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Abstract
Consider a Riemannian vector bundle of rank 1 defined by a normal vector field� on a surfaceM in R4. Let II � be the second fundamental form with respect

to � which determines a configuration of lines of curvature. In this article, we
obtain conditions on� to isometrically immerse the surfaceM with II � as a second
fundamental form intoR3. Geometric restrictions onM are determined by these
conditions. As a consequence, we analyze the extension of Loewner’s conjecture, on
the index of umbilic points of surfaces inR3, to special configurations on surfaces
in R4.

1. Introduction

Given a surfaceM immersed inR4, let N M denote its normal bundle and� a
vector field onM. We consider the following question:Under what conditions is it
possible to isometrically immerse M inR3, in such a way that there is a vector bun-
dle isomorphism between the normal sub-bundle E� determined by� in N M and the
normal bundle of the immersed surface M0 in 3-space, taking the second fundamental
form II � to the second fundamental form on M0?

It is classically known that any submanifold ofRn satisfies the Gauss, Codazzi
and Ricci equations. Moreover, the fundamental theorem for submanifolds provides
us with a kind of converse, in the sense that it asserts that such equations are suffi-
cient to determine uniquely the submanifolds ofRn ([2]). Starting from this theorem,
we are able to determine the necessary and sufficient conditions that a normal field�
over a surfaceM immersed inR4 must satisfy in order to get an affirmative answer
to the above question. The interpretation of such conditions in terms of the contacts
of M with the hyperplanes ofR4, analyzed through the behavior of the height func-
tions family on M, leads in a natural way to the determination of certain geometrical
obstructions onM based on the results obtained in [12].
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The article is organized as follows. Section 2 is divided in two parts. We pro-
vide in Subsection 2.1 a short review of some well known concepts and results that
shall be subsequently used. We obtain in Subsection 2.2 fromthe structure equations
of Gauss and Codazzi, two conditions on the second fundamental form that together
are equivalent to the fact that locally the bundle is immersible in R3 (Proposition 2.2).
We include in Section 3 a brief discussion of known results for surfaces in 4-space
from the viewpoint of its contacts with hyperplanes, developed in [12] and explore the
relation between the Gauss condition and the existence of binormal directions on sur-
faces in 4-space (defined in [12]). We introduce in Section 4 the concept ofCodazzi
fields on surfaces. This is done as follows: To each non-locally parallel normal field� on M, we associate a tangent fieldW� , that measures how far� is from being par-
allel. In fact, if we consider a moving frame onM whose normal subframe is given
by f�, �?g, where�? denotes a unit normal field orthogonal to�, we have that critical
points of W� are those at which the connection form!34 vanishes. We say that a non-
locally parallel normal field� is a Codazzi field providedW� belongs to the Kernel of
S�? . This is equivalent to asking that̄rW��? = 0 off the zeroes ofW� (Proposition 4.6).
Then, we prove the fundamental result of this paper:

Theorem 4.8. Let M be a simply connected surface immersed inR4 and let �
be a unitary normal field on M. Then,
i) Assume that M has non flat normal bundle. It admits an isometric immersion in
R3 with prescribed second fundamental formII � if and only if � is a Codazzi field.
ii) In case that M has vanishing normal curvature, it admits an isometric immersion
in R3 with prescribed second fundamental formII � if and only if �? is a binormal field
on M, parallel along Ker S�? .

We use some basic properties of binormal fields and asymptotic directions to de-
duce certain geometric properties that the surface must satisfy in order to admit some
isometric immersion intoR3 with prescribed second fundamental form. For instance,
a necessary condition for the existence of some normal field� on a generic surface M
which admits an isometric immersion inR3 with prescribed second fundamental form
II � is to be locally convex(Proposition 3.2),or in other words, it must admit some
everywhere defined asymptotic field. As a consequence, we have thatminimal sur-
faces inR4 which are not locally developable never admit isometric immersions into
R3 with a prescribed second fundamental form, for any of their normal fields(Proposi-
tion 3.3). Moreover,any surface ofR4 may admit at most2 isometric immersions with
prescribed second fundamental form inR3, modulo isometries ofR3 (Proposition 3.1).

Clearly, such isometric immersions must take the�-principal configuration of the
surface M into the (unique) principal configuration of its imageM 0 in 3-space. We
use this fact in Section 5 in order to discuss a possible generalization of Loewner’s
conjecture on the index of an umbilic of surfaces in 3-space to surfaces in 4-space.
Section 6 is devoted to the particular case of flat surfaces.
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Some results in this article form a part the doctoral thesis of the first author [6].

2. Vector bundles and structure equations

2.1. Vector bundles of rank one defined by normal sections onM. Let M
be a smooth oriented surface immersed inR4 with the Riemannian metric induced by
the standard Riemannian metric ofR4. For eachp 2 M consider the decomposition
TpR4 = TpM � (TpM)?, where (TpM)? is the orthogonal complement ofTpM in R4.
Let �(M) and �(M)? be the space of smooth vector fields onM and the space of
smooth vector fields normal toM, respectively.

Let r̄ be the Riemannian connection ofR4. Given vector fieldsX, Y in �(M), let
X̄, Ȳ be some local extensions toR4. The Riemannian connection onM is well defined
by the tangent component of the Riemannian connection ofR4 : rXY = (r̄X̄Ȳ)>. On
the other hand, given a normal vector field� 2 �?(M) let r?

X � = (r̄X̄ �̄ )? be the normal
component ofr̄X̄ �̄ , this way we have a compatible connection inT M?.

Considerthe second fundamental form,

� : �(M)� �(M) ! (�(M))?, �(X, Y) = r̄X̄Ȳ �rXY.

If p 2 M and � 2 (TpM)?, � 6= 0, define the function

l� : TpM � TpM ! R, l�(X, Y) = h�(X, Y), �i.
The �-second fundamental formof M at p is the associated quadratic form,

II � : TpM ! R, II�(X) = l�(X, X).

Recall the shape operator

S� : TpM ! TpM, S�(X) = �(r̄X̄ �̄)>,

where �̄ is a local extension toR4 of the normal vector field� at p and > means
the tangent component. This operator is bilinear, self-adjoint and for anyX, Y 2 TpM
satisfies the following equation:hS�(X), Yi = l�(X, Y) [2]. Thus, for eachp 2 M there
exist an orthonormal basis of eigenvectors ofS� in TpM, for which the restriction of
II � to the unitary vectors takes its maximal and minimal values.These eigenvalues
are the�-principal curvatures. The point p is a �-umbilic if the �-principal curvatures
coincide. LetU� be the set of�-umbilics in M. For any p 2 M n U� there are two�-principal directions defined by the eigenvectors ofS� , these fields of directions are
smooth and integrable, then they define two families of orthogonal curves, its integrals,
which are called the�-principal lines of curvature, one maximal and the other one
minimal. The�-umbilics are the singularities of these families of curves.

Using the normal field�, we will define a vector bundle of rank 1 onM with first
and second fundamental forms as above, determining the family of �-principal lines of
curvature.
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Assume thatf�, �?g is an orthonormal basis of the normal vector bundle (T M)?.
Consider the vector bundle of rank one� : �̃! M, where ˜� is the normal vector bun-
dle on M whose fiber atp 2 M is the normal line in the direction�(p) and � is the
natural projection. Endow this vector bundle with the connection r̃, compatible with
the metric, defined as theprojection on �̃ of the normal connectionr? restricted to�̃, namely:

(1) r̃X� = hr?
X�, �i�,

for � 2 �̃ and X 2 T M.
Consider theWhitney sumof vector bundles: E� = T M �W �̃, where the metric

on E� is the orthogonal sum of the metrics onT M and �̃. This Riemannian vector
bundle E� has a connectionr 0, compatible with its metric, defined by:

r 0
XY = rXY + �̃(X, Y), X, Y 2 T M,

r 0
X� = �S� X + r̃X� ; X 2 T M, � 2 �̃,

where �̃(X, Y) = l�(X, Y)� is the projection of

�(X, Y) = l�(X, Y)� + l�?(X, Y)�?, � 2 �̃,

on the line determined by�.

2.2. �-Gauss and�-Codazzi equations forM. From the structure equations of
the bundleE� let us write down Gauss equation:

hR(X, Y)Z, Wi � hR�(X, Y)Z, Wi
= h�̃(X, W), �̃(Y, Z)i � h�̃(X, Z), �̃(Y, W)i,

where R is the curvature tensor with respect to the connectionr of M and R� is the
curvature tensor of the bundleE� defined byr 0.

Observe now that the tangent projection ofR� along the tangent component van-
ishes, namelyhR�(X, Y)Z, Wi = 0, if and only if

(2) hR(X, Y)Z, Wi = l�(X, W)l�(Y, Z)� l�(X, Z)l�(Y, W),

where X, Y, Z, W 2 T M. Equation (2) is the Gauss equation to be satisfied by the
curvature ofM to immerse locally isometrically (or globally if it is simply connected)
M into R3. Let us call it �-Gaussequation.

Consider now the Codazzi equation for the bundleE� ,
(R�(X, Y)Z)? = (r̃X�̃)(Y, Z)� (r̃Y�̃)(X, Z),
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where (̃rX�̃)(Y, Z) = r̃X�̃(Y, Z)� �̃(rXY, Z)� �̃(Y,rX Z) andr is the connection of
M. Analogously, the normal projection ofR� along the tangent component vanishes,
namely (R�(X, Y)Z)? = 0, if and only if

(r̃X�̃)(Y, Z) = (r̃Y�̃)(X, Z).(3)

This is the Codazzi equation that the Riemannian connectionon M has to satisfy in or-
der to ensure thatM can be locally isometrically (or globally if it is simply connected)
immersed inR3 with prescribed second fundamental form II� . We call it �-Codazzi
equation. Considering thatr?

X � is orthogonal to� and the following equation holdsr?
X l�(Y, Z)� = X(l�(Y, Z))� + l�(Y, Z)rX?�, we obtain that the�-Codazzi equation

can be written as follows:

(4)
X(l�(Y, Z))� Y(l�(X, Z))

= l�([X, Y], Z) + l�(Y, rX Z)� l�(X, rY Z).

The fundamental theorem for Riemannian submanifolds [2], applied to the vector
bundle E� ! M, guarantees that ifM is simply connected and equations (2) and (4)
hold, there exists a unique (modulo isometries ofR3) isometric immersionf : M !
R3, and a vector bundle isomorphism̃f : E� ! T M? along f which transforms the�-second fundamental form II� into the second fundamental form of the immersion.

Observe that sinceM � R4, it satisfies Gauss and Codazzi structure equations for
surfaces immersed inR4. These can be written respectively as

hR(X, Y)Z, Wi = h�(X, W), �(Y, Z)i � h�(X, Z), �(Y, W)i,(5)

(r?
X�)(Y, Z) = (r?

Y �)(X, Z),(6)

where � and r are respectively the second fundamental form and the connection of
the immersion, and

(r?
X�)(Y, Z) = r?

X�(Y, Z)� �(rXY, Z)� �(Y, rX Z).

We exploit this fact in order to determine conditions onM and on the normal field� guaranteeing that the�-Gauss and�-Codazzi equations hold.
The following straightforward lemma will allow us to express the �-Gauss and�-Codazzi equations in a convenient way, stated in Proposition 2.2, that shall be useful

in the sequel.

Lemma 2.1. The following conditions are equivalent,
a) l�?(X, Z)hr?

Y �?, �i + l�?(Y, Z)hr?
X �, �?i = 0, for all X , Y, Z 2 T M.

b) S�?(hr?
Y �?, �iX + hr?

X �, �?iY) = 0, for all X , Y 2 T M.
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Proposition 2.2. Let M be an oriented surface immersed inR4. Let� be an smooth
unitary vector field normal to M. Consider the vector bundle defined by� : E� ! M,
with Riemannian connectionr 0. Then, �-Gauss and�-Codazzi conditions of�: E� ! M
are equivalent respectively to the following two conditions at every point p2 M:

l�?(X, W)l�?(Y, Z)� l�?(X, Z)l�?(Y, W) = 0,(7)

hr?
Y �?, �iX + hr?

X �, �?iY 2 Ker S�? ,(8)

where X, Y, Z, W are vector fields tangent to M in a neighborhood of p, and Ker S�?
is the kernel of S�? .

Proof. SinceM is immersed inR4, Gauss equation holds for this immersion:

hR(X, Y)Z, Wi = h�(X, W), �(Y, Z)i � h�(X, Z), �(Y, W)i
= l�(X, W)l�(Y, Z) + l�?(X, W)l�?(Y, Z)

� l�(X, Z)l�(Y, W)� l�?(X, Z)l�?(Y, W).

Therefore,�-Gauss equation (2) holds, if and only if equation (7) does it.
On the other hand, consider Codazzi equation inR4, (6).

(r?
X�)(Y, Z) = (r?

Y �)(X, Z),

by substituting the values of the image of� in the normal basis and taking the com-
ponent in the direction of�, this equation implies the following expression,

hr?
X (l�(Y, Z)� + l�?(Y, Z)�?), �i � l�(rXY, Z)� l�(Y, rX Z)

= hr?
Y (l�(X, Z)� + l�?(X, Z)�?), �i � l�(rY X, Z)� l�(X, rY Z).

Thus, by observing thatr?
X � is orthogonal to�,

r?
X (l�(Y, Z)�) = X(l�(Y, Z))� + l�(Y, Z)r?

X �,

and because the normal connection is compatible with the metric, we obtain

l�?(X, Z)hr?
Y �?, �i + l�?(Y, Z)hr?

X �, �?i
= l�?(X, Z)hr?

Y �?, �i � l�?(Y, Z)h�, r?
X �?i.

So, according to Lemma 2.1, condition b) is equivalent to both members of this equa-
tion vanish. Therefore, by substituting it in the previous equation we conclude that it
is equivalent to equation (4).
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3. Gauss condition and binormal fields for surfaces inR4

Suppose thatM is a surface embedded by� into R4. Consider a local isothermic
coordinate chart with parameters (u, v) and an orthonormal frame,fX1 = �=�u, X2 =�=�v, X3 = �, X4 = �?g on M. Take the dual 1-formsfw1, w2, w3, w4g, given bywi = hd�, Xi i. Let fwi j g4i , j =1 be the corresponding connection forms. These forms have
the following expression in terms of the dual 1-forms [10, p.263]:

(9)

w13 = eX3w1 + fX3w2,

w23 = fX3w1 + gX3w2,

w14 = eX4w1 + fX4w2,

w24 = fX4w1 + gX4w2.

The Gaussian curvature, K , is the curvature corresponding to the tangent bundle of
M and may be found from the formula:dw12 = �Kw1 ^ w2. Whereas thenormal
curvature, K?, of M is obtained from the following expression relative to the curva-
ture form of the normal bundle ofM: dw34 = �K?w1 ^ w2. The function K? is a
multiple of the area element onM.

The image of the affine map

� : S1 � TpM ! NpM, �(�) = �p(� , �),

defines an ellipse possibly degenerate, referred to as thecurvature ellipseat p [10]. A
direct computation shows that

�(�) = H + B cos(2�) + C sin(2�),

where in these coordinatesH = (1=2)(eX3 +gX3)X3 +(1=2)(eX4 +gX4)X4, B = (1=2)(eX3�
gX3)X3 + (1=2)(eX4 � gX4)X4 and C = fX3 X3 + fX4 X4.

We say that a pointp 2 M is a semiumbilicif and only if the curvature ellipse
degenerate into a segment which is equivalent to conditionK?(p) = 0. Moreover, if
this segment is radial the point is called aninflection point. These points are important
from viewpoint of the extrinsic geometry because the rank ofthe second fundamental
form decreases at them.

A surface M immersed inR4 is said to besemiumbilicalprovided all its points
are semiumbilic. This is equivalent to say thatM has vanishing normal curvature and
hence that admits a parallel normal field.

There is an invariant function1 on M defined as follows: Writee = uX1 + vX2

and considerhde, X3i ^ hde, X4i. Now de= u d X1 + duX1 + v d X2 + dvX2. Therefore,hde, X3i = uw13 + vw23 and hde, X4i = uw14 + vw24. And taking into account that
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w13, w23, w14 andw24 can be put in terms of the basisfw1, w2g of the dual ofTpM,
we obtain

hde, X3i ^ hde, X4i = Æ(u, v)w1 ^ w2,

whereÆ(u, v) is a quadratic form. The function1 is defined as the determinant of the
matrix associated toÆ(u, v). One may check that if a pointp is not a semiumbilic then
the origin of NpM is inside, on, or outside the ellipse according to1 is respectively,
positive, zero, or negative. Accordingly,p is said to beelliptic, parabolic or hyper-
bolic.

Given any vector� 2 R4, the height function onM associated to� is defined by
h� (p) = h�(p), �i. It is easy to see thath� has a singularity at the pointp if and only
if � is normal to M at p. In the case thatp is a degenerate singularity (non Morse)
of h� , we shall say that� defines abinormal directionfor M at p. It was shown in
[12] that according to1(p) < 0, = 0 or> 0, we may find exactly two, one or none
binormal directions respectively.

Given a normal field� on M, the Hessian matrix of the height functionh� at each
point is given by �

e� f�
f� g�

�
,

wheree� = �h�uu, �i, f� = �h�uv, �i, g� = �h�vv, �i. Since this matrix coincides with
that of the shape operatorS� , it follows that a binormal field is characterized by the
fact that its associated shape operator has rank lesser thantwo. Therefore, ifb is a
binormal field onM at least one of the principal directions ofb has vanishing prin-
cipal curvature. This direction is said to beasymptotic. The umbilical points of the
principal configurations associated to the binormal fields are the inflection points. In
other words, these points are singularities of the asymptotic foliations on the surface
([12]). Suppose that1(p) < 0, so there are exactly two asymptotic directions and two
binormal directions at the pointp. Then if �i , i = 1, 2 denote the two asymptotic di-
rections atp and� is the angle determined by the two binormals inNpM, it can be
shown (see [10], p.268) that the two following formulae hold

tan2(�1 � �2) =
1(p)

K?2 ,

tan2 � =
1(p)

K 2
.

Hence it follows that
a) K?(p) = 0 if and only if the two asymptotic directions atp are orthogonal.
b) K (p) = 0 if and only if the two binormal directions atp are orthogonal.

Semiumbilical surfaces are thus characterized by having orthogonal asymptotic fields.
A particular case of semiumbilical surfaces is given by the locally developable surfaces.
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These were characterized by Little [10] as those for which the functions1 and K?
vanish everywhere. Moreover, if the Gaussian curvature alsovanishes everywhere, we
have that the surface is developable. The fact that1 is identically zero implies that
there is a unique binormal at every point of these surfaces.

Proposition 3.1. �-Gauss condition is equivalent to asking that�? be a binormal
field on M. Therefore, a surface inR4 may admit at most two isometric immersions
with prescribed second fundamental form, modulo isometries ofR3.

Proof. Suppose thatU � M is an open neighborhood with local coordinates (u, v).
The coefficients of the�?-second fundamental form are

e�? = II�?(�u) = �h�(�u, �u), �?i,
f�? = �h�(�u, �v), �?i = �h�(�v, �u), �?i,
g�? = II�?(�v) = �h�(�v, �v), �?i,

where �u = �=�u and �v = �=�v. In this coordinate chart, equation (7) of Proposi-
tion 2.2 has the expression:e�?g�? � f 2�? = 0, and the left side of this equation is
the determinant of the Hessian matrix of the height functionh�? . Since the�-Gauss
condition is equivalent to this equation, we obtain the firstresult. The second asser-
tion follows from the fact that there are at most two binormals over any surface im-
mersed inR4.

In general, a surface immersed inR4 does not need to have globally defined binor-
mal fields. A surfaceM immersed inR4 is said to belocally convexprovided it admits
a local support hyperplane at each one of its points. Surfaces contained in the bound-
ary of their convex hull, in particular those contained in a convex hypersurface such
as the standard hypersphereS3, give us examples of locally convex surfaces inR4.
Also, semiumbilical surfaces can be seen to be locally convex. It was shown in [12]
that the function1 never assumes positive values on locally convex surfaces, therefore
such surfaces always have globally defined binormal vector fields. Moreover, ifM is
generically immersed in the sense of Looijenga’s Theorem ([11]) (that is, the family�( f ): M � S3 ! R3 of height functions onM is topologically stable), we have that a
necessary and sufficient condition for the local convexity of M is the global existence
of two binormal fields on it (that coincide over isolated inflection points). In other
words, 1 < 0 holds all overM except perhaps at isolated inflection points at which1 = 0, ([12], Corollary 4.3). On the other hand, it also followsthat in non-generic
cases, the hypothesis that1 � 0 is enough to guarantee the existence of at least one bi-
normal vector locally defined at every point. In the particular case of surfaces at which1 vanishes identically, we have a unique binormal field. It wasshown by Little [10]
that this class contains the local developable surfaces andthe surfaces with substantial
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codimension one, i.e. those contained in a hyperplane. In the last case, the binormal
field is constant and coincides with the orthogonal direction to this hyperplane.

In view of these considerations we apply Proposition 3.1 to state:

Proposition 3.2. a) A necessary condition for the existence of some normal field� on a generic surface M such that E� admits an isometric immersion intoR3 is that
M be locally convex.
b) Locally developable surfaces may admit at most one isometric immersion with pre-
scribed second fundamental formII � in R3, modulo isometries ofR3.

Minimal surfaces are characterized by the fact that the mean curvature vector van-
ishes at every point. This implies that non semiumbilic points of minimal surfaces must
be all elliptic (the origin of the normal plane is inside the ellipse). On the other hand,
all the semiumbilic points of such surfaces are necessarilyinflection points. From the
local viewpoint, we may thus have the two following situations over a minimal surface
in 4-space:
a) The subset of inflection points has zero measure, in which case there cannot be
binormal fields defined over open subsets.
b) All the points are inflection points. In this case, it was shown by Little [10] that
the surface is either a local developable surface, or it liesin some hyperplane. Clearly,
it admits a binormal field in both cases.

We observe that condition b) is too strong even for a minimal surface, so it looks
sensible to expect that “most minimal surfaces” fulfill the first one, so they do not
admit isometric immersions intoR3 with a prescribed second fundamental, for any of
their normal fields.

We can thus state the following:

Proposition 3.3. If M is a substantially immersed minimal surface inR4 that
admits some isometric immersions intoR3 with a prescribed second fundamental form
in the above sense, then M is locally developable and has vanishing normal curvature.

4. Codazzi fields on surfaces

We start from the�-Codazzi condition in the form of equation (8). Given a pair
of tangent vector fieldsX, Y on M, we define a vector field

W�(X, Y) = hr?
Y �?, �iX + hr?

X �, �?iY.

Thus, �-Codazzi condition holds inM if and only if W�(X, Y) belongs to the kernel
of S�? , for any X, Y 2 �(M).
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Lemma 4.1. a) For any pair of tangent vector fields X, Y, in M the following
equation holds:

W�(X, Y) = �W�(Y, X).

b) If there exist a pair of tangent vector fields X, Y, linear independent at p for
which the vector W�(X, Y)p 6= 0. Then, for any local tangent framefX1, X2g at p,
W�(X1, X2)p 6= 0. Furthermore, W�(X, Y) and W�(X1, X2) are linearly dependent.

The proof is straightforward.
Notice that statement b) in this lemma implies that, in orderto guarantee�-Codazzi

condition, it is enough to ensure the existence of a couple oflinear independent vector
fields X, Y, for which W�(X, Y) belongs to the kernel ofS�? . So we can state the
following:

Lemma 4.2. �-Codazzi condition holds in M, if and only if, for any p2 M there
exists a couple of locally defined, linearly independent, tangent vector fields X,Y, such
that W�(X, Y) belongs to the kernel of S�? .

Lemma 4.3. If W�(X, Y) 6= 0 for some tangent fields X, Y, or in other words, �
is not a parallel field, then �-Codazzi condition implies�-Gauss condition.

Proof. Let us consider a local isothermic coordinate chart at each pointp 2 M
with tangent framefX1, X2g. Then, Lemma 4.1, b) and Lemma 4.2 imply that the
vector fieldW�(X1, X2) does not vanish and belongs to the kernel ofS�? . Thus, DetS�?
vanishes. The determinant ofS�? , in this coordinate chart has the expression:

Det S�? =
1

E
(e�?g�? � f 2�?),

where E is the non-vanishing coefficient of the first fundamental form. Therefore
e�?g�? � f 2�? = 0, which according to Proposition 3.1 is equivalent to�-Gauss con-
dition.

REMARK 4.4. a) Notice that in this case we obtain directly from the proof that
W�(X, Y) is a tangent field pointing in the asymptotic direction associated to the bi-
normal �?. In fact, there are two different unit vector fields tangent to the asymptotic
direction. Let us denote

W� = W�(X1, X2)=jW�(X1, X2)j,
where fX1, X2g is the basis frame on this local chart.
b) If �, and hence�?, is parallel in an open neighborhoodU of p, thenW� vanishes
and the�-Codazzi condition holds trivially inU .
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Lemma 4.5. Suppose that� is a non-locally parallel normal vector field on M.
Then, the zeroes of W� lie in a measure zero set Z. Moreover, if �? is a binormal
field, the �-Codazzi condition is equivalent tor?

W�� = 0 in the complement of Z, where
W� is the vector field defined inRemark 4.4 a).

Proof. Since� is a non-parallel field over any open subset ofM, then W�(X, Y)
provides, according to Remark 4.4 a), a tangent fieldW� which is well defined (locally)
over some open and dense subset ofM and may vanish over some zero measure subset
Z. It follows from Lemma 4.3 that the�-Gauss condition also holds inM � Z, and
hence all overM. But then, as observed in Remark 4.4 a), we have thatW� determines
the asymptotic directions field associated to the binormal�?, and thusW� 2 KerS� . So,
the Codazzi condition given in equation (8) is equivalent toasking thathr?

W��, �?i = 0

which, being� a unitary vector field, is equivalent to the requirementr?
W�� = 0. Con-

versely, if the�-Codazzi condition holds, we have thatW�(X, Y) 2 Ker S� , 8X, Y 2�(M). So, eitherW�(X, Y) = 0, 8X, Y 2 �(M) in which case, we have thatr?
X � = 0,8X 2 �(M) and thus� is a parallel field, orW� only may vanish over a zero measure

subset ofM and the conditionr?
W�� = 0 holds all overM.

A non-locally parallel unitary normal field� on a surfaceM immersed in R4 is
said to be aCodazzi fieldprovided W� belongs to KerS�? .

Lemma 4.1 implies that this definition does not depend on the coordinate chart,
and only depends on the field�.

Proposition 4.6. Suppose that� is a non-locally parallel normal field on M and
denote by Z the set of zeroes of W� . Then, in the open and dense subset̄M = M�Z �
M, � is a Codazzi field if and only if̄rW��? = 0.

Proof. Assume that� is a Codazzi field atp 2 M̄. Then, the non-zero vector
field W� is well defined in a local neighborhoodU of p where�? is a binormal. Thus
S�?(W�) = 0. Moreover, since�-Codazzi condition holds, Lemma 4.5 implies that

0 = S�?(W�) +r?
W�� = r̄W��?.

Conversely, ifr̄W��? = 0 at p 2 M̄ , then the equation above implies thatr?
W�� = 0,

and Lemma 4.5 guarantee that�-Codazzi condition holds. This implies according to
Lemma 4.2 that� is a Codazzi field.

Assume now that the coordinate chart where this local analysis has been made is
also isothermic, with normal framef�, �?g as in Section 3. The connection form!34

is given by r̄X� = !34(X)X4. It is not difficult to check thatW� � 0 if and only if!34 � 0.
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REMARK 4.7. We observe that ifM is �-umbilic, !34 vanishes identically onM
if and only if M is contained either in a hypersphere or in a hyperplane [15].

Theorem 4.8. Let M be a simply connected surface immersed inR4 and let �
be a unitary normal field on M. Then,
i) Assume that M has non flat normal bundle. It admits an isometric immersion in
R3 with prescribed second fundamental formII � if and only if � is a Codazzi field.
ii) In case that M has vanishing normal curvature, it admits an isometric immersion
in R3 with prescribed second fundamental formII � if and only if �? is a binormal field
on M, parallel along Ker S�? .

Proof. Consider the frame associated to the normal field� as in Section 3. In
case i) assume that� is a Codazzi field. The field� is not a parallel field in a neigh-
borhoodV of any point p, and thus the subset of zeroes of!34 has zero measure in
V . If !34(p) 6= 0, thenW�(X, Y) 6= 0 for any couple of local independent vector fields
at p and Lemma 4.3 implies that�-Gauss condition holds atp. On the other hand,
since� is not locally parallel this is true for a dense set ofM and then the continuity
of the local expression of the�-Gauss condition in equation (8) guarantees that it holds
all over M. Therefore,�-Gauss and�-Codazzi conditions hold at every point ofM.

In case ii) if �? is parallel along KerS�? then � is also parallel. This implies that�-Codazzi condition holds inM. So, it is enough to ask that�? is a binormal in order
to satisfy�-Gauss condition.

Once we have seen, both in cases i) and ii) that the�-Gauss and�-Codazzi condi-
tions hold at each point ofM, since M is simply connected, the fundamental theorem
for Riemannian submanifolds [2] implies that there exists an isometric immersion ofM
into R3 with prescribed second fundamental form II� . Conversely, if there exists such
an isometric immersion ofM into R3, the fundamental theorem implies that�-Gauss
and �-Codazzi conditions hold at each point ofM. Thus, an analysis similar to that
one used in the first part of the proof shows that one of the two statements i) or ii)
must hold.

REMARK 4.9. a) Observe that the fundamental theorem for Riemanniansub-
manifolds guarantees that the isometric immersions determined in Theorem 4.8 are
unique, modulo isometries ofR3.
b) Observe that the second fundamental form of the isometricimmersion of M into
R3 is the prescribed second fundamental form II� . Then the�-principal configurations
of M in R4 are also preserved under this reduction of codimension.

The behavior of the�-principal foliations was analyzed in [14] and [5]. In fact,
the topological types of the classes of�-principal foliations of surfaces inR4 are richer
than those of the principal foliations of surfaces inR3 [7]. A consequence of this fact
is pointed out in the next section. We highlight that Theorem4.8 provides a character-
ization of the class of local�-principal configurations that can be realized as curvature
lines of surfaces inR3.
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5. Codazzi fields and Loewner’s conjecture on surfaces

To each isolated umbilic of a surface inR3 we can attach the index of either one
of the two fields. This index has to be of the formn=2, with n 2 Z. Examples of
umbilics of index j are known for all j � 1. The classical (local) Loewner’s conjec-
ture states that every umbilic of a smooth surface immersed in R3 must have an index
less than or equal to one. This conjecture has been asserted to be true for analytic sur-
faces by several authors among whom are H. Hamburger [8], G. Bol [1], T. Klotz [9],
C.J. Titus [17]. On the other hand, it was proven in [7] that, given n 2 Z, there exists
an analytic surfaceM immersed inR4 and an analytic unitary vector field� normal
to M having an isolated�-umbilic of index n=2. This means that Loewner’s statement
cannot be generalized to aleatory principal configurationson surfaces inR4. The ques-
tion is: Is Loewner’s statement true for some special class of principal configurations?
It follows from the analysis made in [4] that the result holdsfor binormal fields on
locally convex surfaces generically immersed in 4-space. More recently, J.J. Nuño [13]
has shown that Loewner’s statement for surfaces in 3-space is equivalent to Loewner’s
statement for binormal fields on totally semiumbilic surfaces (with isolated umbilics).

If in the theorem above the immersed surfaceM and the normal field� are real
analytic, then the isometric immersion ofM into R3 with prescribed second funda-
mental form is also real analytic. In fact, the real analyticbundle E� for which the�-Gauss and�-Codazzi conditions hold, is endowed with a real analytic parallel trans-
port from which the immersion ofM into R3 is obtained. Taking into account the
results obtained for analytic surfaces in 3-space relativeto Loewner’s conjecture, we
have the following

Corollary 5.1. Suppose that M is a real analytic surface immersed inR4. If � is
either a real analytic Codazzi field, or a real analytic field such that�? is a binormal
field parallel alongKer S�? on M, then every isolated�-umbilic has index lesser or
equal to one.

6. Flat surfaces

We consider now the special case of flat surfaces:

Corollary 6.1. a) A connected surface M immersed inR4 with zero Gaussian
curvature has at most one Codazzi field.
b) If a connected surface M immersed inR4 with zero Gaussian curvature admits
two different isometric immersions with prescribed secondfundamental forms inR3,
modulo isometries ofR3, then its normal curvature also vanishes.
c) Developable surfaces inR4 admit at most one isometric immersion with prescribed
second fundamental form inR3, modulo isometries ofR3.
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Proof. a) Suppose thatM is a surface with zero Gaussian curvature inR4 and
that �1 and�2 are different Codazzi fields onM. Then Lemma 4.3 and Proposition 3.1
guarantee that both,�?1 and �?2 , are binormal fields forM. We observe that the func-
tion 1 only may vanish over the subsetZ of points at which�?1 and�?2 coincide. But
the hypothesis thatK is identically zero onM implies that�1 = �?2 at every point of
M� Z. Therefore, sinceM is connected, we have that either,Z = M or Z = ;. In the
first case the proof is done and in the second one, since both�1 and �2 are Codazzi
fields we have thatr?

W�1�1 = r?
W�2�2 = 0. Moreover, sinceh�1, �2i = 0, we also have,

r?
W�1�2 = r?

W�2�1 = 0. Now Remark 4.4 tells us thatW�1 and W�2 determine the two

asymptotic directions onM. Then, since1 < 0 it follows from comments made in
Section 3 thatW�1 and W�2 are linearly independent. And hence�1 and �2 are parallel
fields, which contradicts the hypothesis that they are Codazzi fields.

b) If M has zero Gaussian curvature and admits two isometric immersions in R3

with prescribed second fundamental forms II�1 and II�2, then it follows from the argu-
ments in the proof of part a) that sinceM can only have a Codazzi field, say�1, the
other one�2 must be a parallel normal field. ThereforeM has zero normal curvature.

c) This follows from the fact, pointed out in Section 3, that there is a unique
binormal field over a developable surface.

In order to illustrate some of the above conclusions we provide an example of a
surface, contained in the standard 3-sphere and thus locally convex, for which there
are exactly two normal directions defining local isometric immersions with prescribed
second fundamental form intoR3.

EXAMPLE (the Clifford torus). Consider the coordinate chart:

U = f(u, v) 2 R2, 0< u < 2� , 0< v < 2�g,
� : U ! R4, �(u, v) =

1p
2

(cosu, sinu, cosv, sinv).

Take the orthonormal frame,

X1 =
p

2(� sinu, cosu, 0, 0), X2 =
p

2(0, 0,� sinv, cosv),

X3 =
1p
2

(cosu, sinu, cosv, sinv),

X4 =
1p
2

(� cosu, � sinu, cosv, sinv).

Consider an arbitrary unitary normal vector field� = aX3 + bX4, wherea, b: U ! R
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are smooth functions such thata2 + b2 = 1. An straightforward computation gives the
coefficients of the�-second fundamental form as follows:

e� = �1

2
a +

1

2
b, f� = 0, g� = �1

2
a� 1

2
b.

The determinant of the shape operator with respect to�? is DetS�? = (b2 � a2)=4,
hence the�-Gauss condition holds for� = � if and only if a = �b. Namely, we must
take a2 = b2 = 1=2. This determines the two normal directions�1 = (X3 + X4)=p2 and�2 = (X3 � X4)=p2. A direct computation shows that any one of these two normal
fields is a Codazzi field on�(U ). Therefore, these two vector fields (modulo a sign)
define the unique vector bundles immersible intoR3. Notice that since the determinant
of their shape operators vanishes, these vector fields are binormals. The corresponding
asymptotic lines are the�i -curvature lines, solutions of the equation:

1p
2

du dv = 0.

We point out that the Gaussian curvature of the Clifford torus vanishes everywhere.
Thus, as expected after Lemma 3.1, these two binormal fields are everywhere orthog-
onal. Furthermore,�(U ) is contained inS3 and hence semiumbilical, so its asymp-
totic directionsfW�1, W�2g are everywhere orthogonal, [15]. Naturally, none of the two
above considered isometric immersions can be globally extended to the whole torus.

We finally observe that the problem studied in this paper is related to the factoriza-
tion of an isometric immersionf of a surfaceM into R4 as a composition of isometric
immersionsh and F respectively ofM into R3 and of R3 into R4. The obtained re-
sults imply that in order to admit such a factorization, an isometric immersion of a
generic surface intoR4 must be locally convex. Do Carmo and Dajczer consider in
[3] locally flat immersions of the plane intoR4 whose first normal space has constant
rank 2. They provide a method to obtain all the immersions that do not factorize and
characterize those that are compositions. As a consequenceof our results we can say
that an isometric immersion of the plane intoR4 may admit at most one factorization,
unless it has vanishing normal curvature, in which case it may admit two (as illus-
trated by any open disc in the Clifford torus). Moreover, if the first normal space has
(constant) rank one, then the factorization is unique.
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