.

Proof. The case i) is proved similarly to the proof of Proposition 1.3. Consider the following cofiber sequences (cf. [7, Lemma 3.11]):

$$
\begin{gathered}
\Sigma^{m-1} R P_{m+k+1}^{m+l+1} \xrightarrow{F} D(q)_{2 n+1, k}^{2 m, l} \rightarrow D(q)_{2 n+1, k}^{2 m+1, l} \\
\Sigma^{n} R P_{n+k+1}^{n+l+1} \xrightarrow{G} D(q)_{2 n+1, k}^{2 m, l} \rightarrow D(q)_{2 n+2, k}^{2 m, l} .
\end{gathered}
$$

By a similar argument to the proof of Theorem 1.4 we can show that the cofibers $C(F)$ and $C(G)$ have the same $K_{*}$-local types as the cofibers $C(\tilde{F})$ and $C(\tilde{G})$ respectively. Moreover the cofiber $C(\tilde{H})$ has the same $K_{*}$-local type as $C(F \vee G)=D(q)_{2 n+2, k}^{2 m+1, l}$.

Remark. S. Kôno has independently studied the $K O^{*}$ - and $J^{*}$-groups of $D(q)_{n, k}^{m, l}$ in [7]. According to his computations the $K O^{*}$ - and $J^{*}$-groups of $D(q)_{n, k}^{m, l}$ are also decomposed to the $K O^{*}$ - and $J^{*}$-groups of the stunted lens spaces $\bmod q$ and mod 2 when $n$ is odd; but there is a case the $J^{*}$-group doesn't necessarily have such a decomposition when $n$ is even.

## 2. The $K_{*}$-local type of $L(p)_{n}^{m}$

In this section $p$ denotes an odd prime. Recall that the groups $\pi_{i} S_{K(p)} \cong \pi_{i} S_{K} \otimes Z_{(p)}$ are isomorphic to the following: $Z_{(p)}$ for $i=0 ; Q / Z_{(p)}=Z / p^{\infty}$ for $i \equiv-2 ; Z / p^{r}$ for $i \equiv-1 \bmod 2(p-1)$ with $i \neq-1$ where $r=v_{p}(i+1)+1$; and 0 otherwise (cf. [2]). For $t>0$ with $v_{p}(t) \geq r-1$ there exists an element $\alpha_{t, r}: \Sigma^{2 t(p-1)-1} \rightarrow \Sigma^{0}$ of order $p^{r}$ in the image of $J$-homomorphism $J: \pi_{*} S O \rightarrow \pi_{*} \Sigma^{0}$. Let $S Z / p^{r}$ be the Moore spectrum
of type $Z / p^{r}$, and $i_{r}: \Sigma^{0} \rightarrow S Z / p^{r}$ and $j_{r}: S Z / p^{r} \rightarrow \Sigma^{1}$ denote the bottom cell inclusion and the top cell projection. Then there exists an Adams' $K_{*}$-equivalence

$$
A_{t, r}: \Sigma^{2 t(p-1)} S Z / p^{r} \rightarrow S Z / p^{r}
$$

such that $j_{r} A_{t, r} i_{r}=\alpha_{t, r}$ (see [1, Section 12]). For simplicity we shall often omit the subscript $r$ such as $i=i_{r}, j=j_{r}$ and $\alpha_{t}=\alpha_{t, r}$ when $r=v_{p}(t)+1$.

Let $X$ be a $C W$-spectrum such that $K U_{0} X \cong Z / p^{r}$ and $K U_{1} X=0$. We fix an integer $k$ such that it generates $\left(Z / p^{2}\right)^{*}$. Then the Adams operation $\psi_{C}^{k}$ on $K U_{0} X$ is expressed as $\psi_{c}^{k}=k^{-t}$ for some integer $t$ because $k$ also gererates $\left(Z / p^{r}\right)^{*}$. This implies that $X$ has the same $K_{*}$-local type as $\Sigma^{2 t} S Z / p^{r}$ for some $t\left(0 \leq t<p^{r-1}(p-1)\right)$ (cf. [4, Proposition 10.5]).

Theorem 2.1. Let $m$ and $n$ be integers such that $m-n=r(p-1)+s(0 \leq s<p-1$, $r \geq 0$ ). The function $e(k, j)$ is defined by $e(k, j)=2 k p^{j}-1$ when $j \geq 0$ and $e(k,-1)=2 k-1$. Then $L(p)_{2 n+1}^{2 m}$ has the same $K_{*}$-local type as

$$
\bigvee_{i=1}^{p-1} \Sigma^{e(n+i, r(i))} S Z / p^{r(i)+1}
$$

where $r(i)=r$ if $i \leq s$ and $r(i)=r-1$ if $i>s$.
Proof. If $m=n+1$ then $L(p)_{2 n+1}^{2 n+2}$ is actually $\Sigma^{2 n+1} S Z / p$. Assume that $L(p)_{2 n+1}^{2 m}$ has the same $K_{*}$-local type as the desired wedge sum of Moore spectra. Consider the following cofiber sequence

$$
\Sigma^{2 m} S Z / p \xrightarrow{g} L(p)_{2 n+1}^{2 m} \rightarrow L(p)_{2 n+1}^{2 m+2} .
$$

It is easily verified that $\left[\Sigma^{2 m} S Z / p, S_{K} \wedge \Sigma^{e(n+i, r(i)} S Z / p^{r(i)+1}\right]=0$ for $i \neq s+1$. Therefore the $K_{*}$-localized map $g$ may be expressed as $g=\left(0, \cdots, 0, g_{s+1}, 0, \cdots, 0\right)$ where $g_{s+1}: \Sigma^{2 m} S Z / p \rightarrow S_{K} \wedge \Sigma^{e(n+s+1},{ }^{r-1)} S Z / p^{r}$. Recall that

$$
K U_{-1} L(p)_{2 n+1}^{2 m+2} \cong \bigoplus_{i=1}^{s+1} Z / p^{r+1} \oplus \oplus_{i=s+2}^{p-1} Z / p^{r}
$$

(cf. [6] or [11]). Hence $K U_{-1} C\left(g_{s+1}\right)$ must be $Z / p^{r+1}$ on which $\psi_{C}^{k}$ $\equiv 1 / k^{n+s+1} \bmod p$ and $\psi_{c}^{k+p}=\psi_{c}^{k}$. This implies that $C\left(g_{s+1}\right)$ has the same $K_{*}$-local type as $\Sigma^{e(n+s+1, r)} S Z / p^{r+1}$.

Remark. Recall that each $M \in \mathscr{A}_{(p)}$ is a direct sum of its subobject $M^{[i]} \in T^{i} \mathscr{B}_{(p)}$ for $i=0,1, \cdots, p-2$ (see [3, Proposition 3.7]). We can assert that $K U_{-1} L(p)_{2 n+1}^{2 m}$ $p-1$
$\cong \bigoplus_{i=1}^{p-1} Z / p^{r(i)+1}$ as an abelian group gives rise to a decomposition in $\mathscr{A}$ because
$\Sigma^{1} L(p)_{2 n+1}^{2 m}$ is $\bmod p$ decomposable (see [10, Proposition 9.6]) and its AtiyahHirzebruch spectral sequence collapses. Using this result we may also obtain the above theorem immediately.

In order to investigate the $K_{*}$-local type of $L(p)_{2 n+1}^{2 m+1}$ we shall describe generators of the group [ $\left.\Sigma^{2 t(p-1)-1} S Z / p, S_{k} \wedge S Z / p^{r}\right]$. We first assume that $t>0$ and put $q=v_{p}(t)+1$. For the map $\alpha_{t}=\alpha_{t, q}: \Sigma^{2 t(p-1)-1} \rightarrow \Sigma^{0}$ of order $p^{q}$ its coextention $\tilde{\alpha}_{t}=\tilde{\alpha}_{t, q}: \Sigma^{2 t(p-1)} \rightarrow S Z / p^{q}$ is given by $A_{t, q} i_{q}$. Using the obvious map $\pi=\pi_{q, r}: S Z / p^{q}$ $\rightarrow S Z / p^{r}$ we obtain a generator $\pi \tilde{\alpha}_{t}$ (denoted simply by $\tilde{\alpha}_{t, r}$ ) in the group $\left[\Sigma^{2 t(p-1)}, S_{K} \wedge S Z / p^{r}\right] \cong Z / p^{\min (r, q)}$ such that $j_{r} \tilde{\alpha}_{t, r}=\alpha_{t, r}$ if $q \leq r$ and $j_{r} \tilde{\alpha}_{t, r}=p^{q-r} \alpha_{t, r}$ if $q>r$. The map $i_{r} \alpha_{t}$ generates the group [ $\left.\Sigma^{2 t(p-1)-1}, S_{K} \wedge S Z / p^{r}\right] \cong Z / p^{\min (r, q)}$. We may assume that $\alpha_{t, 1}=p^{q-1} \alpha_{t}: \Sigma^{2 t(p-1)-1} \rightarrow \Sigma^{0}$. Then its extension $\bar{\alpha}_{t, 1}: \Sigma^{2 t(p-1)-1} S Z$ $/ p \rightarrow \Sigma^{0}$ is given by $j_{q} A_{t, q} \pi_{1, q}$. Note that $p^{r-1} i_{r} \alpha_{t}=\left(\alpha_{t} \wedge \pi_{1, r}\right) i_{1}: \Sigma^{2 t(p-1)-1} \rightarrow S Z / p^{r}$. Now we can give two generators of the group

$$
\left[\Sigma^{2 t(p-1)-1} S Z / p, S_{K} \wedge S Z / p^{r}\right] \cong Z / p \oplus Z / p
$$

for $t>0$ as follows (cf. [1, Theorem 12.11]): the first component is generated by $\tilde{\alpha}_{t, v} j_{1}$; the second component is generated by $i_{r} \bar{\alpha}_{t, 1}$ and $\alpha_{t} \wedge \pi$ according as $r \geq q$ and $r \leq q$ respectively. Moreover it is easily verifed that these generators have the following relations: $i_{r} \bar{\alpha}_{t, 1}=\tilde{\alpha}_{t, j} j_{1}$ for $r<q ; i_{r} \bar{\alpha}_{t, 1}=\tilde{\alpha}_{t, j} j_{1}+\alpha_{t} \wedge \pi$ for $r=q$; and $\tilde{\alpha}_{t, j} j_{1}=\alpha_{t} \wedge \pi$ for $r>q$.

Consider the group $\pi_{-2 t(p-1)-1} S_{K(p)}$ for $t>0$. Since $\tilde{\alpha}_{t}=A_{t, q} i_{q}: \Sigma^{2 t(p-1)}$ $\rightarrow S Z / p^{q}$ we obtain a $K_{*}$-equivalence $e_{t}: \Sigma^{2 t(p-1)+1} \rightarrow C\left(\tilde{\alpha}_{t}\right)$ such that $e_{j_{q}}=i_{c} A_{t, q}$ and $j_{c} e_{t}=p^{q}$ for the canonical inclusion $i_{c}: S Z / p^{q} \rightarrow C\left(\tilde{\alpha}_{t}\right)$ and the canonical projection $j_{C}: C\left(\tilde{\alpha}_{t}\right) \rightarrow \Sigma^{2 t(p-1)+1}$. Moreover there exists a $K_{*}$-equivalence $A_{-t, q}: S Z / p^{q}$ $\rightarrow \Sigma^{-1} C\left(\tilde{\alpha}_{t}\right) \wedge S Z / p^{q}$ such that $\left(1 \wedge j_{q}\right) A_{-t, q}=i_{C}$. Set $\alpha_{-t}=i_{C} i_{q}: \Sigma^{2 t(p-1)-1} \rightarrow \Delta_{-t} \Sigma^{0}$ $=\Sigma^{-2 t(p-1)-1} C\left(\tilde{\alpha}_{t}\right)$ which may be regarded as a generator of the group $\pi_{-2 t(p-1)-1} S_{K(p)}$. By using $\alpha_{-t}$ instead of $\alpha_{t}$ in the previous discussion we can give two generators of the group [ $\left.\Sigma^{-2 t(p-1)-1} S Z / p, S_{K} \wedge S Z / p^{r}\right] \cong Z / p \oplus Z / p$ for $t>0$ when $S Z / p^{r}$ is replaced by $\Delta_{-t} S Z / p^{r}=\Sigma^{-2 t(p-1)-1} C\left(\tilde{\alpha}_{t}\right) \wedge S Z / p^{r}$.

Denote by $L_{r, 1}^{t}(t \neq 0)$ the spectrum constructed as the cofiber of the map $\alpha_{t} \wedge \pi: \Sigma^{2 t(p-1)-1} S Z / p \rightarrow \Delta_{t} S Z / p^{r}$ where $\Delta_{t} S Z / p^{r}=S Z / p^{r}$ for $t>0$. Recall that $K U_{0} C\left(\alpha_{t}\right) \cong Z \oplus Z$ and $K U_{0} C\left(i_{r} \alpha_{t}\right) \cong Z \oplus Z / p^{r}$ on which the Adams operations $\psi_{c}^{k}$ act as

$$
\psi_{c}^{k}=\left(\begin{array}{cc}
1 / k^{t(p-1)} & 0 \\
\left(1-k^{t(p-1)}\right) / p^{q} k^{t(p-1)} & 1
\end{array}\right)
$$

with $q=v_{p}(t)+1$ and $K U_{1} C\left(\alpha_{t}\right)=K U_{1}\left(i_{r} \alpha_{t}\right)=0$ (cf. [1]). Then the $K U_{*}$-group of $L_{r, 1}^{t}$ is given as follows:

$$
\begin{aligned}
& K U_{0} L_{r, 1}^{t} \cong Z / p \oplus Z / p^{r} ; \psi_{c}^{k}=\left(\begin{array}{cc}
1 / k^{t(p-1)} & 0 \\
p^{r-1}\left(1-k^{t(p-1)}\right) / p^{q} k^{t(p-1)} & 1
\end{array}\right) \\
& K U_{1} L_{r, 1}^{t}=0 .
\end{aligned}
$$

For a given specturm $X$, we shall denote by $\Delta X$ a $C W$-spectrum having the same $K_{*}$-local type as $X$.

Proposition 2.2. Assume that $t \neq 0$ and put $q=v_{p}(t)+1$ and $t=x p^{q-1}$. Let $\imath: S \rightarrow S_{K}$ be the unit of $S_{K}$. For each map $g: \Sigma^{2 t(p-1)-1} \Delta S Z / p \rightarrow \Delta S Z / p^{r}$ its cofiber $C(g)$ has the same $K_{*}$-local type as the following specturm:
i) The " $q \geq r^{\prime}$ case: $S Z / p^{r} \vee \Sigma^{2 t(p-1)} S Z / p$ when $l \wedge g=0 ; \Sigma^{2 t(p-1)} S Z / p^{r+1}$ when $\imath \wedge g=\tilde{\alpha}_{t, j} ; L_{r, 1}^{t}$ when $l \wedge g=\alpha_{t} \wedge \pi$; and $\Sigma^{2(p-1) w} S Z / p^{r+1}$ when $l \wedge g=\alpha_{t} \wedge \pi+u \tilde{u}_{t, v} j$ for $a$ unit $u$ of $Z / p$ where $w=-u^{-1} x p^{r-1}$ if $q>r$ and $w=\left(1-u^{-1}\right) x p^{r-1}$ if $q=r$,
ii) The " $q<r$ " case: $S Z / p^{r} \backslash \Sigma^{2 t(p-1)} S Z / p$ when $\imath \wedge g=0 ; S Z / p^{r+1}$ when $\imath \wedge g=i \bar{\alpha}_{t, 1}$; $L_{r, 1}^{t}$ when $\imath \wedge g=\tilde{\alpha}_{t, v} j$; and $\Sigma^{2(p-1) w} S Z / p^{r+1}$ when $\imath \wedge g=i \bar{\alpha}_{t, 1}+u \tilde{\alpha}_{t, j}$ for a unit $u$ of $Z / p$ where $w=u p^{r-1}$.

Proof. Use the following commutative diagram:

i) It is sufficient to show the case $g=\alpha_{t} \wedge \pi+u \tilde{\alpha}_{t, j} j$. Note that $g i=p^{r-1} i \alpha_{t}$ and $\varphi_{*}: K U_{0} \Sigma^{2 t(p-1)} \rightarrow K U_{0} C\left(p^{r-1} i_{r} \alpha_{t}\right)$ is expressed as $\binom{p}{u}: Z \rightarrow Z \oplus Z / p^{r}$. Hence we obtain that

$$
K U_{0} C(g) \cong Z / p^{r+1} ; \quad h_{*}=\left(1,-p u^{-1}\right): Z \oplus Z / p^{r} \rightarrow Z / p^{r+1}
$$

and that $\psi_{c}^{k}$ on $K U_{0} C(g)$ behaves as $\psi_{c}^{k}=1 / k^{t(p-1)}-p^{r}\left(1-k^{t(p-1)}\right) / p^{q} u k^{t(p-1)}$. Put $k^{p-1}=1+y p$ and $t=x p^{q-1}$. Then $\psi_{c}^{k}=1-x y p^{q}+u^{-1} x y p^{r}=1-z y p^{r}=1 / k^{w(p-1)}$ where $z=-u^{-1} x$ if $q>r$ and $z=\left(1-u^{-1}\right) x$ if $q=r$.
ii) From the relation $\tilde{\alpha}_{t, k} j=\alpha_{t} \wedge \pi$ it follows that $C\left(\tilde{\alpha}_{t, j}\right)=L_{r, 1}^{t}$. Since $C\left(i \bar{\alpha}_{t, 1}\right)$ has the same $K_{*}$-local type as $S Z / p^{r+1}$ we can take $\varphi_{*}=\binom{p}{1}: Z \rightarrow Z \oplus Z / p^{r}$ $\cong K U_{0} C\left(i \alpha_{t, 1}\right)$ when $u=0$, and generally $\varphi_{*}=\binom{p}{1+p^{r-q} u}: Z \rightarrow Z \oplus Z / p^{r}$. The rest of
proof is similar to i ).
We shall next describe generators of the group

$$
\left[\Sigma^{-1} S Z / p, S_{K} \wedge S Z / p^{r}\right] \cong Z / p \oplus Z / p
$$

Set $\beta_{r}=\left(\tilde{\alpha}_{1, r} \wedge 1\right) i_{C}: \Sigma^{-1} S Z / p \rightarrow \Delta_{0} S Z / p^{r}=\Sigma^{-2 p+1} S Z / p^{r} \wedge C\left(\tilde{\alpha}_{1}\right)$ where $i_{C}: S Z / p$ $\rightarrow C\left(\tilde{\alpha}_{1}\right)$ is the canonical inclusion. Using the relations $i_{c} i_{1}=\alpha_{-1}$ and $\left(\alpha_{1} \wedge 1\right) \alpha_{-1}$ $=\left(j_{r} \wedge 1\right) \beta_{r} i_{1}$ we obtain that

$$
K U_{0} C\left(\beta_{r} i_{1}\right) \cong Z \oplus Z / p^{r} ; \quad \psi_{C}^{k}=\left(\begin{array}{cc}
1 & 0 \\
p^{r-2}\left(k^{p-1}-1\right) / k^{p-1} & 1
\end{array}\right)
$$

Therefore $\beta_{r}$ is a generator of the group $\left[\Sigma^{-1} S Z / p, S_{K} \wedge S Z / p^{r}\right.$ ] and another generator is cleary $i_{r} j_{1}$. Note that $l_{K} \wedge \beta_{r}$ is identified with the element $p^{r-1} i_{r_{r}} j_{1}$ of the group $\left[\Sigma^{-1} S Z / p, K O \wedge S Z / p^{r}\right]$ where $l_{K}: S_{K} \rightarrow K O$ is the $K_{*}$-localized map of the unit of $K O$.
So we replace the generator $\beta_{1}$ by $\beta_{1}-i_{1} j_{1}$ when $r=1$. Denote by $L_{r, 1}^{0}$ the spectrum constructed as the cofiber of the map $\beta_{r}$. The $K U_{*}$-group of $L_{r, 1}^{0}$ is given as follows:

$$
\begin{aligned}
& K U_{0} L_{r, 1}^{0} \cong Z / p \oplus Z / p^{r} ; \quad \psi_{C}^{k}=\left(\begin{array}{cc}
1 & 0 \\
p^{r-2}\left(k^{p-1}-1\right) / k^{p-1} & 1
\end{array}\right) \\
& K U_{1} L_{r, 1}^{0}=0 .
\end{aligned}
$$

Similarly to Proposition 2.2 we can show the following proposition.
Proposition 2.3. Let $\imath: S \rightarrow S_{K}$ be the unit of $S_{K}$. For each map $g: \Sigma^{-1} \Delta S Z / p$ $\rightarrow \Delta S Z / p^{r}$ its cofiber $C(g)$ has the same $K_{*}$-local type as the following spectrum $S Z / p^{r} \vee S Z / p$ when $l \wedge g=0 ; S Z / p^{r+1}$ when $\imath \wedge g=i j ; L_{r, 1}^{0}$ when $\imath \wedge g=\beta_{r}$; and $\Sigma^{2(p-1) w} S Z / p^{r+1}$ when $l \wedge g=\beta_{r}+$ uij for a unit $u$ of $Z / p$ where $w=u^{-1} p^{r-1}$ if $r>1$ and $w=-\mathrm{u}^{-1}$ if $r=1$.

Set $q=v_{p}(t)+1$ and $a=\min \left(r, v_{p}(t)+1\right)$ for $t \neq 0$. Denote by $M_{r}^{t}, N_{r}^{t}$ and $P_{r}^{t}$ $(t \neq 0)$ the spectra constructed as the cofibers of the maps $p^{a-1} i_{r} \alpha_{t}: \Sigma^{2 t(p-1)-1}$ $\rightarrow \Delta_{t} S Z / p^{r}, p^{a-1} \alpha_{j_{r}}: \Sigma^{2 t(p-1)-2} S Z / p^{r} \rightarrow \Delta_{t} \Sigma^{0}$ and $\left(1 \wedge \pi_{1, r+1}\right) \tilde{\alpha}_{t, 1}: \Sigma^{2 t(p-1)} \rightarrow \Delta_{t} S Z$ $/ p^{r+1}$ respectively. Evidently $N_{r}^{t}=\Sigma^{2 t(p-1)} D M_{r}^{t}$ where $D X$ denotes the SpanierWhitehead dual of $X$. For $t>0$ we consider the following commutative diagram:

$$
\begin{array}{lclc}
\Sigma^{-1} S Z / p^{r} & = & \Sigma^{-1} S Z / p^{r} \\
\downarrow^{i j} & & \downarrow^{\varphi} \\
\Sigma^{2 t(p-1)} \xrightarrow{\tilde{\alpha}_{t, 1}} & S Z / p & \rightarrow & C\left(\tilde{\alpha}_{t, 1}\right) \\
\| & & \downarrow^{\pi} & \\
\Sigma^{2 t(p-1)} & \rightarrow & \downarrow Z / p^{r+1} & \rightarrow \\
& P_{r}^{t}
\end{array}
$$

The map $\varphi$ may be regarded as $\alpha_{-t, 1} j_{r}: \Sigma^{-1} S Z / p^{r} \rightarrow C\left(\tilde{\alpha}_{t, 1}\right)$. Therefore $P_{r}^{t}$ has the same $K_{*}$-local type as $\Sigma^{2 t(p-1)+1} N_{r}^{-t}$ when $q \leq r$ and $\Sigma^{2 t(p-1)+1} \vee S Z / p^{r}$ when $q>r$. This relation still holds in the case of $t<0$ similarly. In the $t=0$ case $M_{0}^{0}=\Sigma^{0}$ and $M_{r}^{0}$ is defind as the cofiber of the map $\beta_{r} i_{1}: \Sigma^{-1} \rightarrow \Delta_{0} S Z / p^{r}$ when $r \geq 1$. We may also define $N_{r}^{0}$ and $P_{r}^{0}$ by the equalities: $N_{r}^{0}=\Sigma^{-1} P_{r}^{0}=D M_{r}^{0}$.

Theorem 2.4. Let $n$ and $m$ be integers such that $m-n=r(p-1)+s(0 \leq s<p-1$, $r \geq 0)$. Put $t=r-(n+s+1)\left(p^{r-2}+p^{r-3}+\cdots+1\right)$ and $l=n\left(p^{r-2}+p^{r-3}+\cdots+1\right)$ where we understand $p^{r-2}+p^{r-3}+\cdots+1=0$ when $r \leq 1$. The function $e(k, j)$ is defined by $e(k, j)=2 k p^{j}-1$ when $j \geq 0$ and $e(k,-1)=2 k-1$. Then
i) $L(p)_{2 n+1}^{2 m+1}$ has the same $K_{*}$-local type as the following spectrum:

$$
\begin{array}{ll}
\left(\bigvee_{1 \leq i \leq p-1, i \neq s+1} \Sigma^{e(n+i,(i))} S Z / p^{r(i)+1}\right) \vee \Sigma^{e(n+s+1, r-1)} M_{r}^{t} & \text { when } m+1 \neq 0 \bmod p^{r}, \\
L(p)_{2 n+1}^{2 m} \vee \Sigma^{2 m+1} & \text { when } m+1 \equiv 0 \bmod p^{r} .
\end{array}
$$

ii) $L(p)_{2 n}^{2 m}$ has the same $K_{*}$-local type as

$$
\begin{array}{ll}
\left(\vee_{i=1}^{p-2} \Sigma^{e(n+i, r(i)} S Z / p^{r(i)+1}\right) \vee \Sigma^{2 n} N_{r}^{l} & \text { when } n \not \equiv 0 \bmod p^{r}, \\
L(p)_{2 n+1}^{2 m} \vee \Sigma^{2 n} & \text { when } n \equiv 0 \bmod p^{r} .
\end{array}
$$

Proof. i) Consider the following commutative diagram:

$$
\begin{array}{ccc}
\Sigma^{2 m} & \stackrel{f}{\rightarrow} L(p)_{2 n+1}^{2 m} \rightarrow & L(p)_{2 n+1}^{2 m+1} \\
\downarrow^{i} & \| & \downarrow \\
\Sigma^{2 m} S Z / p & \xrightarrow{g} L(p)_{2 n+1}^{2 m} & \rightarrow L(p)_{2 n+1}^{2 m+2} .
\end{array}
$$

As is shown in the proof of Theorem 2.1 the bottom cofiber sequence is essentially given by the following cofiber sequence:

$$
\Sigma^{2 t(p-1)-1} S Z / p \xrightarrow{g_{s+1}} \Delta_{t} S Z / p^{r} \rightarrow \Sigma^{2(p-1) w} \Delta S Z / p^{r+1}
$$

where $w=(n+s+1) p^{r-1}$. In the $t \neq 0$ case we set $q=v_{p}(t)+1$. Note that $m+1 \equiv w \bmod p^{r}$ when $q>r, m+1 \equiv w-t \bmod p^{r}$ when $q=r$, and $m+1 \not \equiv 0 \bmod p^{r}$ when $q<r$ because $m+1=t(p-1)+w$. On the other hand, it is immediate that $r=2, n+s=1$ and hence $m+1=w=2 p$ in the $t=0$ case. Since the cofiber $C\left(g_{s+1}\right)$ has the same $K_{*}$-local type as $\Sigma^{2(p-1) w} S Z / p^{r+1}$, we can determine the form of $g_{s+1}$ uniguely up to $K_{*}$-equivalence, by means of Propositions 2.2 and 2.3. In fact the map $g_{s+1}$ is chosen as follows: $\tilde{\alpha}_{t, j}$ if " $q>r$ and $w \equiv 0 \bmod p^{r "}$ or " $q=r$ and $w \equiv t \bmod p r " ; \alpha_{t} \wedge \pi+u \tilde{\alpha}_{t, s} j$ if " $q>r$ and $w \not \equiv 0 \bmod p r$ " or " $q=r$ and $w \not \equiv t \bmod p^{r " \prime} ; i \bar{\alpha}_{1}$ if " $q<r$ and $w \equiv 0 \bmod p^{r "} ; i \bar{\alpha}_{1}+u \tilde{\alpha}_{t, v} j$ if " $q<r$ and $w \neq 0 \bmod p^{r "}$; and $\beta_{2}+u i j$ if " $t=0$ " where $u \in Z / p$ is a suitable unit. Therefore the cofiber $C\left(g_{s+1} i\right)$ has the same $K_{*}$-local type as $M_{r}^{t}$ when $m+1 \not \equiv 0 \bmod p^{r}$, but it has the same $K_{*}$-local type as the wedge sum $S Z / p^{r} \vee \Sigma^{2 t(p-1)}$ when $m+1 \equiv 0 \bmod p^{r}$.
ii) Consider the following cofiber sequence

$$
L(p)_{2 n}^{2 m} \rightarrow L(p)_{2 n+1}^{2 m} \stackrel{h}{\rightarrow} \Sigma^{2 n+1} .
$$

The dual map $D h$ has already been given in i), so our result is immediate.
Remark. In the case ii) we may assert that $L(p)_{2 n}^{2 m}$ has the same $K_{*}$-local type as the wedge sum $\Sigma^{e(n, r-1)} P_{r}^{-l} \bigvee \bigvee_{i=1}^{p-2} \Sigma^{e(n+i, r(i)} S Z / p^{r(i)+1}$ in any cases.

Theorem 2.5. Let $r, s, t, l, e(k, j)$ and $r(i)$ be the integers given in Theorem 2.4 which depend on $m$ and $n$, and put $\tau=r+1-n\left(p^{r-1}+\cdots+1\right), \lambda=n\left(p^{r-1}+\cdots+1\right)$. Then $L(p)_{2 n}^{2 m+1}$ has the same $K_{*}$-local type as the following specrum $X$ :
i) When $m+1 \equiv 0 \bmod p^{r}, X=L(p)_{2 n}^{2 m} \vee \Sigma^{2 m+1}$.
ii) When $n \equiv 0 \bmod p^{r}, X=L(p)_{2 n+1}^{2 m+1} \vee \Sigma^{2 n}$.
iii) When $m+1, n \not \equiv 0 \bmod p^{r}$ and $m-n+1 \not \equiv 0 \bmod p-1$,

$$
X=\left(\bigvee_{1 \leq i \leq p-1, i \neq s+1} \Sigma^{e(n+i, r(i))} S Z / p^{r(i)+1}\right) \vee \Sigma^{e(n+s+1, r-1)} M_{r}^{t} \vee \Sigma^{2 n} N_{r}^{l}
$$

iv) When $m+1, n \not \equiv 0 \bmod p^{r}$ and $m-n+1 \equiv 0 \bmod p-1$,

$$
\left(\bigvee_{1 \leq i \leq p-2} \Sigma^{e(n+i, r(i))} S Z / p^{r(i)+1}\right) \vee \Sigma^{e(n, r)} C\left(p^{a-1} i_{r+1} \alpha_{\tau} \vee u \tilde{\alpha}_{-\lambda, 1}\right)
$$

where $a=\min \left(v_{p}(\tau)+1, r+1\right)$ and $u \in Z / p$ is a suitable unit.
Proof. The cases i), ii) and iii) are immediately shown by use of Theorem 2.4. To show the case iv) we consider the following commutative diagram:


By Theorem 2.1 we may decompose $L(p)_{2 n-1}^{2 m}$ as the wedge sum $\bigvee_{i=1}^{p-2} \Sigma^{e(n+i, r)} S Z$ $/ p^{r+1} \vee \Sigma^{e(n, r)} S Z / p^{r+1}$. From Theorem 2.4 i) we can take map $f_{p-1}=p^{a-1} i \alpha_{\tau}: \Sigma^{2 m}$ $\rightarrow \Sigma^{2 w-1} \Delta_{\tau} S Z / p^{r+1}$ with $2 w-1=e(n, r)=2 n p^{r}-1$ because $\tau \neq 0$ in the case iv). Since $\Sigma^{2 n} N_{r}^{\lambda}$ has the same $K_{*}$-local type as $\Sigma^{2 w-1} P_{r}^{-\lambda}$ we may take $g_{p-1}=u(1 \wedge \pi) \tilde{\alpha}_{-\lambda, 1}$ : $\Sigma^{2 n-1} \rightarrow \Sigma^{2 w-1} \Delta_{-\lambda} S Z / p^{r}$ for some unit $u \in Z / p$. Then the ( $p-1$ )-th component of $L(p)_{2 n}^{2 m+1}$ has the same $K_{*}$-local type as the cofiber of the map

$$
p^{a-1} i \alpha_{\tau} \vee u(1 \wedge \pi) \tilde{\alpha}_{-\lambda, 1}: \Sigma^{2 m} \vee \Sigma^{2 n-1} \rightarrow \Sigma^{2 w-1} \Delta_{v} S Z / p^{r+1}
$$

after compositing suitable $K_{*}$-equivalences $\Delta_{\tau} \Sigma^{0} \rightarrow \Delta_{v} \Sigma^{0}$ and $\Delta_{-\lambda} \Sigma^{0} \rightarrow \Delta_{v} \Sigma^{0}$ for some integer $v$ if necessary (cf. [14]).

Remark. Recall that the $J$-group is given as the cokernel of $\psi^{k}-1$. Note that

$$
J^{2 t(p-1)} N_{r}^{l} \otimes Z_{(p)} \cong \begin{cases}Z / p^{q} \oplus Z / p^{\min (q, r)} & \text { for } q<s \\ Z / p^{q-s+1+\min (r, v)} \oplus Z / p^{s-1} & \text { for } q \geq s\end{cases}
$$

where $q=v_{p}(t)+1, s=v_{p}(l)+1$ and $v=v_{p}(l-t)+1(=s$ when $q>s)$ and $J^{i} N_{r}^{l} \otimes Z_{(p)}=0$ for $i \neq 0 \bmod 2(p-1)$. Applying Theorems 2.1 and 2.4 ii we can compute $J^{*} L(p)_{n}^{2 m}$ and hence $J^{*} L(p)_{n}^{2 m+1}$ immediately although they have already been calculated in [9]. Note that the $K_{*}$-local type of $L(p)_{n}^{2 m}$ is classified by the $J$-group $J^{*} L(p)_{n}^{2 m}$ (cf. [3, Lemma 6.7]).

## References

[1] J.F. Adams: On the group J(X)-IV, Topology 5 (1966) 21-71.
[2] A.K. Bousfield: The localization of spectra with respect to homology, Topology 18 (1979) 257-281.
[3] A.K. Bousfield: On the homotopy theory of K-local spectra at an odd prime, Amer. J. Math. 107 (1985) 895-932.
[4] A.K. Bousfield: A Classification of K-local spectra, J. Pure and Applied Algebra 66 (1990) 121-163.
[5] M. Imaoka, M. Sugawara: On the K-Ring of the Orbit Manifold $\left(S^{2 m+1} \times S^{l}\right) / D_{n}$ by the dihedral group $D_{n}$, Hiroshima Math J. 4 (1974) 53-70.
[6] T. Kambe: The structure of $K_{\Lambda}$-rings of the lens space and their applications, J. Math. Soc. Japan 18 (1966) 135-146.
[7] S. Kôno: Stable homotopy type of Thom spaces of canonical bundles over Orbit Manifolds
$\left(S^{2 m+1} \times S^{l}\right) / D_{p}$ by the dihedral group $D_{p}$, preprint.
[8] M. Kamata, H. Minami: Bordism groups of dihidral groups, J. Math. Soc. Japan 25 (1973) 334-341.
[9] S. Kôno, A. Tamamura: J-groups of the suspensions of the stunted lens spaces mod p, Osaka J. Math 24 (1987) 481-498.
[10] S. Kôno, A. Tamamura, M. Fujii: J-group of the Orbit Manifolds $\left(S^{2 m+1} \times S^{l}\right) / D_{n}$ by the dihedral group $D_{n}$, Math J. Okayama Univ. 22 (1980) 205-221.
[11] N. Mahammed: A propos de la K-théorie des espaces lenticularies, C.R. Acad. Sc. Paris 271 (1970) 639-642
[12] M. Mimura, G. Nishida, H.Toda: Localization of CW-complexes and its applications, J. Math. Soc. Japan 23 (1971) 593-624,
[13] Z. Yosimura: The $K_{*}$-localizations of the stunted real projective spaces, J. Math. Kyoto Univ. 33 (1993) 523-541.
[14] Z. Yosimura: $K_{*}$-localizations of spectra with simple $K$-homology, II, preprint.

Department of Mathematics Osaka City University Sugimoto, Sumiyoshi-ku Osaka 558, Japan

