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Maximum Stress Minimization
Via Data-Driven Multifidelity
Topology Design
The maximum stress minimization problem is among the most important topics for struc-
tural design. The conventional gradient-based topology optimization methods require
transforming the original problem into a pseudo-problem by relaxation techniques. Since
their formulation methods and the parameter settings significantly influence optimization,
a method is required to accurately solve the original maximum stress minimization
problem without using relaxation techniques. This paper focuses on this challenge and com-
pares solutions obtained by gradient-based topology optimization with those obtained by
solving the original maximum stress minimization problem without relaxation techniques.
We employ data-driven multifidelity topology design (MFTD), a gradient-free topology
optimization based on evolutionary algorithms. The basic framework involves generating
candidate solutions by solving a low-fidelity optimization problem, evaluating these solu-
tions through high-fidelity forward analysis, and iteratively updating them using a deep
generative model without sensitivity analysis. In this study, data-driven MFTD incorporates
the optimized designs obtained by solving a gradient-based topology optimization problem
with the p-norm stress measure in the initial solutions and solves the original maximum
stress minimization problem based on a high-fidelity analysis with a body-fitted mesh. We
demonstrate the effectiveness of our proposed approach through the benchmark of
L-bracket. As a result of solving the original maximum stress minimization problem with
data-driven MFTD, a volume reduction of up to 22.6% was achieved under the same
maximum stress value, compared to the initial solution. [DOI: 10.1115/1.4067750]

Keywords: maximum stress minimization, data-driven design, design optimization,
multiobjective optimization, topology optimization

1 Introduction
Topology optimization, which aims to derive the best structure

by optimizing material distribution within the design domain to
maximize performance, is increasingly adopted in various industrial
applications [1,2]. While mean compliance minimization is pre-
dominant, stress-based topology optimization is actively researched
for engineering applications [3,4].
Several methods have been proposed to effectively solve the

maximum stress minimization problem. However, conventional
methods still face numerical and practical challenges. As for the
numerical challenge, several relaxation techniques are needed to
effectively solve the maximum stress minimization and constraint
problems using gradient-based methods. This is because stress-
based topology optimization typically faces three challenges: singu-
larity, strong nonlinearity, and stress localization [5]. Singularity
problems arise in density-based topology optimization, which
prevent nonlinear programming algorithms from searching for the
optimal solution and cause convergence to the local optima

[6–10]. To avoid this phenomenon, several techniques have been
proposed to relax the stress values, such as ε-relaxation methods
[11] and qp-relaxation methods [12,13]. Next, the maximum stress
minimization problem is highly nonlinear and has many locally
optimal solutions due to the multimodality of the solution space,
making it difficult to search globally using the gradient-based
methods. Furthermore, there are challenges related to the local
nature of stress evaluation points. The computational burden
increases with stress evaluation points in each element, which
must be reduced by stress aggregation functions such as the
p-norm and the Kreisselmeier–Steinhauser functions [14,15]. There-
fore, to solve the maximum stress minimization problem using
gradient-based methods, it is necessary to transform the original
problem into a pseudo-problem using various relaxation techniques.
These relaxation techniques cannot accurately capture the stress
behavior, and the optimization results are highly sensitive to their
parameters. Next, from a practical perspective, the intermediate
state of the design variable, i.e., grayscale is a significant concern.
Gradient-based methods require that all design variables must be
relaxed with continuous variables through relaxation techniques.
Since grayscale is an intermediate material between solid and
void, it is difficult to interpret in engineering terms and the boundar-
ies of the optimized results are ambiguous. It must generally be
removed in the design process. In addition, density-based topology
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optimization typically uses a structured mesh to compute the objec-
tive function. It results in staircase-like boundaries in the optimized
structure [16,17], which can lead to stress concentrations at these
edges. As a result, after optimization, the designer must perform
post-processing steps such as binarization and smoothing, and
re-analysis using a body-fitted mesh. These steps can significantly
degrade performance and cause issues such as stress concen-
trations, often requiring considerable time investment to achieve
manufacturable designs with desirable performance. It is necessary
to achieve optimization based on stress analysis using 0/1 design var-
iables and a body-fitted mesh.
To radically overcome the above challenges, gradient-free optimi-

zation is a promising option to deal with the 0/1 design variable field.
Topology optimization methods using evolutionary algorithms
(EAs) such as genetic algorithms [18] are the representative gradient-
free method [19] and have been proposed in several research
[20–24]. They can perform global search even in strongly nonlinear
problems. However, EA-based topology optimization generally
increases the computational burden with an increase in design vari-
ables, namely, the curse of dimensionality, and requires a large
number of function calls of the forward analysis. In general, only a
few hundred design variables can be handled, which is very small
compared to typical cases in gradient-based topology optimization.
As a new approach to achieve gradient-free optimization without

compromising the design freedom of topology optimization, Yaji
et al. [25] proposed a gradient-free topology optimization frame-
work called data-driven multifidelity topology design (MFTD).
The framework combines multifidelity design guided by topology
optimization [26] with data-driven topology design [27], where
the solutions are updated based on EAs. The fundamental concept
is that candidate designs are generated by solving low-fidelity topol-
ogy optimization problems, their objective functions are evaluated
by high-fidelity forward analysis, and iteratively updated without
gradient information until the desired solutions are obtained. The
design updates are achieved by a deep generative model that corre-
sponds to crossover in EAs. Data-driven MFTD has been shown to
be applicable to topology optimization problems that are difficult
to solve directly with conventional gradient-based methods, such
as minimax [28,29] and turbulent flow problems [25]. The
maximum stress minimization problem has been addressed by
Yamasaki et al. [27]. However, there have not been sufficient dis-
cussions of the specific challenges inherent in this problem and
the effectiveness of the framework in addressing those challenges.
As a preliminary study, we have discussed the issue of the
maximum stress minimization problem employing a pixel-based
model for high-fidelity stress analysis [28]. From a practical point
of view, it is necessary to evaluate the maximum stress values
using a body-fitted mesh.
Therefore, this paper focuses on the challenges of the maximum

stress minimization problem faced by conventional methods and
investigates whether solutions with more avoided stress concentra-
tions can be obtained by solving the original maximum stress min-
imization problem based on data-driven MFTD, compared to the
solutions obtained by conventional methods. In this paper, “fidel-
ity” is defined as the accuracy of the maximum stress value. A low-
fidelity problem is a pseudo-problem that incorporates relaxation
techniques such as intermediate density, approximate processing,
and a structured mesh, which are typically handled by conventional
gradient-based methods. On the other hand, a high-fidelity problem
is an original problem that deals with the maximum value of the true
stress obtained by forward analysis using black-and-white design
and a body-fitted mesh. Specifically, we first generate several
design solutions by gradient-based topology optimization using
the p-norm, as a low-fidelity optimization. These solutions are
then used as the initial solutions of the proposed framework, and
they are iteratively updated based on a high-fidelity evaluation
using an original maximum stress minimization problem to
improve their performance. To improve the convergence of data-
driven MFTD, this paper incorporates latent crossover, a method
recently proposed by Kii et al. to efficiently perform crossover in

the latent space of [29]. Through numerical examples, we discuss
the challenges of the conventional method and the effectiveness
of data-driven MFTD for the maximum stress minimization
problem.

2 Problem Settings
In gradient-based topology optimization, the maximum stress

minimization problem is usually defined as a volume-constrained
single-objective optimization problem. Since EA-based optimiza-
tion methods can naturally deal with multi-objective optimization
problems, we consider the bi-objective optimization of maximum
stress minimization and volume minimization as the original
problem.
Figure 1(a) shows the L-bracket widely used as a benchmark for

maximum stress minimization problems. Ω and D \ Ω denote the
material and void domains in the design domain D, respectively.
The material domain Ω is designed inside a pre-fixed design
space D. The structure is fixed on ΓD and t is the surface force
applied on ΓN . Since the initial structure concentrates stress at the
reentrant corner, the material in this area is aggressively removed
during optimization to reduce the maximum stress.
Let us consider the continuous form of a maximum stress mini-

mization problem. A formulation of the bi-objective optimization
problem can be defined by

find Ω ⊆ D
that minimize σmax =max {σvm(x) ∣ ∀x ∈ Ω}

V =
∫
Ω
dΩ

(1)

Herein σvm is the von Mises stress and x is the point inside the
material domain Ω. Note that Eq. (1) deals with the maximum
value of the true stress. Since the maximum stress is not differenti-
able, density-based methods cannot solve this original problem
directly and must transform it into a pseudo-problem using relaxa-
tion techniques. The conventional formulation using the relaxation
techniques is described in Sec. 3.
The analysis domain is typically discretized using the finite

element method to calculate the evaluation functions. In density-
based optimization, a structured mesh is commonly used as
shown in Fig. 1(b). However, since the optimized structure
depends on the shape of the mesh and stress concentration occurs
at the edges, it is not suitable for the evaluation of maximum
stress values. In this paper, we calculate the evaluation function
in Eq. (1) using a body-fitted mesh as shown in Fig. 1(c), which
is necessary to more accurately evaluate the maximum stress.

3 Conventional Approach
In gradient-based topology optimization, it is necessary to trans-

form the original problem into a pseudo-problem using various
relaxation techniques to solve the maximum stress minimization
problem. In this section, we introduce general relaxation techniques
and formulation using these techniques. Although there are several
gradient-based methods, this study deals with the density-based
method due to its design freedom and ease of implementation.
We discuss the general density-based topology optimization for

solving the maximum stress minimization problem. Based on a
finite element analysis using a structured mesh and the solid isotro-
pic material with penalization (SIMP) [7,8,11,30], we defined a
pseudo-density ρ ∈ [0, 1] at each element as the design variable.

3.1 Density Filter. To avoid a checkerboard pattern and
control the minimum length-scale, the SIMP method introduces
the density filter [31,32] for the design variable ρi as follows:

ρ̃i =

∑
j∈Ωi

wjρi∑
j∈Ωi

wj
, i = 1, 2, . . . , n (2)
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where Ωi is in the influence domain of the element i. The weight
factor wj is calculated at each element j inside Ωi as follows:

wj =
r0 − rj
r0

(3)

where r0 is the filter radius and rj is the distance between the center
points of each elements i and j. The density filter can control the
minimum length-scale, and avoid mesh-dependence and stress con-
centration due to small and sharp structures.
In gradient-based topology optimization, it is common to use a

combination of the density filter and the projection methods [33].
However, in this study, the projection method is not used to
ensure numerical stability and solution diversity based on a result
of preliminary validation.

3.2 Equilibrium Equation. Under the assumption of linear
elasticity and static behavior, the discrete form of the equilibrium
equation can be represented as Ku = F. K can be adequately built
by using the stiffness matrix of an element Ki and the modified
Young’s modulus ESIMP, given by

K =
∑n
i=1

ESIMP( ρ̃i)Ki

ESIMP( ρ̃i) = Emin + ρ̃ p
i (E0 − Emin) (4)

where E0 and Emin are Young’s modulus of the solid ( ρ̃i = 1) and
void ( ρ̃i = 0) phases, respectively. Emin is a small positive real
number to avoid numerical instabilities. And p is the penalization
parameter to promote binarization to achieve black-and-white
designs finally. Typically, p = 3 is often used in topology optimiza-
tion problems concerning the maximum stress minimization or con-
straint, as with the mean compliance [3,5,34].

3.3 Stress Relaxation. It is widely known that maximum
stress minimization problems face a singularity problem, in which
nonlinear programming algorithms cannot reach degenerate
regions of the design space that often contain global optimum,
and converges to a local solution [5]. Specifically, stress at the
void could increase rapidly as one or more of the design variables
tends to be zero. Hence, stress relaxation methods that smooth the
design space are necessary to avoid singularity and stabilize the
optimization process. Various stress relaxation methods have
been proposed, e.g., the ε-relaxation and smooth envelope func-
tions [11,35]. In this study, we use the qp-parameterization
[5,12,34], one of the general relaxation methods.
The vector of stress at evaluation point i can be written in Voigt

notation [34,36] as

σi = (σix σiy σiz τixy τiyz τizx)
T (5)

The penalized and relaxed stress measure σ̂i interpolating stress
values for intermediate density is given as

σ̂i( ρ̃i) = η( ρ̃i)σi
η( ρ̃i) = ρ̃qi

(6)

where q is the penalization parameter, typically q = 0.5 is used
[5,34]. This method also has the effect of penalizing intermediate
values of the material density and promoting binarization. In addi-
tion, the following holds for both extreme values:

σ̂i( ρ̃i = 1) = σi (7)

σ̂i( ρ̃i = 0) = lim
ρ̃i�0

σ̂i( ρ̃i) = 0 (8)

Herein, Eq. (8) justifies that the qp-parameterization can avoid
the singularity problem [37].

3.4 P-Norm Stress Measure. In this study, the relaxed von
Mises stress of Eq. (6) is used as the stress measure in the optimi-
zation procedure. In the optimization problem (Eq. (1)), we
replace the objective function expressed as the maximum stress
with σmax =max

i
(σ̂vm,i).

The maximum stress is not differentiable, so typically it needs to
be approximated using a global function in gradient-based methods.
We use p-norm stress measure given by

σPN =
∑n
i=1

σ̂Pvm,i

( )1/P

(9)

Herein, the p-norm σPN approaches the maximum stress σmax
when the parameter P → ∞, whereas numerical computation
becomes impossible. Therefore, a finite value is used for P, but
the larger the value of P, the greater the numerical instability.
Thus, the optimization highly depends on the selection of this
parameter, and it is necessary to select an appropriate value for
the stress norm parameter P that provides good search performance
and numerical stability. In previous works, although P = 8 was
often chosen from the viewpoint of numerical stability during opti-
mization [5], it cannot accurately capture the maximum stress. In
this paper, we employ the continuation method [2] to achieve
both a large P setting and numerical stability. It allows numerical
stability by increasing the stress norm parameter P at every pre-
determined interval during optimization. The effectiveness of this
method is discussed in Sec. 5.

3.5 Problem Formulation. In this study, the original optimi-
zation problem of Eq. (1) has two objectives: maximum stress min-
imization and volume minimization. To solve this bi-objective

Fig. 1 Problem settings for L-bracket: (a) design domain D and the shape Ω, (b) discretization with structured mesh, and
(c) discretization with body-fitted mesh
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problem using the conventional gradient-based topology optimiza-
tion methods, we use the ε-constraint approach [38,39] to replace
the problem with a single objective optimization problem,
the volume-constrained maximum stress minimization problem.
Consequently, the optimization problem can be formulated as
follows:

find ρ = ρi (i = 1, 2, . . . , n)

that minimize σPN =
∑n
i=1

σ̂Pvm,i

( )1/P

subject to V =
∑n
i=1

viρi ≤ V ≤ Vmax

ρi ∈ [0, 1]

(10)

where vi is the element i solid volume, V is the volume constraint,
and Vmax is the design domain volume. Herein, Eq. (10), which
includes several relaxation techniques, can be defined as a pseudo-
problem compared to the original optimization problem of Eq. (1).
We solve this optimization problem by using the method of
moving asymptotes (MMA) [40], one of the popular gradient-
based optimizer in the research community of topology
optimization.

4 Proposed Approach
In this study, we tackle the original maximum stress minimiza-

tion problem (Eq. (1)) based on data-driven MFTD [25] that is a
gradient-free topology optimization framework under a high
degree of design freedom. Specifically, we investigates whether
optimized designs obtained by solving the optimization problem
(Eq. (10)) which is handled by the conventional gradient-based
method, can be improved on the original topology optimization
problem (Eq. (1)). It should be emphasized that the proposed
approach in this study is a framework for optimization that
updates the solutions based on the results of high-fidelity stress
analysis using a body-fitted mesh without the relaxation techniques
used in gradient-based methods.
The procedures of data-driven MFTD are shown in Fig. 2. Each

step is briefly described below. Note that this paper omits a
mutation-like operation proposed in the original framework for sim-
plicity and the detailed procedures can be found in the original
paper [25].

4.1 Low-Fidelity Optimization. In contrast to the original
problem to be solved, a pseudo-problem, i.e., a low-fidelity

optimization problem, is defined. A pseudo-optimization problem
incorporating design parameters, called seeding parameters, is
solved by gradient-based topology optimization to generate a
variety of design candidates. In this study, we use the relaxed
problem formulation in Eq. (10) as the low-fidelity optimization
problem and the seeding parameter is the volume constraint V .
Various patterns of initial designs for the framework are generated
based on the ε-constraint method.

4.2 High-Fidelity Evaluation. In this step, all the candidates
are evaluated by the high-fidelity model on the original objective
space in Eq. (1), namely, the maximum von Mises stress σmax and
the volume fraction V/Vmax. It should be emphasized that the
framework only requires the forward analysis of the original high-
fidelity model without any gradient information on the objective
and constraint functions.
The high-fidelity model treated here is a model as shown in

Fig. 1(c), in which binarization, smoothing, and body-fitted mesh
are applied to low-fidelity model represented by pixel as shown
in Fig. 1(b). This allows the analysis on the original problem
(Eq. (1)). Note that non-analyzable solutions such as discontinuities
and non-generatable meshes are excluded from the candidate
solutions.

4.3 Selection. Based on the results of the high-fidelity evalua-
tion, superior candidates so-called elite solutions are selected from
the candidate solutions using an elite strategy of EAs. In this study,
the idea of the non-dominated sorting genetic algorithm II
(NSGA-II), one of the representative selection algorithms, is used
to rank and select candidates based on the Pareto dominance rela-
tion in the objective space [41]. Specifically, solutions with superior
objectives and diversity are selected as training data for variational
autoencoder (VAE) to generate the next candidate solutions based
on the non-dominated sorting and the crowding distance sorting
used as the selection algorithms commonly used in the NSGA-II.
Based on the EA strategy, high-fidelity evaluation, selection, and
generation of candidate solutions are repeated until the Pareto
front converges.

4.4 Generative Model. The aim in this step is to generate new
candidate solutions with the characteristics of the selected elite solu-
tions in selection by using a generative model. The important point
here is that the material distributions can be updated without sensi-
tivity analysis. We use a VAE [42], which is one of the representa-
tive deep generative models. As shown in Fig. 2, a VAE consists of
two neural networks, namely, an encoder and a decoder. It has the
ability to extract the information from the high-dimensional input

Fig. 2 Schematic illustration of data-driven multifidelity topology design
081702-4 / Vol. 147, AUGUST 2025 Transactions of the ASME
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data, and to compressed it into a lower-dimensional manifold called
latent space. In the standard VAE, the latent variable z is defined as

z = μ + σ ◦ ε (11)

where μ is the mean, σ is the variance, ◦ is the element-wise
product, and ε is a random vector following the standard normal dis-
tribution. With this architecture, a VAE uses the same dataset for
inputs and outputs to perform unsupervised learning to construct
the latent space. The training dataset consists of the pixel-based
material distributions of the elite solutions, i.e., a vector of design
variables defined for each element of the structured mesh.
The following loss function LVAE is used for learning [43]:

LVAE = Lrecon + ϱLKL (12)

where Lrecon is the reconstruction loss measured by the mean
squared error, and LKL is the Kullback–Leibler (KL) divergence.
ϱ is the weight parameter that controls the influence of the KL
divergence that works to regularize the latent field to be N(0, 1).
LKL is given by

LKL = −
1
2

∑Nlt

i=1

1 + log(σ2i ) − μ2i − σ2i
( )

(13)

where Nlt is the dimension of the latent space, μi and σi are the ith
components of μ and σ, respectively.
In this way, it is expected to extract essential features of the train-

ing data by compressing high-dimensional input and output data
into a low-dimensional latent space.
Consequently, by sampling from this latent space, candidate

solutions with the characteristics of elite solutions are obtained as
a vector of design variables. In this study, to reduce the randomness
in sampling process, we employ latent crossover, a scheme for sam-
pling candidates intensively from meaningful regions in the latent
space [29].

5 Results and Discussion
In this section, we present numerical examples of a maximum

stress minimization problem and demonstrate the challenges of con-
ventional gradient-based topology optimization and the effective-
ness of the proposed approach with data-driven MFTD.
In this study, we used COMSOL MULTIPHYSICS (version 6.1), a com-

mercial software based on the finite element method to perform
stress analysis for both low-fidelity optimization and high-fidelity
evaluation. Additionally, the binarization and the application of
the body-fitted mesh for generating the high-fidelity model were
automated. From the perspective of computational cost and stability
during automatic mesh generation, we used linear triangle elements
for a body-fitted mesh as an initial step in this study. The VAE
was implemented using PYTHON (version 3.9.12), and the overall
loop for gradient-based topology optimization and data-driven
MFTD was controlled using MATLAB (version 2022b).

5.1 Design Settings. We deal with the L-bracket shown in
Fig. 3, which gives the dimensions, loads, and boundary conditions.
All the constants are dimensionless values, and L = 2, l = 0.2,
h = 0.04. To avoid stress concentration, the total force F = 1
applied to the top boundary of the non-design domain. The
Young’s modulus is set as E0 = 1 for the solid and Emin = 10−9

for the void. Poisson’s ratio is ν = 0.3 and the filter radius is
r0 = 0.05. The 2D solid element considering plane stress state is
employed. Based on preliminary investigations, we set 25,600 ele-
ments for the structured mesh in the low-fidelity model, balancing
computational cost and the accuracy of the body-fitted mesh. For
high-fidelity model, the body-fitted mesh is applied to each solution.

5.2 Generation of Initial Solutions. We generate various
design candidates by adjusting the volume constraints V/Vmax

from 0.2 to 0.5 in 0.05 increments. The discrete adjoint method
[34,44] is used for sensitivity analysis to derive gradient informa-
tion, and the MMA is used as the gradient-based optimizer [40].
The convergence criterion is simply set to the maximum iteration
of 200. The move limit of the MMA is set to 0.05.
In order to verify whether there is room for improvement in the

optimized designs obtained by the conventional method, it is neces-
sary to prepare the best initial solutions as much as possible. There-
fore, we employ the continuation method for the parameter P of
p-norm stress measure to obtain solutions with more avoided
stress concentrations. First, we test the effectiveness of the contin-
uation method, in which P is increased every 30 steps as 8–16–
32 by comparing the solutions obtained using the fixed stress
norm parameter P = 8.
Figure 4 shows the effect of the continuation method on the

maximum von Mises stress with the stress distributions of the solu-
tions. Here, the maximum von Mises stress is the maximum value
of the relaxed stress σmax =max

i
(σ̂vm,i) defined as Eq. (6). The

results indicate that the continuation method achieves a better

Fig. 3 Boundary conditions and dimensions for L-bracket

Fig. 4 Effect of the continuation method on the objective space
of the relaxed maximum von Mises stress max (σ̂vm) and volume
fraction V/Vmax with the stress distributions of the solutions

Journal of Mechanical Design AUGUST 2025, Vol. 147 / 081702-5

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/147/8/081702/7429669/m
d-24-1503.pdf by O

saka D
aigaku user on 03 April 2025



Pareto front and obtained the solutions with a more uniform stress
distribution compared with the P = 8 fixed case. Figure 5 shows the
optimized designs and their stress distributions in the same volume
constraint V/Vmax = 0.335 under the fixed parameter P = 8 and the
continuation method P = 8− 16− 32, which are the same

Fig. 5 (a) Optimized designs with the filtered density ρ̃ and their stress distributions in the same volume constraint
V/Vmax = 0.335 under (i) the fixed parameter P= 8 and (ii) the continuation method P= 8− 16− 32; (b) convergence
history of the objective function and the normalized volume constraint in the low-fidelity optimization using the contin-
uation method P= 8− 16− 32

Fig. 6 Initial solutions for data-driven MFTD generated by the low-fidelity optimization using the continuation method
P= 8− 16− 32

Fig. 7 Effect of the fidelity on the objective space of the
maximum von Mises stress σmax and volume fraction V/Vmax, in
which each stress value indicates the relaxed stress max (σ̂vm)
(bottom: low-fidelity model) and the true stress max (σvm) (top:
high-fidelity model), respectively

Fig. 8 Optimized design and its stress distribution in different
analysis model: (a) the low-fidelity model with the filtered
density ρ̃ and (b) the high-fidelity model
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solutions shown by the box in Fig. 4. The reentrant corner of a solu-
tion under P = 8 is filled with the material as shown in Fig. 5(a) (i),
causing stress concentrations, while the continuation method more
accurately captures the maximum, hence material in this area is
actively removed and stress concentrations are relaxed as shown
in Fig. 5(a) (ii). Therefore, this method can avoid such a singularity
problem. Figure 5(b) shows the convergence history of the objec-
tive function and the normalized volume constraint for the solution
under the continuation method P = 8− 16− 32 shown in Fig. 5(a)
(ii). The objective function here is the p-norm stress measure
defined as Eq. (9). As shown in Fig. 5(b), the objective and con-
straint functions converge well enough in all solutions, and it can
be said that, at least under the investigated conditions, the gradient-
based topology optimization method with the continuation method
has resulted in optimized structures. Note that the sudden drops in
the objective function history at 30 and 60 iterations are due to the
p-norm continuation method. In the formulation of the maximum
stress minimization problem, the p-norm function only needs to
capture the trend of the maximum stress, and the scale of the
p-norm function itself is not critical.
From the above, we adopt the continuation method in low-fidelity

optimization and use 60 optimized designs as the initial designs for
data-driven MFTD. Figure 6 shows the optimized designs of them.
Here, let us focus on the structure of the obtained results. As shown
in Fig. 6, various structures appear even when the volumes are close
to each other. At first glance, there is no clear relationship between

structural changes and volume increases, and the number of
members also varies. However, very similar structures can be
observed even when the volumes differ.
Next, Fig. 7 shows the effect of the fidelity of the analysis model

on the maximum von Mises stress. The result for the low-fidelity
model shows the maximum relaxed stress of the solutions obtained
by low-fidelity optimization, which is the same as the result for the
continuation method P = 8− 16− 32 in Fig. 4. On the other hand,
the result for the high-fidelity model shows the maximum values of
the true stress obtained through analyzing them after post-
processing and discretization with a body-fitted mesh. As shown
in Fig. 7, the maximum stress exhibits significant variability. This
is due to stress concentrations resulting from structural changes
caused by post-processing, in addition to the difference in stress
indices. Figure 8 shows the optimized design and its stress distribu-
tion in different analysis model, the low-fidelity and high-fidelity
models. Post-processing has resulted in the disappearance of
members composed of intermediate densities, and the structure
has also changed. In the low-fidelity model as shown in Fig. 8(a),
stress is almost uniformly distributed throughout the whole

Fig. 9 Initial solutions analyzed with the high-fidelity model

Fig. 10 Objective space with initial and final designs

Fig. 11 (a) An initial solution and (b) a final solution with almost
the same maximum stress value

Fig. 12 Convergence history of the hypervolume indicator
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structure, whereas in the high-fidelity model as shown in Fig. 8(b),
stresses are concentrated locally at a single point in the loading area,
and the maximum stress values are different. Figure 9 shows the
stress distribution of all designs ordered by decreasing volume. It
can be noticed that stresses are concentrated locally in most of the
solutions and some designs have disconnected members. It should
be emphasized that this is a serious problem in actual design
because it is difficult to predict the variations in stress values due
to the fidelity of the analysis model.

5.3 Improvement of Pareto Solutions. This study investi-
gates the potential enhancement of performance in designs opti-
mized through the gradient-based topology optimization method
by applying further optimization using data-driven MFTD. It aims
to demonstrate the efficacy of the gradient-free approach for the
maximum stress minimization problem.
The initial solutions obtained in Fig. 6 is input to data-driven

MFTD to produce the Pareto solutions. Then, we tackle to solve
the original optimization problem (Eq. (1)) based on high-fidelity
stress analysis. The convergence criterion is the maximum iteration
number of 2000, after which the solutions were considered to be
converged. Here, at each optimization step, 100 elite solutions
survive and are trained by a VAE, after which 100 new candidate
solutions are generated. The architecture of the VAE is a simple
neural network based on a multilayer perceptron with one hidden
layer each for the encoder and decoder. In this study, the number
of neurons in the input/output and hidden layers is 25,600 and
512, respectively. For the latent space, the mean μ, the variance σ,
and the latent variable z are structured on 8 neurons.
Figure 10 shows the objective space with the stress distribution of

some initial and final solutions. The Pareto front has been pro-
gressed from the initial solutions, indicating that the conventional
gradient-based topology optimization has room for improvement
in terms of solving the original maximum stress minimization
problem. Figure 11 shows the initial and final designs with
almost the same maximum stress value, which are the same
solutions shown by the box in Fig. 10. The objective function values
are max (σvm) = 9.777 with V/Vmax = 0.371, and max (σvm) =
9.707 with V/Vmax = 0.287, respectively. Specifically, a volume
reduction of 22.6% was achieved under almost the same stress
value, compared to the initial solution. Focusing on the structures,
it can be observed that the final solution as shown in Fig. 11(b)
has fewer members and a simpler structure than the initial solution
as shown in Fig. 11(a). Additionally, the solutions obtained by con-
ventional gradient-based topology optimization are linear and
uniform in member thickness. On the other hand, since there is
no limit on the thickness of the members in data-driven MFTD,
the final solution features more rounded holes and reentrant
corner to relax stress compared to the initial solution. Furthermore,
focusing on stress distributions, the initial solution has a localized
concentration of stress, whereas the final solution has a more
uniform stress distribution due to stress dispersion.
Figure 12 shows the convergence history of the hypervolume

indicator which is a measure often used to assess the performance

of multi-objective evolutionary algorithms [45]. In the case of
two objective functions, it is represented by the area formed by
the reference point and the Pareto front in the objective space.
In this study, the reference point is the maximum values of the
objective functions in the initial solutions. As shown in Fig. 12,
the hypervolume gradually improves up to 2,000 iterations, indicat-
ing that the Pareto front continues to progress. Note that the number
of iterations is relatively large compared to other optimization prob-
lems investigated in the original paper [25]. Figure 13 shows the
final designs ordered by decreasing volume. It can be observed
that the initial solutions are various structures depending on the
volume, while the final solutions have a relatively similar topology.
This result indicates that although the Pareto solutions are not
necessarily the globally optimal, it can be expected that the compre-
hensive solution search via data-driven MFTD has yielded a prom-
ising topology among numerous local solutions. It can also be said
that data-driven MFTD yielded superior solutions that could not be
reached by the conventional method, since structures with more
avoided stress concentrations were obtained that are not typically
found in the gradient-based method.
To generate the data in Fig. 10, we run data-driven MFTD codes

over a 2.2GHz AMD Ryzen Threadripper PRO 3995WX 64-cores
CPU. The VAE code was run on two NVIDIA RTX A2000 GPUs.
One iteration of the data-driven MFTD takes 100 s. A large portion
of the computational time is dedicated to high-fidelity evaluation,
and the computational cost can be reduced through the effective
promotion of parallelization.

6 Conclusion
In this paper, we focused on the remaining challenges of the

maximum stress minimization problem solved by the standard
gradient-based topology optimization method and proposed a new
framework to overcome those challenges. To accurately solve the
maximum stress minimization problem, we focused on data-driven
MFTD, a gradient-free topology optimization method, and pro-
posed an optimization framework based on high-fidelity stress anal-
ysis using a body-fitted mesh. This framework derived initial
solutions by solving the gradient-based topology optimization
using the p-norm stress measure, and they are updated by a VAE
based on the manner of EAs, without using sensitivity analysis. It
was confirmed that solutions with more avoided stress concentra-
tions were obtained compared to the initial solutions obtained by
the gradient-based method, as the Pareto front has been progressed
by data-driven MFTD. The comprehensive solution search using
data-driven MFTD for the original maximum stress minimization
problem resulted in structures with characteristics not commonly
seen in conventional methods, achieving designs with reduced
stress concentrations. we also achieved to derive one promising
topology among many local solutions.
The method is applicable to optimization problems where low-

fidelity optimization problem can be formulated and the original
problem can be evaluated by forward analysis in high-fidelity eval-
uation. As for future work, we consider that our framework can be

Fig. 13 Final solutions by data-driven MFTD
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applied to further complex and practical optimization problems con-
sidering strong geometrical nonlinearity such as buckling and large
deformations under the original maximum stress minimization or
constraint problem.
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