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Abstract
Biological fingerprints extracted from clinical images can be used for patient identity verification to determine misfiled 
clinical images in picture archiving and communication systems. However, such methods have not been incorporated into 
clinical use, and their performance can degrade with variability in the clinical images. Deep learning can be used to improve 
the performance of these methods. A novel method is proposed to automatically identify individuals among examined patients 
using posteroanterior (PA) and anteroposterior (AP) chest X-ray images. The proposed method uses deep metric learning 
based on a deep convolutional neural network (DCNN) to overcome the extreme classification requirements for patient vali-
dation and identification. It was trained on the NIH chest X-ray dataset (ChestX-ray8) in three steps: preprocessing, DCNN 
feature extraction with an EfficientNetV2-S backbone, and classification with deep metric learning. The proposed method 
was evaluated using two public datasets and two clinical chest X-ray image datasets containing data from patients undergoing 
screening and hospital care. A 1280-dimensional feature extractor pretrained for 300 epochs performed the best with an area 
under the receiver operating characteristic curve of 0.9894, an equal error rate of 0.0269, and a top-1 accuracy of 0.839 on 
the PadChest dataset containing both PA and AP view positions. The findings of this study provide considerable insights into 
the development of automated patient identification to reduce the possibility of medical malpractice due to human errors.
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Introduction

Patient misidentification due to human error remains a major 
concern in the healthcare industry [1–8]. According to a 
previous study [3], the average rate of misfiled cases for 
radiography at a hospital is 0.075%.

A previous paper [5] reported that “a 2006 study [6] 
reviewing several adverse events databases in the United 
States estimated that between 1,300 and 2,700 adverse 
events relating to wrong side or site, wrong procedure, 
and wrong patient occurred annually. It identified radiol-
ogy as the second most common hospital department (after 

the operating room) to perform wrong-site procedures.” 
Although the primary risk of patient misidentification in 
clinical X-ray examinations is radiation exposure of the 
wrong patient, it can lead to serious incidents or accidents, 
such as operating of the wrong patient [6].

Risk management in clinics and hospitals employs a 
standard process for patient verification because confirm-
ing patient-specific information (such as the full name and 
date of birth) is critical [9]. Although using two patient 
identifiers can improve the reliability of patient identifica-
tion, such a process is not the most effective for preventing 
human errors, resulting in misfiling and misidentification 
[10, 11]. To minimize the risk of human error and improve 
healthcare workflow and utility, clinics and hospitals may 
use biometrics, such as fingerprints and face recognition, for 
routine examinations. However, the use of these methods can 
increase the workload of healthcare providers.

Digital transformation in healthcare can be realized using 
various technologies to streamline operations for healthcare 
providers and ensure patient safety. Several types of clini-
cal images, such as chest X-ray or scout images, exhibit 
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considerable potential for use in biometric patient verifi-
cation [1–3, 12–27] and forensic personal identification 
[28–35]. The potential risk of patient registration errors 
owing to multiple factors, including human errors, can be 
reduced by consolidating clinical information and using it 
for patient identity verification. Furthermore, such a technol-
ogy has the potential to identify the personal information of 
a patient without the patient verbally stating their name or 
date of birth. Several biometric methods based on clinical 
images have been proposed to achieve satisfactory patient 
verification and identification [1–3, 12–24].

Deep learning-based technologies have been applied to 
several tasks using clinical X-ray images [36–39] of the 
chest [12, 28, 36, 40–46], including lesion detection and 
estimation of individual attributes, such as gender and age. 
Some issues need to be addressed for deep learning-based 
biometric systems to be utilized in clinics or hospitals. In 
hospitals and clinics, a biometric system can identify a large 
number of patients during the second examination without 
retraining the system for each new patient. Several meth-
ods have been reported for the classification of chest X-ray 
images used in clinics or hospitals [12]; however, such meth-
ods are yet to be used in actual clinical applications.

The performance of such biometric techniques applied to 
clinics and hospitals can degrade owing to variabilities in the 
clinical chest X-ray images, including variations in posteroan-
terior (PA) and anteroposterior (AP) view positions, image 
processing, and patient conditions (pre- and post-operative 
or trauma) [13, 14]. In particular, regarding view positions, 
healthy subjects are examined in the standing and PA view 
positions in routine chest X-ray imaging. However, depend-
ing on the patient’s condition (such as inability to stand or 
postmortem), the examination is performed in the spine or in 
the sitting AP view position. Previous studies have revealed 
that classification between PA and AP view positions is pos-
sible in chest X-ray images [36]; this also implies that there is 
a domain-shift problem between PA and AP view positions. 
Therefore, differences in the positions of PA and AP views, 
including differences in the patient’s condition and imaging 
geometry, can have a significant impact on their biometric 
performance. Although some studies have addressed this 
problem [28], the domain-shift problem caused by differ-
ences in view position has not been resolved, and concerns 
regarding its clinical application are yet to be addressed. Bio-
metric systems for clinics and hospitals are expected to not 
only have adequate biometric performance based on clini-
cal images [47–49] but also exhibit robustness under clinical 
image variabilities; therefore, such a biometric system, which 
exhibits good performance under varied view positions, will 
potentially be effective for use in clinics and hospitals.

The objective of the study was to (a) develop a deep learn-
ing-based feature extractor and classifier using the similar-
ity index to perform patient identity verification during chest 

X-ray examination and (b) quantitatively evaluate the out-
comes of the proposed method on clinical chest X-ray datasets 
with clinical variabilities, such as different view positions.

Materials and Methods

Outline of the Proposed Method

The proposed deep learning metric-based patient verifica-
tion and identification system is illustrated in Fig. 1. The 
system comprises three units: (i) image acquisition and pre-
processing, (ii) feature extraction, and (iii) identification. 
The first unit acquires an image with a routine chest X-ray 
examination and performs image postprocessing. Healthcare 
providers are not required to perform any additional work in 
biometric patient verification. In the second unit, the feature 
extractor trained by the proposed model extracts the fea-
tures that identify an individual from chest X-ray images. In 
the final unit, the similarity index of the extracted features 
between clinical chest X-ray images and stored clinical data-
sets is used to determine whether the patients are the same.

The proposed method was evaluated using four test data-
sets different from the dataset used for training and valida-
tion. Two datasets were public datasets, whereas the other 
two were clinical chest X-ray image datasets.

Datasets

The experiment was a retrospective, observational study 
and was approved by the Institutional Review Boards at 
Osaka University (Approval Number: 19422–6). Therefore, 
informed consent was not mandatory. All procedures per-
formed in this study conformed to the guidelines and ethics 
set by the Helsinki Declaration.

Table 1 summarizes the patient demographics in the five 
datasets used for training, validating, and testing the DCNN 
used in the proposed method. The ChestX-Ray8 dataset 
[50], used for training and validation, included 57,452 chest 
X-ray images from 3,245 patients with at least eight chest 
X-ray images per patient that were examined on both PA 
and AP view positions. All 57,452 chest X-ray images were 
used in either training or validating subsets, but not both. 
Of the 57,452 chest X-ray images of 3,245 patients, 50,962 
images were used for training and 6,490 images for validat-
ing the trained model. To enable mini-batch learning within 
the computation limitations for training and validation, the 
image pixel spacing of all the images was resampled to 
1.0 × 1.0 mm2 (276 to 495 and 261 to 495 pixels for rows 
and columns, respectively) using bicubic interpolation and 
by cropping the central 320 × 320 pixels.
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Two public datasets and two clinical datasets were used 
for testing. The first public dataset, PadChest [51], included 
19,713 chest X-ray images from 6376 patients with at least 
two PA or AP chest X-ray images per patient. The image 
pixel spacing of all images was resampled to 1.0 × 1.0 mm2 
(151 to 431 and 158 to 431 pixels for rows and columns, 
respectively) using bicubic interpolation. Furthermore, the 
bit depth was rescaled linearly down to 8 bits. The second 
public dataset, CheXpert [52], included 32,972 chest X-ray 
images from 10,224 patients. We used the CheXpert-V1.0-
Small dataset in which the image pixel size and bit depth 
of all images were 512 × 512 pixels and 8 bits, respectively.

The first clinical dataset named “Morishita Laboratory 
(ML)” comprised 81,109 chest X-ray images from 31,366 
patients who underwent chest X-ray screening examinations 
between March 1986 and October 2004 in Iwate, Japan. 
Images of patients in the ML dataset were acquired using a 
computed radiography system (Fujifilm, Tokyo, Japan) under 
a matrix size of 1760 × 1760 pixels, pixel spacing of 0.2 × 0.2 
mm2, and 10-bit greyscale. The second clinical dataset named 
“Yamaguchi University (YU)” comprised 25,547 chest X-ray 
images from 12,517 patients obtained by random sampling 
from patients aged 20 years or older who underwent rou-
tine chest X-ray examinations between October 2015 and 
March 2017 at Yamaguchi University Hospital, Japan. All 
the images in the YU dataset were acquired using a flat-
panel detector system (AeroDR; Konica Minolta Inc., Tokyo, 
Japan) or a computed radiography system (REGIUS MODEL 
110; Konica Minolta Inc., Tokyo, Japan) with a matrix size 

of 2430 × 1994 pixels, pixel spacing of 0.175 × 0.175 mm2, 
and 12-bit greyscale. The data were processed using the diag-
nostic imaging workstation (model CS-7 version 1.20–1.30; 
Konica Minolta Inc., Tokyo, Japan). In addition to the public 
dataset, we resampled all the images in the two clinical data-
sets to images with a pixel spacing of 1.0 × 1.0 mm2 using 
bicubic interpolation. Furthermore, the bit depth was rescaled 
linearly down to 8 bits.

DCNN Learning

Outline of DCNN Learning by the Proposed Model

The EfficientNetV2-S backbone network with metric learn-
ing was used to train the DCNN for classifying individual 
examined patients based on chest X-ray images. Deep learn-
ing was performed using a computer with a GeForce 3090 Ti 
(NVIDIA, Santa Clara, Calif) graphics processing unit, Core 
i9-10900X 3.70 GHz (Intel, Corp., Santa Clara, Calif) cen-
tral processing unit, and 128 GB of random-access memory.

Python 3.10.8 and PyTorch 1.13.0 + cu117 were used to 
perform DCNN training, validation, and testing using the 
element-wise adaptive sharpness-aware minimization opti-
mizer [53] (base optimizer, SGD with a momentum of 0.8, 
and a weight decay of 0.0005) with a neighborhood size, rho, 
of 2.0, batch size of 60, smooth cross-entropy loss function 
with a label smoothing of 0.1, and cosine-decay learning rate 
scheduler (initial–last: 0.02–0.0004) without warmup. During 

Fig. 1   Proposed system for 
patient verification and identi-
fication
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Table 1   Datasets used for DCNN training, validation, and testing

ML Morishita Laboratory, YU Yamaguchi University, PA Posteroanterior, AP Anteroposterior, SD Standard Deviation, PA–PA subset for PA 
view at both examinations, AP–PA subset for AP view at baseline and PA view at follow–up examinations, PA–AP subset for PA view at baseline 
and AP view at follow–up examinations, AP–AP subset for AP view for both examinations

Public dataset ChestXray8 CheXpert PadChest

Number of patients 3,245 10,224 6,376 Patients
Number of images 57,452 32,972 19,713 Images
Gender Patients
Male 1,892 5,272 3,594
Female 1,353 4,952 2,780
Others 0 0 2
View position Images
PA 26,018 6 7,867
AP 31,434 32,966 11,846
Age categories Patients
Neonate, infant (0 years) 0 152
Young child (1–4 years) 0 222
Older child (5–10 years) 0 85
Adolescent (11–19 years) 0 62
Adult (20 years or more) 3,245 5,855
Examination interval categories (from baseline to follow-up X-ray examination dates) Image–pairs
Under 1 year 10,559
From 1 to 5 years 2,241
Over 5 years 537

Clinical dataset ML YU

Number of images 81,109 25,547 images
Number of patients 31,366 12,517 patients
Examined baseline X-rays 12,790 8,417
Examined baseline and follow-up X-rays 18,576 4,100
Age (at the baseline examination) years
Mean ± SD 55 ± 15 64 ± 16
Range 15–95 20–100
Gender patients
Male 13,845 6,653
Female 17,521 5,864
View position images
PA 81,109 23,953
AP 0 1,594
Subsets of clinical dataset (with at least two examinations per patient)
Number of images 68,319 17,130 images
Number of patients 18,576 4,100 patients
Pair of view positions (baseline and follow-up) pairs
PA–PA 49,743 11,487
AP–PA 0 613
PA–AP 0 306
AP–AP 0 624
Examination intervals between the baseline and follow-up X-ray examination dates days
Mean ± SD 1,051 ± 635 100 ± 115
Range 0–2,932 0–489
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each training epoch, each image was augmented to correspond 
to the variabilities in clinical chest X-ray images as follows: 
random rotation between − 10° and 10° and random perspective 
transformation with a probability of 0.1 and distortion scale of 
0.25 with bicubic resampling. The training time of the proposed 
method was approximately 70 h for 300 epochs of learning.

Feature Extractor Used by the Proposed Model

The EfficientNetV2-S backbone network with metric learn-
ing was used to train the DCNN for classifying individual 
examined patients based on chest X-ray images. Efficient-
Net uses mobile inverted bottleneck convolution (MBConv), 
similar to MobileNetV2 [54] and MnasNet [55]. A com-
pound scaling method that uniformly scales each dimension 
with a fixed set of scaling coefficients is incorporated in 
the system [56]. In EfficientNetV2, fused-MBConv layers 
replace the 3 × 3 depth-wise convolution (conv3 × 3), and 
the 1 × 1 boosted convolution (conv1 × 1) is expanded in 
MBConv in the original EfficientNet with a normal 3 × 3 
convolution to improve training performance [57]. The out-
put values of the feature extractor trained using the proposed 
method were used as features to characterize individuals.

Classifier Used by the Proposed Model

Conventional image classifiers cannot achieve high gener-
alizability even with deep learning and require numerous 
training samples of medical images and a long training 
time, which degrades the performance of the DCNN. By 

contrast, deep metric learning is a technique for improving 
the accuracy of classifiers [58]. Deep metric learning can 
be used to develop a feature extractor with high generaliz-
ability using fewer classes and images [58].

Figure 2 displays the classifier used by the proposed method 
that converts the features in the feature extractor output into the 
prediction of the 3245 classes of patients for the training subset. 
The classifier network comprises a nonlinear fully connected 
(FC) layer with metric learning layer (Fig. 2). The nonlinear FC 
layers comprise the following sequential layers: a linear layer, 
dropout layer, rectified linear unit (ReLU) activation function, 
and linear layer. Linear function applies a linear transformation 
to input matrices. ReLU is an activation function that renders 
the network nonlinear and fits complex data. Dropout is a regu-
larization method for reducing overfitting in neural networks 
during training. Furthermore, we introduced AdaCos [59], 
which is a deep metric learning technique, to control dimen-
sionality reduction complexity while preserving the individual 
characteristics of each patient. AdaCos [59] can automatically 
determine hyperparameters and successfully perform deep met-
ric learning without additional tuning steps.

Similarity Index by the Proposed Model

The cosine similarity between the features in the follow-up 
and baseline chest X-ray images was used as the similarity 
index. The cosine similarity ranged from − 1 to 1 and was 
used for distinguishing same or distinct matched patient 
pairs. Values closer to 1 present the same patient pair. The 
cosine similarity is considered superior to the distance 
measurement in face verification [60].

Fig. 2   Overview of the DCNN used in the proposed method. EfficientNetV2-S backbone is used as the feature extractor, and the classifier net-
work consists of a linear layer, ReLU activation function, dropout layer, linear layer, and AdaCos [59] in that order. ReLU: rectified linear unit



1946	 Journal of Digital Imaging (2023) 36:1941–1953

1 3

Hyperparameter Evaluation of the  
Proposed Model

Several hyperparameter settings of the proposed method 
were evaluated in terms of each top-1 accuracy on the 
PadChest dataset divided into the following four subsets 
in terms of view position combinations at the baseline and 
each follow-up examination: PA view at both examinations 
(PA–PA), AP view at the baseline and PA view at follow-
up examinations (AP–PA), PA view at the baseline and AP 
view at follow-up examinations (PA–AP), and AP view for 
both examinations (AP–AP).

In this study, we evaluated the following hyperparam-
eters: number of epochs and number of features in the fea-
ture extractor output. The number of features was varied 
by further applying a linear transformation to the output 
from the feature extractor.

Verification Performance Evaluation 
of the Proposed Method

The image with the oldest examination date in the PadChest, 
YU, and ML datasets was used as the baseline image, and 
the other images were used as follow-up images. To evaluate 
the verification performance, this study used all image pairs 
from the same patient and the image pairs from different 
patients by random sampling: PadChest (6376 and 6376 of 
respective same and different patient pairs), YU (4100 and 
4100 of respective same and different patient pairs), and 
ML (18,576 and 18,576 of respective same and different 
patient pairs) datasets. For the CheXpert dataset, we used the 
image-pair list, of which 8243 were of same patient pairs and 
8243 of different patient pairs, used in a previous study [12].

The verification performance of the proposed method 
was evaluated in terms of the area under the receiver oper-
ating characteristic (ROC) curve (AUC) and equal error 
rate (EER). The ROC curves were statistically compared 
using the unpaired DeLong’s test [61].

Closed‑Set Identification Performance 
Evaluation of the Proposed Method

The image with the oldest examination date in the PadChest, 
YU, and ML datasets was used as the baseline image, and the 
other images were used as the follow-up image by employ-
ing all combinations for closed-set identification perfor-
mance evaluation: PadChest (baseline 6,376 images of 6376 
patients and follow-up 13,337 images of 6376 patients), YU 
(baseline 12,517 images of 12,517 patients and follow-up 

13,030 images of 4100 patients), and ML (baseline 31,366 
images of 31,366 patients and follow-up 49,743 images of 
18,576 patients) datasets.

The closed-set identification performance of the proposed 
method was evaluated in terms of top-1 and top-2 accura-
cies. Top-2 accuracy refers to the accuracy when any of the 
pairs within the top-two higher cosine similarities in all 
patient comparisons are the same patient pairs. The top-1 
accuracy on each subset by view position combinations was 
compared statistically using the two proportion Z-test.

Results

Figure 3 shows the top-1 accuracy transition of the hyper-
parameter variabilities on the PadChest dataset and four 
subsets, which are PA–PA, PA–AP, AP–PA, and AP–AP, 
using the proposed method. As can be observed in Fig. 3a, 
the performance of the proposed method improved with 
the increase in the number of epochs to 300. As shown in 
Fig. 3b, the top-1 accuracy transition remains flat regardless 
of the number of features.

Figure 4 shows the top-1 accuracy transition of (a) patient 
age in the baseline examination and (b) examination interval 
between the variabilities in the baseline and follow-up cat-
egories on the PadChest dataset using the proposed method 
with the result of the two proportion Z-test. In Fig. 4a, it can 
be observed that the top-1 accuracy increased until the age 
category reached adolescent. The top-1 accuracy of the adult 
category was significantly lower than that of adolescent 
(p < 0.05). Furthermore, in Fig. 4b, it is seen that the top-1 
accuracy with an examination interval of less than one year 
was not significantly different from those with examination 
intervals from one to five years and greater than five years.

Table 2 summarizes the verification performance of the 
proposed method in terms of AUC and EER values on two 
public and two clinical datasets with 300 epochs and 1,280 
features. Significant differences were observed between 
each different dataset (p < 0.01). The AUC values of the 
proposed method on the CheXpert (AUC = 0.9943) and ML 
datasets (AUC = 0.9999) were superior to those of the meth-
ods proposed by Packhäuser et al. on the CheXpert dataset 
(AUC = 0.9870) [12], Morishita et al. on the ML dataset 
(AUC = 0.993) [16], and Shimizu et al. on the ML dataset 
(AUC = 0.994) [17].

Table 3 summarizes the closed-set identification per-
formance of the proposed method in terms of top-1 and 
top-2 accuracies on a public and two clinical datasets with 
300 epochs and 1280 features. The closed-set identifica-
tion performance of follow-up examinations with different 
view positions (PA–AP or AP–PA) was significantly lower 
than that with a same view position (PA–PA or AP–AP). 
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Furthermore, although the top-2 accuracy increased to 
0.984, the top-1 accuracy showed a sharp decrease to 0.749 
on the YU dataset.

Figure  5 shows an important area visualization that 
identifies the patient using the model trained based on the 
proposed method by Grad-CAM [62]. Grad-CAM gener-
ates heat maps of characteristic features and superimposes 
them on the original X-ray image to visualize the important 
regions that affect patient verification.

Discussion

In this study, a DCNN feature extractor and classifier based 
on the similarity index was used to verify the identity of 
examined patients using clinical chest X-ray images. The 
proposed method is available for use not only from the sec-
ond examination onwards without additional training but 
also extracts robust features regarding different view posi-
tions. The number of features output by the EfficientNetV2-
S backbone is used as a hyperparameter in the proposed 
method. We set the number of features to 1280 and the num-
ber of epochs to 300. The results revealed that this evalua-
tion method achieved high performance not only on public 
datasets containing a large amount data and different view 
positions but also on clinical datasets that include clinical 

image variabilities (Tables 2–3). Packhäuser et al. [12] 
achieved an AUC value of 0.9870 on the CheXpert data-
set. Furthermore, Morishita et al. [16] and Shimizu et al. 
[17] achieved the highest AUC values of 0.993 and 0.994, 
respectively, on the ML dataset. In comparison, the pro-
posed method achieved AUC values of 0.9999 and 0.9943 
on the ML and CheXpert datasets, respectively, which are 
both higher than those achieved by the previous methods 
[12, 16, 17].

In the comparison (PA–AP and AP–PA subsets in the 
PadChest dataset) between the combinations of differ-
ent view positions shown in Fig. 3a, the top-1 accuracy 
improved when the number of epochs was increased to 300. 
The results in the PA–PA and AP–AP comparisons, that is, 
combinations of the same view position, were sufficiently 
accurate even with 200 epochs, and increasing the number of 
epochs did not improve the accuracy. Therefore, the optimal 
number of epochs depends on the type of view positions 
present in the dataset. These results suggest that underfit-
ting may occur in feature extraction at different view posi-
tions up to 300 epochs. More than 300 epochs are required 
to extract robust features for different view positions. We 
assume that, depending on the model, when the number 
of epochs exceeds 300 during training, techniques such as 
regularization and data augmentation are needed to suppress 
overfitting in the proposed method.

Fig. 3   Hyperparameter transition in the proposed method on the Pad-
Chest dataset. Two hyperparameters, number of epochs, and number 
of features in the feature extractor output variabilities show a the 
relationship between the number of epochs and top-1 accuracy, b the 
relationship between the number of features and top-1 accuracy. PA–

PA subset for PA view at both examinations, PA–AP subset for PA 
view at baseline and AP view at follow-up examinations, AP–AP sub-
set for AP view for both examinations, AP–PA subset for AP view at 
baseline and PA view at follow-up examinations
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An increase in the interval between two examinations 
negligibly affected the top-1 accuracy of the proposed 
method, as shown in Fig. 4b; therefore, the examination 
intervals are expected to not be problematic for clinical 
applications of this method.

Areas around the devices implanted in the three patient 
examples shown in Fig. 5 are hardly recognized as important 
areas for feature extraction. Although we are concerned that 
the devices might be recognized as characteristic features, 
we believe that the proposed method has the potential to 
be applied to patient verification and identification from 
chest X-ray images even if high-contrast objects, such as 

accessories (removable) or metal implants (not removable), 
are present in the imaging area. Furthermore, changes in 
lung condition due to pneumonia or slightly oblique patient 
positions do not affect the performance of the proposed 
method in extracting patient-characteristic features.

This study has certain limitations. First, the results sug-
gest that patient identification using chest X-ray images has 
a domain-shift problem in different view positions, includ-
ing the reproducibility of the positioning. The performance 
of the proposed method on the ML dataset was consistently 
superior to that on the YU, PadChest, and CheXpert data-
sets in terms of AUC, EER, and top-1 and top-2 accuracies, 

Fig. 4   Top-1 accuracy performance using the proposed method on 
the PadChest dataset. Two categories, age and examination intervals, 
variabilities show a the relationship between the age category sub-
sets and top-1 accuracy, b the relationship between the examination 
intervals category subsets and top-1 accuracy. Neonate-infant: sub-
set under the age of 0 years; young child: subset aged between 1 and 
4 years; older child: subset aged between 5 and 10 years; adolescent: 

subset aged between 11 and 19 years; adult: subset aged 20 years or 
more. < 1 year: subset in which the examination interval is less than 
1 year, 1–5 years: subset in which the examination interval is between 
1 and 5 years, > 5 years: subset in which the examination interval is 
5  years or more. Asterisks: significant difference (two proportion 
Z-test; *p < 0.05 and **p < 0.01). Pound: no significant difference 
(two proportion Z-test; #p > 0.05)

Table 2   Verification 
performance of the proposed 
method on two public and two 
clinical datasets

p value calculated for AUC values by the unpaired DeLong test. ML Morishita Laboratory, YU Yamaguchi 
University, EER Equal Error Rate, AUC​ Area under the receiver operating characteristic curve

Dataset EER AUC​ p value

vs. CheXpert vs. ML vs. YU

PadChest 2.70 × 10−2 0.9899 2.02 × 10−7 2.20 × 10−16 2.20 × 10−16

CheXpert 2.96 × 10−2 0.9943 – 2.20 × 10−16 2.98 × 10−6

ML 5.65 × 10−4 0.9999 – – 9.10 × 10−4

YU 5.12 × 10−3 0.9980 – – –
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Table 3   Identification 
performance of the proposed 
method on a public and two 
clinical datasets

p value calculated for top-1 accuracy by the two proportion Z-test. ML Morishita Laboratory, YU Yama-
guchi University, PA–PA subset for PA view at both examinations, AP–PA subset for AP view at baseline 
and PA view at follow-up examinations, PA–AP subset for PA view at baseline and AP view at follow-up 
examinations, AP–AP subset for AP view for both examinations

Dataset Subset Number of 
patients

Top-1 accuracy p value Top-2 accuracy

PadChest PA–PA 3,584 0.910 1.42 × 10–68

PA–AP 1,412 0.717
AP–AP 7,184 0.818 1.01 × 10–16

AP–PA 1,157 0.713
All view positions 13,337 0.823 0.875

ML PA–PA 49,743 0.993 0.999
YU PA–PA 11,487 0.738 0.742

PA–AP 613 0.731
AP–AP 624 0.923 1.23 × 10–9

AP–PA 306 0.781
All view positions 13,030 0.747 0.981

Fig. 5   Visualization of an important area that identifies the patient 
with the trained model of the proposed method using Grad-CAM. 
Example images of three patients (a–c) with five images each, one 
image from the validation dataset and four images from the training 
dataset. a–b Example image of patients with an implanted device (a 
pacemaker and b CV port). c Example image of a patient with tem-

porary devices (some devices are in the training image and the other 
is in the validation image). The validation images overlayed the Grad-
CAM [62] map to visualize the parts of an image that are important 
for patient identification using the proposed method. The patients in 
the first and second rows are different
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likely because all patients in the ML dataset underwent the 
chest X-ray imaging in a standing or sitting PA view posi-
tion. In terms of the reproducibility of positioning, the ML 
dataset, which does not include the AP view position, is 
comprehensively superior to the YU, PadChest, and CheX-
pert datasets. Furthermore, results revealed a degradation in 
the top-1 accuracy performance between different view posi-
tions (AP–PA or PA–AP) compared with images from the 
same view position (PA–PA or AP–AP). We demonstrated 
that one of the solutions to this problem is to increase the 
number of epochs and suppress underfitting. Although the 
performance on the YU, PadChest, and CheXpert datasets 
was not as effective as that on the ML dataset, the metrics 
showed reasonably good results. However, there is a statisti-
cally significant difference between the top-1 accuracies for 
the same and different view positions. We expect further 
accuracy improvements using applications such as domain 
adaptation techniques [12, 28].

Second, in Fig. 4a, significant differences can be observed 
in the performance of the proposed method in terms of the 
top-1 accuracies for each patient age category. The top-1 
accuracies were significantly lower for the neonate-infant, 
young child, and older child categories compared with the 
adult category. We concluded that the performance degra-
dation was because the model underfitted to the changes in 
the patient’s body over the growth period, which could be 
attributed to no images of patients aged under 20 in the train-
ing dataset. Further research is required on efficient learning 
with small datasets.

Third, although the top-2 accuracy increased to 0.984, 
the top-1 accuracy showed a sharp decrease to 0.749 on the 
YU dataset. At the hospital that provided the YU dataset, a 
new patient identifier (ID) is issued when a patient visits for 
the first time; however, in some cases, an already registered 
patient with a patient ID was assigned a new patient ID. In 
this case, two patient IDs were assigned to the same patient. 
In this study, the patient ID registered in the DICOM header 
was treated as one patient with one ID. Therefore, if the 
patient ID recorded in the DICOM header is different, it will 
be regarded as the image of a different patient, even if it is 
the same patient. However, if the similarity is high because 
it is the same patient, the top-1 accuracy still degrades. Fur-
thermore, the YU dataset contains some inadequate X-ray 
images resulting from errors that occur while reading and 
transferring the images. However, the patient ID is correctly 
recorded in the header of these images. Although it is the 
same patient on the ID recorded in the DICOM images, the 
results show that the similarity index is low between inad-
equate and other adequate images. A record that has been 
assigned two IDs is managed in the hospital information 
system (HIS) or radiology information system (RIS). It is, 
therefore, desirable to use the patient IDs recorded in HIS/
RIS information, not the patient IDs recorded in DICOM 

images, for lists used in biometric systems in clinical appli-
cations. Moreover, we believe that measures to disable inad-
equate images presented above are desirable.

In addition, in this study, each clinical dataset was 
obtained using X-ray imaging devices with the same model 
and similar acquisition parameters. Different X-ray imaging 
devices have different image contrast in chest X-ray images; 
therefore, the performance achieved in this study may not 
be reproducible. To evaluate the biometric performance on 
a variety of image contrasts, a dataset consisting of clinical 
X-ray images from several clinics or hospitals using com-
mon patient identifier is required.

The proposed method can confirm that the patient who 
underwent chest X-ray examination and the patient to be 
examined are the same. Moreover, the proposed method 
is available for checking the misfiling patient identifier 
on the picture archiving and communication system. We 
thereby expect that the proposed method will be useful for 
safety systems that could prevent these patient misiden-
tification problems and will be able to contribute to the 
reduction of the risk of incorrectly identifying patient due 
to human error.

Conclusions

Potential risks that can lead to medical malpractice, such as 
patient misidentification in clinical examinations and misfil-
ing of images stored in picture archiving and communication 
systems, are still inherent in clinical work. In this study, 
a patient verification and identification method was pro-
posed using a deep feature extractor with robustness under 
different view positions from images obtained by clinical 
chest X-ray examination. The performance of the proposed 
method was verified not only on two public datasets but also 
on two clinical image datasets, namely ML and YU. Clinical 
chest X-ray examinations that utilize cutting-edge technol-
ogy (such as the technique presented in this study) provide 
a key solution to prevent patient misidentification resulting 
from human errors.
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