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Crowd management at large-scale events and specific
facilities is a critical issue from the perspectives of
safety and service quality improvement. Traditional
methods for crowd management often rely on empir-
ical knowledge, which has limitations in quickly grasp-
ing the on-site situation and making decisions on the
spot. In this study, we developed a real-time crowd flow
prediction and visualization platform incorporating an
agent-based crowd simulation and an advanced crowd
management system called crowd management plat-
form as a service. In a case study focused on the area
around the Tokyo Dome, we demonstrated that cap-
turing pedestrian flow allows for accurate predictions
of congestion at the nearest train station up to 10 min
in advance. Moreover, the time required to predict the
situation 20 min ahead for 3,000 agents was 1 min and
35 s, confirming the feasibility of real-time processing.
To enhance the accuracy and reliability of the simula-
tion results, a sensitivity analysis considering errors in
pedestrian flow measurement revealed that simple lin-
ear models cannot capture the complexity of crowd dy-
namics adequately. Notably, the agent-based simula-
tion replicated stop-and-go wave patterns observed in
actual measurements under specific crowd conditions,
confirming the advantage of using agent-based simu-
lations. Finally, we proposed a method that enables
facility managers and security personnel to conduct
a more comprehensive evaluation. This method inte-
grates their existing experience with the aggregated
display of multiple simulation results, which includes
consideration of errors in pedestrian flow measure-
ment through a visualization platform.

Keywords: crowd flow prediction, crowd management,
agent-based simulation, visualization

1. Introduction

In events such as sports, concerts, and exhibitions,
where large numbers of people gather, crowd security
is routinely implemented to ensure safety. When these
events end, congestion occurs not only within the facility
but also on the pedestrian streets that lead to public trans-

portation. One important measure is to ease the concentra-
tion of congestion, such as by implementing regulated ex-
its. However, most planning for such measures is based on
accumulated experience and expertise, and there is a grow-
ing expectation for the incorporation of findings from the
latest scientific research [1]. Among these, agent-based
crowd simulation [2] is effective in aiding the decision-
making process of advanced crowd management and be-
ginning to be applied at large-scale events [3]. Addition-
ally, by monitoring crowd conditions on the day of an event
and cross-referencing them with an advanced crowd man-
agement plan, it is possible to assess the risk of accidents
before they occur and implement early-stage security mea-
sures.

Advancements in video recognition, smartphone loca-
tion data utilization, Internet of Things technology, and
machine learning have enabled the near-real-time mea-
surement of congestion [4, 5]. Recently, simulation tech-
nologies that virtually replicate physical objects in cy-
berspace based on data collected through advanced mea-
surements and observations have gained attention. These
are often referred to as cyber-physical systems or digital
twins [6, 7]. Methods for utilizing digital twins in ur-
ban spaces combined with crowd measurement technol-
ogy have been proposed to simulate pedestrian flows.

Since 2020, Japan’s Ministry of Land, Infrastruc-
ture, Transport and Tourism has been advancing Project
PLATEAU, which is aimed at the development, utiliza-
tion, and open data conversion of 3D urban models that
replicate real cities [8]. Concurrently, municipal-level dis-
cussions have commenced, and Tokyo is conducting pi-
lot projects targeting the realization of a digital twin by
2030 [9]. Among these pilot projects, the visualization of
real-time pedestrian flow, including subterranean spaces,
is under consideration. However, the focus has remained
limited to the visualization of crowds. In Europe, the
IoTwins project [10] is also conducting research and devel-
opment on crowd management as a testbed in facility man-
agement, such as at stadiums; however, it has not reached
the stage of real-time crowd flow prediction [11]. Nev-
ertheless, numerous methods utilizing machine learning
have been proposed to estimate future crowd congestion
based on real-time pedestrian flow data [12–14]. Further-
more, by integrating an agent-based crowd simulation, the
behavior of individuals and the geometric shapes of com-
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plex spaces can be replicated [15]. Agent-based crowd
simulations enable the visualization of crowd movement
and changes in density distribution within target areas.
This approach promotes an intuitive understanding of the
simulations, even for those who are not experts in the field.
However, there have been no discussions about the imple-
mentation of real-time crowd flow prediction systems or
the specific challenges involved.

This study aimed to develop a real-time crowd flow pre-
diction and visualization platform that incorporates agent-
based crowd simulation and an advanced crowd manage-
ment system. We applied this system to the environment
around a stadium at the end of large-scale events to clarify
the technical challenges. Specifically, to predict conges-
tion 10 min ahead in real time and simulate crowd move-
ment and density changes, it is crucial to address several
technical challenges. These include managing the incom-
plete initial position information of crowds at the begin-
ning of the simulation, assessing the impact of errors in
the input data necessary for simulations involving sens-
ing and time-series prediction, and determining whether
the simulation’s computational time is compatible with the
demands of real-time prediction. In addition, to utilize the
results of these simulations, it is vital to have a mechanism
for sharing information among stakeholders and security
personnel in various positions [16, 17]. We propose a vi-
sualization platform to achieve this.

2. Method

2.1. Agent-Based Crowd Simulation

An agent-based crowd simulation models individual
humans as agents whose movements are governed by a
set of rules. The simulation reproduces crowd behavior
through local interactions among agents or with their en-
vironments. In this study, we employed Pathfinder [18], a
commercial software package, for the agent-based crowd
simulation.

A key feature of this software is the use of a navigation
mesh for spatial modeling and route choice. A navigation
mesh [19] represents the areas through which agents can
move as a collection of 3D meshes (triangles), making it
suitable for accurately reproducing the spatial geometry
(Fig. 1). In Pathfinder, functionality is provided for im-
porting generic 3D CAD data and automatically creating a
navigation mesh derived from the geometric properties of
the data [18]. This navigation mesh consists of a continu-
ous series of triangular surface data that can be configured
to mirror the shape of the geometry created from the 3D
CAD data. In the process of selecting a route, each triangle
is regarded as a node, and the connections between neigh-
boring triangles are viewed as connections within a net-
work configuration. Costs, such as the distance to a desti-
nation, are calculated to determine a route using a search
algorithm [20]. When an agent has multiple destination
candidates, the destination with the minimum cost is se-
lected.

Agent

Obstacle

Navigation Mesh

Destination

Way Point

Fig. 1. Movement of an agent on a navigation mesh.

Once a destination is determined through the route
choice, the agents obtain a series of waypoints on the
edges of the navigation mesh (Fig. 1). A path to the
agent’s destination was formed based on these points. To
smooth this path, Pathfinder utilizes a method called string
pulling [21]. This method adjusts the agent to turn only
at the corners of the obstacles, maintaining a distance at
least equal to the radius of the agent from the obstacles. In
addition, the software uses a physics-based model for col-
lision avoidance between agents and obstacles or among
the agents themselves.

2.2. Real-Time Crowd Flow Prediction
2.2.1. Acquisition of Pedestrian Flow Data

To acquire pedestrian flow data, we utilize the crowd
management system developed in this project [22]. Crowd
management platform as a service (CMPaaS) is equipped
with functions to aggregate pedestrian flow data at specific
locations. It conducts various simulations based on these
data and stores the results for use in crowd control. Al-
though the system is still under development, some of its
features are available for this study.

Various types of data can be downloaded through the
Web API provided by CMPaaS. The pedestrian-flow data
used in this study were obtained from cameras installed
on the target premises. These cameras capture the number
of people crossing a predefined line (referred to as a “de-
tection line”) in the footage, which is collected in a time
series at one-minute intervals.

2.2.2. System of Real-Time Crowd Flow Prediction
Real-time crowd flow prediction involves obtaining the

most recent pedestrian flow data from CMPaaS and us-
ing an agent-based crowd simulation to predict potential
congestion situations in the near future. As Pathfinder
is an agent-based crowd simulation tool and lacks real-
time simulation functionality, we utilized a Python script
for real-time control, including the editing of Pathfinder’s
simulation input files, external execution of the simulation,
and extraction of simulation results. The system flow is il-
lustrated in Fig. 2.

A simulation input file refers to a text file containing
all information required to run a simulation in Pathfinder.
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Fig. 2. System flow of real-time crowd flow prediction.

While Pathfinder was originally a graphical user interface-
based software, the use of this input file enables simula-
tion execution via a command line. To perform real-time
crowd flow prediction, a Python script initially accessed
CMPaaS using a Web API to collect the pedestrian flow
for the most recent # minutes. Based on these data, the
inflow data for individuals expected to enter the target area
were predicted in a time-series manner. This time-series
prediction of pedestrian flow was then written into the sim-
ulation input file, and the simulation was executed using
Pathfinder via the command line. Future congestion con-
ditions were extracted as heatmap images based on level of
service [23] from the Pathfinder’s simulation results using
the Python script.

2.2.3. Technical Challenges in Real-Time Crowd Flow
Prediction

In real-time crowd flow prediction, several technical
challenges arise concerning (1) errors in the predicted in-
put data, (2) replication of the initial placement of the
crowd, and (3) simulation computational time.

(1) Errors in crowd flow prediction refer to the need
to supplement the inflow data with an agent-based
crowd simulation in the near future, which inherently
contains errors. It is important to clarify the techni-
cal challenges regarding how these errors in the pre-
dicted values affect simulation results using methods
such as sensitivity analysis and error propagation.

(2) Replication of the initial placement of the crowd
refers to reproducing the initial positions of the agents
at the start of the simulation. The pedestrian flow
data obtained from CMPaaS are based on the number
of people crossing the designated detection lines and
insufficient to accurately set the initial positions of

the agents. Therefore, this study employed a method
that sets the initial positions of each agent using data
interpolated through an agent-based crowd simula-
tion. The interpolated data represent the initial po-
sition data at the current time, obtained by starting
the simulation # minutes prior to the current time.
However, the value of # entails a tradeoff with the
computational time of the simulation.

(3) The simulation computational time must be assessed
for its suitability for real-time prediction and whether
the increase in computational time is acceptable with
the scaling of the simulation. The computer used in
this study had an Intel Core i9-13900KF (24 cores)
CPU and 128 GB of main memory.

2.3. Case Study
2.3.1. Target Area

In this case study of crowd flow prediction, we focused
on the area around the Tokyo Dome, specifically consid-
ering the period immediately after the end of a baseball
game. The target area is shown in Fig. 3. The subject
facility has a building area of 46,755 m2 and can accom-
modate 55,000 people. It serves diverse purposes, ranging
from hosting professional baseball games to concerts and
various events. Considering the surrounding area, the total
area was approximately 133,000 m2.

Multiple cameras are installed in the target area to mea-
sure the pedestrian flow, and Fig. 3 shows the lines where
the flow is detected (note that the numbering of these de-
tection lines is not sequential, as they also exist outside the
target area). The scope of the agent-based crowd simula-
tion extends from the stadium to the entrance of the railway
station. Within this range, we aimed to predict the number
of people passing over a pedestrian bridge monitored by
the detection line LINE04. The arrows in Fig. 3 indicate
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Fig. 3. Plan of the target area and location of detection lines.

routes leading to the pedestrian bridge. We assumed that
people moving from the stadium toward the railway station
would first pass the detection lines LINE01 and LINE11,
and we used this flow data as the input for the simulation.
Additionally, the inflow from detection lines LINE07 and
LINE12 was considered in the agent-based crowd simula-
tion, as these lines represent people merging from differ-
ent routes toward the end of the pedestrian bridge at the
station.

2.3.2. Parameter Settings
A crucial parameter in agent-based crowd simulation is

the maximum walking speed. In this study, based on ob-
servational data in the target area, each agent was assigned
a maximum walking speed of 1.36±0.21 m/s. Regarding
the reduction in maximum walking speed as crowd den-
sity increases, we set the reduction rate to zero for densi-
ties up to 0.55 persons/m2 and to 85% for densities above
2.2 persons/m2, with linear interpolation for densities in
between. This rate was set based on trial and error during
simulation. We also introduced a personal distance pa-
rameter aimed at maintaining a certain distance between
agents, and set it to 0.33 m. This value was derived
from the average crowd density observed on the pedes-
trian bridge in the target area (1.87 persons/m2). Although
Pathfinder can modify a vast number of other parameters,
default values were used.

If the agent selected more than one route to a destina-
tion, it was set to a predefined percentage. Additionally,
there are alternative routes from the target stadium to rail-
way stations. Fig. 4 shows the branching of the pedes-
trian flow between the detection lines and the ratio of the
route choices set in the simulation. The selection ratios for
LINE01 to LINE10, LINE02, and LINE03 were set based

Fig. 4. Branching of pedestrian flow between detection lines.

on the actual sensed traffic volume ratios for LINE10,
LINE02, and LINE03 during the identical 20-minute in-
terval in the simulation. The traffic volume proportions
for LINE08 and LINE09 were calculated for the selection
ratios from LINE10 to both LINE08 and LINE09, as well
as from LINE02 to LINE08 and LINE09. For practical
reasons, identical selection ratios were assigned to each
group. Between LINE04 and the entrance of the station,
there is a crosswalk where impassable conditions can oc-
cur because of signal cycles.

2.3.3. Crowd Flow Prediction Scenario
In this case study, a specific time point was defined

as 0 min, which coincided with the end of a baseball
game. The congestion status of the pedestrian bridge at 10
and 20 min was predicted. The flow data obtained from
CMPaaS, based on sensing, used the past 10 min of data.
The data for the subsequent period from 0 to 20 min had
to be based on a time-series prediction.

However, the primary objective of this research was to
evaluate the performance of agent-based crowd simula-
tion in real-time crowd flow prediction. Consequently, in-
stead of employing time-series predictions, it used histori-
cal sensing data. However, it was assumed that the sensing
and time-series prediction data required for real-time pre-
diction would contain errors. The impact of these errors
on the results of the agent-based crowd simulation had to
be systematically examined. To facilitate this, errors of
−20%, 20%, 50%, and 100% were uniformly applied to
the original flow data, resulting in the creation of separate
datasets. Another error dataset was generated using the
moving average of the original data. The generated error
datasets were used to predict crowd flow, and a sensitiv-
ity analysis of the results was conducted. This sensitivity
analysis allowed for a comprehensive examination of the
impact of errors on the simulation results from the per-
spectives of accuracy and robustness. Such an analysis has

Journal of Disaster Research Vol.19 No.2, 2024 251



Yasufuku, K. and Takahashi, A.

Fig. 5. Pedestrian inflow data from the detection lines
(a) LINE01 and (b) LINE11.

the potential to provide insight into an acceptable range of
errors and parameter optimization.

3. Results and Discussion

3.1. Case Study Results
In the case study for real-time crowd prediction simu-

lations, a simulation was conducted over a 30-minute pe-
riod, spanning from 10 min before to 20 min after a spe-
cific time. This simulation focused on crowd movement
from the area surrounding the Tokyo Dome to the near-
est train station. Fig. 5 shows the pedestrian inflow data
(SENSING) from detection lines LINE01 and LINE11,
downloaded from CMPaaS. These data, which represent
the number of people passing through the detection lines
per minute, served as the input for the simulation. In the
real-time prediction, six different input datasets were used
when simulating a specific time period (0 min to 20 min
later). These datasets accounted for uniform errors of
−20%, 20%, 50%, and 100%, and moving average time-
series data. The time step of the simulation was 0.025 s,
and if the pedestrian inflow data was input in one-minute
increments, the agents were spawned at constant equal
time intervals.

The results of the crowd flow prediction are shown in
Fig. 6, which displays the time-series data (SIMULA-
TION) of the number of pedestrians passing over and

Fig. 6. The simulation results for (a) the number of people
passing through LINE04 and (b) the number of people on the
pedestrian bridge (BRIDGE).

present on the pedestrian bridge in front of the station
at one-minute intervals. The number of people cross-
ing the pedestrian bridge corresponded to the number of
people traversing the detection line LINE04, as shown in
Fig. 6(a). Compared to the actual observed values (AC-
TUAL), the numbers generally aligned well. Specifically,
the Nash–Sutcliffe coefficient [24] for accuracy from 0 to
10 min was 0.797. The Nash–Sutcliffe coefficient is an
index used to evaluate the accuracy of a model by con-
sidering the magnitude of errors in the flow rate. A value
closer to 1 indicates a higher model accuracy. Generally,
a model is considered to have high reproducibility if the
Nash–Sutcliffe coefficient is greater than 0.7.

Meanwhile, from 11 to 20 min, the Nash–Sutcliffe co-
efficient significantly decreased to −1.11. The simulation
indicates fewer individuals passing from the 11th minute,
with a peak error of −43.2% observed at the 13th minute.
Possible reasons for this could be as follows: (1) as the
pedestrian flow exceeds a certain scale, the accuracy of the
input data decreases, owing to the influence of errors in the
sensing data; (2) an increasing error over time. A further
analysis of the impact of these errors was conducted.

3.1.1. Sensitivity Analysis of Predicted Input Data
As shown in Fig. 5, six types of data with systemati-

cally introduced errors in the detection lines LINE01 and
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LINE11 were used as input data for the simulation. How-
ever, the data appearing in detection line LINE04 and the
number of people on the pedestrian bridge, as illustrated
in Fig. 6, exhibit greater variability than the introduced
errors. The errors uniformly applied over time to the in-
put data did not manifest proportionally in the data from
LINE04 and the pedestrian bridge (BRIDGE). This obser-
vation suggests that the pedestrian flow at detection lines
LINE01 and LINE11 does not maintain a simple linear re-
lationship, as people may merge along the way or choose
different paths.

In particular, after 10 min, a triangular waveform ap-
peared at detection line LINE04 when input errors of 50%
and 100% were applied, as shown in Fig. 6(a), with a focus
on the waveform. This waveform was also present in the
actual measurement results and parts with large discrepan-
cies between the actual measurements, and the simulation
closely aligned with the results when an input error range
of 20% and 50% was applied. Although the waveforms in
the input data from detection lines LINE01 and LINE11
may have an impact, the increase in amplitude as the error
increased suggests another underlying cause. To compre-
hend the specific phenomena that occurred, confirmation
of the results through simulation visualization is necessary
(refer to Section 3.2).

Conversely, when focusing on time-series graphs with
errors introduced by the moving average, the output results
of the simulation were not significantly smoothed, even
when the input data were smoothed. The Nash–Sutcliffe
coefficient for up to 20 min from 0 min was also high at
0.882, indicating a relatively minimal error impact.

Next, when examining the graph of the number of peo-
ple on the pedestrian bridge (BRIDGE) for times after
10 min, as shown in Fig. 6(b), a significant error emerged
in the simulation results when an input error of more than
50% was applied. However, when the error range was be-
tween −20% and 20%, the results fell within this margin
of error. This observation can be attributed to the fact that
when the crowd density on the pedestrian bridge allows for
free movement, the distance between the agents remains
constant. This phenomenon is discussed in Section 3.2,
along with the triangular wave observed at detection line
LINE04, using the visualization results.

3.1.2. Replication of the Initial Placement of the
Crowd

The reason for conducting the agent-based crowd simu-
lation starting from −10 min is to set the initial placement
of the crowd in the target area by time zero, using past
sensing data. Fig. 6 shows that in the graph for the de-
tection line LINE04, the pedestrian flow is zero between
−10 min and −8 min. This indicates that the inflow of
people from detection lines LINE01 and LINE11 arrives
at LINE04 approximately 2–3 min after the start of the
simulation. The subsequent reduction in the difference be-
tween the SIMULATION and ACTUAL values confirms
that starting the simulation 10 min in advance is sufficient
to effectively set the initial positions of the agents.

Fig. 7. Number of agents and simulation computational time.

3.1.3. Simulation Computational Time
The total number of agents generated for each simula-

tion in the case study and the time required for the sim-
ulation are summarized in Fig. 7. The simulations were
designed for real-time crowd flow prediction, where the
observed data were used from 10 min before the simula-
tion start time to 0 min, and the simulation was run until
20 min thereafter (30 min in total). Even in the case with
the largest number of agents generated (3,254), the sim-
ulation was completed in approximately 1 min and 35 s,
which is practical for real-time crowd flow prediction. In
addition, the relationship between the number of agents
and the simulation computational time was nearly linear.
This allows for a rough estimate of the simulation time,
depending on the scale of the task and the required pre-
diction time.

3.2. Analysis Through Visualization
In the analysis conducted in Section 3.1.1, triangular

waves were observed in the actual data of the detection
line LINE04, as well as when the input pedestrian flow
data were subjected to an error of more than 50%. More-
over, when the pedestrian flow data were doubled (error of
100%), prominent triangular waves appeared between the
13th and 19th minutes on the detection line LINE04. To
explore the cause of this, we considered this issue through
visualization.

The visualization results of the simulation predicting
18 min and 30 s after a certain time (time 0) are shown in
Fig. 8. At the crosswalk in front of the pedestrian bridge,
there is a convergence of the crowd that passed through de-
tection lines LINE04 and LINE05, leading to congestion.
The crosswalk is signal-controlled, and the crowd begins
to move when the signal turns green. When the pedestrian
flow doubles, stop-and-go waves [25] occur at that loca-
tion. When the stop wave reaches detection line LINE04,
the number of people passing through it drops sharply.
This repetitive process generated triangular waves. Stop-
and-go waves were also confirmed in the observational re-
sults and were conditionally reproduced in the real-time
crowd flow prediction. Phenomena such as stop-and-go
waves can be replicated using agent-based crowd simula-
tions, highlighting the significance of using such simula-
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Fig. 8. Visualization of simulation patterns.

tions for real-time crowd flow prediction. Improving the
timing accuracy of the emergence of these waves is a fu-
ture challenge.

The graph in Fig. 6(b) shows the temporal fluctuations
in the number of people on the pedestrian bridge. This
increasing trend is particularly notable when the error ex-
ceeds 50%. The visualization results depicted in Fig. 8
represent the time at 18 min and 30 s later when the num-
ber of people on the pedestrian bridge peaked and substan-
tial congestion occurred. Although these figures are based
on input data with errors of 50% and 100%, the real-time
prediction data also contain errors. By visualizing conges-
tion scenarios for multiple patterns that account for such
errors, evaluations that consider the experiences of facility
managers or security personnel can be made.

4. Conclusions

In this study, we developed a real-time crowd flow pre-
diction system that utilizes current pedestrian flow data
to predict imminent congestion scenarios through agent-
based crowd simulation. The efficacy of this system was
tested using a scenario following a large-scale event in the
vicinity of the Tokyo Dome. The key conclusions are sum-
marized as follows.

In a case study on real-time congestion prediction
around the Tokyo Dome, a comparison between simula-
tion predictions and observed values confirmed that the
number of pedestrians on a pedestrian bridge could be ac-
curately predicted up to 10 min in advance.

Using the number of people exiting the Tokyo Dome as
input data and introducing a certain percentage of error,
the simulation results indicated that the number of peo-
ple passing over the pedestrian bridge did not have a sim-
ple linear relationship. However, when the error from the
moving average of the time series data was incorporated
into the input, the simulation exhibited a similar trend.

The effectiveness of a method for conducting an agent-
based crowd simulation based on sensing data from 10 min
prior was ascertained for the initial placement of agents
during real-time congestion prediction.

The simulation started with observational data from
10 min prior and predicted up to 20 min after (a total of
30 min). With 3,254 simulated agents, the simulation was
completed in 1 min and 35 s, verifying the practical com-
putational time for real-time congestion prediction.

The abrupt change in the number of people on the
pedestrian bridge was attributed to the stop-and-go wave
phenomenon in the crowd, which was influenced by traf-
fic signals near the closest station. These waves were
confirmed by actual observational results at a pedestrian
bridge. This phenomenon was validated through visual-
ization and replicated in an agent-based crowd simulation
under specific conditions.

The input data for simulations during real-time predic-
tion inherently contain errors. Acknowledging this, we
proposed a method for visualizing multiple congestion
scenarios by considering the impacts of these errors.

In the future, it will be imperative to continue enhanc-
ing the accuracy of the simulation while concurrently ex-
panding its scope to encompass the entire area around
the Tokyo Dome. Furthermore, this study discussed the
scalability of the system and introduced a framework that
demonstrates its applicability beyond the Tokyo Dome.
Owing to its high versatility, this system could be applied
to various domestic and international crowd-attracting fa-
cilities and large-scale events.
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