

Title	Chern characters on compact Lie groups of low rank
Author(s)	Watanabe, Takashi
Citation	Osaka Journal of Mathematics. 1985, 22(3), p. 463-488
Version Type	VoR
URL	https://doi.org/10.18910/10102
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

CHERN CHARACTERS ON COMPACT LIE GROUPS OF LOW RANK

Dedicated to Professor Minoru Nakaoka on his sixtieth birthday

TAKASHI WATANABE

(Received August 8, 1984)

0. Introduction

Let G be a compact, simply connected, simple Lie group of rank l. G has l irreducible representations ρ_1, \dots, ρ_l , whose highest weights are the fundamental weights $\omega_1, \dots, \omega_l$ respectively (see [19]). Then the representation ring R(G) of G is a polynomial algebra $Z[\rho_1, \dots, \rho_l]$. By the theorem of Hodgkin [16], the Z/2-graded K-theory $K^*(G)$ of G is an exterior algebra $\Lambda_Z(\beta(\rho_1), \dots, \beta(\rho_l))$, where $\beta: R(G) \rightarrow K^*(G)$ is the map introduced in [16]. Therefore the Chern character $ch: K^*(G) \rightarrow H^*(G; Q)$ is injective [5]. We may write

$$H^*(G; Q) = \Lambda_Q(x_{2m_1-1}, x_{2m_2-1}, \dots, x_{2m_1-1})$$

where $2=m_1 \le m_2 \le \cdots \le m_l$ and deg $x_{2m_j-1}=2m_j-1$. If each x_{2m_j-1} is chosen to be integral and not divisible by any other integral classes, we can assign to a representation $\lambda: G \to U(n)$ the rational numbers $a(\lambda, 1), \dots, a(\lambda, l)$ by the equation

$$ch\beta(\lambda) = \sum_{j=1}^{l} a(\lambda, j) x_{2m_{j}-1}.$$

In view of [21] and [23], the $a(\lambda, j)$ are closely related to the *Dynkin coefficients* of λ [14]. On the other hand, as is noted by Atiyah [4, Proposition 1], the determinant of the $l \times l$ matrix $(a(\rho_i, j))$ is equal to 1. We remark that for any system of generators $\{\lambda_1, \dots, \lambda_l\}$ of the ring R(G), the determinant of $(a(\lambda_i, j))$ is also 1.

In this paper, with a suitable system of generators of R(G), we shall describe the resulting matrix explicitly for the groups G with $l \le 4$ without using the above informations. Indeed, we deal with the following cases:

$$l=2$$
, $G=SU(3)$, $Sp(2)$, G_2 .

$$l = 3$$
, $G = SU(4)$, $Spin(7)$, $Sp(3)$.

$$l = 4$$
, $G = SU(5)$, Spin (9), Sp(4), Spin (8), F_4 .

Results are stated in Theorems 2 (SU(l+1)), 3 (Sp(l)), 4 (Spin(7)), 5 (Spin(8)), 6 (Spin(9)), 7 (G_2) and 8 (F_4).

The careful reader should notice that "up to sign" is implicitly added to some of the statements of this paper.

For later use we fix some notations. Let T be a maximal torus of G. The inclusion $i: T \rightarrow G$ induces a map of classifying spaces $\rho = Bi: BT \rightarrow BG$. The action of the normalizer $N_G(T)$ on T induces that of the Weyl group $\Phi(G) = N_G(T)/T$ on BT and hence on $H^*(BT; Z) = Z[\omega_1, \dots, \omega_I]$ (see [9]). Let $H^*(BT; Z)^{\Phi(G)}$ denote the module of $\Phi(G)$ -invariants. For a based space X, let ΩX be its loop space, and let $\sigma^*: H^i(X; Z) \rightarrow H^{i-1}(\Omega X; Z)$ be the cohomology suspension. For the rational cohomology, by [8] and [10] we have

$$\operatorname{Im}
ho^* = H^*(BT; Q)^{\Phi(G)} = Q[f_{2m_1}, \dots, f_{2m_l}]$$
 $\cong \downarrow$
 $H^*(BG; Q) = Q[y_{2m_1}, \dots, y_{2m_l}]$
 $\sigma^* \downarrow$
 $H^*(G; Q) = \Lambda_Q(x_{2m_1-1}, \dots, x_{2m_l-1})$
 $\sigma^* \downarrow$
 $H^*(\Omega G; Q) = Q[u_{2m_1-2}, \dots, u_{2m_l-2}]$

where all the generators, whose degrees are indicated by a subscript, are chosen to be integral and not divisible by any other integral classes.

The paper is organized as follows. The key point of our work is to characterize the generator x_{2m_j-1} . For this purpose we present two methods in Section 1: in the first method we characterize the generator y_{2m_j} and relate it to x_{2m_j-1} ; in the second method we characterize the generator u_{2m_j-2} and relate it to x_{2m_j-1} . Moreover in Section 1 we prove a lemma which is very useful if the λ -ring structure of R(G) is known. Subsequent sections are devoted to practical computations. In Section 2 we treat the most elementary cases, i.e., $G=\mathrm{SU}(l+1)$, $\mathrm{Sp}(l)$ (l=2,3,4) where $H^*(G;Z)$ has no torsion. In Section 3 we consider the cases $G=\mathrm{Spin}(m)$ (m=7,8,9) where $H^*(G;Z)$ has only 2-torsion. In Section 4 we discuss the cases $G=G_2$ and $G=F_4$.

I would like to thank my colleague H. Minami for showing me a computation of $(a(\rho_i, j))$ for the case $G=G_2$ and many helpful suggestions.

1. Methods

Method I

For any group H let $\alpha: R(H) \to K^*(BH)$ be the homomorphism of [5]. Let $\sigma: K^i(X) \to K^{i-1}(\Omega X)$ be the suspension map. Then there is a commutative diagram

$$R(T) \xrightarrow{\alpha} K^*(BT) \xrightarrow{ch} H^*(BT; Q) \leftarrow i^* \uparrow \qquad \rho^* \uparrow \qquad \rho^* \uparrow \qquad \tau'$$

$$R(G) \xrightarrow{\alpha} K^*(BG) \xrightarrow{ch} H^*(BG; Q) \qquad \sigma^* \downarrow \uparrow \tau \qquad K^*(G) \xrightarrow{ch} H^*(G; Q)$$

where τ (resp. τ') is the cohomology transgression in the Serre spector of the universal fibration $G \rightarrow EG \rightarrow BG$ (resp. the fibration $G \rightarrow G/T \rightarrow BT$). For $j=1, \dots, l$ we may set (modulo decomposables)

$$\sigma^*(y_{2m_i}) = b(m_i)x_{2m_i-1}$$
 for some $b(m_i) \in \mathbb{Z}$

and

$$\rho^*(y_{2m_j}) = c(m_j)f_{2m_j}$$
 for some $c(m_j) \in \mathbb{Z}$.

Since σ^* and τ are inverse to each other insofar as they are defined, it follows that

$$au'(x_{2m_j-1}) = \frac{c(m_j)}{b(m_j)} f_{2m_j} + \text{decomposables}$$

in $H^*(BT; Q)^{\Phi(G)} = Q[f_{2m_j}, \dots, f_{2m_j}]$.

Let $\lambda: G \rightarrow U(n)$ be a representation with weights μ_1, \dots, μ_n . So

$$ch\alpha i^*(\lambda) = \sum_{i=1}^n \exp(\mu_i) = \sum_{m\geq 0} \sum_{i=1}^n \mu_i^m/m!$$

where $\mu_i \in H^2(BT; \mathbb{Z})$ (see [9]). Set

(1.1)
$$ch\beta(\lambda) = \sum_{j=1}^{l} a(\lambda, j) x_{2m_{j-1}} \quad \text{where} \quad a(\lambda, j) \in Q.$$

Apply τ' to this equation. Then the left hand side becomes

$$au' ch eta(\lambda) =
ho^* \tau ch \sigma lpha(\lambda)$$

$$=
ho^* \tau \sigma^* ch lpha(\lambda)$$

$$=
ho^* ch lpha(\lambda)$$

$$= ch lpha i^*(\lambda)$$

and the right hand side becomes

$$\tau'(\sum_{j=1}^{l} a(\lambda, j) x_{2m_{j}-1}) = \sum_{j=1}^{l} a(\lambda, j) \tau'(x_{2m_{j}-1})$$

$$= \sum_{j=1}^{l} \frac{a(\lambda, j) c(m_{j})}{b(m_{j})} f_{2m_{j}} + \text{decomposables.}$$

Hence

$$ch\alpha i^*(\lambda) = \sum_{j=1}^{l} \frac{a(\lambda, j)c(m_j)}{b(m_i)} f_{2m_j} + \text{decomposables}.$$

This argument shows that, in order to compute $a(\lambda, j)$, it suffices to settle f_{2m_j} , determine $b(m_j)$, $c(m_j)$ and find the coefficients of f_{2m_j} in the expression of $ch\alpha i^*(\lambda)$ as a polynomial of the f_{2m_j} . We will use this method in all cases that concern us.

REMARK. In general we choose the f_{2m_j} as follows. Let $\{f'_{2m_1}, \dots, f'_{2m_l}\}$ be a system of generators of the ring $H^*(BT; Q)^{\Phi(G)}$. First we take

$$f_{2m_1} = b_1 f'_{2m_1} \in H^{2m_1}(BT; Q)^{\Phi(G)}, \quad b_1 \in Q,$$

so that

- (i) f_{2m_1} is integral;
- (ii) for any $b \in Q$ with $|b| < |b_1|$, bf'_{2m_1} cannot be integral. Assume inductively that we have chosen $f_{2m_1}, \dots, f_{2m_{j-1}}$. Then we take

$$f_{2m_i} = b_j f'_{2m_i} + \text{decomposables} \in H^{2m_j}(BT; Q)^{\Phi(G)}, \quad b_j \in Q,$$

so that

- (i) f_{2m} , is integral;
- (ii) for any $b \in Q$ with $|b| < |b_j|$, $bf'_{2m_j} + \text{decomposables} \in H^{2m_j}(BT; Q)^{\Phi(G)}$ cannot be integral.

Note that the choice of the f'_{2m_j} has no crucial influence on that of the f_{2m_j} . As will be seen in Sections 3 and 4, this settlement of the f_{2m_j} is not trivial but important.

Method II

There is a commutative diagram

$$R(G) \xrightarrow{\beta} K^*(G) \xrightarrow{ch} H^*(G; Q)$$

$$\sigma \downarrow \qquad \qquad \sigma^* \downarrow$$

$$K^*(\Omega G) \xrightarrow{ch} H^*(\Omega G; Q)$$

which is natural with respect to group homomorphisms. For $j=1, \dots, l$ we may set

$$\sigma^*(x_{2m_j-1}) = d(m_j)u_{2m_j-2}$$
 for some $d(m_j) \in Z$.

Applying σ^* to (1.1), we have

$$ch\sigma\beta(\lambda) = \sum_{j=1}^{l} a(\lambda, j)d(m_j)u_{2m_j-2}$$
.

Let us now consider the case G=SU(n+1); then $m_j=j+1$ for $j=1, \dots, n$ and

$$PH^*(\Omega SU(n+1); Z) = Z\{u_{2i} | 1 \le i \le n\}$$

where P denotes the primitive module functor. Furthermore, d(j+1)=1 for all j (e.g., see [28, Lemma 3]). Let $\lambda_1: SU(n+1) \rightarrow U(n+1)$ be the natural inclusion, and consider the case $\lambda = \lambda_1$. Then it follows from (2.2) of the next section that

$$(1.2) ch\sigma\beta(\lambda_1) = \sum_{i=1}^n \frac{(-1)^i}{i!} u_{2i}.$$

We return to the general case. Take the inclusion $k: U(n) \rightarrow SU(n+1)$ such that $SU(n+1)/U(n)=CP^n$ (see [12, §3]). In [28] it was shown that for the composite

$$PH^*(\Omega SU(n+1); Z) \xrightarrow{(\Omega k)^*} PH^*(\Omega U(n); Z)$$
$$\xrightarrow{(\Omega \lambda)^*} PH^*(\Omega G; Z) = Z\{u_{2m_1-2}, \dots, u_{2m_r-2}\},$$

the following statements are equivalent:

- (i) $(\Omega \lambda)^*(\Omega k)^*(u_{2m_{j-2}}) = e(\lambda, j)u_{2m_{j-2}}$ for some $e(\lambda, j) \in Z$; (ii) the element $\theta_s(c_{m_j}(\lambda)) \in H^{2m_{j-2}}(G/C_s; Z)$ is exactly divisible by $e(\lambda, j) \in \mathbb{Z}$ (where $H^*(G/C_s; \mathbb{Z})$ has no torsion; for notations and details see [28, §2]).

Applying $(\Omega \lambda^*)(\Omega k)^*$ to (1.2), we have

$$ch\sigma\beta(\lambda) = \sum_{j=1}^{l} \frac{(-1)^{m_j-1}e(\lambda,j)}{(m_i-1)!} u_{2m_j-2}.$$

Hence

$$a(\lambda, j)d(m_j) = \frac{(-1)^{m_j-1}e(\lambda, j)}{(m_j-1)!}.$$

This argument shows that, in order to compute $a(\lambda, j)$, it suffices to determine $d(m_i)$ and $e(\lambda, j)$. In particular, to find $e(\lambda, j)$ one must examine the divisibility of $\theta_s(c_{m_j}(\lambda))$ in $H^{2m_j-2}(G/C_s; Z)$.

Define a map $\varphi: Z_+ \times Z_+ \times Z_+ \rightarrow Z$ by

$$\varphi(n, k, q) = \sum_{i=1}^{l_k} (-1)^{i-1} \binom{n}{k-i} i^{q-1}$$

where Z_{+} denotes the set of positive integers and we use the convention that $\binom{x}{y} = 0$ if y < 0 or x < y. Let $\Lambda^k : R(G) \to R(G)$ be the k-th exterior power opera-Then we have

Lemma 1. If λ is a representation of G of dimension n, then

$$a(\Lambda^k \lambda, j) = \varphi(n, k, m_j) a(\lambda, j)$$

for
$$i=1, \dots, l$$
.

Proof. Let ch^q be the 2q-th component of ch, i.e., $ch(x) = \sum_{i \geq 0} ch^q(x)$ with $ch^q(x) \in H^{2q}(X; Q)$ for any $x \in K^0(X)$. Consider the element $1_n \in R(U(n))$ which comes from the identity $1_{U(n)} : U(n) \to U(n)$. Then we assert that

(1.3)
$$ch^{q}\alpha(\Lambda^{k}1_{n}) = \varphi(n, k, q)ch^{q}\alpha(1_{n}) + decomposables$$
$$in \quad H^{*}(BU(n); Q) = Q[\gamma_{2}, \gamma_{4}, \cdots, \gamma_{2n}].$$

This assertion implies the result. For since $\beta = \sigma \alpha$ and σ^* sends a decomposable element into zero, applying σ^* to (1.3) yields the desired result for the case G = U(n). Then the general case follows from naturality.

To prove (1.3) we proceed by induction on k. The case k=1 is clear. Suppose that it is true for $k \le m-1$, and consider the case k=m. Let us recall the following relations:

$$\psi^{k}(x) + \sum_{i=1}^{k-1} (-1)^{i} \psi^{k-i}(x) \Lambda^{i}(x) + (-1)^{k} k \Lambda^{k}(x) = 0;$$

$$ch^{q}(xy) = \sum_{r=0}^{q} ch^{r}(x) ch^{q-r}(y);$$

$$ch^{q} \psi^{k}(x) = k^{q} ch^{q}(x)$$

where $x, y \in K^0(X)$ [1]. Since α is a λ -ring homomorphism, we have

$$\begin{split} ch^{q}\alpha(m\Lambda^{m}(1_{n})) &= ch^{q}\alpha((-1)^{m-1}\psi^{m}(1_{n}) + \sum_{i=1}^{m-1}(-1)^{m-1-i}\psi^{m-i}(1_{n})\Lambda^{i}(1_{n})) \\ &= (-1)^{m-1}ch^{q}\alpha\psi^{m}(1_{n}) + \sum_{i=1}^{m-1}(-1)^{m-1-i}ch^{q}(\alpha\psi^{m-i}(1_{n})\alpha\Lambda^{i}(1_{n})) \\ &= (-1)^{m-1}ch^{q}\alpha\psi^{m}(1_{n}) + \sum_{i=1}^{m-1}(-1)^{m-1-i}\left[\sum_{r=0}^{q}ch^{r}\alpha\psi^{m-i}(1_{n})ch^{q-r}\alpha\Lambda^{i}(1_{n})\right] \\ &= (-1)^{m-1}ch^{q}\alpha\psi^{m}(1_{n}) + \sum_{i=1}^{m-1}(-1)^{m-1-i}\left[\binom{n}{i}ch^{q}\alpha\psi^{m-i}(1_{n}) + nch^{q}\alpha\Lambda^{i}(1_{n})\right] \\ &= (-1)^{m-1}ch^{q}\psi^{m}\alpha(1_{n}) + \sum_{i=1}^{m-1}(-1)^{m-1-i}\left[\binom{n}{i}ch^{q}\psi^{m-i}\alpha(1_{n}) + nch^{q}\alpha(\Lambda^{i}1_{n})\right] \\ &= (-1)^{m-1}ch^{q}\psi^{m}\alpha(1_{n}) + \sum_{i=1}^{m-1}(-1)^{m-1-i}\left[\binom{n}{i}(m-i)^{q}ch^{q}\alpha(1_{n}) + nch^{q}\alpha(\Lambda^{i}1_{n})\right] \\ &= \sum_{i=0}^{m-1}(-1)^{m-1-i}\binom{n}{i}(m-i)^{q} + \sum_{i=1}^{m-1}(-1)^{m-1-i}n\varphi(n,i,q)]ch^{q}\alpha(1_{n}) \end{split}$$

$$= \left[\sum_{j=1}^{m} (-1)^{j-1} \binom{n}{m-j} j^q + n \sum_{i=1}^{m-1} (-1)^{m-1-i} \varphi(n, i, q)\right] ch^q \alpha(1_n).$$

Thus it is sufficient to prove that

(1.4)
$$\varphi(n, m, q+1) + n \sum_{i=1}^{m-1} (-1)^{m-1-i} \varphi(n, i, q) = m \varphi(n, m, q).$$

From Pascal's triangle

$$\binom{n}{i} = \binom{n-1}{i} + \binom{n-1}{i-1}$$

we deduce that

$$\sum_{i=0}^{k-1-j} (-1)^{i} \binom{n}{i} = (-1)^{k-1-j} \binom{n-1}{k-1-j}.$$

Using this, we have

$$\begin{split} \varphi(n-1, \, m-1, \, q) &= \sum_{j=1}^{m-1} (-1)^{j-1} \binom{n-1}{m-1-j} j^{q-1} \\ &= \sum_{j=1}^{m-1} \left[(-1)^m \sum_{i=0}^{m-1-j} (-1)^i \binom{n}{i} \right] j^{q-1} \\ &= \sum_{i=1}^{m-1} (-1)^{m-1-i} \left[\sum_{j=1}^i (-1)^{j-1} \binom{n}{i-j} j^{q-1} \right] \\ &= \sum_{i=1}^{m-1} (-1)^{m-1-i} \varphi(n, i, q) \, . \end{split}$$

Therefore

$$\begin{split} n\varphi(n-1,\,m-1,\,q) + \varphi(n,\,m,\,q+1) \\ &= n \sum_{j=1}^{m-1} (-1)^{j-1} \binom{n-1}{m-1-j} j^{q-1} + \sum_{j=1}^{m} (-1)^{j-1} \binom{n}{m-j} j^q \\ &= \sum_{j=1}^{m-1} (-1)^{j-1} n \binom{n-1}{m-1-j} j^{q-1} + \sum_{j=1}^{m} (-1)^{j-1} \binom{n}{m-j} j^q \\ &= \sum_{j=1}^{m-1} (-1)^{j-1} \binom{n}{m-j} (m-j) j^{q-1} + \sum_{j=1}^{m} (-1)^{j-1} \binom{n}{m-j} j^q \\ &= \sum_{j=1}^{m-1} (-1)^{j-1} \binom{n}{m-j} m j^{q-1} - \sum_{j=1}^{m-1} (-1)^{j-1} \binom{n}{m-j} j^q \\ &+ \sum_{j=1}^{m} (-1)^{j-1} \binom{n}{m-j} j^q \\ &= m \sum_{j=1}^{m-1} (-1)^{j-1} \binom{n}{m-j} j^{q-1} + (-1)^{m-1} \binom{n}{0} m^q \\ &= m \sum_{j=1}^{m} (-1)^{j-1} \binom{n}{m-j} j^{q-1} \\ &= m \varphi(n,\,m,\,q) \,. \end{split}$$

This proves (1.4) and completes the proof.

2. The special unitary groups and the symplectic groups

Let us first consider the case of SU(l+1). In this case, $m_j = j+1$ for $j=1, \dots, l$. As is well known we can choose elements $t_1, t_2, \dots, t_{l+1} \in H^2(BT; Z)$ so that

$$H^*(BT; Z) = Z[t_1, \dots, t_{l+1}]/(c_1)$$

and

$$H^*(BT; Z)^{\Phi(SU(l+1))} = Z[c_2, \dots, c_{l+1}]$$

where $c_i = \sigma_i(t_1, \dots, t_{l+1})$ ($\sigma_i()$) denotes the *i*-th elementary symmetric function). It is evident that $f_{2j+2} = c_{j+1}$ for $j = 1, \dots, l$. Since $H^*(SU(l+1); Z)$ has no torsion, the theorem of Borel [6] assures us that b(j+1) = c(j+1) = 1 for all j. Thus we have $\tau'(x_{2j+1}) = c_{j+1}$ for $j = 1, \dots, l$.

Let us recall from [17] that

- (2.1) $R(SU(l+1)) = Z[\lambda_1, \lambda_2, \dots, \lambda_l]$ where
 - (a) dim $\lambda_k = \binom{l+1}{k}$;
 - (b) relations $\Lambda^k \lambda_1 = \lambda_k$ hold;
 - (c) the set of weights of λ_1 is given by $\{t_i | 1 \le i \le l+1\}$.

Put

$$s_m = s_m(t_1, \dots, t_{l+1}) = \sum_{i=1}^{l+1} t_i^m$$
.

From Newton's formula

$$s_m + \sum_{i=1}^{m-1} (-1)^i s_{m-i} c_i + (-1)^m m c_m = 0$$

(where $c_m=0$ if m>l+1) it follows that

$$ch\alpha i^*(\lambda_1) = l+1+\sum_{m=1}^{l}\frac{(-1)^m}{m!}c_{m+1}+\text{decomposables}.$$

Therefore

(2.2)
$$ch\beta(\lambda_1) = \sum_{m=1}^{l} \frac{(-1)^m}{m!} x_{2m+1}$$

(cf. [20, Theorem 1]). By Lemma 1, if we evaluate $\varphi(l+1, k, j+1)$, $ch\beta(\lambda_k)$ can be calculated. Thus we have

Theorem 2. The Chern characters on SU(l+1) for l=2,3,4 are given by:

$$l = 2 \quad ch\beta(\lambda_1) = -x_3 + (1/2!)x_5$$

$$ch\beta(\lambda_2) = -x_3 + (-1/2!)x_5$$

$$l = 3 \quad ch\beta(\lambda_{1}) = -x_{3} + (1/2!)x_{5} + (-1/3!)x_{7}$$

$$ch\beta(\lambda_{2}) = -2x_{3} + (4/3!)x_{7} -1$$

$$ch\beta(\lambda_{3}) = -x_{3} + (-1/2!)x_{5} + (-1/3!)x_{7}$$

$$l = 4 \quad ch\beta(\lambda_{1}) = -x_{3} + (1/2!)x_{5} + (-1/3!)x_{7} + (1/4!)x_{9}$$

$$ch\beta(\lambda_{2}) = -3x_{3} + (1/2!)x_{5} + (3/3!)x_{7} + (-11/4!)x_{9}$$

$$ch\beta(\lambda_{3}) = -3x_{3} + (-1/2!)x_{5} + (3/3!)x_{7} + (11/4!)x_{9}$$

$$ch\beta(\lambda_{4}) = -x_{2} + (-1/2!)x_{5} + (-1/3!)x_{7} + (-1/4!)x_{9}$$

where the number on the right hand side indicates the determinant of the corresponding matrix on the left hand side.

Let us consider the case of Sp(l). In this case, $m_j = 2j$ for $j = 1, \dots, l$. We can choose elements $t_1, t_2, \dots, t_l \in H^2(BT; \mathbb{Z})$ so that

$$H^*(BT; Z) = Z[t_1, \dots, t_l]$$

and

$$H^*(BT; Z)^{\Phi(Sp(l))} = Z[q_1, \dots, q_l]$$

where $q_i = \sigma_i(t_1^2, \dots, t_l^2)$. It is evident that $f_{4j} = q_j$ for $j = 1, \dots, l$. Since $H^*(Sp(l); Z)$ has no torsion, it follows that b(2j) = c(2j) = 1 for all j. Thus we have $\tau'(x_{4j-1}) = q_j$ for $j = 1, \dots, l$.

Let us recall that

- (2.3) $R(Sp(l)) = Z[\lambda_1, \lambda_2, \dots, \lambda_l]$ where
 - (a) dim $\lambda_k = \binom{2l}{k}$;
 - (b) relations $\Lambda^k \lambda_1 = \lambda_k$ hold;
 - (c) the set of weights of λ_1 is given by $\{\pm t_i | 1 \le i \le l\}$.

Put

$$s_{2m} = s_m(t_1^2, \dots, t_l^2) = \sum_{i=1}^l t_i^{2m}$$
.

From Newton's formula

$$s_{2m} + \sum_{i=1}^{m-1} (-1)^{i} s_{2m-2i} q_{i} + (-1)^{m} m q_{m} = 0$$

it follows that

$$ch\alpha i^*(\lambda_1) = 2l + \sum_{m=1}^{l} \frac{(-1)^{m-1}}{(2m-1)!} q_m + \text{decomposables}.$$

Therefore

$$ch\beta(\lambda_1) = \sum_{m=1}^{l} \frac{(-1)^{m-1}}{(2m-1)!} x_{4m-1}$$

and by Lemma 1 we obtain

Theorem 3. The Chern characters on Sp(l) for l=2, 3, 4 are given by:

$$\begin{split} l &= 2 \quad ch\beta(\lambda_1) = x_3 + (-1/3!)x_7 \\ ch\beta(\lambda_2) &= 2x_3 + (4/3!)x_7 \end{split}$$

$$l &= 3 \quad ch\beta(\lambda_1) = x_3 + (-1/3!)x_7 + (1/5!)x_{11} \\ ch\beta(\lambda_2) &= 4x_3 + (2/3!)x_7 + (-26/5!)x_{11} \\ ch\beta(\lambda_3) &= 6x_3 + (6/3!)x_7 + (66/5!)x_{11} \\ l &= 4 \quad ch\beta(\lambda_1) = x_3 + (-1/3!)x_7 + (1/5!)x_{11} + (-1/7!)x_{15} \\ ch\beta(\lambda_2) &= 6x_3 \qquad + (-24/5!)x_{11} + (120/7!)x_{15} \\ ch\beta(\lambda_3) &= 15x_3 + (9/3!)x_7 + (15/5!)x_{11} + (-1191/7!)x_{15} \\ ch\beta(\lambda_4) &= 20x_3 + (16/3!)x_7 + (80/5!)x_{11} + (2416/7!)x_{15} \end{split}$$

where the number on the right hand side indicates the determinant of the corresponding matrix on the left hand side.

3. The spinor groups

Let us first consider the case of Spin(7). In this case, $(m_1, m_2, m_3) = (2, 4, 6)$. We can choose elements $t_1, t_2, t_3, \gamma \in H^2(BT; Z)$ so that

$$H^*(BT; Z) = Z[t_1, t_2, t_3, \gamma]/(c_1-2\gamma)$$

and

$$H^*(BT;Q)^{\Phi({
m Spin}\;(7))}=Q[p_1,p_2,p_3]$$

where $c_i = \sigma_i(t_1, t_2, t_3)$ and $p_i = \sigma_i(t_1^2, t_2^2, t_3^2)$. In the light of the Remark in Section 1, using the formula

$$p_i = \sum_{j=0}^{2i} (-1)^{i+j} c_{2i-j} c_j ,$$

we have

(3.1)
$$f_4 = \frac{1}{2}p_1 = -c_2 + 2\gamma^2,$$

$$f_8 = \frac{1}{4}p_2 - \frac{1}{4}f_4^2 = -c_3\gamma + c_2\gamma^2 - \gamma^4,$$

$$f_{12} = p_3 = c_3^2.$$

Let us determine b(2), b(4), $b(6) \in \mathbb{Z}$. To do so we use the Serre spectral sequence $\{E_r(\mathbb{Z})\}$ for the integral cohomology of the universal fibration

$$F = \operatorname{Spin}(7) \rightarrow E = E \operatorname{Spin}(7) \rightarrow B = B \operatorname{Spin}(7)$$
.

Furthermore, to investigate it, we use the Serre spectral sequence $\{E_r(Z/p)\}$ for the mod p cohomology of the same fibration, where p runs over all primes.

Recall that $H^*(\mathrm{Spin}(7); \mathbb{Z})$ has no *p*-torsion for p>2. Let $\Delta_{\mathbb{Z}/2}($) denote a $\mathbb{Z}/2$ -algebra having a set in parentheses as a simple system of generators. Then it follows from [6] and [7] that

$$H^*(\mathrm{Spin}(7); \mathbb{Z}/p) = \begin{cases} \Delta_{\mathbb{Z}/2}(\bar{x}_3, \bar{x}_5, \bar{x}_6, \bar{x}_7) & (p=2) \\ \Lambda_{\mathbb{Z}/p}(\bar{x}_3, \bar{x}_7, \bar{x}_{11}) & (p>2) \end{cases}$$

and

$$H^*(B\operatorname{Spin}(7); \mathbb{Z}/p) = \begin{cases} \mathbb{Z}/2[\bar{y}_4, \bar{y}_6, \bar{y}_7, \bar{y}_8] & (p=2) \\ \mathbb{Z}/p[\bar{y}_4, \bar{y}_8, \bar{y}_{12}] & (p>2) \end{cases}$$

where \bar{x}_i transgresses to \bar{y}_{i+1} for all i and $\beta_2(\bar{x}_5) = \bar{x}_6$ (β_p denotes the mod p Bockstein homomorphism). For a based space X, let $\pi_p \colon H^i(X; Z) \to H^i(X; Z/p)$ be the mod p reduction homomorphism. Then if i=3 or 7, $\pi_p(x_i) = \bar{x}_i$ and $\pi_p(y_{i+1}) = \bar{y}_{i+1}$ for every prime p. Therefore we conclude that $\tau(x_3) = y_4$ and $\tau(x_7) = y_8$. In other words, b(2) = b(4) = 1.

It remains to determine b(6). Since

$$\pi_p(x_{11}) = \begin{cases} \bar{x}_5 \bar{x}_6 & (p=2) \\ \bar{x}_{11} & (p>2) \end{cases} \text{ and } \pi_p(y_{12}) = \begin{cases} \bar{y}_6^2 & (p=2) \\ \bar{y}_{12} & (p>2) \end{cases},$$

an analogous argument to the above yields that

(0) if
$$p > 2$$
, $\nu_b(b(6)) = 0$

where $\nu_p(m)$ is the power of p in m. To get $\nu_2(b(6))$ we consider $\{E_r(Z/2)\}$, which satisfies

$$E_2^{s,t}(Z/2) \cong H^s(B; Z/2) \otimes H^t(F; Z/2)$$

and $E_{\infty}^{s,t}(Z/2)=0$ unless (s,t)=(0,0). Then it is easy to see that

- (i) $d_6(1 \otimes \bar{x}_5 \bar{x}_6) = \bar{y}_6 \otimes \bar{x}_6$.
- (ii) $d_6(\bar{y}_6 \otimes \bar{x}_5) = \bar{y}_6^2 \otimes 1$.

Let

$$\beta_2^F : E_1^{s,t}(Z/2) \to E_1^{s,t+1}(Z/2)$$

be the map induced by β_2 : $H^t(F; \mathbb{Z}/2) \rightarrow H^{t+1}(F; \mathbb{Z}/2)$ through the isomorphism

$$E_1^{s,t}(Z/2) \cong C^s(B; H^t(F; Z/2))$$
.

Then we have

(iii)
$$\beta_2^F(\bar{y}_6 \otimes \bar{x}_5) = \bar{y}_6 \otimes \bar{x}_6$$
.

Denote again by π_p : $\{E_r(Z)\} \to \{E_r(Z/p)\}\$ the morphism of spectral sequences induced by π_p . By virtue of the isomorphism

$$E_2^{s,t}(Z) \simeq H^s(B; H^t(F; Z)),$$

we find that there exist elements $\{x_{11}\} \in E_2^{0,11}(Z)$, $\{v_{12}\} \in E_2^{6,6}(Z)$ and $\{y_{12}\} \in E_2^{12,0}(Z)$ which satisfy $\pi_2(\{x_{11}\}) = 1 \otimes \bar{x}_5 \bar{x}_6$, $\pi_2(\{v_{12}\}) = \bar{y}_6 \otimes \bar{x}_6$ and $\pi_2(\{y_{12}\}) = \bar{y}_6^2 \otimes 1$ respectively. Then the conditions (0), (i), (ii), (iii) imply that in $\{E_r(Z)\}$

- (iv) $d_6(\{x_{11}\}) = \{v_{12}\}.$
- (v) $d_{12}(\{2x_{11}\}) = \{y_{12}\}.$

In fact, (iv) is an immediate consequence of (i). In what follows we roughly state a proof of (v). Let us begin by recalling the construction of the Serre spectral sequence $\{E_r(R)\}$ in cohomology with R-coefficients of a fibration $F \to E \to B$, where R = Z or Z/p (for details see [24]). There is a cochain complex $\operatorname{Hom}(C_*(E), R)$ which is filtered by its subcomplexes $A^s(R) = \sum_i A^{s,t}(R)$ such that $A^{s,t}(R) \subset A^{s-1,t+1}(R)$ and $\delta(A^{s,t}(R)) \subset A^{s,t+1}(R)$ for all (s,t) (where δ is the differential in $\operatorname{Hom}(C_*(E), R)$). This filtered cochain complex gives rise to $\{E_r(R)\}$, i.e.,

$$Z_r^{s,t}(R) = A^{s,t}(R) \cap \delta^{-1}(A^{s+r,t-r+1}(R)),$$

 $B_r^{s,t}(R) = A^{s,t}(R) \cap \delta A^{s-r,t+r-1}(R),$
 $E_r^{s,t}(R) = Z_r^{s,t}(R)/(Z_{r-1}^{s+1,t-1}(R) + B_{r-1}^{s,t}(R)).$

Note that there is an exact sequence

$$0 \to A^{s,t}(Z) \xrightarrow{\bullet p} A^{s,t}(Z) \xrightarrow{\pi_p} A^{s,t}(Z/p) \to 0$$

for all (s, t). Since $d_r: E_r^{s,t}(R) \to E_r^{s+r,t-r+1}(R)$ is induced by δ , by (iv) we see that there exists a representative $x \in A^{0,11}(Z)$ (resp. $v \in A^{6,6}(Z)$) of $\{x_{11}\}$ (resp. $\{v_{12}\}$) such that

$$\delta(x) = v.$$

Let $\overline{u} \in A^{6,5}(\mathbb{Z}/2)$ be a representative of $\overline{y}_6 \otimes \overline{x}_5$. Then by (iii) we observe that there exists $u \in A^{6,5}(\mathbb{Z})$ such that $\pi_2(u) = \overline{u}$ and

$$\delta(u) = 2v$$

(see [2, Chapter III, §2]). Similarly by (ii) there is a representative $\bar{y} \in A^{12,0}(Z/2)$ of $\bar{y}_6^2 \otimes 1$ such that $\delta(\bar{u}) = \bar{y}$. This implies that there exists a representative $y \in A^{12,0}(Z)$ of $\{y_{12}\}$ such that $\pi_2(y) = \bar{y}$ and

$$\delta(u) = y.$$

By (3.2), (3.3) and (3.4), we have

$$\delta(2x) = 2v = \delta(u) = y$$

which gives (v). It is equivalent to b(6)=2.

We discuss the problem of determining c(2), c(4), $c(6) \in \mathbb{Z}$ in a general form. Indeed, we claim that $c(m_j)=1$ for $j=1,\dots,l$ in all cases that concern us. To prove this we use the integral cohomology spectral sequence $\{E_r\}$ of the fibration

$$G/T \to BT \xrightarrow{\rho} BG$$
.

Then the homomorphism $\rho^*: H^m(BG; Z) \to H^m(BT; Z)$ can be regarded as the composite

$$H^{m}(BG; Z) = E_{2}^{m,0} \longrightarrow E_{\infty}^{m,0} = D^{m,0} \subset \cdots \subset D^{0,m} = H^{m}(BT; Z)$$

where $D^{i,m-i}/D^{i+1,m-i-1}=E_{\infty}^{i,m-i}$. According to [6], the class $\{y_{2m_j}\}\in E_2^{2m_j,0}$ survives to E_{∞} . What we have to verify is to observe that no extension problems occur on the class $\{y_{2m_j}\}\in E_{\infty}^{2m_j,0}$. This is an essentially easy work, because all structures of $H^*(G/T;Z)$, $H^*(BT;Z)$ and $H^*(BG;Z)$ were explicitly described (for $H^*(BG;Z)$ see [7] and [25]; for $H^*(G/T;Z)$ see [27] and also [26]). For example, consider the case $G=\mathrm{Spin}(7)$. Then it is not hard to see that if m=4, 8 or 12, $E_{\infty}^{i,m-i}$ is trivial or torsion free for all i. This assures us that c(2)=c(4)=c(6)=1. In the future we omit such checks for the other cases, for our claim (except for the case $G=F_4$) has been proved in a more general setting by [13] and [15].

Let us recall from [17] that

- (3.5) $R(\operatorname{Spin}(7)) = Z[\lambda_1', \lambda_2', \Delta_7]$ where
 - (a) dim $\lambda_k' = {7 \choose k}$ and dim $\Delta_7 = 8$;
 - (b) relations $\Lambda^k \lambda_1' = \lambda_k'$ and $\Delta_7^2 = \lambda_3' + \lambda_2' + \lambda_1' + 1$ hold;
 - (c) the set of weights of λ_1' is given by $\{\pm t_i, 0 | 1 \le i \le 3\}$.

By the same calculation as in the case of Sp(l), we have

$$ch^2lpha i^*(\lambda_1')=p_1\,, \ ch^4lpha i^*(\lambda_1')=-rac{1}{6}p_2+{
m decomposables}, \ ch^6lpha i^*(\lambda_1')=rac{1}{120}p_3+{
m decomposables}.$$

On the other hand, from (3.1) and the results on $b(m_i)$ and $c(m_i)$ it follows that

$$au'(x_3)=f_4=rac{1}{2}p_1$$
 , $au'(x_7)=f_8=rac{1}{4}p_2+ ext{decomposables},$

$$\tau'(x_{11}) = \frac{1}{2}f_{12} = \frac{1}{2}p_3.$$

Combining these, we have

$$ch\beta(\lambda_1') = 2x_3 - \frac{2}{3}x_7 + \frac{1}{60}x_{11}$$

Therefore by Lemma 1,

$$ch\beta(\lambda_2') = 10x_3 + \frac{2}{3}x_7 - \frac{5}{12}x_{11}$$

and

$$ch\beta(\lambda_3'+\lambda_2'+\lambda_1'+1)=32x_3+\frac{16}{3}x_7+\frac{4}{15}x_{11}.$$

On the other hand, by the formula (2) of [16, p. 8],

$$\beta(\Delta_7^2) = 8\beta(\Delta_7) + 8\beta(\Delta_7) = 16\beta(\Delta_7)$$
.

Thus from the relation $\Delta_7^2 = \lambda_3^2 + \lambda_2^2 + \lambda_1^2 + 1$ we deduce that

$$ch\beta(\Delta_7) = 2x_3 + \frac{1}{3}x_7 + \frac{1}{60}x_{11}$$
.

Theorem 4. The Chern characters on Spin(7) are given by:

$$ch\beta(\lambda'_1) = 2x_3 + (-4/3!)x_7 + (2/5!)x_{11}$$

$$ch\beta(\lambda'_2) = 10x_3 + (4/3!)x_7 + (-50/5!)x_{11}$$

$$ch\beta(\Delta_7) = 2x_3 + (2/3!)x_7 + (2/5!)x_{11}$$

and the determinant of the corresponding matrix is 1.

Let us next consider the case of Spin(8). In this case, $(m_1, m_2, m_3, m_4) = (2, 4, 4, 6)$. We can choose elements $t_1, t_2, t_3, t_4, \gamma \in H^2(BT; \mathbb{Z})$ so that

$$H^*(BT; Z) = Z[t_1, \dots, t_4, \gamma]/(c_1-2\gamma)$$

and

$$H^*(BT; Q)^{\Phi({\rm Spin}\;(8))} = Q[p_1, c_4, p_2, p_3]$$

where $c_i = \sigma_i(t_1, \dots, t_4)$ and $p_i = \sigma_i(t_1^2, \dots, t_4^2)$. By a similar calculation to the before, we have

$$f_4=rac{1}{2}p_1=-c_2+2\gamma^2$$
, $f_8'=c_4$, $f_8=rac{1}{4}p_2-rac{1}{2}f_8'-rac{1}{4}f_4^2=-c_3\gamma+c_2\gamma^2-\gamma^4$,

$$f_{12} = p_3 = -2c_4c_2 + c_3^2$$
.

Let us determine b(2), b(4)', b(4), $b(6) \in \mathbb{Z}$. But, since $H^*(\mathrm{Spin}(8); \mathbb{Z})$ has no p-torsion for p > 2 and

$$H^*(\mathrm{Spin}(8); \mathbb{Z}/2) = \Delta_{\mathbb{Z}/2}(\bar{x}_3, \bar{x}_5, \bar{x}_6, \bar{x}_7', \bar{x}_7)$$

where all the \bar{x}_i are universally transgressive and $\beta_2(\bar{x}_5) = \bar{x}_6$ [7], the situation is quite similar to that for G = Spin(7), and so we get a similar result, i.e., b(2) = b(4)' = b(4) = 1 and b(6) = 2. On the other hand, as mentioned earlier, c(2) = c(4)' = c(4) = c(6) = 1. Thus we have

(3.6)
$$\tau'(x_3) = f_4 = \frac{1}{2}p_1,$$

$$\tau'(x_7') = f_8' = c_4,$$

$$\tau'(x_7) = f_8 = \frac{1}{4}p_2 - \frac{1}{2}c_4 + decomposables,$$

$$\tau'(x_{11}) = \frac{1}{2}f_{12} = \frac{1}{2}p_3.$$

Let us recall from [17] that

- (3.7) $R(\text{Spin}(8)) = Z[\lambda_1, \lambda_2, \Delta_8^+, \Delta_8^-]$ where
 - (a) $\dim \lambda_k = \binom{8}{k}$ and $\dim \Delta_8^+ = \dim \Delta_8^- = 8$;
 - (b) relations $\Lambda^k \lambda_1 = \lambda_k$ and $\Delta_8^+ \Delta_8^- = \lambda_3 + \lambda_1$ hold;
 - (c) the set of weights of λ_1 is given by $\{\pm t_i | 1 \le i \le 4\}$ and that of Δ_8^+ is given by $\{\pm \gamma, \gamma t_i t_j | 1 \le i < j \le 4\}$.

By direct calculations we have

(3.8)
$$ch^2\alpha i^*(\lambda_1) = p_1$$
, $ch^4\alpha i^*(\lambda_1) = \frac{1}{12}(-2p_2 + p_1^2)$, $ch^6\alpha i^*(\lambda_1) = \frac{1}{360}(3p_3 - 3p_2p_1 + p_1^3)$

and

(3.9)
$$ch^2\alpha i^*(\Delta_8^+) = p_1,$$
 $ch^4\alpha i^*(\Delta_8^+) = \frac{1}{48}(4p_2 + 24c_4 + p_1^2).$

There are involutive automorphisms κ and $\tilde{\kappa}$ of T and Spin(8) respectively, which make the diagram

$$T \xrightarrow{\kappa} T$$

$$i \downarrow \qquad \qquad \downarrow i$$

$$\operatorname{Spin}(8) \to \operatorname{Spin}(8)$$

commute, such that the automorphism $(B\kappa)^*$ of $H^*(BT; Z)$ satisfies

$$(B\kappa)^*(t_i) = \begin{cases} t_i & (1 \leq i \leq 3) \\ -t_{\perp} & (i = 4) \end{cases}.$$

Therefore $(B\kappa)^*(p_i)=p_i$, $(B\kappa)^*(c_4)=-c_4$ and the automorphism $\tilde{\kappa}^*$ of $R(\mathrm{Spin}(8))$ satisfies $\tilde{\kappa}^*(\Delta_8^+)=\Delta_8^-$. Applying $(B\kappa)^*$ to (3.9), it follows that

(3.10)
$$ch^2\alpha i^*(\Delta_8^-) = p_1,$$
 $ch^4\alpha i^*(\Delta_8^-) = \frac{1}{48}(4p_2 - 24c_4 + p_1^2).$

Combining (3.8), (3.9), (3.10) with (3.6), we have

$$ch\beta(\lambda_1) = 2x_3 - \frac{1}{3}x_7' - \frac{2}{3}x_7 + \frac{1}{60}x_{11},$$
 $ch\beta(\Delta_8^+) = 2x_3 + \frac{2}{3}x_7' + \frac{1}{3}x_7 + ax_{11},$
 $ch\beta(\Delta_8^-) = 2x_3 - \frac{1}{3}x_7' + \frac{1}{3}x_7 + ax_{11}$

for some $a \in Q$. From Lemma 1 and the relation $\Delta_8^+ \Delta_8^- = \lambda_3 + \lambda_1$ we deduce that a=1/60.

Theorem 5. The Chern characters on Spin(8) are given by:

$$ch\beta(\lambda_1) = 2x_3 + (-2/3!)x_7' + (-4/3!)x_7 + (2/5!)x_{11}$$

$$ch\beta(\lambda_2) = 12x_3 + (-48/5!)x_{11}$$

$$ch\beta(\Delta_8^+) = 2x_3 + (4/3!)x_7' + (2/3!)x_7 + (2/5!)x_{11}$$

$$ch\beta(\Delta_8^-) = 2x_3 + (-2/3!)x_7' + (2/3!)x_7 + (2/5!)x_{11}$$

and the determinant of the corresponding matrix is -1.

REMARK. The equation $ch\beta(\Delta_8^+-\Delta_8^-)=x_7'$ confirms the fact that Spin(8)/Spin(7)= S^7 (see [22, Proposition 6.2]).

Let us lastly consider the case of Spin(9). In this case, $(m_1, m_2, m_3, m_4) = (2, 4, 6, 8)$. We can choose $t_1, t_2, t_3, t_4, \gamma \in H^2(BT; Z)$ so that

$$H^*(BT; Z) = Z[t_1, \dots, t_4, \gamma]/(c_1-2\gamma)$$

and

$$H^*(BT; Q)^{\Phi(\text{Spin }(9))} = Q[p_1, p_2, p_3, p_4]$$

where $c_i = \sigma_i(t_1, \dots, t_4)$ and $p_i = \sigma_i(t_1^2, \dots, t_4^2)$. By a straightforward calculation we have

$$\begin{split} f_4 &= \frac{1}{2} p_1 = -c_2 + 2 \gamma^2 \,, \\ f_8 &= \frac{1}{2} p_2 - \frac{1}{2} f_4^2 = c_4 + 2 (-c_3 \gamma + c_2 \gamma^2 - \gamma^4) \,, \\ f_{12} &= p_3 = -2 c_4 c_2 + c_3^2 \,, \\ f_{16} &= \frac{1}{4} p_4 - \frac{1}{4} f_8^2 = c_4 c_3 \gamma - c_4 c_2 \gamma^2 - c_3^2 \gamma^2 + 2 c_3 c_2 \gamma^3 \\ &\quad + c_4 \gamma^4 - c_2^2 \gamma^4 - 2 c_3 \gamma^5 + 2 c_2 \gamma^6 - \gamma^8 \,. \end{split}$$

Since $H^*(Spin(9); \mathbb{Z})$ has no p-torsion for p>2 and

$$H^*(\mathrm{Spin}(9); \mathbb{Z}/2) = \Delta_{\mathbb{Z}/2}(\bar{x}_3, \bar{x}_5, \bar{x}_6, \bar{x}_7, \bar{x}_{15})$$

where all the \bar{x}_i are universally transgressive and $\beta_2(\bar{x}_5) = \bar{x}_6$ [7], as in the case of Spin(7), it follows that b(2) = b(4) = 1, b(6) = 2 and b(8) = 1. On the other hand, c(2) = c(4) = c(6) = c(8) = 1. Thus we have

(3.11)
$$\tau'(x_3) = f_4 = \frac{1}{2} p_1,$$

$$\tau'(x_7) = f_8 = \frac{1}{2} p_2 + decomposables,$$

$$\tau'(x_{11}) = \frac{1}{2} f_{12} = \frac{1}{2} p_3,$$

$$\tau'(x_{15}) = f_{16} = \frac{1}{4} p_4 + decomposables.$$

REMARK. Let $j: \text{Spin}(8) \rightarrow \text{Spin}(9)$ be the natural inclusion. Then by (3.6) and (3.11) we see that the homomorphism $j^*: H^i(\text{Spin}(9); Z) \rightarrow H^i(\text{Spin}(8); Z)$ satisfies

$$j^*(x_i) = \begin{cases} x_i & (i = 3, 11) \\ x'_7 + 2x_7 & (i = 7) \\ 0 & (i = 15) \end{cases}.$$

Let us recall that

(3.12) $R(\text{Spin}(9)) = Z[\lambda'_1, \lambda'_2, \lambda'_3, \Delta_9]$ where

(a)
$$\dim \lambda'_k = \binom{9}{k}$$
 and $\dim \Delta_9 = 16$;

(b) relations $\Lambda^k \lambda_1' = \lambda_k'$ and $\Delta_9^2 = \lambda_4' + \lambda_3' + \lambda_2' + \lambda_1' + 1$ hold;

(c) the set of weights of λ_i' is given by $\{\pm t_i, 0 | 1 \le i \le 4\}$.

The rest of the argument is parallel to that for G=Spin(7). We only exhibit the result.

Theorem 6. The Chern characters on Spin(9) are given by:

$$ch\beta(\lambda'_1) = 2x_3 + (-2/3!)x_7 + (2/5!)x_{11} + (-4/7!)x_{15}$$

$$ch\beta(\lambda'_2) = 14x_3 + (-2/3!)x_7 + (-46/5!)x_{11} + (476/7!)x_{15}$$

$$ch\beta(\lambda'_3) = 42x_3 + (18/3!)x_7 + (-18/5!)x_{11} + (-4284/7!)x_{15}$$

$$ch\beta(\Delta_9) = 4x_3 + (2/3!)x_7 + (4/5!)x_{11} + (34/7!)x_{15}$$

and the determinant of the corresponding matrix is 1.

4. The exceptional Lie groups G_2 and F_4

Let us first consider the case of G_2 . In this case, $(m_1, m_2) = (2, 6)$. We use the root system $\{\alpha_1, \alpha_2\}$ of [11]. Let ω_1, ω_2 be the fundamental weights. If we put

$$t_1 = \omega_1, t_2 = \omega_1 - \omega_2, t_3 = -2\omega_1 + \omega_2$$
 ,

then

$$H^*(BT; Z) = Z[t_1, t_2, t_3]/(c_1)$$

where $c_i = \sigma_i(t_1, t_2, t_3)$, on which $\Phi(G_2)$ acts as follows:

$$egin{array}{|c|c|c|c|c|} R_1 & R_2 \\ \hline t_1 & -t_2 & t_1 \\ t_2 & -t_1 & t_3 \\ t_3 & -t_3 & t_2 \\ \hline \end{array}$$

where R_j (j=1,2) is the reflection to the hyperplane $\alpha_j=0$, and $\{R_1, R_2\}$ generates $\Phi(G_2)$. Therefore

$$H^*(BT; Q)^{\Phi(G_2)} = Q[p_1, p_3].$$

where $p_i = \sigma_i(t_1^2, t_2^2, t_3^2)$, and it follows that

$$f_4 = \frac{1}{2}p_1 = -c_2,$$

$$f_{12} = p_3 = c_3^2$$
.

Since $H^*(G_2; \mathbb{Z})$ has no p-torsion for p>2 and

$$H^*(G_2; \mathbb{Z}/2) = \Delta_{\mathbb{Z}/2}(\bar{x}_3, \bar{x}_5, \bar{x}_6)$$

where all the \bar{x}_i are universally transgressive and $\beta_2(\bar{x}_5) = \bar{x}_6$ [7], as in the case of Spin(7), it follows that b(2)=1 and b(6)=2. On the other hand, c(2)=c(6)=1. Thus we have

$$\tau'(x_3) = f_4 = \frac{1}{2} p_1,$$

$$\tau'(x_{11}) = \frac{1}{2} f_{12} = \frac{1}{2} p_3.$$

Let us recall that

(4.1) $R(G_2) = Z[\rho_1, \Lambda^2 \rho_1]$ where

(a) dim
$$\Lambda^k \rho_1 = {7 \choose k}$$
 (and dim $\rho_2 = 14$);

- ((b) a relation $\Lambda^2 \rho_1 = \rho_1 + \rho_2$ holds;)
- (c) the set of weights of ρ_1 is given by $\{\pm t_i (1 \le i \le 3), 0\}$.

By a calculation we have

$$ch^2lpha i^*(
ho_1)=p_1$$
 , $ch^6lpha i^*(
ho_1)=rac{1}{120}p_3+{
m decomposables}.$

Therefore

$$ch\beta(\rho_1) = 2x_3 + \frac{1}{60}x_{11}$$

and by Lemma 1 we get

Theorem 7. The Chern characters on G_2 are given by:

$$ch\beta(\rho_1) = 2x_3 + (2/5!)x_{11}$$

 $ch\beta(\Lambda^2\rho_1) = 10x_3 + (-50/5!)x_{11}$

and the determinant of the corresponding matrix is -1.

Remark. Consider the following fibration

$$G_2 \stackrel{k}{\to} \operatorname{Spin}(7) \to \operatorname{Spin}(7)/G_2 = S^7$$
.

Then it is easy to see that $k^*: H^i(\operatorname{Spin}(7); Z) \to H^i(G_2; Z)$ satisfies

$$k^*(x_i) = \begin{cases} x_i & (i=3, 11) \\ 0 & (i=7) \end{cases}$$
.

On the other hand, $k^*: R(\text{Spin}(7)) \rightarrow R(G_2)$ satisfies

$$k^*(\lambda_i') = \Lambda^i \rho_1$$
 (i=1, 2)
 $k^*(\Delta_7) = \rho_1 + 1$

(see [31]). Using these facts, we find that Theorem 7 follows from Theorem 4.

 $H^*(\Omega G_2; Z)$ (for degrees ≤ 10) was calculated implicitly by Bott [10]. Using it and the cohomology spectral sequence of the path fibration $\Omega G_2 \rightarrow PG_2 \rightarrow G_2$, we can show that

$$d(2) = 1$$
 and $d(6) = 2$

(see [12] and [28, p. 474]).

Let us now consider the case of F_4 . In this case, $(m_1, m_2, m_3, m_4) = (2, 6, 8, 12)$. We can choose elements $t_1, t_2, t_3, t_4, \gamma \in H^2(BT; Z)$ so that

$$H^*(BT; Z) = Z[t_1, \dots, t_4, \gamma]/(c_1-2\gamma)$$

and the action of $\Phi(F_4)$ on it is as described in [9, §19] (see [18] and [29]). Let $c_i = \sigma_i(t_1, \dots, t_4)$ and $p_i = \sigma_i(t_1^2, \dots, t_4^2)$. If we put

$$I_4=p_1$$
,
$$I_{12}=-6p_3+p_2p_1$$
,
$$I_{16}=12p_4-3p_3p_1+p_2^2$$
,
$$I_{24}=-72p_4p_2+27p_4p_1^2+27p_3^2-9p_3p_2p_1+2p_2^3$$
,

then we have

$$H^*(BT; Q)^{\Phi(F_4)} = Q[I_4, I_{12}, I_{16}, I_{24}]$$
.

For a proof see [27, Lemma 5.1], however, its main part is accomplished by a pure calculation; see (4.7) and (4.8) below. By a troublesome calculation we obtain

$$\begin{split} f_4 &= \frac{1}{2} I_4 = -c_2 + 2\gamma^2 \,, \\ f_{12} &= -\frac{1}{2} I_{12} \\ &= -4c_4c_2 + 3c_3^2 + c_2^3 - 4c_3c_2\gamma - 4c_4\gamma^2 - 2c_2^2\gamma^2 + 8c_3\gamma^3 \,, \\ f_{16} &= \frac{1}{16} (I_{16} + 2f_{12}f_4 + f_4^4) \\ &= c_4^2 - c_4c_3\gamma + c_4c_2\gamma^2 + c_3^2\gamma^2 - 2c_3c_2\gamma^3 - c_4\gamma^4 + c_2^2\gamma^4 + 2c_3\gamma^5 - 2c_2\gamma^6 + \gamma^8 \,, \\ f_{24} &= -\frac{1}{64} (I_{24} + 16f_{16}f_4^2 - 3f_{12}^2 + f_4^6) \\ &= 2c_4^3 - c_4^2c_2^2 - 3c_4^2c_3\gamma + c_4c_3c_2^2\gamma + 7c_4^2c_2\gamma^2 - 3c_4c_3^2\gamma^2 - c_4c_2^3\gamma^2 - c_3^2c_2^2\gamma^2 + 2c_4c_3c_2\gamma^3 \\ &+ 2c_3^3\gamma^3 + 2c_3c_3^2\gamma^3 - 7c_4^2\gamma^4 + 2c_4c_2^2\gamma^4 - 2c_3^2c_2\gamma^4 - c_2^4\gamma^4 - 2c_4c_3\gamma^5 - 4c_3c_2^2\gamma^5 \\ &- 2c_4c_3\gamma^6 - c_3^2\gamma^6 + 4c_3^3\gamma^6 + 4c_5c_3\gamma^7 + c_4\gamma^8 - 7c_2^2\gamma^8 - 2c_5\gamma^9 + 6c_5\gamma^{10} - 2\gamma^{12} \,. \end{split}$$

Let us determine b(2), b(6), b(8), $b(12) \in \mathbb{Z}$. Recall that $H^*(F_4; \mathbb{Z})$ has no p-torsion for p>3. Since

$$H^*(F_4; \mathbb{Z}/2) = \Delta_{\mathbb{Z}/2}(\bar{x}_3, \bar{x}_5, \bar{x}_6, \bar{x}_{15}, \bar{x}_{23})$$

where all the \bar{x}_i are universally transgressive and $\beta_2(\bar{x}_5) = \bar{x}_6$ [7], it follows that $\nu_2(b(2)) = 0$, $\nu_2(b(6)) = 1$, $\nu_2(b(8)) = 0$ and $\nu_2(b(12)) = 0$. Consider the case p = 3. Recall from [7] and [25] that

$$\begin{split} H^*(F_4;Z/3) &= Z/3[\bar{x}_8]/(\bar{x}_8^3) \otimes \Lambda_{Z/3}(\bar{x}_3,\bar{x}_7,\bar{x}_{11},\bar{x}_{15}) \\ H^*(BF_4;Z/3) &= Z/3[\bar{y}_{36},\bar{y}_{48}] \otimes C, \\ C &= Z/3[\bar{y}_4,\bar{y}_8] \otimes \{1,\bar{y}_{20},\bar{y}_{20}^2\} + \Lambda_{Z/3}(\bar{y}_9) \otimes Z/3[\bar{y}_{26}] \otimes \{1,\bar{y}_{20},\bar{y}_{21},\bar{y}_{25}\} \end{split}$$

where $\tau(\bar{x}_i) = \bar{y}_{i+1}$ for i=3, 7, 8 and $\beta_3(\bar{x}_7) = \bar{x}_8$. Here we may suppose that

$$\pi_3(x_3) = \bar{x}_3$$
, $\pi_3(y_4) = \bar{y}_4$,
 $\pi_3(x_{11}) = \bar{x}_{11}$, $\pi_3(y_{12}) = \bar{y}_4\bar{y}_8$,
 $\pi_3(x_{15}) = \bar{x}_{15}$, $\pi_3(y_{16}) = \bar{y}_8^2$,
 $\pi_3(x_{23}) = \bar{x}_7\bar{x}_8^2$, $\pi_3(y_{24}) = \bar{y}_8^3$.

In the mod 3 cohomology spectral sequence $\{E_r(Z/3)\}\$ of the universal fibration

$$F = F_4 \rightarrow E = EF_4 \rightarrow B = BF_4,$$

if

$$\beta_3^B: E_2^{s,t}(Z/3) \to E_2^{s+1,t}(Z/3)$$

is the map induced by β_3 : $H^s(B; \mathbb{Z}/3) \rightarrow H^{s+1}(B; \mathbb{Z}/3)$ through the isomorphism

$$E_{2}^{s,t}(Z/3) \cong H^{s}(B; H^{t}(F; Z/3)),$$

then we have

(4.2)
$$\begin{cases} d_{9}(1 \otimes \bar{x}_{11}) = \bar{y}_{9} \otimes \bar{x}_{3} & \cdots & (*) \\ \beta_{3}^{B}(\bar{y}_{8} \otimes \bar{x}_{3}) = \bar{y}_{9} \otimes \bar{x}_{3} \\ d_{4}(\bar{y}_{8} \otimes \bar{x}_{3}) = \bar{y}_{4} \bar{y}_{8} \otimes 1 \end{cases}$$

$$(4.3) \begin{cases} d_{9}(1 \otimes \bar{x}_{15}) = \bar{y}_{9} \otimes \bar{x}_{7} & \cdots & (*) \\ \beta_{3}^{B}(\bar{y}_{8} \otimes \bar{x}_{7}) = \bar{y}_{9} \otimes \bar{x}_{7} & d_{8}(\bar{y}_{8} \otimes \bar{x}_{7}) = \bar{y}_{8}^{2} \otimes 1 \end{cases}$$

$$\begin{cases} d_{8}(1 \otimes \bar{x}_{7} \bar{x}_{8}^{2}) = \bar{y}_{8} \otimes \bar{x}_{8}^{2} \\ \beta_{3}^{F}(\bar{y}_{8} \otimes \bar{x}_{7} \bar{x}_{8}) = \bar{y}_{8} \otimes \bar{x}_{8}^{2} \\ d_{8}(\bar{y}_{8} \otimes \bar{x}_{7} \bar{x}_{8}) = \bar{y}_{8}^{2} \otimes \bar{x}_{8} \\ d_{8}(\bar{y}_{8}^{2} \otimes \bar{x}_{7}) = \bar{y}_{8}^{2} \otimes \bar{x}_{8} \\ d_{8}(\bar{y}_{8}^{2} \otimes \bar{x}_{7}) = \bar{y}_{8}^{2} \otimes \bar{x}_{8} \end{cases}$$

where the asterisks are due to [3]. Generally, with the obvious notation, since $d_1: E_1^{s,t}(Z/3) \to E_1^{s+1,t}(Z/3)$ can be identified with the differential $\delta_B: C^s(B; Z/3) \to C^{s+1}(B; Z/3)$, if $\beta_3^B(\{\overline{u}\}) = \{v\}$, then there exist $u, v \in A^{*,*}(Z)$ such that $\pi_3(u) = \overline{u}$, $\pi_3(v) = \overline{v}$ and $\delta(u) = 3v$. In this way the same argument as in the case of Spin(7) is valid. Therefore the conditions (4.2), (4.3) and (4.4) imply that $\nu_3(b(6)) = 1$, $\nu_3(b(8)) = 1$ and $\nu_3(b(12)) = 2$ respectively. Summarizing these, we have

$$b(2) = 1$$
, $b(6) = 6$, $b(8) = 3$ and $b(12) = 9$.

On the other hand, c(2)=c(6)=c(8)=c(12)=1. Thus we obtain

(4.5)
$$\tau'(x_3) = f_4 = \frac{1}{2} I_4$$
,
 $\tau'(x_{11}) = \frac{1}{6} f_{12} = -\frac{1}{12} I_{12}$,
 $\tau'(x_{15}) = \frac{1}{3} f_{16} = \frac{1}{48} I_{16} + decomposables$,
 $\tau'(x_{23}) = \frac{1}{9} f_{24} = -\frac{1}{576} I_{24} + decomposables$.

Let us recall from [30] that

(4.6)
$$R(F_4) = Z[\rho_4, \Lambda^2 \rho_4, \Lambda^3 \rho_4, \rho_1]$$
 where
(a) $\dim \Lambda^k \rho_4 = {26 \choose k}$ and $\dim \rho_1 = 52$;

(b) the set of weights of ρ_{\bullet} is given by

$$\{\pm t_i(1 \le i \le 4), \frac{1}{2}(\pm t_1 \pm t_2 \pm t_3 \pm t_4), 0, 0\}$$

and that of ρ_1 is given by

$$\{\pm t_i \pm t_j (1 \le i < j \le 4), \pm t_i (1 \le i \le 4), \frac{1}{2} (\pm t_1 \pm t_2 \pm t_3 \pm t_4), 0, 0, 0, 0\}$$

We have to calculate $ch\alpha i^*(\rho_4)$ and $ch\alpha i^*(\rho_1)$. Consider the inclusion k: Spin (9) $\rightarrow F_4$ such that $F_4/\text{Spin}(9) = \Pi$, the Cayley projective plane (see, e.g., [9, §19]). Then $k^* \colon R(F_4) \rightarrow R(\text{Spin}(9))$ satisfies $k^*(\rho_4) = \lambda_1' + \Delta_9 + 1$ and $k^*(\rho_1) = \lambda_2' + \Delta_9$; see (4.6) (b). Let us calculate $ch\alpha i^*(\Delta_9)$, where the set of weights of Δ_9 is $\{1/2(\pm t_1 \pm t_2 \pm t_3 \pm t_4)\}$. To do so we first calculate $ch\alpha i^*(\Delta_5)$, where the set of weights of Δ_5 is $\{1/2(\pm t_1 \pm t_2)\}$; using it, we calculate $ch\alpha i^*(\Delta_7)$; and using it, we calculate $ch\alpha i^*(\Delta_9)$. Our final result is

$$egin{align*} ch^2lpha i^*(\Delta_9) &= 2p_1\,, \ ch^6lpha i^*(\Delta_9) &= rac{1}{2880}(48p_3\!+\!12p_2p_1\!+\!p_1^3)\,, \ ch^8lpha i^*(\Delta_9) &= rac{1}{645120}(1088p_4\!+\!256p_3p_1\!+\!16p_2^2\!+\!24p_2p_1^2\!+\!p_1^4)\,, \ ch^{12}lpha i^*(\Delta_9) &= rac{1}{122624409600}(31488p_4p_2\!+\!42432p_4p_1^2\!+\!3072p_3^2\!+\!4608p_3p_2p_1 \ &\qquad \qquad + 1920p_3p_1^3\!+\!64p_2^3\!+\!240p_2^2p_1^2\!+\!60p_2p_1^4\!+\!p_1^6)\,. \end{aligned}$$

By a similar calculation to the before, we have

$$\begin{split} ch^2\alpha i^*(\lambda_1') &= p_1\,,\\ ch^6\alpha i^*(\lambda_1') &= \frac{1}{360}(3p_3 - 3p_2p_1 + p_1^3)\,,\\ ch^8\alpha i^*(\lambda_1') &= \frac{1}{20160}(-4p_4 + 4p_3p_1 + 2p_2^2 - 4p_2p_1^2 + p_1^4)\,,\\ ch^{12}\alpha i^*(\lambda_1') &= \frac{1}{239500800}(6p_4p_2 - 6p_4p_1^2 + 3p_3^2 - 12p_3p_2p_1 + 6p_3p_1^3 - 2p_2^3 \\ &\quad + 9p_2^2p_1^2 - 6p_2p_1^4 + p_1^6)\,. \end{split}$$

Thus we have

$$(4.7) \quad ch^{2}\alpha i^{*}(\rho_{4}) = 3p_{1},$$

$$ch^{6}\alpha i^{*}(\rho_{4}) = \frac{1}{960}(24p_{3} - 4p_{2}p_{1} + 3p_{1}^{3}),$$

$$ch^{8}\alpha i^{*}(\rho_{4}) = \frac{1}{645120}(960p_{4} + 384p_{3}p_{1} + 80p_{2}^{2} - 104p_{2}p_{1}^{2} + 33p_{1}^{4}),$$

$$ch^{12}\alpha i^{*}(\rho_{4}) = \frac{1}{40874803200}(11520p_{4}p_{2} + 13120p_{4}p_{1}^{2} + 1536p_{3}^{2} - 512p_{3}p_{2}p_{1} + 1664p_{3}p_{1}^{3} - 320p_{2}^{3} + 1616p_{2}^{2}p_{1}^{2} - 1004p_{2}p_{1}^{4} + 171p_{1}^{6}).$$

On the other hand, $ch\alpha i^*(\rho_1 - \rho_4)$ was calculated in [27, §5] (with certain indeterminacy). Following it, we have

$$\begin{aligned} (4.8) \quad ch^2\alpha i^*(\rho_1-\rho_4) &= 6p_1\,, \\ ch^6\alpha i^*(\rho_1-\rho_4) &= \frac{1}{60}\left(-12p_3+2p_2p_1-p_1^3\right)\,, \\ ch^8\alpha i^*(\rho_1-\rho_4) &= \frac{1}{10080}(240p_4-156p_3p_1+20p_2^2+16p_2p_1^2+3p_1^4)\,, \end{aligned}$$

$$ch^{12}\alpha i^*(\rho_1-\rho_4) = \frac{1}{39916800}(-720p_4p_2+1270p_4p_1^2+366p_3^2-122p_3p_2p_1$$
$$-346p_3p_1^3+20p_2^3+86p_2^2p_1^2+16p_2p_4^4+p_1^6).$$

Thus we get

$$ch^2 \alpha i^*(
ho_1) = 9I_4$$
 , $ch^6 \alpha i^*(
ho_1) = \frac{7}{240}I_{12} + {
m decomposables},$ $ch^8 \alpha i^*(
ho_1) = \frac{17}{8064}I_{16} + {
m decomposables},$ $ch^{12} \alpha i^*(
ho_1) = \frac{1}{4055040}I_{24} + {
m decomposables}.$

Combining these with (4.5), it follows that

$$ch\beta(\rho_4) = 6x_3 + \frac{1}{20}x_{11} + \frac{1}{168}x_{15} + \frac{1}{443520}x_{23},$$

 $ch\beta(\rho_1) = 18x_3 - \frac{7}{20}x_{11} + \frac{17}{168}x_{15} - \frac{1}{7040}x_{23}$

and by Lemma 1 we obtain

Theorem 8. The Chern characters on F_{\downarrow} are given by:

$$\begin{split} ch\beta(\rho_4) &= 6x_3 + (6/5!)x_{11} + (30/7!)x_{15} + (90/11!)x_{23} \\ ch\beta(\Lambda^2\rho_4) &= 144x_3 + (-36/5!)x_{11} + (-3060/7!)x_{15} + (-181980/11!)x_{23} \\ ch\beta(\Lambda^3\rho_4) &= 1656x_3 + (-1584/5!)x_{11} + (-24480/7!)x_{15} + (11180160/11!)x_{23} \\ ch\beta(\rho_1) &= 18x_3 + (-42/5!)x_{11} + (510/7!)x_{15} + (-5670/11!)x_{23} \end{split}$$

and the determinant of the corresponding matrix is 1.

 $H^*(\Omega F_4; Z)$ (for degrees ≤ 22) was calculated implicitly in [28]. Using it and the cohomology spectral sequence of the path fibration $\Omega F_4 \rightarrow PF_4 \rightarrow F_4$, we can show that

$$d(2) = 1$$
, $d(6) = 2$, $d(8) = 1$ and $d(12) = 3$.

References

- [1] J.F. Adams: Vector fields on spheres, Ann. of Math. 75 (1962), 603-632.
- [2] S. Araki: Steenrod reduced powers in the spectral sequences associated with a fibering, Mem. Fac. Sci. Kyusyu Univ. 11 (1957), 15-64.
- [3] S. Araki: On the non-commutativity of Pontrjagin rings mod 3 of some compact

- exceptional groups, Nagoya Math. J. 26 (1960), 225-260.
- [4] M.F. Atiyah: On the K-theory of compact Lie groups, Topology 4 (1965), 95-99.
- [5] M.F. Atiyah and F. Hirzebruch; Vector bundles and homogeneous spaces, Proc. Sympos. Pure Math. Vol. 3, 7-38, Amer. Math. Soc., 1961.
- [6] A. Borel: Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. 57 (1953), 115-207.
- [7] A. Borel: Sur l'homologie et la cohomologie des groupes de Lie compacts connexes, Amer. J. Math. 76 (1954), 273-342.
- [8] A. Borel: Topology of Lie groups and characteristic classes, Bull. Amer. Math. Soc. 61 (1955), 397-432.
- [9] A. Borel and F. Hirzebruch: Characteristic classes and homogeneous spaces, I, Amer. J. Math. 80 (1958), 458-538.
- [10] R. Bott: The space of loops on a Lie group, Michigan Math. J. 5 (1958), 35-61.
- [11] N. Bourbaki: Groupes et algèbres de Lie IV-VI, Hermann, 1968.
- [12] F. Clarke: On the K-theory of the loop space of a Lie group, Proc. Cambridge Philos. Soc. 76 (1974), 1-20.
- [13] M. Curtis, A. Wiederhold and B. Williams: Normalizers of maximal tori, Localization in Group Theory and Homotopy Theory, Lecture Notes in Math. Vol. 418, 31–47, Springer, 1974.
- [14] E.B. Dynkin: Topological characteristics of homomorphisms of compact Lie groups, Amer. Math. Soc. Transl. 12 (1959), 301-342.
- [15] M. Feshbach: The image of H*(BG; Z) in H*(BT; Z) for G a compact Lie group with maximal torus T, Topology 20 (1981), 93-95.
- [16] L. Hodgkin: On the K-theory of Lie groups, Topology 6 (1967), 1-36.
- [17] D. Husemoller: Fibre bundles, McGraw-Hill, 1966.
- [18] K. Ishitoya and H. Toda: On the cohomology of irreducible symmetric spaces of exceptional type, J. Math. Kyoto Univ. 17 (1977), 225-243.
- [19] N. Jacobson: Lie algebras, Interscience, 1962.
- [20] O.V. Manturov: Geometric models of vector bundles over compact homogeneous spaces, Soviet Math. Dokl. 12 (1971), 1646-1650.
- [21] O.V. Manturov: Generators in the complex K-functor of compact homogeneous spaces, Math. USSR Sb. 19 (1973), 47-84.
- [22] H. Minami: K-groups of symmetric spaces I, Osaka J. Math. 12 (1975), 623-634.
- [23] C.M. Naylor: On the β-construction in K-theory, Canad. J. Math. 24 (1972), 819-824.
- [24] J.P. Serre: Homologie singulière des espaces fibrés, Ann. of Math. 54 (1951), 425-505.
- [25] H. Toda: Cohomology mod 3 of the classifying space BF₄ of the exceptional group F₄, J. Math. Kyoto Univ. 13 (1972), 97-115.
- [26] H. Toda: On the cohomology ring of some homogeneous spaces, J. Math. Kyoto Univ. 15 (1975), 185-199.
- [27] H. Toda and T. Watanabe: The integral cohomology rings of F_4/T and E_6/T , J. Math. Kyoto Univ. 14 (1974), 257–286.
- [28] T. Watanabe: The homology of the loop space of the exceptional group F_4 , Osaka J. Math. 15 (1978), 463-474.
- [29] T. Watanabe: Cohomology operations in the loop space of the compact exceptional

- group F_4 , Osaka J. Math. 16 (1979), 471–478.
- [30] I. Yokota: Exceptional Lie group F_4 and its representation rings, J. Fac. Sci. Shinshu Univ. 3 (1968), 35-60.
- [31] I. Yokota: Groups and representations, Shōkabō, (in Japanese), 1973.

Department of Mathematics Osaka City University Sugimoto, Sumiyoshi-ku Osaka 558, Japan