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Folate receptor 1 is a stemness trait-
associated diagnostic and prognostic marker 
for hepatocellular carcinoma
Yuto Shiode1,2†, Takahiro Kodama1†, Yu Sato1, Ryo Takahashi1, Takayuki Matsumae1, Kumiko Shirai1, Akira Doi1, 
Yuki Tahata1, Hayato Hikita1, Tomohide Tatsumi1, Moto Fukai3, Akinobu Taketomi3, Mathuros Ruchirawat4,5, 
Xin Wei Wang2,6 and Tetsuo Takehara1* 

Abstract 

Background  Hepatocellular carcinoma (HCC) can be classified into several subtypes based on molecular traits, aid-
ing in prognostic stratification. The subtype with a poor prognosis is often associated with stem/progenitor features. 
This study focused on identifying circulating biomarkers for aggressive HCC.

Methods  We searched for secretory proteins whose expression was positively associated with the stem/progeni-
tor markers KRT19, EPCAM, and PROM1 in 2 independent HCC cohorts. Serum folate receptor 1 (FOLR1) levels were 
measured in 238 chronic liver disease and 247 HCC patients, evaluating their diagnostic and prognostic capabilities.

Results  FOLR1 was identified as a secretory protein that was positively correlated with all 3 stem/progenitor mark-
ers and a poor prognosis in both the discovery and validation cohorts. Higher FOLR1 expression was detected 
in tumor than nontumor tissues and was associated with aggressive subtypes, and activation of p53, DNA repair, Myc, 
E2F, and PI3K/AKT/mTOR pathways. Serum FOLR1 levels correlated with tumoral FOLR1 expression in HCC patients 
and were significantly elevated compared with those in patients with chronic hepatitis or nonliver disease. Serum 
FOLR1 levels demonstrated diagnostic performance for HCC comparable to that of alpha-fetoprotein (AFP), and their 
combination increased the diagnostic accuracy. Elevated serum FOLR1 levels were associated with poor prognosis 
in HCC patients, regardless of treatment, especially in patients with early-stage disease. The multivariate analysis 
revealed that the serum FOLR1 level and the Gender, Age, AFP-L3, AFP, and Des-gamma-carboxy prothrombin 
(GALAD) score were independent predictors of a poor prognosis with their combination further stratifying prognosis.

Conclusions  FOLR1 is a stemness-associated biomarker for HCC, with serum levels serving as a diagnostic marker 
for HCC and a prognostic indicator for early-stage disease.
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Background
Primary liver cancer (PLC) remains a global health chal-
lenge, with an estimated incidence of > 1 million cases 
by 2025 [1], and is the sixth most common malignancy 
worldwide [2]. Hepatocellular carcinoma (HCC) is the 
major form of PLC and accounts for approximately 80% 
of cases [3]. Despite advancements in diagnostic and 
treatment modalities, the prognosis of HCC remains 
a significant concern [4]. The 5-year survival rate for 
HCC patients remains alarmingly low, except for those 
diagnosed at an early stage, with rates of 54.5%, 29.2%, 
9.8%, and 4.0% for stages A, B, C, and D, respectively, as 
classified by the BCLC system [5, 6]. Current diagnos-
tic methods for HCC primarily rely on imaging, serum 
biomarkers, and histopathological assessments [7]. The 
complex etiology and diverse molecular subtypes of HCC 
pose challenges in predicting patient prognosis during 
diagnosis and tailoring effective treatment strategies [1, 
8–11]. Precise markers that can enhance the prognos-
tic prediction are urgently needed to improve patient 
outcomes.

The molecular classification of HCC has been con-
ducted in the past via microarray technology and, more 
recently, by RNA/DNA sequencing using next-generation 
sequencers [12, 13]. Several classifications have been pro-
posed, including 3 clusters (S1–3) by Hosida [14], 6 clus-
ters by Boyault [8], 4 clusters by Chiang [15], 3 clusters by 
Murai [16], and the most recent 3 clusters by The Cancer 
Genome Atlas (TCGA) [17]. These classifications are par-
ticularly useful for stratifying patients according to prog-
nosis. In these classifications, some subclasses are unique 
and/or different from one classification to another, sug-
gesting the substantial molecular heterogeneity of HCC 
[12, 18]. Importantly, all the classifications identified a 
common subclass with an aggressive phenotype and poor 
prognosis named the proliferation class by Chiang, G1 
by Boyault, S2 by Hoshida, and Cluster 1 by TCGA [12]. 
This subclass is characterized by chromosomal instabil-
ity, global DNA hypomethylation, and especially stem 
cell phenotypes, with increased expression of stem/pro-
genitor markers such as KRT19, EPCAM, and PROM1 
[12, 19]. Indeed, all these stem/progenitor markers are 
associated with a poor prognosis and aggressive behav-
ior of HCC [19–22]. Identifying such a poor prognostic 
subclass may help to determine better treatment selec-
tion and disease monitoring but requires invasive tumor 
biopsy. Because HCC is accurately diagnosed by con-
trast-enhanced computed tomography (CT) or Magnetic 
Resonance Imaging (MRI) without tumor biopsy in daily 
practice, the development of noninvasive biomarkers is 
highly desirable.

In this study, we hypothesized that secretory pro-
teins, whose expression is associated with hepatic stem/

progenitor markers in HCC, may serve as blood-based 
prognostic biomarkers for HCC. First, we analyzed RNA-
sequencing data from 2 independent large-scale HCC 
cohorts. We found that folate receptor 1 (FOLR1), a 
known secretory protein [23], was upregulated in tumor 
tissues and positively associated with 3 major stem/pro-
genitor markers, KRT19, EPCAM, and PROM1 [19, 24, 
25], and a poor prognosis for HCC patients in both the 
discovery and validation cohorts. We found that circulat-
ing FOLR1 levels were positively correlated with FOLR1 
tumoral levels in HCC patients. We subsequently proved 
that serum FOLR1 levels can serve as a novel biomarker 
for HCC detection and prognostic predictions of early-
stage HCC, suggesting potential utility for improved risk 
stratification and personalized treatment strategies.

Methods
Acquisition and analysis of the discovery cohort from TCGA 
data
The RNA-seq data registered in The Cancer Genome 
Atlas (TCGA) were downloaded from FIREHOSE (https://​
gdac.​broad​insti​tute.​org/) and analyzed with Gene Pattern 
(https://​www.​genep​attern.​org/). Secretory proteins were 
extracted from the Human Protein Atlas (https://​www.​
prote​inatl​as.​org/​human​prote​ome/​tissue/​secre​tome). For 
candidate gene selection, we first searched for secretory 
proteins whose expression was strongly associated with 
the expression of all 3 stem/progenitor markers, includ-
ing KRT19, EPCAM, and PROM1 (correlation coeffi-
cient ≥ 0.35). Then, we extracted genes that were highly 
upregulated in tumor tissues compared with nontumor 
tissues. We further selected genes predicted to encode 
secretory proteins based on a database in the Human Pro-
tein Atlas. Finally, we selected genes whose high expression 
was positively associated with a poor patient prognosis 
(p ≤ 0.05). A nearest template prediction (NTP) analysis was 
used to determine the various molecular classifications of 
each patient registered in TCGA. GSEA with DESERT_
STEM_CELL_HEPATOCELLULAR_CARCINOMA_
SUBCLASS_UP and ssGSEA with hallmark gene sets were 
performed to determine the biological state of each case 
registered in TCGA.

Acquisition and analysis of the validation cohort 
from TIGER‑LC data
The validation cohort data used in this study were 
derived from the the Thailand Initiative in Genom-
ics and Expression Research for Liver Cancer (TIGER-
LC) consortium, comprising 50 patients diagnosed 
with hepatocellular carcinoma (HCC). The TIGER-LC 
cohort included a comprehensive set of paired surgical 
tumor and nontumor samples from sequential patients 
with liver cancer across five major hospitals in Thailand: 

https://gdac.broadinstitute.org/
https://gdac.broadinstitute.org/
https://www.genepattern.org/
https://www.proteinatlas.org/humanproteome/tissue/secretome
https://www.proteinatlas.org/humanproteome/tissue/secretome
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Maharaj Nakorn Chiang Mai Hospital, Roi Et Hospi-
tal, Chulabhorn Hospital-Bangkok, the National Cancer 
Institute of Thailand, and Srinagarind Hospital. Recruit-
ment focused on patients with confirmed diagnoses of 
primary liver cancers (HCC and intrahepatic cholan-
giocarcinoma (ICC)), as well as high-risk patients and 
healthy controls. The diagnosis of HCC was based on 
physician assessments using criteria such as elevated 
serum AFP levels, ultrasound imaging, and/or histo-
pathological examinations. Samples were collected 
sequentially from each hospital’s weekly schedule of liver 
cancer surgeries and patient referrals, ensuring the repre-
sentative inclusion of patients with recent HCC diagno-
ses. Patients with mixed HCC-ICC were excluded from 
this study. Clinical, demographic, socioeconomic, and 
morbidity data were collected through comprehensive 
questionnaires and medical records. Institutional review 
board (IRB) approval was obtained from each participat-
ing center (Maharaj Nakorn Chiang Mai Hospital, Roi Et 
Hospital, Chulabhorn Hospital-Bangkok, National Can-
cer Institute of Thailand, and Srinagarind Hospital), with 
all participants providing written informed consent. The 
exclusion criteria for the study population included indi-
viduals under 20 or over 80 years of age, those diagnosed 
with HIV, residents in institutional settings, and those 
who were severely ill at recruitment.

Analysis of patients’ serum samples
This retrospective cohort study enrolled 503 patients who 
were admitted to Osaka University Hospital between 
2014 and 2018 (238 patients with chronic hepatitis, 215 
patients with HCC, and 50 patients with colorectal pol-
yps) and 32 HCC patients who underwent surgical resec-
tion at Hokkaido University Hospital between 2007 and 
2018. A diagnosis of HCC was made by liver imaging 
tests (computed tomography (CT) and Magnetic Reso-
nance Imaging (MRI)). All patients provided informed 
consent, and the study design was consistent with the 
principles of the Declaration of Helsinki. The protocol 
for the study involving patient serum and tissues was 
approved by the Institutional Review Board Committee 
of Osaka University Hospital (Institutional Review Board 
No. 17097).

RNA isolation and qPCR
Total RNA was extracted from human liver tissues 
using the RNeasy Mini Kit (Qiagen, Venlo, Netherlands) 
according to the manufacturer’s protocol. RNA concen-
tration and purity were assessed using a NanoDrop 2000 
spectrophotometer (Thermo Fisher Scientific, Waltham, 
MA), and samples with an A260/A280 ratio of 1.8–2.1 
were used for subsequent analyses. One microgram of 
total RNA was reverse transcribed into complementary 

DNA (cDNA) using the ReverTra Ace qPCR RT Kit 
(Toyobo, Tokyo, Japan) following the manufacturer’s 
instructions. Quantitative real-time PCR (qPCR) was 
performed using the THUNDERBIRD Probe qPCR Mix 
(QPS101; Toyobo, Osaka, Japan) on a QuantStudio 7 
Real-Time PCR System (Thermo Fisher Scientific). Each 
qPCR reaction was carried out in a 20 μL reaction vol-
ume containing 10 μL of THUNDERBIRD Probe qPCR 
Mix, 1 μL of cDNA, 900 nM of each forward and reverse 
primer, 250  nM of TaqMan probe, and nuclease-free 
water. The TaqMan gene expression assays used were for 
GAPDH (Hs02786624_g1) and FOLR1 (Hs06631528_s1). 
The thermal cycling conditions were as follows: initial 
denaturation at 95  °C for 30  s, followed by 40 cycles of 
95 °C for 15 s and 60 °C for 1 min. Relative gene expres-
sion levels were calculated using the ΔΔCt method, with 
GAPDH as the reference gene.

ELISAs
The preoperative plasma of patients was stored in 
a − 80  °C deep freezer and analyzed with a Human 
FOLR1 ELISA Kit (DFLR10, R&D Systems) according to 
the manufacturer’s protocol.

Statistical analysis
Statistical analyses were performed using Prism v.10.2.2 
for Mac (GraphPad, San Diego, CA; research resource 
identifier [RRID] SCR_002798), JMP version 14 (SAS 
Institute, Inc., Cary, NC; RRID SCR_014242), and EZR 
version 1.65 (Jichi Medical University Saitama Medi-
cal Center). Continuous variables were summarized as 
means ± SDs or medians with interquartile ranges, as 
appropriate. Differences in continuous variables between 
two groups were tested using an unpaired two-tailed t 
test for normally distributed variables and the Mann–
Whitney U test for non-normally distributed variables. 
Comparisons among three groups were performed using 
analysis of variance (ANOVA) with Tukey’s post hoc test. 
Survival analysis was conducted using the Kaplan–Meier 
method, and differences between survival curves were 
evaluated using the log-rank test. The required sample 
size for survival analysis was calculated using G*Power 
3.1 (Heinrich-Heine-Universität Düsseldorf, Germany) 
with the following parameters: two-tailed test, α = 0.05, 
power = 0.8, and proportions p1 = 0.5 and p2 = 0.8. The 
calculation indicated that a total sample size of 20 par-
ticipants (10 per group) was required to achieve adequate 
statistical power. For diagnostic accuracy, the DeLong 
test was used to compare the areas under the ROC 
curves. Multivariable analyses were performed using 
Cox proportional hazards models to adjust for potential 
confounders, including age, sex, and tumor stage, with 
results expressed as hazard ratios and 95% confidence 
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intervals. For all statistical tests, a p-value of ≤ 0.05 was 
considered statistically significant. The handling of miss-
ing data was performed using a complete-case analysis 
approach unless otherwise stated. Detailed statistical 
methods and software tools are reported in the CTAT 
table.

Results
Tumoral FOLR1 is a stemness trait‑associated prognostic 
marker for HCC
We formulated a comprehensive strategy to identify 
secretory proteins whose expression is closely associated 
with the expression of HCC stem/progenitor markers and 
a poor prognosis as potential blood-based biomarkers for 
aggressive HCC (Fig. 1A, Supplementary Fig. 1). We first 
analyzed RNA sequencing data from the HCC cohort in 
TCGA database. We focused on 3 stem/progenitor mark-
ers, KRT19, EPCAM, and PROM, which are known to 
be associated with tumor aggressiveness. These genes 
exhibited strong positive correlations with each other 
(Fig. 1B), confirming that they reflect common stemness 
features in HCC. We identified 186 genes, expressions of 
which were positively associated with that of all 3 genes 
in tumor tissues and were significantly upregulated in 
tumor tissues compared with nontumor tissues (Fig. 1C 
left panel, D). Among them, 25 genes were predicted to 
encode secretory proteins based on a database in the 
Human Protein Atlas (Fig. 1C right panel, Supplementary 
Table  1). After analyzing their associations with over-
all survival (OS), FOLR1 emerged as the only gene with 
a significant impact on the prognosis (Fig. 1E). We ana-
lyzed RNA-sequencing data for tumor tissues from HCC 
patients registered in the Thailand Initiative in Genom-
ics and Expression Research for Liver Cancer (TIGER-
LC) cohorts to externally validate our findings [26]. All 
3 stem/progenitor markers were positively correlated 
with each other (Supplementary Fig. 2) and with FOLR1 
(Fig.  1G). Patients with high FOLR1 expression levels 
experienced significantly shorter survival than those with 

low expression levels (Fig.  1H). The consistent findings 
from 2 independent cohorts indicated that FOLR1 was a 
tumor-derived prognostic marker for HCC.

Tumoral FOLR1 expression represents a poor prognostic 
molecular subtype of HCC with aggressive biological 
features
We then investigated the molecular characteristics of 
HCC patients with high FOLR1 expression. We first 
determined various molecular subclasses for each sam-
ple in TCGA cohort. FOLR1 expression levels were sig-
nificantly higher in the proliferation class in the Chang 
classification, Cluster 1 in the iCluster classification, and 
S1/2 in the Hoshida classification (Fig.  2A, B), suggest-
ing that FOLR1 was associated with the poor prognostic 
subtype with biological aggressiveness and stem/pro-
genitor features. Gene set enrichment analysis (GSEA) 
revealed the significant upregulation of a pathway linked 
to HCC stem cell signatures in the high FOLR1 subgroup 
(Fig.  2A, C). Moreover, single-set GSEA revealed that a 
variety of oncogenic pathways related to aggressive bio-
logical features, including the p53, DNA repair, MYC, 
E2F, and PI3K/AKT/MTOR pathways, were activated in 
the high-FOLR1 subgroup (Fig. 2A, D). Overall, tumoral 
FOLR1 expression represents a poor prognostic molecu-
lar subtype of HCC with aggressive biological features.

The serum FOLR1 level is a diagnostic biomarker of HCC, 
especially in combination with AFP
FOLR1 was selected based on its secretory poten-
tial, and we thus examined whether tumor FOLR1 
levels are reflected peripherally in HCC patients. To 
this end, we measured the serum FOLR1 levels and 
tumor FOLR1 expression levels in 32 HCC patients 
who underwent surgical resection. We detected a sig-
nificant positive correlation between these parameters 
(Fig.  3A), suggesting that serum FOLR1 levels may 
reflect tumoral FOLR1 expression in HCC patients. 
Therefore, we next pursued the potential of FOLR1 as 

Fig. 1  FOLR1 is a tumor-derived and stemness trait-associated prognostic marker for HCC. (A) Schematic of the workflow used to identify 
candidate biomarkers. Genes upregulated in hepatocellular carcinoma (HCC) and correlated with cancer stemness markers (KRT19, PROM1 
and EPCAM) were compared to identify common genes. These genes were further filtered to identify those encoding secretory proteins that were 
associated with overall survival (OS) (created with Biorender). (B) Scatter plot showing the correlations between KRT19 and EPCAM (a), KRT19 
and PROM1 (b), and EPCAM and PROM1 (c) mRNA levels in TCGA-LIHC cohort. (C) (a) Venn diagram showing the overlap among genes correlated 
with KRT19 (1870 genes), PROM1 (1469 genes), EPCAM (1417 genes) and upregulated genes (186 genes). (b) Venn diagram showing the overlap 
among common genes (873 genes) and predicted secretory proteins (186 genes). (D) Quantitative PCR analysis showing the expression 
levels of the folate receptor 1 (FOLR1) mRNA in control and HCC samples from TCGA-LIHC cohort. **p < 0.01. (E) Kaplan‒Meier survival curves 
for TCGA-LIHC cohort stratified by high (red line) and low (black line) FOLR1 mRNA expression levels. (F-G) Scatter plot showing the correlation 
between FOLR1 mRNA expression and KRT19 (left panel), EPCAM (middle panel), and PROM1 (right panel) mRNA expression levels in TCGA-LIHC 
cohort (F) and the Thailand Initiative in Genomics and Expression Research for Liver Cancer (TIGER-LC) cohort (G). (H) Kaplan‒Meier survival curves 
for the TIGER-LC cohort stratified by high (red line) and low (black line) FOLR1 mRNA expression levels

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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a blood-based biomarker for HCC patients by evalu-
ating the serum of 247 patients diagnosed with HCC 
and 238 patients diagnosed with chronic hepatitis C 
(CHC) without HCC, along with 50 patients diagnosed 
with colon polyps without liver disease who served as 
normal controls. Compared with CHC patients, HCC 
patients were significantly older, predominantly male, 
and presented higher fibrosis-4 (FIB-4) index val-
ues, while their platelet counts, prothrombin times, 
and albumin levels were significantly lower (Table  1). 
Compared with those in both normal controls and 
CHC patients, serum FOLR1 levels were significantly 
elevated in HCC patients (Fig.  3B). The univari-
ate logistic regression analysis revealed that FOLR1 
levels, albumin–bilirubin (ALBI) scores, the FIB-4 
index, alpha-fetoprotein (AFP), alanine aminotrans-
ferase (ALT), g-GTP, alkaline phosphatase (ALP), and 
albumin levels, the platelet count, age, and sex were 
associated with the occurrence of HCC among CHC 
patients (Table  2). The multivariate analysis revealed 
FOLR1 levels, AFP levels, ALT levels, ALP levels, age 
and sex as independent diagnostic factors for HCC in 
CHC patients (Table  2). The serum FOLR1 level dis-
criminated between HCC and CHC patients with an 
area under the receiver operating characteristic curve 
(AUROC) of 0.685 (Fig.  3C), which was comparable 
to the AFP level, with an AUROC of 0.708 (Fig.  3D). 
The optimal threshold level of FOLR1 for indicating a 
higher diagnostic value for HCC is 409.45  pg/mL. At 
this threshold, the sensitivity is 61.5% and the speci-
ficity is 68.5%. Compared with AFP alone, the com-
bination of these two markers yielded an AUROC of 
0.764 for discriminating HCC from CHC, indicating 
a significant improvement in diagnostic performance 
(p = 0.019) (Fig. 3E). In addition, we have constructed 
a diagnostic model based on multivariate regression 
analysis incorporating FOLR1 and other clinical vari-
ables. Nomogram-based diagnostic model showed sig-
nificantly higher diagnostic value compared to AFP or 
FOLR1 alone (Supplementary Fig.  3). Taken together, 
these findings indicate that the serum FOLR1 level 
may be a potential tumor marker for detecting HCC, 
especially in combination with AFP.

The serum FOLR1 level is a prognostic biomarker of early 
HCC, especially in combination with the GALAD score
Next, we evaluated the utility of serum FOLR1 levels as 
a prognostic marker in 247 HCC patients (Table 1). We 
stratified patients into two groups based on the cutoff 
value of serum FOLR1 levels determined by the Youden 
index. HCC patients with high serum FOLR1 levels expe-
rienced significantly shorter OS than those with low 
serum FOLR1 levels (Fig.  4A). A subgroup analysis was 
then conducted based on the treatment methods used 
for HCC. No significant differences in FOLR1 levels were 
observed among the 3 treatment methods, including 
radiofrequency ablation (RFA), transarterial chemoem-
bolization (TACE) and operation (OP) (Fig. 4B). Patients 
with high serum FOLR1 levels had a significantly worse 
prognosis than those with low serum FOLR1 levels, 
regardless of treatment (Fig.  4C). A subgroup analysis 
based on HCC stage did not reveal significant differences 
in FOLR1 levels among the groups (Fig.  4D). However, 
patients early-stage tumors (stages 1 and 2) presenting 
with high FOLR1 levels had a significantly worse prog-
nosis (Fig.  4E). Thus, the serum FOLR1 level is highly 
useful as a prognostic marker, especially for early-stage 
HCC. We then investigated the clinical factors associated 
with high FOLR1 expression. The high FOLR1 group pre-
sented lower hemoglobin levels and serum albumin lev-
els and higher serum creatinine levels and FIB-4 index, 
ALBI, and Child‒Pugh scores than the low FOLR1 group 
did, but no significant differences in tumor size, number, 
or stage were observed (Table  3). FOLR1 levels showed 
a tendency to increase as the degree of differentiation 
decreased, but it was not statistically significant (Sup-
plementary Fig.  4). An examination of the correlation 
between FOLR1 levels and the levels of various clinical 
markers revealed no strong associations with clinical 
variables (Supplementary Fig.  5). A univariate Cox pro-
portional hazard analysis revealed that FOLR1, GALAD 
score, the neutrophil‒lymphocyte ratio (NLR), the FIB-4 
index, age, AST levels, ALP levels, albumin levels, AFP, 
ALBI, stage and treatment methods were associated with 
a poor prognosis (Table  4). The multivariate analysis 
revealed that high FOLR1 levels and the GALAD score 
were associated with poor prognosis (Table  4). Indeed, 
HCC patients with high GALAD scores experienced 

(See figure on next page.)
Fig. 2  Tumoral FOLR1 expression represents a poor prognostic molecular subtype of HCC with aggressive biological features. A Heatmap 
showing gene expression, clinical features, molecular subclasses, and gene set enrichment scores of hallmark gene sets evaluated by single-set 
gene set enrichment analysis (ssGSEA). B FOLR1 mRNA levels in each molecular class. **p < 0.01. ****p < 0.0001. C Gene set enrichment analysis 
(GSEA) comparing the FOLR1 high- and low-expression groups. Enrichment plot from GSEA showing the distribution of the enrichment scores 
for the FOLR1-H and FOLR1-L expression groups. D Gene set enrichment scores of HCC patients with either high or low FOLR1 mRNA levels in The 
Cancer Genome Atlas (TCGA)-LIHC cohort. ****p < 0.0001
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Fig. 2  (See legend on previous page.)
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significantly shorter OS than did those with low GALAD 
scores (Fig.  4F). The multivariate analysis of subgroup 
revealed that FOLR1 was associated with poor progno-
sis among patients who underwent surgical treatment 
and who were either stage I or II, while GALAD score 
was associated with poor prognosis among patients who 
underwent TACE treatment (Supplementary Table 2–7). 
Finally, we integrated these two prognostic predictors of 
HCC and found that the combination of FOLR1 levels 
and the GALAD score further stratified patients accord-
ing to the prognosis (Fig.  4G). Overall, serum FOLR1 
levels may be a prognostic biomarker of early HCC, espe-
cially in combination with the GALAD score.

Discussion
In this study, we identified FOLR1 as a biomarker of 
HCC. The physiological roles of FOLR1 include the cel-
lular uptake of folate, which plays an important role in 

cell growth, differentiation, and proliferation. FOLR1 has 
been reported to be overexpressed in multiple cancers 
of epithelial origin [27], and overexpression of FOLR1 is 
associated with cancer progression and a poor patient 
prognosis [28, 29]. Additionally, FOLR1 or portions of 
the receptor are released into the circulation and func-
tion as serum markers for ovarian cancer [23, 30]. How-
ever, the role of FOLR1 in HCC has not been reported. 
This study is the first to show the potential utility of both 
tumor-derived and circulating FOLR1 as a prognos-
tic biomarker for HCC. Especially, serum FOLR1 levels 
serve as a diagnostic marker for HCC and a prognostic 
indicator for early-stage disease.

Recent research has emphasized the role of cancer 
stem cells in driving HCC progression, metastasis, and 
treatment resistance [22]. Indeed, a variety of cancer 
stem cell and stemness markers are closely associated 
with the aggressive behavior and poor clinical outcomes 

Fig. 3  The serum FOLR1 level is a diagnostic biomarker of HCC, especially in combination with AFP. A Scatter plot showing the correlation 
between FOLR1 mRNA expression and serum FOLR1 levels in the surgically resected HCC cohort. B Comparison of serum FOLR1 levels 
among patients with colorectal polyps, patients with chronic hepatitis C (CHC), and hepatocellular carcinoma (HCC) patients. *p < 0.05. 
****p < 0.0001. C-D Receiver operating characteristic (ROC) curves representing the diagnostic performance of FOLR1 (C) and alpha-fetoprotein 
(AFP) (D) for HCC. (E) ROC curve illustrating the combined diagnostic performance of FOLR1 and AFP for HCC. The black line represents the FOLR/
AFP combination, and the blue line represents AFP
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Table 1  Background of CHC and HCC patients in our cohort

Abbreviations: Age Patient Age, Sex (M/F) Sex (Male/Female), BMI Body Mass Index, WBC White Blood Cell count, Hb Hemoglobin, Plt Platelet, AST Aspartate 
Aminotransferase, ALT Alanine Aminotransferase, ALP Alkaline Phosphatase, Na Sodium, T-Bil Total Bilirubin, γ-GT Gamma-Glutamyl Transferase, Cr Creatinine, PT 
Prothrombin Time, PT-INR Prothrombin Time-International Normalized Ratio, ALB Albumin, AFP Alpha-Fetoprotein, FIB4-index Fibrosis-4 Index, NLR Neutrophil–
Lymphocyte Ratio, Child–Pugh Child–Pugh Score, ALBI Albumin-Bilirubin Score, IQR Interquartile Range

Factor All (N = 485) CHC(N = 238) HCC(N = 247) P value

Unit MEDIAN IQR Missing (N) MEDIAN IQR MEDIAN IQR

FOLR1 ng/µL 391.38 284.2–514.4 0 337.3 249.6–439.1 455.4 333.8–575.6  < 0.001

Age Years 71 61–78.5 0 67 55–74 75 68–81  < 0.001

Sex(M/F) 265/220 0 91/147 174/73  < 0.001

BMI kg/m2 22.6 20.6–25.4 0 22.8 20.5–25.6 22.5 20.6–25.3 0.645

WBC /mm3 4800 3750–5780 1 4990 4020–5860 4580 3460–5720 0.097

Hb g/dL 12.95 11.7–14.2 1 13.1 12.1–14.5 12.7 11.2–14  < 0.001

Plt 104/μL 14.5 8.9–19.6 0 16.7 10.825–21.3 13.2 7.9–17.3  < 0.001

AST U/L 41 29–59.5 0 41.5 29–62 40 30–58 0.200

ALT U/L 34 22–53 0 39 24–59 29 20–44  < 0.001

ALP U/L 291.5 226–394.25 3 272 209.5–349.5 323 240.8–461.5  < 0.001

Na mmol/L 140 139–141 76 140 139–141 140 138–141 0.030

T-Bil mg/dL 0.7 0.5–0.9 0 0.6 0.5–0.8 0.7 0.5–1 0.019

g-GT U/L 40 25–70 1 35 23–59.5 46 29–84 0.006

Cr mg/dL 0.74 0.62–0.88 33 0.68 0.58–0.8025 0.8 0.69–0.95  < 0.001

PT % 83 72–93 3 87 75.5–95 80 69–90  < 0.001

PT-INR 1.09 1.04–1.17 5 1.07 1.03–1.15 1.11 1.04–1.18 0.347

ALB g/dL 3.9 3.5–4.2 1 4 3.7–4.3 3.7 3.3–4.1  < 0.001

AFP ng/mL 7 3–18.5 36 4 3–9 11 5–54.5 0.060

Fib4-index 3.68 2.11–6.61 0 2.81 1.67–5.18 4.57 2.81–7.51  < 0.001

NLR 2.15 1.49–3.25 2 2.02 1.42–2.8 2.41 1.54–3.40 0.333

Child–Pugh (5/6/7/8/9/10/11/12) 281/79/51/27/7/6/1/1 32 178/29/12/9/1/3/1/1 99/50/39/18/6/3/0/0  < 0.001

ALBI -2.64 -2.25—-2.91 2 -2.77 -3.02—-2.50 -2.44 -2.79—-2.11  < 0.001

Table 2  Logistic Regression Analysis for the dianogosis of HCC in 485 Patients

Abbreviations: NLR Neutrophil–Lymphocyte Ratio, ALBI Albumin-Bilirubin Score, FIB4-index Fibrosis-4 Index, AFP Alpha-Fetoprotein, BMI Body Mass Index, AST 
Aspartate Aminotransferase, ALT Alanine Aminotransferase, γ-GT Gamma-Glutamyl Transferase, ALP Alkaline Phosphatase, ALB Albumin, Plt Platelet, Age Patient Age; 
Sex

Factor Univariate analysis Multivariate analysis

Odds ratio 95% CI P value Odds ratio 95% CI P value

FOLR1 1.003 1.002–1.005  < 0.001 1.002 1.000–1.003 0.013

NLR 1.045 0.955–1.145 0.329

ALBI 2.665 1.814–3.916  < 0.001 2.073 0.215–19.994 0.528

Fib4-index 1.123 1.069–1.179  < 0.001 1.085 0.977–1.205 0.120

AFP 1.022 1.013–1.032  < 0.001 1.021 1.010–1.032  < 0.001

BMI 0.990 0.948–1.034 0.644

AST 0.998 0.994–1.001 0.189

ALT 0.984 0.978–0.991  < 0.001 0.977 0.967–0.988  < 0.001

g-GT 1.003 1.001–1.006 0.003 1.003 0.999–1.007 0.091

ALP 1.003 1.002–1.004  < 0.001 1.002 1.000–1.004 0.025

ALB 0.420 0.294–0.599  < 0.001 3.068 0.378–24.893 0.292

Plt 1.000 1.000–1.000  < 0.001 1.000 1.000–1.000 0.588

Age 1.078 1.058–1.098  < 0.001 1.078 1.050–1.107  < 0.001

Sex (Male vs Female) 3.850 2.638–5.620  < 0.001 6.328 3.637–11.011  < 0.001



Page 10 of 15Shiode et al. Biomarker Research           (2025) 13:37 

of HCC. Therefore, in this study, we used a novel strat-
egy to identify prognostic markers for HCC by focusing 
on genes strongly associated with HCC stem/progeni-
tor markers, including KRT19, EPCAM, and PROM1. 
This strategy resulted in the discovery of FOLR1, which 
was strongly associated with a poor prognosis. FOLR1 is 
known to activate pathways such as the ERK [31, 32] and 
JAK/STAT3 [33, 34] pathways, which are critical for stem 
cell survival and proliferation. The uptake of folic acid is 
renewed in cancer cells, and folic acid is thought to con-
tribute to cell proliferation [35]. Excessive administra-
tion of folic acid has also been reported to promote liver 
carcinogenesis in a rat model [36]. FOLR1 is also known 
to be a transcription factor that controls the expres-
sion of genes involved in stem cell maintenance, such 
as OCT4, SOX2, and KLF2 [37, 38]. Interestingly, our 
study revealed that high FOLR1 expression was associ-
ated with a variety of oncogenic pathways, including the 
p53, Myc, E2F, and PI3K/AKT/mTOR pathways.These 
reports might expect any functional role of FOLR1 in 
tumor aggressiveness/stemness in HCC. Meanwhile, the 
observed associations of FOLR1 with KRT19, EPCAM, 
and PROM1 in our study are only correlative and could 
be influenced by other factors. Future research is neces-
sary to investigate the causal link between FOLR1, bio-
logical aggressiveness, and stem/progenitor features in 
HCC.

Various biomarkers have been studied, but new bio-
markers other than AFP have not yet become routine in 
the diagnosis of HCC [39]. AFP is the most widely used 
serum biomarker for HCC diagnosis and HCC surveil-
lance using ultrasound and AFP at semiannual intervals 
is recommended in the American Association for the 
Study of Liver Diseases (AASLD) guideline [40]. How-
ever, its role is debated due to limitations in sensitivity. 
In addition, not all HCC cases produce AFP, and its levels 
can also be elevated in cirrhosis or hepatitis. A large pro-
spective study found AFP positivity (≥ 11 ng/mL) in 46% 
of all HCC cases and only 23.4% in small HCC (< 2 cm) 
[41]. Another survey indicated that nearly half of HCC 
patients, especially those with early or small tumors, 
are AFP-negative, highlighting its limitations [41]. Con-
sequently, the European Association for the Study of 

the Liver (EASL) clinical practice guidelines described 
that the utility of AFP as biomarker is suboptimal in 
terms of cost-effectiveness for routine surveillance of 
early HCC (evidence low) [42]. This highlights the need 
for new biomarkers, particularly for AFP-negative HCC 
patients. In this study, the multivariate logistic regres-
sion analysis identified serum FOLR1 levels as an inde-
pendent diagnostic factor for HCC. While the diagnostic 
performance of FOLR1 was comparable to that of AFP, 
combining these two markers significantly increased the 
diagnostic accuracy, suggesting potential diagnostic util-
ity. In our cohort, ALT, ALP, age, and sex are also rec-
ognized as independent diagnostic factors for HCC in 
CHC patients. Age is a significant factor as prolonged 
liver injury increases HCC risk, and males are at higher 
risk due to hormonal and environmental factors, both of 
which are well-known risk factors of HCC [43]. While 
elevated ALT levels typically reflect active liver inflam-
mation, lower ALT levels have been associated with 
HCC occurrence, particularly in cirrhotic patients, where 
reduced hepatocyte function and numbers leads to lower 
ALT release [44]. Elevated ALP levels may indicate chol-
estasis or hepatic dysfunction, both of which are linked 
to advanced liver disease and HCC development [45]. 
Including these parameters strengthens the diagnostic 
framework for HCC in CHC patients.

More importantly, our study revealed the potential of 
serum FOLR1 levels as a prognostic indicator for HCC 
patients. Patients with high serum FOLR1 levels expe-
rienced significantly shorter OS than those with low 
serum FOLR1 levels did, regardless of the therapeutic 
procedure. Moreover, the multivariate Cox proportional 
hazard analysis proved that the serum FOLR1 level inde-
pendently predicted the prognosis of patients with HCC. 
Currently, no definitive prognostic biomarkers are avail-
able for HCC. The GALAD score was originally devel-
oped for the early detection of HCC [46] and has recently 
drawn attention as a prognostic marker. Several groups 
have shown its usefulness for predicting the prognosis 
of HCC [47–50]. Consistently, we also found that the 
GALAD score was capable of stratifying patients accord-
ing to prognosis in our HCC cohort. Since both FOLR1 
levels and the GALAD score are independent predictors 

(See figure on next page.)
Fig. 4  The serum FOLR1 level is a prognostic biomarker of early HCC, especially in combination with the GALAD score. (A) Kaplan‒Meier survival 
curves for HCC patients stratified by high (red line) and low (black line) serum FOLR1 levels. (B) Comparison of serum FOLR1 levels among patients 
treated with radiofrequency ablation (RFA), transarterial chemoembolization (TACE), and operation (OP). (C) Subgroup analysis of survival, showing 
survival curves for patients with high and low serum FOLR1 levels and stratified by treatment with RFA (FOLR1 RFA), TACE (FOLR1 TACE) and OP 
(FOLR1 OP). (D) Serum FOLR1 levels across different stages of HCC (stage 1 to stage 4). (E) Subgroup analysis of survival, showing survival curves 
for patients with high and low serum FOLR1 levels and stratified by HCC stage ((a) FOLR1 stage 1, (b) FOLR1 stage 2 and (c) FOLR1 stage 3). (F) 
Survival curves of HCC patients stratified by the GALAD score. (G) Survival curves of patients stratified by serum FOLR1 levels and GALAD score 
into the following groups: low/low (L/L), low/high or high/low (L/H or H/L), and high/high (H/H). *p < 0.05. **p < 0.01. ****p < 0.0001
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of a poor prognosis in patients with HCC, we tested the 
potential of their combination and demonstrated a bet-
ter stratification capacity. While the combination may 

improve predictive performance, it also increases model 
complexity, raising concerns about overfitting and 
reduced generalizability. Overfitting can limit the model’s 

Fig. 4  (See legend on previous page.)
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applicability to new datasets, emphasizing the need for 
robust validation methods such as cross-validation and 
external cohort testing. Additionally, the increased com-
plexity may impact clinical usability, as intricate models 
are harder to implement in practice. Future efforts should 
focus on balancing improved accuracy with simplicity to 
ensure the model’s practicality in real-world settings. In 
this study, serum FOLR1 levels were measured preop-
eratively and the potential role of postoperative FOLR1 
dynamics in influencing patient outcomes remains 
unexplored. Future studies should investigate whether 
changes in FOLR1 levels after surgery correlate with 
prognosis, as this could provide further insights into its 
utility as a dynamic biomarker for monitoring treatment 
response and disease progression.

Our study has several important limitations. First, 
while the biomarker potential of tumoral FOLR1 was 
confirmed in the validation cohort, that of serum FOLR1 
was only tested in the single retrospective cohort. A pro-
spective validation study will be initiated. Second, our 
cohort for the serum analysis included only Japanese 
patients; thus, the robustness of our findings across races 
could not be evaluated. Third, we could not compare the 
diagnostic ability of FOLR1 and GALAD scores for HCC 
because of the large number of missing values of Lens 
culinaris agglutinin-reactive fraction of alpha-fetoprotein 
(AFP-L3) in CHC patients without HCC and in the colon 
polyp cohort. Forth, patients with colon polyps were used 
as the control group; however, this group may not serve 
as an appropriate healthy control population, as there is 

Table 3  Background of HCC patients with FOLR1 high or low expression in our cohort

Abbreviations: Age Patient Age, Sex (M/F) Sex (Male/Female), BMI Body Mass Index, WBC White Blood Cell count, Hb Hemoglobin, Plt Platelet, AST Aspartate 
Aminotransferase, ALT Alanine Aminotransferase, ALP Alkaline Phosphatase, Na Sodium, T-Bil Total Bilirubin, γ-GT Gamma-Glutamyl Transferase, Cr Creatinine, PT 
Prothrombin Time, PT-INR Prothrombin Time-International Normalized Ratio, ALB Albumin, AFP Alpha-Fetoprotein, AFP-L3 Alpha-Fetoprotein-L3, FIB4 Fibrosis-4 Index, 
GALAD Gender, Age, AFP-L3, AFP, DCP (a scoring system for HCC prediction), NLR Neutrophil–Lymphocyte Ratio, Child–Pugh Child–Pugh Score, ALBI Albumin-Bilirubin 
Score, Tumor Diameter Tumor Diameter, Tumor Number Number of Tumors, Stage (I/II/III/IV) Tumor Stage (I to IV), IQR Interquartile Range

Factor Unit FOLR1-H(n = 74) FOLR1-L(n = 173) P value

MEDIAN IQR MEDIAN IQR

FOLR1 ng/µL 708.7 614.7–852.1 387.7 305.0–507.1  < 0.001

Age Years 77.0 70–81 74.0 67–80 0.088

Sex(M/F) 47/27 127/46 0.122

BMI kg/m2 22.1 20.3–25.3 22.6 20.7–25.3 0.981

WBC /mm3 4150.0 3175–5372.5 4860.0 3610–5805 0.418

Hb g/dL 11.6 10.2–12.8 13.2 12.0–14.3  < 0.001

Plt 104/μL 11.2 7.9–16.4 13.9 8.1–17.7 0.149

AST U/L 43.5 29.8–63.5 38 30–55 0.024

ALT U/L 27.5 20–44.3 30 20–44 0.230

ALP U/L 384 287–531.5 296.5 234–405 0.056

Na mmol/L 140 138.5–141 140 138–141 0.711

T-Bil mg/dL 0.7 0.5–1 0.7 0.5–1 0.732

γ-GT U/L 42.5 33.8–70.5 48 26.5–89 0.951

Cr mg/dL 0.99 0.81–1.63 0.76 0.66–0.86  < 0.001

PT % 78 67–87.9 81 70–90 0.538

PT-INR 1.13 1.07–1.20 1.1 1.04–1.17 0.403

ALB g/dL 3.5 3.2–3.9 3.8 3.4–4.2  < 0.001

AFP ng/mL 16 5.5–126 9 5–48 0.058

AFP-L3 ng/mL 5.95 3.5–20.38 7.25 4.1–25.68 0.889

FIB4 5.61 3.50–9.51 4.16 2.48–7.33 0.009

GALAD 3.81 2.62–7.07 4.20 2.44–6.01 0.282

NLR 2.55 1.67–3.61 2.30 1.52–3.33 0.440

Child–Pugh (5/6/7/8/9/10) 15/16/18/7/4/1 84/34/21/11/2/2 0.001

ALBI -2.31 -2.61—-1.93 -2.56 -2.86—-2.18  < 0.001

Tumor Diameter mm 13.00 10–18 13.00 10–20 0.841

Tumor Number 1 1–2 1 1–2 0.153

Stage (I/II/III/IV) 26/30/15/3 75/65/30/3 0.683
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no information regarding the effect of colon polyps on 
serum FOLR1 levels. Fifth, there is no cohort of patients 
treated with systemic therapy. Therefore, the value of 
FOLR1 in predicting the prognosis of these patients 
remains to be elucidated.

Conclusions
In conclusion, our study presents compelling evidence 
supporting the potential utility of FOLR1 as a prognos-
tic marker for HCC, with implications for improved risk 
stratification and personalized treatment approaches. 
Further validation studies are warranted to establish the 
clinical utility of FOLR1 and its potential impact on HCC 
management.
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Supplementary Material 1: Supplementary Fig. 1. Workflow for Identifying 
FOLR1 as a Biomarker in HCC. Schematic of the workflow used to identify 
FOLR1 as a biomarker. Genes upregulated in hepatocellular carcinoma 
(HCC) and correlated with cancer stemness markers (KRT19, PROM1, and 
EPCAM) were compared to identify candidate genes. These candidates 
were further filtered to select secretory proteins associated with overall 
survival (OS). FOLR1 was validated using independent cohorts for diag-
nostic and prognostic efficacy (created with Biorender).

Supplementary Material 2: Supplementary Fig. 2. Correlation between 
the expression of the FOLR1 mRNA and stemness-related genes. Scatter 
plot showing the correlations between KRT19 and EPCAM (a), KRT19 
and PROM1 (b), and EPCAM and PROM1 (c) mRNA levels in the TIGER-LC 
cohort.

Supplementary Material 3: Supplementary Fig. 3. Nomogram for HCC 
Prediction and its Diagnostic Performance. (a) Nomogram for predicting 
HCC based on FOLR1, ALP, ALT, sex, age, and AFP. Each variable contributes 
points, which are summed to estimate the probability of HCC. Density 
plots next to each predictor illustrate their distributions in the dataset. (b) 
ROC curves comparing the diagnostic performance of FOLR1 (purple), 

Table 4  Cox Proportional Hazards Regression Model for Predicting Overall Survival in HCC Patients

Abbreviations: GALAD Gender, Age, AFP-L3, AFP, DCP (a scoring system for HCC prediction), NLR Neutrophil–Lymphocyte Ratio, FIB4 Fibrosis-4 Index, BMI Body Mass 
Index, Plt Platelet, AST Aspartate Aminotransferase, ALT Alanine Aminotransferase, ALP Alkaline Phosphatase, ALB Albumin, g-GT Gamma-Glutamyl Transferase, AFP 
Alpha-Fetoprotein, ALBI Albumin-Bilirubin Score, Stage (II-IV vs I) Tumor Stage (II-IV versus I)

Factor Univariate analysis Multivariate analysis

Hazard ratio 95% CI p value Hazard ratio 95% CI p value

FOLR1 1.002 1.001–1.003  < 0.001 1.002 1.001–1.004 0.005

GALAD 1.208 1.108–1.310  < 0.001 1.134 1.018–1.263 0.022

NLR 1.189 1.036–1.343 0.015 1.140 0.886–1.465 0.308

FIB4 1.063 1.027–1.096 0.001 0.999 0.945–1.056 0.973

Age 1.041 1.017–1.067 0.001 1.022 0.988–1.056 0.212

BMI 0.968 0.917–1.024 0.258

Plt 1.000 1.000–1.000 0.140

AST 1.011 1.006–1.018  < 0.001 1.009 0.997–1.021 0.155

ALT 1.001 0.992–1.010 0.763

ALP 1.001 1.000–1.002 0.007 0.999 0.998–1.001 0.537

ALB 0.335 0.228–0.496  < 0.001 1.215 0.138–10.695 0.861

g-GT 1.000 0.997–1.001 0.642

AFP 1.000 1.000–1.000 0.018 1.000 1.000–1.000 0.324

ALBI 3.260 2.129–4.970  < 0.001 3.875 0.329–45.590 0.282

Sex (Male vs Female) 0.802 0.512–1.257 0.343

Stage (II-IV vs I) 1.885 1.207–2.943 0.004 1.640 0.700–3.842 0.255

Treatment (TACE vs RFA) 2.543 1.592–4.062  < 0.001 1.794 0.779–4.131 0.148
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AFP (green), and the combined nomogram model (black). The area under 
the curve (AUC) values for FOLR1, AFP, and the nomogram are 0.689, 
0.709, and 0.883, respectively, indicating superior predictive performance 
of the nomogram.

Supplementary Material 4: Supplementary Fig. 4. Expression of FOLR1 
mRNA Across Tumor Grades. Quantitative PCR analysis showing the 
expression levels of FOLR1 mRNA across different tumor grades (G1–G4) 
in HCC samples from TCGA-LIHC cohort.

Supplementary Material 5: Supplementary Fig. 5. Correlations between 
FOLR1 mRNA levels and clinical markers. Scatter plot showing the cor-
relations between FOLR1 mRNA levels and aspartate aminotransferase 
(AST) levels, aspartate aminotransferase (ALT) levels, platelet counts, the 
neutrophil–lymphocyte ratio (NLR), des-gamma-carboxy prothrombin 
(DCP) levels, AFP levels, the FIB4 index, albumin–bilirubin (ALBI) score and 
GALAD score.
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