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Abstract
Consider a Riemannian vector bundle of rank 1 defined by a alovector field
v on a surfaceM in R* Let Il, be the second fundamental form with respect
to v which determines a configuration of lines of curvature. lis thrticle, we
obtain conditions ornv to isometrically immerse the surfadd with 11, as a second

fundamental form intoR3. Geometric restrictions oM are determined by these
conditions. As a consequence, we analyze the extensionefher's conjecture, on

the index of umbilic points of surfaces iR®, to special configurations on surfaces
in R*.

1. Introduction

Given a surfaceM immersed inR?% let NM denote its normal bundle and a
vector field onM. We consider the following questiondnder what conditions is it
possible to isometrically immerse M R®, in such a way that there is a vector bun-
dle isomorphism between the normal sub-bundledEtermined by in NM and the
normal bundle of the immersed surfac€ M 3-space taking the second fundamental
form I, to the second fundamental form on"M

It is classically known that any submanifold &" satisfies the Gauss, Codazzi
and Ricci equations. Moreover, the fundamental theorem tlomsnifolds provides
us with a kind of converse, in the sense that it asserts that sguations are suffi-
cient to determine uniquely the submanifolds®f ([2]). Starting from this theorem,
we are able to determine the necessary and sufficient conslithat a normal field
over a surfaceM immersed inR* must satisfy in order to get an affirmative answer
to the above question. The interpretation of such conditimnterms of the contacts
of M with the hyperplanes oR*, analyzed through the behavior of the height func-
tions family on M, leads in a natural way to the determination of certain geooad
obstructions oM based on the results obtained in [12].
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The article is organized as follows. Section 2 is divided Wwo tparts. We pro-
vide in Subsection 2.1 a short review of some well known cpteeand results that
shall be subsequently used. We obtain in Subsection 2.2 tharstructure equations
of Gauss and Codazzi, two conditions on the second fundaméorim that together
are equivalent to the fact that locally the bundle is imnigesin R* (Proposition 2.2).
We include in Section 3 a brief discussion of known results dorfaces in 4-space
from the viewpoint of its contacts with hyperplanes, depeld in [12] and explore the
relation between the Gauss condition and the existencenmfripial directions on sur-
faces in 4-space (defined in [12]). We introduce in Sectiotel concept ofCodazzi
fields on surfaces. This is done as follows: To each non-locallalggrnormal field
v on M, we associate a tangent fieWl,, that measures how far is from being par-
allel. In fact, if we consider a moving frame dd whose normal subframe is given
by {v, v}, wherev* denotes a unit normal field orthogonal itp we have that critical
points of W, are those at which the connection formg, vanishes. We say that a non-
locally parallel normal fieldv is a Codazzi field providedV, belongs to the Kernel of
S:. This is equivalent to asking th&t_\,\,vvL =0 off the zeroes ofV, (Proposition 4.6).
Then, we prove the fundamental result of this paper:

Theorem 4.8. Let M be a simply connected surface immersedRfhand let v
be a unitary normal field on M Then
i) Assume that M has non flat normal bundlké admits an isometric immersion in
R3 with prescribed second fundamental fothy if and only if v is a Codazzi field
i) In case that M has vanishing normal curvatuie admits an isometric immersion
in R3 with prescribed second fundamental foth if and only if v+ is a binormal field
on M, parallel alongKerS,..

We use some basic properties of binormal fields and asyropditéctions to de-
duce certain geometric properties that the surface muistfysé order to admit some
isometric immersion intdR3 with prescribed second fundamental form. For instance,
a necessary condition for the existence of some normal fiedd a generic surface M
which admits an isometric immersion & with prescribed second fundamental form
Il, is to be locally conveXProposition 3.2),or in other words it must admit some
everywhere defined asymptotic fieldhs a consequence, we have thatnimal sur-
faces inR* which are not locally developable never admit isometric arsions into
R® with a prescribed second fundamental forfar any of their normal field¢Proposi-
tion 3.3). Moreoverany surface ofR* may admit at mos® isometric immersions with
prescribed second fundamental formi&3, modulo isometries oR® (Proposition 3.1).

Clearly, such isometric immersions must take thprincipal configuration of the
surfaceM into the (unique) principal configuration of its imadé’ in 3-space. We
use this fact in Section 5 in order to discuss a possible géimation of Loewner’s
conjecture on the index of an umbilic of surfaces in 3-spacerfaces in 4-space.
Section 6 is devoted to the particular case of flat surfaces.
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Some results in this article form a part the doctoral thesithe first author [6].

2. Vector bundles and structure equations

2.1. Vector bundles of rank one defined by normal sections oM. Let M

be a smooth oriented surface immersediih with the Riemannian metric induced by
the standard Riemannian metric Bf. For eachp e M consider the decomposition
ToR* = T,M @ (T,M)*, where T,M)* is the orthogonal complement d,M in R*.
Let x(M) and x(M)* be the space of smooth vector fields dh and the space of
smooth vector fields normal t™M, respectively.
__Let V be the Riemannian connection Bf. Given vector fieldsX,Y in x(M), let
X,Y be some local extensions Rf. The Riemannian connection dv is well defined
by the tangent component of the Riemannian connectioR%fVxY = (VxY)™. On
the other hand, given a normal vector figlg x1(M) let Vx& = (Vx€)* be the normal
component 01’5)(.5_, this way we have a compatible connectionTiM-=.

Considerthe second fundamental form

ot x(M) x x(M) = (x(M))*, (X, Y) = VgY — VxY.
If pe M andv e (TpM)*, v #0, define the function
L: ToM x ToM = R, 1,(X, Y) = (@(X, Y), ).
The v-second fundamental forrof M at p is the associated quadratic form,
I,: ToM = R, 11,(X) =1,(X, X).
Recallthe shape operator
S:TeM = TpM,  S(X) = —(Vx)",

where v is a local extension t®R* of the normal vector fieldb at p and T means
the tangent component. This operator is bilinear, seldiatjand for anyX, Y € T,M
satisfies the following equation(S,(X), Y) =1,(X,Y) [2]. Thus, for eachp € M there
exist an orthonormal basis of eigenvectorsSfin T,M, for which the restriction of
II, to the unitary vectors takes its maximal and minimal valud$ese eigenvalues
are thev-principal curvatures The pointp is a v-umbilic if the v-principal curvatures
coincide. Letl, be the set ofv-umbilics in M. For any p € M \ U4, there are two
v-principal directions defined by the eigenvectorsf these fields of directions are
smooth and integrable, then they define two families of g@timal curves, its integrals,
which are called thev-principal lines of curvature one maximal and the other one
minimal. Thev-umbilics are the singularities of these families of curves

Using the normal field,, we will define a vector bundle of rank 1 dvi with first
and second fundamental forms as above, determining thdyfaf-principal lines of
curvature.



880 J.M. QTIERREZ NUREZ, M.C. ROMERO FUSTER AND F. SANCHEZ-BRINGAS

Assume thaf{v, v*} is an orthonormal basis of the normal vector bundieV)=.
Consider the vector bundle of rank one ¥ — M, wherev’is the normal vector bun-
dle on M whose fiber atp € M is the normal line in the direction(p) and = is the
natural projection. Endow this vector bundle with the canioe V, compatible with
the metric, defined as thprojection on? of the normal connectiorV' restricted to
v, namely:

1) Vxn = (Vxn, v)v,

fornevand X e TM.

Consider theWhitney sunmof vector bundles:E, = TM &w v, where the metric
on E, is the orthogonal sum of the metrics M and v. This Riemannian vector
bundle E, has a connectiotv’, compatible with its metric, defined by:

ViY = VxY +a(X,Y), X,YeTM,
Vi =—SX+Vxg XeTM, & e,
whered(X, Y) =1,(X, Y)v is the projection of
a(X, Y)=1L,(X, Y)v+,.o(X, Y)vt, vebd,
on the line determined by.

2.2. v-Gauss andv-Codazzi equations forM. From the structure equations of
the bundleE, let us write down Gauss equation:

= <&(X! W), &(Y! Z)> - (&(X, Z)r &(Yl W))n
where R is the curvature tensor with respect to the connectWonf M and R, is the
curvature tensor of the bundlg, defined byV'.

Observe now that the tangent projection Rf along the tangent component van-
ishes, namelyR,(X, Y)Z, W) =0, if and only if

) (R(X, Y)Z, W) = 1,(X, W)L (Y, Z) = 1,(X, Z)l.(Y, W),

where X, Y, Z, W € TM. Equation (2) is the Gauss equation to be satisfied by the
curvature ofM to immerse locally isometrically (or globally if it is simplconnected)
M into R3. Let us call it v-Gaussequation.

Consider now the Codazzi equation for the bunBlg

(R.(X, V)Z)" = (Vxa)(Y, Z) — (Wéa)(X, Z),
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where Fxa)(Y, Z) = Vxa(Y, Z) —&(VxY, Z) —a(Y, VxZ) and V is the connection of
M. Analogously, the normal projection d®, along the tangent component vanishes,
namely R,(X, Y)Z)* =0, if and only if

®) (Vxa)(Y, Z) = (Wa)(X, 2).

This is the Codazzi equation that the Riemannian connectioM has to satisfy in or-
der to ensure thak can be locally isometrically (or globally if it is simply caected)

immersed inR® with prescribed second fundamental form.lIWe call it v-Codazzi

equation. Considering tha¥yv is orthogonal tov and the following equation holds
Vo (Y, Z)v = X(,(Y, Z))v +1,(Y, Z)VX+v, we obtain that the»-Codazzi equation
can be written as follows:

X(IV(Y! Z)) - Y(Iv(xa Z))

) =1L,([X, Y], Z) +1,(Y, VxZ) — |, (X, Vy2).

The fundamental theorem for Riemannian submanifolds [Bhlied to the vector
bundle E, — M, guarantees that iM is simply connected and equations (2) and (4)
hold, there exists a unique (modulo isometriesR¥) isometric immersionf: M —

R3, and a vector bundle isomorphisih: E, — T M=+ along f which transforms the
v-second fundamental form llinto the second fundamental form of the immersion.

Observe that sincé c R4, it satisfies Gauss and Codazzi structure equations for
surfaces immersed iR*. These can be written respectively as

(5) (R(X! Y)Z, W) = (a(X, W)a Ol(Y, Z)) - (a(xv Z)v Ol(Y, W))v
(6) (Vxe)(Y, Z) = (Vya)(X, 2Z),

wherea and V are respectively the second fundamental form and the ctioneof
the immersion, and

(Va)(Y, Z) = Via(Y, Z) — a(VxY, Z) — a(Y, VxZ).

We exploit this fact in order to determine conditions Bhand on the normal field
v guaranteeing that the-Gauss and-Codazzi equations hold.

The following straightforward lemma will allow us to expseshe v-Gauss and
v-Codazzi equations in a convenient way, stated in ProposRi2, that shall be useful
in the sequel.

Lemma 2.1. The following conditions are equivalent
a) 1e(X, Z)(Vgvt, v) +1,.(Y, Z){(Vgv, vt) =0, for all X,Y,ZeTM.
b) S.((Vyvi, v)X+(Viv, vH)Y) =0, for all X,Y e TM.
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Proposition 2.2. Let M be an oriented surface immersedifi Letv be an smooth
unitary vector field normal to M Consider the vector bundle defined by E, — M,
with Riemannian connectiovi’. Then v-Gauss and-Codazzi conditions ofr: E, — M
are equivalent respectively to the following two conditi@t every point pg M:

@) e (X, WL (Y, Z) — 1,0 (X, Z2)1, (Y, W) =0,

(8) (Vyvh, v)X + (Vxv, vhY e Ker S .,

where XY, Z, W are vector fields tangent to M in a neighborhood ofand Ker S,.
is the kernel of S.

Proof. SinceM is immersed inR*, Gauss equation holds for this immersion:

(ROX, Y)Z, W) = (a(X, W), a(Y, Z)) — (@(X, Z), (Y, W))
= 1,(X, W)L (Y, Z) +1,.(X, W)l,.(Y, Z)
10K, Z)LY, W) — L (X, Z)Le (Y, W).

Therefore,v-Gauss equation (2) holds, if and only if equation (7) does it
On the other hand, consider Codazzi equatioR (6).

(Vxa)(Y, Z) = (Vya)(X, 2),

by substituting the values of the image ®fin the normal basis and taking the com-
ponent in the direction of, this equation implies the following expression,

(Vi (L(Y, Z)v +1,.(Y, Z)v*), v) = 1,(VXY, Z) = 1, (Y, Vx2Z)
= (Vg (1,(X, Z)v +1,.(X, Z)vh), v) = 1,(Vy X, Z) =1, (X, VyZ).
Thus, by observing thaVxv is orthogonal tov,
Vi (L(Y, Z)v) = X(L(Y, Z)v +1,(Y, Z)Vyv,
and because the normal connection is compatible with theionete obtain
Le(X, Z)(Vyvt, v) +1,0(Y, Z)(Vyv, vth)
= 1,0 (X, Z)(Vyvt, vy — Lo (Y, Z)(v, Vxvh).

So, according to Lemma 2.1, condition b) is equivalent tchboembers of this equa-
tion vanish. Therefore, by substituting it in the previoupi&tion we conclude that it
is equivalent to equation (4). ]
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3. Gauss condition and binormal fields for surfaces inR*

Suppose thaM is a surface embedded lgy into R*. Consider a local isothermic
coordinate chart with parameters, ¢) and an orthonormal framg,X; = 9/du, X, =
8/dv, X3 =v, X4 =vt} on M. Take the dual 1-formgw,, ws, ws, was}, given by
wi = (d¢, Xi). Let {wy; }i4,j:1 be the corresponding connection forms. These forms have
the following expression in terms of the dual 1-forms [1026&]:

w13 = ex,wi + fx,wz,

woz = fy,wy + gx,wo,
©) 23 = Tx,w1 + Ox,w2

w14 = ex, w1+ fx,wy,

was4 = fx, w1+ gx,wo.

The Gaussian curvature K, is the curvature corresponding to the tangent bundle of
M and may be found from the formuladwi, = —Kw; A w,. Whereas thenormal
curvature K+, of M is obtained from the following expression relative to theved
ture form of the normal bundle oM: dwss = —K+w1 A wo. The functionK* is a
multiple of the area element okl.

The image of the affine map

n: S C TpM — NpM,  n(8) = ap(8, 6),

defines an ellipse possibly degenerate, referred to asuhature ellipseat p [10]. A
direct computation shows that

n(@) = H + B cos(d) + C sin(),

where in these coordinatés = (1/2)(ex, +9x,) X3+ (1/2)(ex, +9x,) Xa, B =(1/2)(ex, —
Oxs) X3+ (1/2)(ex, — 9x,)Xa and C = fx, X3+ fx, Xa.

We say that a poinpp € M is a semiumbilicif and only if the curvature ellipse
degenerate into a segment which is equivalent to condikdrfp) = 0. Moreover, if
this segment is radial the point is called imflection point These points are important
from viewpoint of the extrinsic geometry because the rankhef second fundamental
form decreases at them.

A surface M immersed inR* is said to besemiumbilicalprovided all its points
are semiumbilic. This is equivalent to say thHdt has vanishing normal curvature and
hence that admits a parallel normal field.

There is an invariant functiol on M defined as follows: Writee = uX; + vXs
and considerde, X3) A (de, X4). Now de=udX; +duX; +vdX,+dvX,. Therefore,
(de, X3) = uwyz + vwyz and (de, X4) = uwig + vwys. And taking into account that
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w13, w23, wia and wo4 can be put in terms of the basfs)y, wy} of the dual of T,M,
we obtain

(de, X3) A (de, Xa) = 8(u, v)wi A wy,

whered(u, v) is a quadratic form. The function is defined as the determinant of the
matrix associated té(u, v). One may check that if a point is not a semiumbilic then
the origin of Np;M is inside, on, or outside the ellipse accordingAois respectively,
positive, zero, or negative. Accordingly is said to beelliptic, parabolic or hyper-
bolic.

Given any vectoif € R*, the height function orM associated td is defined by
h:(p) = (¢(p), &). It is easy to see thdi; has a singularity at the poirg if and only
if £ is normal toM at p. In the case thap is a degenerate singularity (non Morse)
of hg, we shall say that defines abinormal directionfor M at p. It was shown in
[12] that according toA(p) < 0, =0 or > 0, we may find exactly two, one or none
binormal directions respectively.

Given a normal fielt on M, the Hessian matrix of the height functidn at each

point is given by
(% o)
fe o

wheree: = —(puu, &), fe = —(duv, &), G = —(dw, &). Since this matrix coincides with
that of the shape operat&, it follows that a binormal field is characterized by the
fact that its associated shape operator has rank lessertiltan Therefore, ifb is a
binormal field onM at least one of the principal directions bfhas vanishing prin-
cipal curvature. This direction is said to l@symptotic The umbilical points of the
principal configurations associated to the binormal fields the inflection points. In
other words, these points are singularities of the asynapfotiations on the surface
([12]). Suppose that\(p) < 0, so there are exactly two asymptotic directions and two
binormal directions at the poinp. Then if 6;, i =1, 2 denote the two asymptotic di-
rections atp and 2 is the angle determined by the two binormalsNgM, it can be
shown (see [10], p.268) that the two following formulae hold

A
tarf(6y — 6,) = K(FZ).
tarf Q = AK(S :

Hence it follows that

a) K*(p) =0 if and only if the two asymptotic directions gt are orthogonal.

b) K(p) =0 if and only if the two binormal directions gt are orthogonal.
Semiumbilical surfaces are thus characterized by havitigpgonal asymptotic fields.

A particular case of semiumbilical surfaces is given by theally developable surfaces.
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These were characterized by Little [10] as those for whiah filmctions A and K+
vanish everywhere. Moreover, if the Gaussian curvature @sishes everywhere, we
have that the surface is developable. The fact thais identically zero implies that
there is a unique binormal at every point of these surfaces.

Proposition 3.1. v-Gauss condition is equivalent to asking thet be a binormal
field on M. Therefore a surface inR* may admit at most two isometric immersions
with prescribed second fundamental formodulo isometries ofR3.

Proof. Suppose thdl c M is an open neighborhood with local coordinatesy).
The coefficients of thet-second fundamental form are

€1 = ”vi(au) = _<a(8w 8u): VL);
for = —{a(@u, 8,), v*) = —(@(8, ), 1),
0, = ”vi(av) = _<a(8ua av)- V_L)y

where 9, = 9/0u and 9, = 9/dv. In this coordinate chart, equation (7) of Proposi-
tion 2.2 has the expressione,.g,. — fv{ = 0, and the left side of this equation is
the determinant of the Hessian matrix of the height functign. Since thev-Gauss
condition is equivalent to this equation, we obtain the fietult. The second asser-
tion follows from the fact that there are at most two binorsnaler any surface im-
mersed inR*. O

In general, a surface immersedlitf does not need to have globally defined binor-
mal fields. A surfaceM immersed inR* is said to bdocally convexprovided it admits
a local support hyperplane at each one of its points. Swsfacatained in the bound-
ary of their convex hull, in particular those contained in aex hypersurface such
as the standard hyperspheg, give us examples of locally convex surfacesRA.
Also, semiumbilical surfaces can be seen to be locally canvewas shown in [12]
that the functionA never assumes positive values on locally convex surfabesefore
such surfaces always have globally defined binormal vecéidsi Moreover, ifM is
generically immersed in the sense of Looijenga’s Theoremi])[(that is, the family
A(f): M x S* — R3 of height functions onM is topologically stable), we have that a
necessary and sufficient condition for the local convexity\ is the global existence
of two binormal fields on it (that coincide over isolated icfien points). In other
words, A < 0 holds all overM except perhaps at isolated inflection points at which
A =0, ([12], Corollary 4.3). On the other hand, it also followsat in non-generic
cases, the hypothesis that< 0 is enough to guarantee the existence of at least one bi-
normal vector locally defined at every point. In the paricutase of surfaces at which
A vanishes identically, we have a unique binormal field. It whswn by Little [10]
that this class contains the local developable surfacesttamdurfaces with substantial
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codimension one, i.e. those contained in a hyperplane. dnlakt case, the binormal
field is constant and coincides with the orthogonal directio this hyperplane.
In view of these considerations we apply Proposition 3.1tabes

Proposition 3.2. a) A necessary condition for the existence of some normal field
v on a generic surface M such that, Bdmits an isometric immersion infR® is that
M be locally convex
b) Locally developable surfaces may admit at most one isomigtninersion with pre-
scribed second fundamental forih, in R3, modulo isometries ofR3.

Minimal surfaces are characterized by the fact that the meavature vector van-
ishes at every point. This implies that non semiumbilic poif minimal surfaces must
be all elliptic (the origin of the normal plane is inside thépse). On the other hand,
all the semiumbilic points of such surfaces are necessanilgction points. From the
local viewpoint, we may thus have the two following situasoover a minimal surface
in 4-space:

a) The subset of inflection points has zero measure, in whice ¢there cannot be
binormal fields defined over open subsets.

b) All the points are inflection points. In this case, it wa®wh by Little [10] that
the surface is either a local developable surface, or itiiesome hyperplane. Clearly,
it admits a binormal field in both cases.

We observe that condition b) is too strong even for a minintefage, so it looks
sensible to expect that “most minimal surfaces” fulfill thestfione, so they do not
admit isometric immersions int®* with a prescribed second fundamental, for any of
their normal fields.

We can thus state the following:

Proposition 3.3. If M is a substantially immersed minimal surface Rf that
admits some isometric immersions i3 with a prescribed second fundamental form
in the above sensghen M is locally developable and has vanishing normal ctuxea

4. Codazzi fields on surfaces

We start from thev-Codazzi condition in the form of equation (8). Given a pair
of tangent vector fieldX, Y on M, we define a vector field

W, (X, Y) = (Vyvh, )X + (Vgv, vhY.

Thus, v-Codazzi condition holds iM if and only if W, (X, Y) belongs to the kernel
of S,1, for any X, Y € x(M).
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Lemma 4.1. a) For any pair of tangent vector fields,X, in M the following
equation holds

W, (X, Y) = —W,(Y, X).

b) If there exist a pair of tangent vector fields, X, linear independent at p for
which the vector WX, Y), # 0. Then for any local tangent framg Xy, Xo} at p,
W, (X1, X2)p 7 0. Furthermore W, (X, Y) and W, (X1, X) are linearly dependent

The proof is straightforward.

Notice that statement b) in this lemma implies that, in oftdeguarantee-Codazzi
condition, it is enough to ensure the existence of a couplineér independent vector
fields X, Y, for which W, (X, Y) belongs to the kernel 0§,.. So we can state the
following:

Lemma 4.2. v-Codazzi condition holds in Mif and only if for any pe M there
exists a couple of locally defingtinearly independenttangent vector fields X/, such
that W, (X, Y) belongs to the kernel of S

Lemma 4.3. If W, (X, Y) # 0 for some tangent fields X, or in other words v
is not a parallel field then v-Codazzi condition implies-Gauss condition

Proof. Let us consider a local isothermic coordinate chartach pointp € M
with tangent frame{X;, X2}. Then, Lemma 4.1, b) and Lemma 4.2 imply that the
vector fieldW, (X1, X;) does not vanish and belongs to the kerneSof. Thus, DefS,.
vanishes. The determinant &, in this coordinate chart has the expression:

1
DetS. = E(euLng — fi),

where E is the non-vanishing coefficient of the first fundamentalnfor Therefore
€,10,1 — f‘i = 0, which according to Proposition 3.1 is equivalentiut@sauss con-
dition. O

REMARK 4.4. a) Notice that in this case we obtain directly from thegbrthat
W, (X, Y) is a tangent field pointing in the asymptotic direction assed to the bi-
normal v*. In fact, there are two different unit vector fields tangemthe asymptotic
direction. Let us denote

Wy =W, (X1, X2)/IW, (X1, X2)I,

where { X1, X5} is the basis frame on this local chart.
b) If v, and hencet, is parallel in an open neighborhoad of p, thenW, vanishes
and thev-Codazzi condition holds trivially inJ.
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Lemma 4.5. Suppose that is a non-locally parallel normal vector field on M
Then the zeroes of Wlie in a measure zero set.ZMoreover if v is a binormal
field, the v-Codazzi condition is equivalent t;, v = 0 in the complement of Zwhere
W, is the vector field defined iRemark 4.4 a).

Proof. Sincev is a non-parallel field over any open subseth\df then W, (X, Y)
provides, according to Remark 4.4 a), a tangent fi#ldwhich is well defined (locally)
over some open and dense subseMofind may vanish over some zero measure subset
Z. It follows from Lemma 4.3 that the-Gauss condition also holds ikl — Z, and
hence all oveM. But then, as observed in Remark 4.4 a), we have \Watletermines
the asymptotic directions field associated to the binonraland thusw, € KerS,. So,
the Codazzi condition given in equation (8) is equivalenasfting that(VVivvv, vy =0
which, beingv a unitary vector field, is equivalent to the requirem@qu‘,“v =0. Con-
versely, if thev-Codazzi condition holds, we have thel, (X, Y) € Ker§,, VX, Y €
x(M). So, eitherW, (X, Y) =0, ¥X, Y € x(M) in which case, we have thativ =0,
VX € x(M) and thusv is a parallel field, oW, only may vanish over a zero measure
subset ofM and the conditiorVy;, v = 0 holds all overM. O

A non-locally parallel unitary normal field on a surfaceM immersed in R is
said to be aCodazzi fieldprovided W, belongs to KelS,..

Lemma 4.1 implies that this definition does not depend on thardinate chart,
and only depends on the field

Proposition 4.6. Suppose that is a non-locally parallel normal field on M and
denote by Z the set of zeroes of VWhen in the open and dense subddt=M —Z C
M, v is a Codazzi field if and only ¥y, vt = 0.

Proof. Assume that is a Codazzi field atp € M. Then, the non-zero vector
field W, is well defined in a local neighborhodd of p wherev' is a binormal. Thus
S+ (W,) = 0. Moreover, since-Codazzi condition holds, Lemma 4.5 implies that

0=S.: (W) + Vv = Vvt

Conversely, ifngvi =Qatpe M, then the equation above implies thﬁ\tj;,vv =0,
and Lemma 4.5 guarantee thatCodazzi condition holds. This implies according to
Lemma 4.2 thawv is a Codazzi field. O

Assume now that the coordinate chart where this local aizalygs been made is
also isothermic, with normal framgy, v1} as in Section 3. The connection foray,
is given by Vxv = w34(X)X4. It is not difficult to check thatw, = 0 if and only if
w34 = 0.



CODAZzzI FIELDS ON SURFACES IN 4-SPACE 889

REMARK 4.7. We observe that iM is v-umbilic, ws4 vanishes identically oM
if and only if M is contained either in a hypersphere or in a hyperplane [15].

Theorem 4.8. Let M be a simply connected surface immersedRfhand let v
be a unitary normal field on M Then
i) Assume that M has non flat normal bundié admits an isometric immersion in
R3 with prescribed second fundamental fotty if and only if v is a Codazzi field
i) In case that M has vanishing normal curvatuiie admits an isometric immersion
in R® with prescribed second fundamental fotm if and only if v* is a binormal field
on M, parallel alongKerS,:.

Proof. Consider the frame associated to the normal fielas in Section 3. In
case i) assume thatis a Codazzi field. The field is not a parallel field in a neigh-
borhoodV of any point p, and thus the subset of zeroeswf, has zero measure in
V. If wza(p) #0, thenW, (X, Y) # 0 for any couple of local independent vector fields
at p and Lemma 4.3 implies that-Gauss condition holds gb. On the other hand,
sincev is not locally parallel this is true for a dense setMfand then the continuity
of the local expression of the-Gauss condition in equation (8) guarantees that it holds
all over M. Therefore,v-Gauss and-Codazzi conditions hold at every point M.

In case ii) if vt is parallel along KeB,: thenv is also parallel. This implies that
v-Codazzi condition holds itM. So, it is enough to ask that" is a binormal in order
to satisfy v-Gauss condition.

Once we have seen, both in cases i) and ii) thatitti@auss and-Codazzi condi-
tions hold at each point oM, sinceM is simply connected, the fundamental theorem
for Riemannian submanifolds [2] implies that there existaspmetric immersion oM
into R® with prescribed second fundamental form. liConversely, if there exists such
an isometric immersion oM into R3, the fundamental theorem implies thaGauss
and v-Codazzi conditions hold at each point bf. Thus, an analysis similar to that
one used in the first part of the proof shows that one of the tatements i) or ii)
must hold. O

REMARK 4.9. a) Observe that the fundamental theorem for Riemansidm
manifolds guarantees that the isometric immersions détednin Theorem 4.8 are
unique, modulo isometries d&S.

b) Observe that the second fundamental form of the isometrmoersion of M into
R? is the prescribed second fundamental form Then thev-principal configurations
of M in R* are also preserved under this reduction of codimension.

The behavior of thev-principal foliations was analyzed in [14] and [5]. In fact,
the topological types of the classesieprincipal foliations of surfaces iR* are richer
than those of the principal foliations of surfacesRA [7]. A consequence of this fact
is pointed out in the next section. We highlight that Theo#® provides a character-
ization of the class of locab-principal configurations that can be realized as curvature
lines of surfaces irR3.
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5. Codazzi fields and Loewner’'s conjecture on surfaces

To each isolated umbilic of a surface B® we can attach the index of either one
of the two fields. This index has to be of the fonmi2, with n € Z. Examples of
umbilics of indexj are known for allj < 1. The classical (local) Loewner’s conjec-
ture states that every umbilic of a smooth surface immemeR®imust have an index
less than or equal to one. This conjecture has been assertedittue for analytic sur-
faces by several authors among whom are H. Hamburger [8],0G[1B, T. Klotz [9],
C.J. Titus [17]. On the other hand, it was proven in [7] thateg n € Z, there exists
an analytic surfaceVl immersed inR* and an analytic unitary vector field normal
to M having an isolated-umbilic of indexn/2. This means that Loewner’s statement
cannot be generalized to aleatory principal configuratemsurfaces irR*. The ques-
tion is: Is Loewner's statement true for some special class of pradotonfigurations?
It follows from the analysis made in [4] that the result hofds binormal fields on
locally convex surfaces generically immersed in 4-spacereMecently, J.J. Nufio [13]
has shown that Loewner’s statement for surfaces in 3-sgaequivalent to Loewner’s
statement for binormal fields on totally semiumbilic sugfaqwith isolated umbilics).

If in the theorem above the immersed surfddeand the normal field are real
analytic, then the isometric immersion ® into R® with prescribed second funda-
mental form is also real analytic. In fact, the real analyiilmdle E, for which the
v-Gauss and-Codazzi conditions hold, is endowed with a real analyticapyal trans-
port from which the immersion oM into R® is obtained. Taking into account the
results obtained for analytic surfaces in 3-space reldtivéoewner’s conjecture, we
have the following

Corollary 5.1. Suppose that M is a real analytic surface immersed®fn If v is
either a real analytic Codazzi fielcbr a real analytic field such that' is a binormal
field parallel alongKer S, on M, then every isolated-umbilic has index lesser or
equal to one

6. Flat surfaces

We consider now the special case of flat surfaces:

Corollary 6.1. a) A connected surface M immersed it with zero Gaussian
curvature has at most one Codazzi field
b) If a connected surface M immersed Rf with zero Gaussian curvature admits
two different isometric immersions with prescribed secdmadamental forms irfR3,
modulo isometries ofR3, then its normal curvature also vanishes
c) Developable surfaces iR* admit at most one isometric immersion with prescribed
second fundamental form iR®, modulo isometries ofR3.
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Proof. a) Suppose thatl is a surface with zero Gaussian curvatureRifi and
that vy and v, are different Codazzi fields oM. Then Lemma 4.3 and Proposition 3.1
guarantee that both;;- and vy, are binormal fields foM. We observe that the func-
tion A only may vanish over the subsgtof points at whichv;- and v, coincide. But
the hypothesis thak is identically zero onM implies thatv; = vy at every point of
M — Z. Therefore, sinceM is connected, we have that eithet,= M or Z =@. In the
first case the proof is done and in the second one, since po#nd v, are Codazzi
fields we have thatv\k,v1 V1 = V\k,vz v, = 0. Moreover, sincevy, vo) =0, we also have,

Vvlv\‘l‘)Z = VVLszvl = 0. Now Remark 4.4 tells us thaw,, and W,, determine the two
asymptotic directions oM. Then, sinceA < 0 it follows from comments made in
Section 3 thatW,, andW,, are linearly independent. And henee and v, are parallel
fields, which contradicts the hypothesis that they are Cadélds.

b) If M has zero Gaussian curvature and admits two isometric imomsrén R3
with prescribed second fundamental formg knd ll,,, then it follows from the argu-
ments in the proof of part a) that sindé¢ can only have a Codazzi field, say, the
other onev, must be a parallel normal field. Therefoké has zero normal curvature.

c) This follows from the fact, pointed out in Section 3, thhere is a unique
binormal field over a developable surface. O

In order to illustrate some of the above conclusions we piean example of a
surface, contained in the standard 3-sphere and thus yocaiivex, for which there
are exactly two normal directions defining local isometritniersions with prescribed
second fundamental form int&3.

ExampLE (the Clifford torus). Consider the coordinate chart:
U = {(u, v)eRZ, O<u<2r, O<v< 27},

1
¢:U—>RY pu,v) = —2(cosu, sinu, cosv, sinv).

V2
Take the orthonormal frame,
X1 = +/2(=sinu, cosu, 0, 0), X, =~/2(0, 0,— sinv, cosv),

1 . .
X3 = —2(cosu, sinu, cosv, sinv),

7

1 . .
X4 = _2(— cosu, — sinu, cosv, sinv).

/2

Consider an arbitrary unitary normal vector fiejd= aXs + bX4, wherea, b: U — R
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are smooth functions such thaf + b® = 1. An straightforward computation gives the
coefficients of then-second fundamental form as follows:

e = —%a+ %b, f,=0, g9,= —%a— %b.
The determinant of the shape operator with respecy'tois DetS,. = (b? — a?)/4,
hence thev-Gauss condition holds for = » if and only if a = +b. Namely, we must
take a? = b2 = 1/2. This determines the two normal directions= (X3 + X4)/+/2 and
vy = (X3 — X4)/+/2. A direct computation shows that any one of these two normal
fields is a Codazzi field o(U). Therefore, these two vector fields (modulo a sign)
define the unique vector bundles immersible ifith Notice that since the determinant
of their shape operators vanishes, these vector fields aoerbals. The corresponding
asymptotic lines are the;-curvature lines, solutions of the equation:

t
/2

We point out that the Gaussian curvature of the Clifford $ouanishes everywhere.
Thus, as expected after Lemma 3.1, these two binormal fielel®weerywhere orthog-
onal. Furthermoreg(U) is contained inS® and hence semiumbilical, so its asymp-
totic directions{W,,, W,,} are everywhere orthogonal, [15]. Naturally, none of the two
above considered isometric immersions can be globallynelee to the whole torus.

dudv =0.

We finally observe that the problem studied in this paper lsted to the factoriza-
tion of an isometric immersiorf of a surfaceM into R* as a composition of isometric
immersionsh and F respectively ofM into R® and of R3 into R* The obtained re-
sults imply that in order to admit such a factorization, aonigtric immersion of a
generic surface int®R* must be locally convex. Do Carmo and Dajczer consider in
[3] locally flat immersions of the plane int&* whose first normal space has constant
rank 2. They provide a method to obtain all the immersion$ tleanot factorize and
characterize those that are compositions. As a consequenaer results we can say
that an isometric immersion of the plane ifkd may admit at most one factorization,
unless it has vanishing normal curvature, in which case iy @mdmit two (as illus-
trated by any open disc in the Clifford torus). Moreover, ié tfirst normal space has
(constant) rank one, then the factorization is unique.

ACKNOWLEDGEMENTS ~ We would like to thank Francesco Mercuri for his stimu-
lating comments at the initial state of this work. A part ostlvork has been developed
during a visit on sabbatical leave of the third author to tlep&tment of Geometry and
Topology of the University of Valencia. We appreciate théugshle support offered for
this visit.



(1]
(2]

E
(4]
(5]
(6]
(7]
(8]
[0
(10]
(11]
(12]
[13]
[14]
[15]
[16]

[17]

CODAZzzI FIELDS ON SURFACES IN 4-SPACE 893

References

G. Bol: Uber Nabelpunkte auf einer Eiflach&lath. Z. 49 (1944), 389-410.

M. Dajczer: Submanifolds and Isometric Immersions, Mathécs Lecture Serie$3, Publish
or Perish, Houston, TX, 1990.

M. do Carmo and M. Dajczer:Local isometric immersions oR? into R?, J. Reine Angew.
Math. 442 (1993), 205-219.

R.A. Garcia, D.K.H Mochida, M.D.C. Romero Fuster and M.ARuas: Inflection points and
topology of surfaces id-space Trans. Amer. Math. So352 (2000), 3029-3043.

R.A. Garcia and F. Sanchez-BringaSlosed principal lines of surfaces immersed in the Euclid-
ean4-space J. Dynam. Control Systent (2002), 153-166.

J. Gutiérrez: Rigid immersions of surfaces rspace Doctoral Thesis, Universidad Nacional
Auténoma de México (2004).

C. Gutiérrez and F. Sanchez-Bringa®n a Loewner umbilic-index conjecture for surfaces im-
mersed inR*, J. Dynam. Control Systen% (1998), 127—-136.

H. Hamburguer: Beweis einer Carathéodoryschen VermituAgn. Math. 41 (1940), 63—68,
I, 1, Acta Math. 73 (1941), 174-332.

T. Klotz: On G. Bol's proof of Carathéodory’s conjectur&€€omm. Pure Appl. Math12 (1959),
277-311.

J.A. Little: On singularities of submanifolds of higher dimensional liElgan spaces Ann.
Mat. Pura Appl. (4)83 (1969), 261-335.

E.J.N. Looijenga:Structural stability of smooth families @ -functions Tesis, Univ. Amster-
dam (1974).

D.K.H. Mochida, M.D.C. Romero Fuster and M.A.S. Rud$ie geometry of surfaces #rspace
from a contact viewpointGeom. Dedicat®4 (1995), 323—-332.

J.J. Nufio-Ballesteros: Submanifolds with a non-degenerate parallel normal vedteld in
Euclidean spacesto appear in Adv. Stud. Pure Math.

F. Sanchez-Bringas and A.l. Ramirez-GalarZanes of curvature near umbilical points on
surfaces immersed iR*, Ann. Global Anal. Geom13 (1995), 129-140.

M.C. Romero-Fuster and F. Sanchez-Bringlisnbilicity of surfaces with orthogonal asymptotic
lines inR*, Differential Geom. Appl.16 (2002), 213-224.

T. Klotz: On G. Bol's proof of Carathéodory’s conjectur€€omm. Pure Appl. Mathl12 (1959),
277-311.

C.J. Titus: A proof of a conjecture of Loewner and of the conjecture ofaffa¥odory on umbilic
points Acta Math.131 (1973), 43-77.



894 J.M. QTIERREZ NUREZ, M.C. ROMERO FUSTER AND F. SANCHEZ-BRINGAS

J. Miguel Gutiérrez Nufez

Departamento de Mateméticas y Fisica ITESO
Periférico sur 8585, Tlaquepaque, Jalisco
México

e-mail: mgutierr@iteso.mx

Maria del Carmen Romero Fuster
Departament de Geometria i Topologia
Universitat de Valéncia

46100 Burjassot (Valéncia)

Espanya

e-mail: carmen.romero@post.uv.es

Federico Sanchez-Bringas

Departamento de Matematicas

Facultad de Ciencias

Universidad Nacional Auténoma de México
Ciudad Universitaria, México D.F 04510
México

e-mail: sanchez@servidor.unam.mx



