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0. Introduction

Let G be a compact, simply connected, simple Lie group of rank I. G
has [ irreducible representations p,, --+, p;, whose highest weights are the funda-
mental weights w,, -+, w; respectively (see [19]). Then the representation ring
R(G) of G is a polynomial algebra Z[p,, **+, p;]. By the theorem of Hodgkin
[16], the Z/2-graded K-theory K*(G) of G is an exterior algebra Az(8(p,), ***
B(p1)), where B: R(G)—>K*(G) is the map introduced in [16]. Therefore the
Chern character ch: K*(G)—H*(G; Q) is injective [5]. We may write

H*(G; Q) = AQ(xZ;nl—la Xomg—17 ***» mel—l)

where 2=m,<m,<---<m;, and deg xz,,,j_l:Zm,-—l. If each Xom -1 is chosen
to be integral and not divisible by any other integral classes, we can assign to a
representation A : G— U(n) the rational numbers a(:, 1), «++, a(), [) by the equa-
tion

chB(N) = z’: A, ) ¥am,1

In view of [21] and [23], the a(), j) are closely related to the Dynkin coefficients of
A [14]. On the other hand, as is noted by Atiyah [4, Proposition 1], the
determinant of the /X [ matrix (a(p;, j)) is equal to 1. 'We remark that for any
system of generators {\,, --*, A;} of the ring R(G), the determinant of (a()\;, 7))
is also 1.

In this paper, with a suitable system of generators of R(G), we shall describe
the resulting matrix explicitly for the groups G with /<4 without using the
above informations. Indeed, we deal with the following cases:

1=2, G=SUQ), Sp(2), G,.
1=3, G=SU®#), Spin(7), Sp(3).
I=4, G=SU®), Spin(9), Sp(4), Spin(8), F,.
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Results are stated in Theorems 2 (SU(/4-1)), 3 (Sp(1)), 4 (Spin(7)), 5 (Spin(8)),
6 (Spin(9)), 7 (G,) and 8 (F,).

The careful reader should notice that “up to sign” is implicitly added to
some of the statements of this paper.

For later use we fix some notations. Let 7 be a maximal torus of G. The
inclusion 7: T—G induces a map of classifying spaces p=Bi: BT—-BG. The
action of the normalizer N¢(T) on T induces that of the Weyl group ®(G)=
Ng(T)/T on BT and hence on H*(BT; Z)=Z[w, ***, w;] (see [9]). Let
H*(BT; Z)®*© denote the module of ®(G)-invariants. For a based space X, let
QX be its loop space, and let o*: H{(X; Z)—H'"{(QX; Z) be the cohomology
suspension. For the rational cohomology, by [8] and [10] we have

Im p* — HABT; 0)%® — Olfums - fn]

~ |
=1

v

H*(BG; Q) = Q[yzml: '"vyZnt,]
0'*

H*(G; Q) = AQ(xZ'nl—l) °% x?m.—l)
0'*

H*(QG; Q) = Q[u2m1-2) MY u2m,—2]

where all the generators, whose degrees are indicated by a subscript, are chosen
to be integral and not divisible by any other integral classes.

The paper is organized as follows. The key point of our work is to charac-
terize the generator &y, _,. For this purpose we present two methods in Sec-
tion 1: in the first method we characterize the generator y,, and relate it to
Xom ;15 in the second method we characterize the generator U ;-2 and relate it
t0 Xpm 1. Moreover in Section 1 we prove a lemma which 1s very useful if
the A-ring structure of R(G) is known. Subsequent sections are devoted to
practical computations. In Section 2 we treat the most elementary cases, i.e.,
G=SU(I+1), Sp(!) (I=2,3,4) where H*(G; Z) has no torsion. In Section 3
we consider the cases G = Spin(m) (m=7,8,9) where H*(G; Z) has only 2-
torsion. In Section 4 we discuss the cases G=G, and G=F,.

I would like to thank my colleague H. Minami for showing me a computa-
tion of (a(p;, j)) for the case G=G, and many helpful suggestions.

1. Methods

Method 1

For any group H let a: R(H)—K*(BH) be the homomorphism of [5]. Let
o: Ki(X)—K(QX) be the suspension map. Then there is a commutative

diagram
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R(T) == K*(BT) _, HYBT; 0) —
g P a P T
R(G) %> K*(BG) —— H*(BG; Q)

AN s ol

KXG) —HXG;Q)

where 7(resp. 7’) is the cohomology transgression in the Serre spec nce
of the universal fibration G—EG—BG (resp. the fibration G—G/T—BT). For
j=1, -+, I we may set (modulo decomposables)

*(Y2m,) = b(m;)%3m,-, ~ for some b(m;)EZ
and
P*(Y2m,) = c(m;)fom,  forsome c(my)EZ.
Since o* and T are inverse to each other insofar as they are defined, it follows

that

» o(m,)
(x2m,-—l) b(m )

in H*(BT, Q)@(G) — Q[f'-’m,» "‘;fzm, .
Let A: G—U(n) be a representation with weights p,, «*+, p,. So

7 fom,+decomposables

cheti*(\) = 3} exp () = 3, 3 uffm

where ;€ H¥BT; Z) (see [9]). Set
(L1) chB(N) = fé (N, Vom,- where a(h, J)EQ.

Apply 7’ to this equation. Then the left hand side becomes

v'chB(\) = p*rchaa(N)
= p*ra*cha(\)
= p*cha(\)
= chai*(\)
and the right hand side becomes

(2 000 am,) = 3} A% )7 (o)

= ‘:V_,‘ %@ Jfam;+decomposables.
ji=1 I

Hence
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tl()\,, ] )C (m.i

chai*(\) = :1 bm) Jfom, +decomposables.
7= i

This atgument shows that, in order to compute a(), j), it suffices to settle
fom,» determine b(m;), c(m;) and find the coefficients of f,,, in the expression of
chai*(\) as a polynomial of the f,, , We will use this method in all cases that
concern us.

ReMARK. In general we choose the fy, as follows. Let {ff., -, fin}
be a system of generators of the ring H*(BT'; Q)*©®. First we take

fom, = biftm, €H™(BT; 0)*@, bEQ,
so that
(1) fom, is integral;
(ii) for any bEQ with |b| <|bd,|, bf;n, cannot be integral.
Assume inductively that we have chosen fo, , ***, fon ;- Then we take

fz,,,j = b,-fé,,,}—l—decomposablesEHZ’”:‘(BT; 0)*@, b0,

so that

(i) fz,,,j is integral ;

(i) for any b€Q with [6]<|b;|, bf3m,+decomposables € H*"i(BT; Q)¢@

cannot be integral.

Note that the choice of the f4,, has no crucial influence on that of the f,,. As
will be seen in Sections 3 and 4, this settlement of the fz,,l is not trivial but im-
portant.

Method 11

There is a commutative diagram

RG) -2 k7)™ H¥G; 0)
*
g ('h ag

K*QG) —> H¥(QG; Q)

which is natural with respect to group homomorphisms. For j=1, .-+, 1 we
may set

o*(%om ;1) = d(m;Yom,—,  for some d(m;)EZ.
Applying o* to (1.1), we have
!
chaB(N) = ,.E=1 a(n, J)d(m; Yo s -

Let us now consider the case G=SU(n-+1); then m,=j+-1 for j=1, ---, n and
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PH¥QSU(n+1); Z) = Z {uy,| 1<i<n}

where P denotes the primitive module functor. Furthermore, d(j41)=1 for all
j (e.g., see [28, Lemma 3]). Let A;: SU(n+1)—U(n+1) be the natural inclusion,
and consider the case A=X,. Then it follows from (2.2) of the next secti on
that

(1.2) o) =3 (_l:'l)iuz,- .

We return to the general case. Take the inclusion k: U(n)—SU(n-+1) such
that SU(n+1)/U(n)=CP" (see [12, §3]). In [28] it was shown that for the
composite

PH*QSU(n+1); Z) (R PH*QU(n); Z)

Qn)*
'(———)—> PH*(QG; Z) == Z{“Zml-—z, °%Y uZmI—Z} ’

the following statements are equivalent:
(i) (QOA)*(Qk)*(tzm,-2)=€(N, j)tizm,-2 for some (N, j) EZ;
(i) the element 6,(c,(N) € H*™ %G|C,; Z) is exactly divisible by
e(n, j) EZ (where H*(G/C,; Z) has no torsion; for notations and details
see [28, §2]).
Applying (QA¥)(QE)* to (1.2), we have

(=D ),
chaB(\) = E-ﬁj'— 2m ;=2 *

Hence

a( dny) == L5,

This argument shows that, in order to compute a(}, j), it suffices to deter-
mine d(m;) and e(A,j). In particular, to find e(\,j) one must examine the
divisibility of 8,(c. (M) in H** % G|C,; Z).

Define a map @: Z, X Z, X Z,—Z by

o, by @) = 3 (1) ()
where Z, denotes the set of positive integers and we use the convention that
(;):O if y<0or x<y. Let A*: R(G)—>R(G) be the k-th exterior power opera-
tion. Then we have

Lemma 1. If \ is a representation of G of dimension n, then
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a(A™, j) = (n, k, m))a(x, j)
for j=1, -, L
Proof. Let ch’ be the 2¢g-th component of ck, i.e., ch(x)= g ch®(x) with
>0

ch(x)eH*(X; Q) for any x&K°(X). Consider the element 1,ER(U(n)) which
comes from the identity 1;,: Un)—>U(n). Then we assert that

(1.3) ch'a(A*1,) = o(n, k, 9)ch®a(1,)+decomposables
in. H¥BU(n); Q) = QLy2 Yor **> Yul -

This assertion implies the result. For since 8=ca and o* sends a decom-
posable element into zero, applying o* to (1.3) yields the desired result for the
case G=U(n). Then the general case follows from naturality.

To prove (1.3) we proceed by induction on k. The case k=1 is clear.
Suppose that it is true for k<m—1, and consider the case k=m. Let us recall
the following relations:

P 3 (— DA A )+ (— 1) RAKE) = O;
ch(xy) = ;E; ch (x)ch®"(y);
ch* ¥ (x) = Rch’(x)
where x, ye K%X) [1]. Since « is a A-ring homomorphism, we have
ch’a(mA™(1,))
= e~ 1) B (L)AL
= (—1)" ek’ ay"(1,)+ g‘;(—1)'"_1_iChq(a\l""'i(ln)aAi(ln))
— (—1)"chtay™(1,)+- g(— 1)1 33 o g =(1,)cht A ¥(1,)]
= (=1 ch'ay™(1,)+ :;S;:l(~1)’"'1"[(?)ch"axlr”"i(l,,)—{—nchqu‘(l,,)]
modulo decomposables
= (— 1y bty el B (— 1y [(f) ch"\,lr"'“'a(l,,)—[—nch"a(A‘1,,)]
— (— 1) michta(1,)+ g‘(—l)m-l-‘[(?) (m—iY'chia(l,)
(e, i, geha(l,)|

=[5 0 (F) =i+ S (— 1y, i, q)leben(L,)
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= [ (-)" 1( ) jn S (— 1) i(n, i, g)lehfal,).
Thus it is sufficient to prove that

(L4) g, m, g+ ) +n S (— 1) p(n, i, q) = mp(n, m, g).

()= (31+G2)

() = o).

From Pascal’s triangle

I

we deduce that

Using this, we have

—1 .-
p(n—1, m—1, ) = T (—1y 2L )

il
-
<

Therefore
np(n—1, m—1, q)+¢(n m, q+1)
=n B 0, ) B ()

=:v;‘<-1>f-ln<mzll N S ()
( 1)j_l<m ])(m J)]q_l+2( 1= l(m ])J

S
b R e e ()

)J" (m_])]q—

= mq’(”: m, q) .

+

§

uMi EMI ||

This proves (1.4) and completes the proof.

469
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2. The special unitary groups and the symplectic groups

Let us first consider the case of SU(/+1). In this case, m;=j41 for
j=1, -, L. Asis well known we can choose elements #, t,, :*+, ¢, EH*BT; Z)
so that

H*BT; Z) = Z[t,, -+, t13)/(c)
and
H*(BT; Z)*SUV0D) = Z[cy, =+, €144]

where ¢;=a(t;, ***, t141) (o( ) denotes the i-th elementary symmetric function).
It is evident that fy;,,=c;y, for j=1,-,l. Since H*(SU(I4+1); Z) has no
torsion, the theorem of Borel [6] assures us that b(j+1)=c¢(j+1)=1 for all j.
Thus we have 7'(xy;4,)=c¢;4, for j=1, -, L

Let us recall from [17] that

(2.1) R(SU(+1)) = Z[\yy Mgy =++5y Ny]  where
. _ (1.
(a) dimx, = ( 2
(b) relations A*N;=N; hold;
(c) the set of weights of \, is given by {t;|1<i<I+41}.

Put
I+1
Sm = sm(tb "ty t1+1) = E .
From Newton’s formula
St 33 (—1)isposci-(—1)"me, = 0

(where ¢,,=0 if m>14-1) it follows that

cha*(\,) = I4+1+ 21 (= l')m Cw+11decomposables.
w=1 m!

Therefore
_ <=y
(2.2) chB(\,) = El i Xomt

m

(cf. [20, Theorem 1]). By Lemma 1, if we evaluate o(/+1, &, j+1), chB(\y)
can be calculated. Thus we have

Theorem 2. The Chern characters on SU(I+1) for 1=2,3,4 are given by:

I=2 chB(\) = —x5+(1/21)x;
chB(N;) = —x3+(—1/21)x5
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1=3 chB(n) = —xst+(1/20)xs+(—1/31),
chB(N) = — 2z, +(4/31)x, —1
hB(Ny) = — st (—1/2D)as+(—1/31)x,

I=4 chB(n) = —ss-H(1/20)5s+(—1/3 1)+ (1/4 1)y
hB(Ny) = —3ag+(1/21)s+(3/3 Doey+-(—11/4 1)z,
chB(Ng) = —3ag+(—1/21)w5+(3/3 Dty +(11/4 ),
hBON) = — x5+ (—1/21)x5-H(—1/3 Dty (—1/4 1)z,

where the number on the right hand side indicates the determinant of the correspond-
ing matrix on the left hand side.

Let us consider the case of Sp(l). In this case, m;=2j for j=1, -, L
We can choose elements 2,, #,, -+, t, e H*BT; Z) so that

H*(BT; Z) = Z[t,, -+, t]
and

H*(BT; Z)Q(Sp(l)) — Z[QD gl

where ¢;=o(#, -+, t]). It is evident that f,;=g¢; for j=1, -, L Since
H*(Sp(l); Z) has no torsion, it follows that b5(2j)='c(2j)=1 for all j. Thus
we have 7/(x,;-,)=¢q; for j=1, .- 1

Let us recall that

(2.3) R(Sp(D) = Z[y Ay -+, N]  where

21
(a) dim xk_( % )
(b) relations A*n;=\, hold;
(c) the set of weights of \, is given by {+t;|1<i<I}.

Put
Som = Sp(t3, -+, 8]) = z::ltz"' .
From Newton’s formula
Somt gl(—l)i&m—ZiQi—F(—l)m’”% =0
it follows that
chai*(\) = 21+ E E—z—)T gm—+decomposables.
Therefore

(="
chB(N) = 21(2 1)| Xym-1
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and by Lemma 1 we obtain
Theorem 3. The Chern characters on Sp(l) for 1=2,3,4 are given by:

I1=2 chB(n) = xg+(—1/3N)x .
hB(N;) = 2x,+(4/3 V),

I=3 chB(n) = wg+(—1/3)a,+(1/5 )y
chB(N,) = 4atg+(2/3 1)ty +(—26/5 )y 1
chB(Ng) = 6x5+(6/31)%,-+(66/51)xy,

I=4 chB(N) = ws+(—1/30)ay-+(1/5 )y +(—1/71)xss
chB(Ng) = 615 - (—24/5 1)y, -+ (120/7 )ty
hB(hs) = 155593 1)y+(15/5 )y +(— 1191/7 1)ty
chBON) = 205+ (16/3 1)+ (80/5 gy + (2416/7 1)y

where the number on the right hand side indicates the determinant of the correspond-
ing matrix on the left hand side.

3. The spinor groups

Let us first consider the case of Spin(7). In this case, (m,, m,, my)=(2, 4, 6).
We can choose elements #,, t,, t3, YEH*(BT'; Z) so that

H¥BT; Z) = Z[t,, ty, t5, V]/(c;—27)
and

H*BT; Q)*® ™ = Q[p,, p, pi]

where ¢;=a(t), t,, t3) and p;=o(t:, 15,13). In the light of the Remark in
Section 1, using the formula

2§ .
pi= E(—l)‘*fcz,-_,-cj )

we have

(3.1) fo=gbi= a2,
fo= gt fi= —cirtar—,
fe=ps=¢c}.

Let us determine b(2), b(4), b(6)Z. To do so we use the Serre spectral
sequence {E,(Z)} for the integral cohomology of the universal fibration

F = Spin (7)—E = E Spin(7)—B = B Spin (7).
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Furthermore, to investigate it, we use the Serre spectral sequence {E,(Z/p)} for
the mod p cohomology of the same fibration, where p runs over all primes.

Recall that H*(Spin(7); Z) has no p-torsion for p>2. Let Az,( ) denote
a Z[2-algebra having a set in parentheses as a simple system of generators.
Then it follows from [6] and [7] that

Ag Ry, X, B, X =2
H*(Spin (7); Zp) — { 21 %s X5, B, X7) (P )

Azyy(%s, %gy Xyy) (r>2)
and
Z/Z[J—’u 5’6’ 5’7) 5)8] (P = 2)
Z/P[yu 5}8! 5’12] (P > 2)
where %; transgresses to ¥;y, for all 2 and B,(%5)=% (8, denotes the mod p
Bockstein homomorphism). For a based space X, let z,: H{(X; Z)—>H'(X; Z|p)
be the mod p reduction homomorphism. Then if i=3 or 7, =,(x;)=2%; and
Zy(YVis1)=Jiw for every prime p. Therefore we conclude that 7(x;)=y, and
7(%;)=ys. In other words, b(2)=b(4)=1.

It remains to determine 4(6). Since

x%s (p=2)
Ty (p>2)

an analogous argument to the above yields that

H*BSpin(7); ZIp) = |

o
wit = | 0

7y(%n) = { ¥y (p>2),

0) if p>2, wv,(b(6))=0
where v,(m) is the power of p in m. To get v,(b(6)) we consider {E,(Z/2)},

which satisfies

E3'(Z|2) = H'(B; Z|2)QH'(F; Z/2)

and E%*(Z]2)=0 unless (s, £)=(0, 0). 'Then it is easy to see that

(1) d(1Q%s%s)= Vs Q.

(i) do(Ts@%s)=FE®1.
Let

B5: Ey'(Z[2) — Es**Y(Z)2)
be the map induced by B,: H{(F; Z|2)—H"'*(F; Z|2) through the isomorphism
E}'(Z)2) = C(B; HY(F; Z]2)) .

Then we have

(i) B (Fs®%s)=Fs@%.
Denote again by z,: {E,(Z)} —{E/(Z|p)} the morphism of spectral sequences in-
duced by z,. By virtue of the isomorphism
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E3N(Z) = H'(B; H'(F; Z)) ,

we find that there exist elements {x,} € E»'"(Z), {v.}<€E}*Z) and
{1} €E3*°(Z) which satisfy 7z,({#,;})=1Q%:%s, m:({v1})=7:@%s and m5({y1})
=3¥;®1 respectively. Then the conditions (0), (i), (ii), (iii) imply that in {E(Z)}
(iv) do({mu})= {02}
(v) du({22})={yu:}-
In fact, (iv) is an immediate consequence of (i). In what follows we roughly
state a proof of (v). Let us begin by recalling the construction of the Serre
spectral sequence {E,(R)} in cohomology with R-coefficients of a fibration
F—E—>B, where R=Z or Z[p (for details see [24]). There is a cochain com-
plex Hom (C4(E), R) which is filtered by its subcomplexes A’(R)zZtA"'(R) such

that A*(R)CA*"*"*Y(R) and 8(4*!(R)) CA>**(R) for all (s, ) (where § is the
differential in Hom(Cy(E), R)). This filtered cochain complex gives rise to
{E,(R)}, ie.,

Z:,f(R) — AS,'(R) n 8—1(A$+f,f"1+l(R)) ,

B:,t(R) — As,f(R) n 3AS"’J+’—1(R) ,

E}Y(R) = Z7(R)(Z321 " Y(R)+B;4(R)) .

Note that there is an exact sequence

0 4+(2) 2 a1(2) T4 44(zjp) > 0

for all (s, #). Since d,: E;**(R)—E;*"*~"*!(R) is induced by §, by (iv) we see
that there exists a representative xEA%Y(Z) (resp. v&A*%(Z)) of {x,} (resp.
{v1}) such that

(3.2) Sx)=v.

Let #€ A%5(Z/2) be a representative of J;Q@%;. Then by (iii) we observe that
there exists u€ A%%(Z) such that 7,(u)=% and

(3.3) 3(u) = 20

(see [2, Chapter ITI, §2]). Similarly by (ii) there is a representative y € 4%(Z/2)
of 4®1 such that §(@)=23. This implies that there exists a representative
yEA®YZ) of {y;} such that z,(y)=23 and

(34) Su)=y.
By (3.2), (3.3) and (3.4), we have
8(2x) =20=08(u)=y

which gives (v). It is equivalent to b(6)=2.
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We discuss the problem of determining ¢(2), ¢(4), ¢(6)EZ in a general form.
Indeed, we claim that ¢(m;)=1 for j=1, -+, [ in all cases that concern us. To
prove this we use the integral cohomology spectral sequence {E,} of the fibra-
tion

G/T—-BT 5 BG.

Then the homomorphism p*: H"(BG; Z)—H"(BT; Z) can be regarded as the
composite

H"(BG; Z) = E}-*>>E™® = D" ... cD"" = H"(BT; Z)

where D*»~{[D7hnmiTt=E ", According to [6], the class {y,, } €E3"" sur-
vives to E.. What we have to verify is to observe that no extension problems
occur on the class {yz,,, }EE*;»°, This is an essentially easy work, because
all structures of H *(G/T Z), H¥BT; Z) and H*(BG; Z) were explicitly
described (for H*(BG; Z) see [7] and [25]; for H*(G|T; Z) see [27] and also
[26]). For example, consider the case G=Spin(7). Then it is not hard to see
that if m=4, 8 or 12, Ei;"~ is trivial or torsion free for all . 'This assures us
that ¢(2) =c(4)=¢(6)=1. In the future we omit such checks for the other
cases, for our claim (except for the case G=F,) has been proved in a more
general setting by [13] and [15].

Let us recall from [17] that
(3.5) R(Spin (7)) = Z[r, M, A;]  where

(a) dimai= (Z) and dim A;=8;

(b) relations A"N|=\} and Aj=N+N+N{+1 hold;
(c) the set of weights of \{ is given by {+t;,0|1<¢<3}.

By the same calculation as in the case of Sp([), we have
chPai*(\{) = p,,

chtai*(\f) = — 1 pz—i—decomposables,

chbair*(\]) = m ps+decomposables.

On the other hand, from (3.1) and the results on &(m;) and ¢(m;) it follows that

1

—Pl ’

) = fo=

(%) =fo= % po+decomposables,
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/ 1 1
/(%) = 7f12 = ?Pa .
Combining these, we have

Chﬁ(hf) = 23— %xﬁ‘ %xn .

Therefore by Lemma 1,
chB(\%) = 10x,+ %o@— Tsixu

and

BN MAN 1) = 325+ %6307—}— fl's-xu .

On the other hand, by the formula (2) of [16, p. 8],
B(AT) = 88(A,)+8B8(A;) = 168(A,) .

Thus from the relation AZ=n\4{-4+A5-+2A{-+1 we deduce that
1 1
chB(A;) = 2x5+ ?xrl— @xu .

Theorem 4. The Chern characters on Spin(7) are given by:

chBON) = 2s5+-(—4/3 1)+ (25 Dty
chB(M) = 10+-(4/3 )y 4-(—50/5 1)y
ChB(Ag) = 25-+(2/31),+(2/5 ey

and the determinant of the corresponding matrix is 1.

Let us next consider the case of Spin(8). In this case, (my, m,, my, m)=
(2,4,4,6). We can choose elements t,, t,, t5, ¢, YEH*(BT; Z) so that

H*(BT, Z) = Z[tD ety Ly ')’]/(01—2')’)

and

H*(BT; Q)*Srin @) — Q[p,, c,, Py, i

where ¢;=0o(t;, =+, t,) and p,=c(#, =+, #;). By a similar calculation to the
before, we have

fo= %Pl = —6+27%,

Jo=—=p——fi— Tﬁ = —&V v —4,
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le =py=— 4cz+c§ .

Let us determine &(2), b(4), b(4), b(6)Z. But, since H*(Spin(8); Z) has
no p-torsion for p>>2 and

H*(Spin (8); Z[2) = Azp(®s, %, %y %1, &)

where all the %; are universally transgressive and [B,(%;)=%; [7], the situation is
quite similar to that for G=Spin(7), and so we get a similar result, i.e., b(2)=
b(4)'=b(4)=1 and 5(6)=2. On the other hand, as mentioned earlier, ¢(2)=
c(4)'=c(4)=c(6)=1. Thus we have
, 1
(3.6) (%) =f, = ?pl ,
(1) =fi = e,

(%) =fy = % P— %q—{-decomposables,

7'(%) = é‘flz = %Pa .

Let us recall from [17] that
(3.7) R(Spin(8))=Z[\1, Ny, AF, AF]  where
(@) dima= (2) and  dim A =dim A7—8;

(b) relations A*ny=n\, and A§ Ag =g+, hold;
(c) the set of weights of N, is given by {+¢;|1<i<4} and that of A§ is
given by {47, v—t;—1;|1<i<j<4}.

By direct calculations we have
(3.8) Chzai*(xl) = Pl N
cHati*(;) = 1_12(_2p2+p§) :

chai*(\,) = %(3%_3?2?1 +p1)
and
(3.9) cHai*(A3) = py,

Hai*(AL) = ;%(41:2+24c4+1>?) :

There are involutive automorphisms « and # of T and Spin(8) respectively,
which make the diagram
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K
T ——T7T

ilkli

Spin(8) — Spin(8)
commute, such that the automorphism (Bx)* of H*(BT'; Z) satisfies

t,  (1<i<3)
—t, (=4).

Therefore (Br)*(p;)=p;, (Br)*(c,)=—c, and the automorphism #* of R(Spin(8))
satisfies #*(A3)=Az. Applying (Bx)* to (3.9), it follows that

Beye) = |

(3.10) Hai*(A7) = pr,
cHai*(A7) = Z18.(4102—24c4+p‘;’) .

Combining (3.8), (3.9), (3.10) with (3.6), we have

chB(\) = 20,— %xé— %xﬁ— 6L0x” R

Chﬁ(A;) = 2%+ %‘%‘i‘ %%‘f‘axu ’

chB(AF) = 2x;,— % %7+ % %7+axy

for some a€Q. From Lemma 1 and the relation Af A7 =»x;+\, we deduce that
a=1/60.

Theorem 5. The Chern characters on Spin(8) are given by:

chB(\y) = 2x3+(—2/3 ) ws+(—4/3 e, +-(2/5 )y,
chB(\;) = 12x, +(—48/5)xy
chB(AF) = 2x5+(4/3 )i +(2/3 Ny +(2/5 )y
cB(AT) = 2-+(—2/31) x5+ (2/3 1), +(2/5 Dy

and the determinant of the corresponding matrix is —1.

RemARk. The equation ¢hB(Af—Az)=x4 confirms the fact that Spin(8)/
Spin(7)=.S7 (see [22, Proposition 6.2]).

Let us lastly consider the case of Spin(9). In this case, (my, m,, my, m,)=
(2,4, 6,8). We can choose t,, t,, 15, t,, YEH*BT; Z) so that

H*BT; Z) = Z[t,, -+, t,, 7]/(6—27)
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and

H*(BT; Q)Q(Spin M = Q[pl: PZ: Pa, P4]

where ¢;=a(t;, *+*, 8,) and p;=ao(#, +*+, ti). By a straightforward calculation
we have

fi= %Pl = —6+272,

fa=%

fo=1ps= —2cet6},

fis= %P L %f ;= Cl.ca')’“‘cccz'yz_Cg'yz+2636273
et —chrt—2e5+ 26,75 — 0

b L fi= ek iy e =),

Since H*(Spin(9); Z) has no p-torsion for p>2 and
H*(Spin (9); Z|2) = Az/(%s, %5, %o, %1, %ys)

where all the ®; are universally transgressive and B,(%;)=%, [7], as in the case
of Spin(7), it follows that 5(2)=5b(4)=1, b(6)=2 and b(8)=1. On the other
hand, ¢(2)=c(4)=c(6)=c(8)=1. Thus we have

(3.11) () =fi =5 b

(%) =fs = % P2+decomposables,
/ 1 1
7'(wy) = ?flz = —Z‘Ps ’
7'(%5) = f1g = % P+ decomposables.
ReMARk. Let j: Spin(8)—>Spin(9) be the natural inclusion. Then by (3.6)

and (3.11) we see that the homomorphism j*: H¥(Spin(9); Z)—H*(Spin(8); Z)
satisfies

x; (=3, 11)
]*(xx) = x7+2x, (i = 7)
0 (t=15).

Let us recall that
(3.12) R(Spin (9)) = Z[M, My M, Al where
(a) dim ) =(2) and  dim Ay—16 ;
(b) relations A"N=N\} and A§=N{+N5-+Ns-+HN+1 hold;
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(c) the set of weights of N is given by {4-2;,0|1<i<4}.

The rest of the argument is parallel to that for G=Spin(7). We only exhibit
the result.

Theorem 6. Tle Chern characters on Spin(9) are given by:

hBON) = 25+ (—2/31)t,-+(2/5 )ty +-(—4/7 )ty
cPB(NG) = 1oty -(—2/31)e,+(—46/5 ey, -+ (476/7 )y
chB(NE) = 423, (183 1)ty +(— 18/5 1oty -+ (—4284/7 )ty
hB(Ag) = 4,+(2/3 1)ty +-(4/5 )ty -+ (34/7 s

and the determinant of the corresponding matrix is 1.

4. The exceptional Lie groups G, and F,

Let us first consider the case of G,. In this case, (m,, m,)=(2, 6). We use
the root system {a;, a;} of [11]. Let w,, w, be the fundamental weights. If
we put

L=y b= 0,—0y t; = —2w;+aw,,
then
H*(BT; Z) = Z[t,, t,, 1]/(c:)

where ¢;=a(t,, 15, t3), on which ®(G,) acts as follows:

R, R,
L| —t, ¢
tz _"‘tl t3
t3 —t3 t2

where R; (=1, 2) is the reflection to the hyperplane «;=0, and {R,, R}
generates ®(G;). Therefore

H*(BT; 0)*© = Q[p,, ps] -
where p;=a(#}, #3, 3), and it follows that

=1
2

Jo=ps=c}.
Since H*(G,; Z) has no p-torsion for p>>2 and
H*(Gy; Z[2) = Azp(Rs, %5, %)

fa

Pl = —3,
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where all the ®; are universally transgressive and B,(%;)=%; [7], as in the case
of Spin(7), it follows that 5(2)=1 and 5(6)=2. On the other hand, ¢(2)=c(6)=1.
Thus we have

) =fo= > s

, 1
7' (%) = 7](12 = %Ps .
Let us recall that
(#1) R(G) = Zlp, A% where
(2) dim A*,:,:(,Z) (and dim p,=14);

((b) a relation A?p;=p\+p, holds;)
(c) the set of weights of p, is given by {4¢;(1<:i<3), 0}.

By a calculation we have

Hai*(p) = by,

chai*(p,) = TZIB ps-+decomposables.
Therefore

chB(p,) = 2%+ Blﬁxu
and by Lemma 1 we get

Theorem 7. The Chern characters on G, are given by :

chB(py) = 2x5+(2/5)xy
chB(A%p)) = 10%4+(—50/5 1),

and the determinant of the corresponding matrix is —1.

Remarx. Consider the following fibration

k
G, — Spin (7) — Spin (7)|G, = S .
Then it is easy to see that k*: H(Spin(7); Z)—H'(G,; Z) satisfies

x, (=3, 11)
0 (i=7)

On the other hand, £*: R(Spin(7))—>R(G,) satisfies
E*(\) = Apy  (i=1,2)
F*(Aq) = prt-1

we) = |
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(see [31]). Using these facts, we find that Theorem 7 follows from Theorem 4.

H*(QG,; Z) (for degrees<10) was calculated implicitly by Bott [10]. Using
it and the cohomology spectral sequence of the path fibration QG,—>PG,—G,,
we can show that

d2)=1 and d(6)=2
(see [12] and [28, p. 474]).

Let us now consider the case of F,. In this case, (m,, m, ms,m,)=(2,6,8,12).
We can choose elements #,, t,, £, t,, Y EH¥BT; Z) so that

H*(BT; Z) = Z[t,, -, ts, 7]/(c;—27)

and the action of ®(F,) on it is as described in [9, §19] (see [18] and [29]). Let
ci=0o(ty, -+, t,) and p;=co(#:, -+, #5). If we put

I =D

I,= —6P3+P2P1 ’

L= IZPA_3P3P1+P§ ’

Ly = —T12p,pr+-27p pi+27p3—9pspapr+203 ,
then we have

H*(BT; Q)°%0 = Q[1,, I, Ig, 1] .

For a proof see [27, Lemma 5.1], however, its main part is accomplished by a
pure calculation; see (4.7) and (4.8) below. By a troublesome calculation we

obtain
ft = %14 = —Cz‘|'2’)’2 ’
1
flz = - 7 12

= —4c,cr-3c34-c3—4egery —4e, Y — 2572+ 8cy?
fo= e Bot2faf D

= C§— i3V eV 37— 256,73 — €,V 57 2575 — 26,708
fu=— & T 16 fi— 32D

= 2¢3—cic5—3ciey Y +cicscsy +Tchesy 3,5 —c 3 v —C5ei - 2¢ 050570
426373 2c,c373 — Tyt - 2c,c57 —2c5c, 7 — eyt —2c,57° —4escid
—2¢,6,Y5— 3V A3V A Aeacy V€,V — TehvB—2¢5Y0+ b,y 0 — 202
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Let us determine 5(2), b(6), 8(8), b(12)Z. Recall that H*(F,; Z) has no
p-torsion for p>>3. Since

H*(F,; Z[2) = Agp(Rs, %5, Re, 5, %)
where all the ®; are universally transgressive and B,(%5)=%, [7], it follows that
v(b(2))=0, v,(b(6))=1, v,(b(8))=0 and »,(5(12))=0. Consider the case p=3.
Recall from [7] and [25] that
H*(F,; Z[3) = Z[3[%6]/(%3)Q A z5(%s, 7, B11, %15)
H*(BF,; Z|3) = Z|3[J, J4]®C,
C= Z/3[5)n 5’8]@'{1) 5’20) 17%0}+Az/3(5’9)®z/3[5’26]®{1, 5’20’ 5’21: 5’25}

where 7(®;)=¥;,, for i=3,7, 8 and B5(%;)=%;. Here we may suppose that

my(xs) = X3, w(¥) = Vi»
mo(%y) = Ry, w(Y) = P Vs
my(%s) = Bis,  wy(Yie) = Dk,
(%) = Ri%5,  wa(Yu) = Fs -
In the mod 3 cohomology spectral sequence {E,(Z/3)} of the universal fibration
F=F,—~E=EF,— B= BF,,
if
B3: EyH(Z]3) — Es*4(Z[3)
is the map induced by B;: H'(B; Z|3)—H**(B; Z/|3) through the isomorphism
E%'(Z|3)=H'(B; H(F; Z[3)),

then we have

df(1QRy) = Fo@Bygeeevverrervesseeeennnans (*)
(4.2) 1 BE(F:Q%;) = FsQ%,

d4(5'8®x3) = 5’45’3@1

d(1Q@R5) = Fo@Byeserervvesrennunsannanns (*
35(5’3®x7) = J,Q%;

da(j’s®x7) = Ji®1

dy(1Q%,%5) = 7, %}

B5(FsQF%5) = Fs Q%%

(44) 4 dy( T Q%) = FiR%,

BE(Fi®%;) = Ji®%,

dy(¥i®%;) = Q1

(4.3)

A
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where the asterisks are due to [3]. Generally, with the obvious notation, since
d,: E$4(Z[3)—E{*"!(Z/3) can be identified with the differential §;: C°(B; Z/3)
—C**Y(B; Z[3), if B3({#})= {0}, then there exist u, veA**(Z) such that
wy(u)=1u, m3(v)=0 and &(u)=3v. In this way the same argument as in the
case of Spin(7) is valid. Therefore the conditions (4.2), (4.3) and (4.4) imply
that »4(5(6))=1, v3(b(8))=1 and v,(b(12))=2 respectively. Summarizing these,
we have

b2)=1, b6)=6, b8 =3 and b(12)=9.

On the other hand, ¢(2)=c(6)=¢(8)=c(12)=1. Thus we obtain

(45) v =fi= L,

1 1

7' (%) = ‘6“f12 = - 1‘5112 ’
’ _ 1 1
7' (%) = ?f 6= Zglls-l—decomposables,
’ 1, 1
7'(%35) = ?fz; = — 37781 u-+decomposables.

Let us recall from [30] that

(4.6) R(F,) = Z[p,, A%,, A%, pi] where
(2) dim Atp, = (2k6) and  dim p, = 52;
(b) the set of weights of p, is given by

{£4(1<I<4), - (Ehttttite), 0, 0}
and that of p, is given by
{itt:':tj(lgl<j£4)) :l:t,(ISls4), %(:I:tlﬂ:tz:tts:l:ﬁ), 0) O’ 0’ 0} .

We have to calculate chai*(p,) and chai*(p,). Consider the inclusion k: Spin(9)
—F, such that F,/Spin(9)=1I, the Cayley projective plane (see, e.g., [9, §19]).
Then k*: R(F,)— R(Spin(9)) satisfies k*(p,)=N{+A,+1 and E*(p,)=Ns+A,;
see (4.6) (b). Let us calculate chai*(A,), where the set of weights of A, is
{1/2(+-#,4-t,-+4;4-2)}. To do so we first calculate chai*(A;), where the set of
weights of As is {1/2(4-2,+12,)}; using it, we calculate chai*(A;); and using it,
we calculate chai*(Ag).  Our final result is
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cHati*(Dg) = 2y,

Hti*(Ag) = — (48p;+12p,p+13)

2830
i*(Ag) = o (1088p,+-256psprr+-16pE-+ 24pupi+p1)
H2ai*(Ag) = m(SHSSP‘ Py 142432, p1 43072034608, 2,

+1920p,p3 +64p3 +240p3 p+-60p,p+15) .

By a similar calculation to the before, we have
cHat*(\) = p,,

i (M) = ﬁ@l’s‘%’z?ﬁ?f) ,

i (M) = éf)}—60(—4?4 4y pr+-255—4p,10Y)

o, 1
chPai*(\]) = 239500800 (6p,2—6p, 3 +-3p3— 12ps popy+-6psp3 — 213

+9p% pi—6pop1+p9) -
Thus we have

(4.7) Fai*(p) = 3p,

Cti*(p) = o (24ps—4pspi3p0)
CIati*(p) = L (960p,-384p,p,-+80p3—104p:p1+33p0)

1
40874803200

+1664p; p1—320p3+-1616p3 pI—1004p,pi+171p%) .

ch2ati*(p) = (11520p, p,-+13120p, p3+1536p3—512p, oy

On the other hand, chai*(p,—p,) was calculated in [27, §5] (with certain in-
determinacy). Following it, we have

(4.8) chai*(p—p.) = 61,

cbai*(p,—p,) = % (—12p5+2p,p1—21)

Hai*(pi—p) = ot (40— 156D+ 2053+ 16p:pE+-3p0)
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ch*ai*(py—p,) = (—720p,po+1270p, pi+366p5— 1223 p:;

39916800

—346p; pi+20p3+86p3 pi+16p,p1+p7) -
Thus we get

cHai*(pr) =91, ,

chbai*(p;) = ﬁlu—!— decomposables,

chPai*(p,) = 8—32—; Is+decomposables,
chai*(p,) = 0 5; 5 4012‘—|— decomposables.

Combining these with (4.5), it follows that

=6
chB(o,) x3‘|‘ x11+ 168 15+443520 23 )
chB(p;) = 18x;— xu'l“ 168 X15— 701409023

and by Lemma 1 we obtain

Theorem 8. The Chern characters on F, are given by:
chB(p,) = 6x3—|—(6/5!)xu_+(30/7!)x15+(90/11 1)z
chB(A%p,) = 144x;+(—36/5!)xy;+(—3060/7 x5+ (—181980/11 1)z,
chB(A3p,) = 16565+ (—1584/5!)x;,+(—24480/7)x,5+(11180160/11 1),
chB(p,) = 18x34(—42/51)x,+(510/7 x5+ (—5670/11 1)
and the determinant of the corresponding matrix is 1.

H*(QF,; Z) (for degrees<22) was calculated implicitly in [28]. Using it
and the cohomology spectral sequence of the path fibration QF,—~PF,—F,, we
can show that

d2)=1, d6)=2, d@B)=1 and d12)=3.
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