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Abstract

Background Hepatocellular carcinoma (HCC) can be classified into several subtypes based on molecular traits, aid-
ing in prognostic stratification. The subtype with a poor prognosis is often associated with stem/progenitor features.
This study focused on identifying circulating biomarkers for aggressive HCC.

Methods We searched for secretory proteins whose expression was positively associated with the stem/progeni-
tor markers KRT19, EPCAM, and PROM1 in 2 independent HCC cohorts. Serum folate receptor 1 (FOLR1) levels were
measured in 238 chronic liver disease and 247 HCC patients, evaluating their diagnostic and prognostic capabilities.

Results FOLR1 was identified as a secretory protein that was positively correlated with all 3 stem/progenitor mark-
ers and a poor prognosis in both the discovery and validation cohorts. Higher FOLR1 expression was detected

in tumor than nontumor tissues and was associated with aggressive subtypes, and activation of p53, DNA repair, Myc,
E2F, and PI3K/AKT/mTOR pathways. Serum FOLR1 levels correlated with tumoral FOLR1 expression in HCC patients
and were significantly elevated compared with those in patients with chronic hepatitis or nonliver disease. Serum
FOLR1 levels demonstrated diagnostic performance for HCC comparable to that of alpha-fetoprotein (AFP), and their
combination increased the diagnostic accuracy. Elevated serum FOLRT1 levels were associated with poor prognosis

in HCC patients, regardless of treatment, especially in patients with early-stage disease. The multivariate analysis
revealed that the serum FOLRT level and the Gender, Age, AFP-L3, AFP, and Des-gamma-carboxy prothrombin
(GALAD) score were independent predictors of a poor prognosis with their combination further stratifying prognosis.

Conclusions FOLRT is a stemness-associated biomarker for HCC, with serum levels serving as a diagnostic marker
for HCC and a prognostic indicator for early-stage disease.
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Background

Primary liver cancer (PLC) remains a global health chal-
lenge, with an estimated incidence of>1 million cases
by 2025 [1], and is the sixth most common malignancy
worldwide [2]. Hepatocellular carcinoma (HCC) is the
major form of PLC and accounts for approximately 80%
of cases [3]. Despite advancements in diagnostic and
treatment modalities, the prognosis of HCC remains
a significant concern [4]. The 5-year survival rate for
HCC patients remains alarmingly low, except for those
diagnosed at an early stage, with rates of 54.5%, 29.2%,
9.8%, and 4.0% for stages A, B, C, and D, respectively, as
classified by the BCLC system [5, 6]. Current diagnos-
tic methods for HCC primarily rely on imaging, serum
biomarkers, and histopathological assessments [7]. The
complex etiology and diverse molecular subtypes of HCC
pose challenges in predicting patient prognosis during
diagnosis and tailoring effective treatment strategies [1,
8-11]. Precise markers that can enhance the prognos-
tic prediction are urgently needed to improve patient
outcomes.

The molecular classification of HCC has been con-
ducted in the past via microarray technology and, more
recently, by RNA/DNA sequencing using next-generation
sequencers [12, 13]. Several classifications have been pro-
posed, including 3 clusters (S1-3) by Hosida [14], 6 clus-
ters by Boyault [8], 4 clusters by Chiang [15], 3 clusters by
Murai [16], and the most recent 3 clusters by The Cancer
Genome Atlas (TCGA) [17]. These classifications are par-
ticularly useful for stratifying patients according to prog-
nosis. In these classifications, some subclasses are unique
and/or different from one classification to another, sug-
gesting the substantial molecular heterogeneity of HCC
[12, 18]. Importantly, all the classifications identified a
common subclass with an aggressive phenotype and poor
prognosis named the proliferation class by Chiang, G1
by Boyault, S2 by Hoshida, and Cluster 1 by TCGA [12].
This subclass is characterized by chromosomal instabil-
ity, global DNA hypomethylation, and especially stem
cell phenotypes, with increased expression of stem/pro-
genitor markers such as KRT19, EPCAM, and PROM1
[12, 19]. Indeed, all these stem/progenitor markers are
associated with a poor prognosis and aggressive behav-
ior of HCC [19-22]. Identifying such a poor prognostic
subclass may help to determine better treatment selec-
tion and disease monitoring but requires invasive tumor
biopsy. Because HCC is accurately diagnosed by con-
trast-enhanced computed tomography (CT) or Magnetic
Resonance Imaging (MRI) without tumor biopsy in daily
practice, the development of noninvasive biomarkers is
highly desirable.

In this study, we hypothesized that secretory pro-
teins, whose expression is associated with hepatic stem/
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progenitor markers in HCC, may serve as blood-based
prognostic biomarkers for HCC. First, we analyzed RNA-
sequencing data from 2 independent large-scale HCC
cohorts. We found that folate receptor 1 (FOLR1), a
known secretory protein [23], was upregulated in tumor
tissues and positively associated with 3 major stem/pro-
genitor markers, KRT19, EPCAM, and PROM1 [19, 24,
25], and a poor prognosis for HCC patients in both the
discovery and validation cohorts. We found that circulat-
ing FOLRI levels were positively correlated with FOLR1
tumoral levels in HCC patients. We subsequently proved
that serum FOLRI levels can serve as a novel biomarker
for HCC detection and prognostic predictions of early-
stage HCC, suggesting potential utility for improved risk
stratification and personalized treatment strategies.

Methods

Acquisition and analysis of the discovery cohort from TCGA
data

The RNA-seq data registered in The Cancer Genome
Atlas (TCGA) were downloaded from FIREHOSE (https://
gdac.broadinstitute.org/) and analyzed with Gene Pattern
(https://www.genepattern.org/). Secretory proteins were
extracted from the Human Protein Atlas (https://www.
proteinatlas.org/humanproteome/tissue/secretome). For
candidate gene selection, we first searched for secretory
proteins whose expression was strongly associated with
the expression of all 3 stem/progenitor markers, includ-
ing KRT19, EPCAM, and PROM1 (correlation coeffi-
cient>0.35). Then, we extracted genes that were highly
upregulated in tumor tissues compared with nontumor
tissues. We further selected genes predicted to encode
secretory proteins based on a database in the Human Pro-
tein Atlas. Finally, we selected genes whose high expression
was positively associated with a poor patient prognosis
(»<0.05). A nearest template prediction (NTP) analysis was
used to determine the various molecular classifications of
each patient registered in TCGA. GSEA with DESERT _
STEM_CELL_HEPATOCELLULAR_CARCINOMA _
SUBCLASS_UP and ssGSEA with hallmark gene sets were
performed to determine the biological state of each case
registered in TCGA.

Acquisition and analysis of the validation cohort

from TIGER-LC data

The validation cohort data used in this study were
derived from the the Thailand Initiative in Genom-
ics and Expression Research for Liver Cancer (TIGER-
LC) consortium, comprising 50 patients diagnosed
with hepatocellular carcinoma (HCC). The TIGER-LC
cohort included a comprehensive set of paired surgical
tumor and nontumor samples from sequential patients
with liver cancer across five major hospitals in Thailand:
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Maharaj Nakorn Chiang Mai Hospital, Roi Et Hospi-
tal, Chulabhorn Hospital-Bangkok, the National Cancer
Institute of Thailand, and Srinagarind Hospital. Recruit-
ment focused on patients with confirmed diagnoses of
primary liver cancers (HCC and intrahepatic cholan-
giocarcinoma (ICC)), as well as high-risk patients and
healthy controls. The diagnosis of HCC was based on
physician assessments using criteria such as elevated
serum AFP levels, ultrasound imaging, and/or histo-
pathological examinations. Samples were collected
sequentially from each hospital’s weekly schedule of liver
cancer surgeries and patient referrals, ensuring the repre-
sentative inclusion of patients with recent HCC diagno-
ses. Patients with mixed HCC-ICC were excluded from
this study. Clinical, demographic, socioeconomic, and
morbidity data were collected through comprehensive
questionnaires and medical records. Institutional review
board (IRB) approval was obtained from each participat-
ing center (Maharaj Nakorn Chiang Mai Hospital, Roi Et
Hospital, Chulabhorn Hospital-Bangkok, National Can-
cer Institute of Thailand, and Srinagarind Hospital), with
all participants providing written informed consent. The
exclusion criteria for the study population included indi-
viduals under 20 or over 80 years of age, those diagnosed
with HIV, residents in institutional settings, and those
who were severely ill at recruitment.

Analysis of patients’ serum samples

This retrospective cohort study enrolled 503 patients who
were admitted to Osaka University Hospital between
2014 and 2018 (238 patients with chronic hepatitis, 215
patients with HCC, and 50 patients with colorectal pol-
yps) and 32 HCC patients who underwent surgical resec-
tion at Hokkaido University Hospital between 2007 and
2018. A diagnosis of HCC was made by liver imaging
tests (computed tomography (CT) and Magnetic Reso-
nance Imaging (MRI)). All patients provided informed
consent, and the study design was consistent with the
principles of the Declaration of Helsinki. The protocol
for the study involving patient serum and tissues was
approved by the Institutional Review Board Committee
of Osaka University Hospital (Institutional Review Board
No. 17097).

RNA isolation and qPCR

Total RNA was extracted from human liver tissues
using the RNeasy Mini Kit (Qiagen, Venlo, Netherlands)
according to the manufacturer’s protocol. RNA concen-
tration and purity were assessed using a NanoDrop 2000
spectrophotometer (Thermo Fisher Scientific, Waltham,
MA), and samples with an A260/A280 ratio of 1.8-2.1
were used for subsequent analyses. One microgram of
total RNA was reverse transcribed into complementary
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DNA (cDNA) using the ReverTra Ace qPCR RT Kit
(Toyobo, Tokyo, Japan) following the manufacturer’s
instructions. Quantitative real-time PCR (qPCR) was
performed using the THUNDERBIRD Probe qPCR Mix
(QPS101; Toyobo, Osaka, Japan) on a QuantStudio 7
Real-Time PCR System (Thermo Fisher Scientific). Each
qPCR reaction was carried out in a 20 pL reaction vol-
ume containing 10 pL of THUNDERBIRD Probe qPCR
Mix, 1 pL of cDNA, 900 nM of each forward and reverse
primer, 250 nM of TagMan probe, and nuclease-free
water. The TagMan gene expression assays used were for
GAPDH (Hs02786624_g1) and FOLR1 (Hs06631528_s1).
The thermal cycling conditions were as follows: initial
denaturation at 95 °C for 30 s, followed by 40 cycles of
95 °C for 15 s and 60 °C for 1 min. Relative gene expres-
sion levels were calculated using the AACt method, with
GAPDH as the reference gene.

ELISAs

The preoperative plasma of patients was stored in
a—80 °C deep freezer and analyzed with a Human
FOLR1 ELISA Kit (DFLR10, R&D Systems) according to
the manufacturer’s protocol.

Statistical analysis

Statistical analyses were performed using Prism v.10.2.2
for Mac (GraphPad, San Diego, CA; research resource
identifier [RRID] SCR_002798), JMP version 14 (SAS
Institute, Inc., Cary, NC; RRID SCR_014242), and EZR
version 1.65 (Jichi Medical University Saitama Medi-
cal Center). Continuous variables were summarized as
means + SDs or medians with interquartile ranges, as
appropriate. Differences in continuous variables between
two groups were tested using an unpaired two-tailed t
test for normally distributed variables and the Mann—
Whitney U test for non-normally distributed variables.
Comparisons among three groups were performed using
analysis of variance (ANOVA) with Tukey’s post hoc test.
Survival analysis was conducted using the Kaplan—Meier
method, and differences between survival curves were
evaluated using the log-rank test. The required sample
size for survival analysis was calculated using G*Power
3.1 (Heinrich-Heine-Universitidt Diisseldorf, Germany)
with the following parameters: two-tailed test, a=0.05,
power=0.8, and proportions pl1=0.5 and p2=0.8. The
calculation indicated that a total sample size of 20 par-
ticipants (10 per group) was required to achieve adequate
statistical power. For diagnostic accuracy, the DeLong
test was used to compare the areas under the ROC
curves. Multivariable analyses were performed using
Cox proportional hazards models to adjust for potential
confounders, including age, sex, and tumor stage, with
results expressed as hazard ratios and 95% confidence
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intervals. For all statistical tests, a p-value of<0.05 was
considered statistically significant. The handling of miss-
ing data was performed using a complete-case analysis
approach unless otherwise stated. Detailed statistical
methods and software tools are reported in the CTAT
table.

Results

Tumoral FOLR1 is a stemness trait-associated prognostic
marker for HCC

We formulated a comprehensive strategy to identify
secretory proteins whose expression is closely associated
with the expression of HCC stem/progenitor markers and
a poor prognosis as potential blood-based biomarkers for
aggressive HCC (Fig. 1A, Supplementary Fig. 1). We first
analyzed RNA sequencing data from the HCC cohort in
TCGA database. We focused on 3 stem/progenitor mark-
ers, KRT19, EPCAM, and PROM, which are known to
be associated with tumor aggressiveness. These genes
exhibited strong positive correlations with each other
(Fig. 1B), confirming that they reflect common stemness
features in HCC. We identified 186 genes, expressions of
which were positively associated with that of all 3 genes
in tumor tissues and were significantly upregulated in
tumor tissues compared with nontumor tissues (Fig. 1C
left panel, D). Among them, 25 genes were predicted to
encode secretory proteins based on a database in the
Human Protein Atlas (Fig. 1C right panel, Supplementary
Table 1). After analyzing their associations with over-
all survival (OS), FOLR1 emerged as the only gene with
a significant impact on the prognosis (Fig. 1E). We ana-
lyzed RNA-sequencing data for tumor tissues from HCC
patients registered in the Thailand Initiative in Genom-
ics and Expression Research for Liver Cancer (TIGER-
LC) cohorts to externally validate our findings [26]. All
3 stem/progenitor markers were positively correlated
with each other (Supplementary Fig. 2) and with FOLR1
(Fig. 1G). Patients with high FOLR1 expression levels
experienced significantly shorter survival than those with

(See figure on next page.)
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low expression levels (Fig. 1H). The consistent findings
from 2 independent cohorts indicated that FOLR1 was a
tumor-derived prognostic marker for HCC.

Tumoral FOLR1 expression represents a poor prognostic
molecular subtype of HCC with aggressive biological
features

We then investigated the molecular characteristics of
HCC patients with high FOLR1 expression. We first
determined various molecular subclasses for each sam-
ple in TCGA cohort. FOLR1 expression levels were sig-
nificantly higher in the proliferation class in the Chang
classification, Cluster 1 in the iCluster classification, and
$1/2 in the Hoshida classification (Fig. 2A, B), suggest-
ing that FOLR1 was associated with the poor prognostic
subtype with biological aggressiveness and stem/pro-
genitor features. Gene set enrichment analysis (GSEA)
revealed the significant upregulation of a pathway linked
to HCC stem cell signatures in the high FOLR1 subgroup
(Fig. 2A, C). Moreover, single-set GSEA revealed that a
variety of oncogenic pathways related to aggressive bio-
logical features, including the p53, DNA repair, MYC,
E2F, and PIBK/AKT/MTOR pathways, were activated in
the high-FOLR1 subgroup (Fig. 2A, D). Overall, tumoral
FOLRI1 expression represents a poor prognostic molecu-
lar subtype of HCC with aggressive biological features.

The serum FOLRT1 level is a diagnostic biomarker of HCC,
especially in combination with AFP

FOLR1 was selected based on its secretory poten-
tial, and we thus examined whether tumor FOLRI1
levels are reflected peripherally in HCC patients. To
this end, we measured the serum FOLRI1 levels and
tumor FOLR1 expression levels in 32 HCC patients
who underwent surgical resection. We detected a sig-
nificant positive correlation between these parameters
(Fig. 3A), suggesting that serum FOLRI levels may
reflect tumoral FOLR1 expression in HCC patients.
Therefore, we next pursued the potential of FOLRI as

Fig.1 FOLRI1 is a tumor-derived and stemness trait-associated prognostic marker for HCC. (A) Schematic of the workflow used to identify
candidate biomarkers. Genes upregulated in hepatocellular carcinoma (HCC) and correlated with cancer stemness markers (KRT19, PROM1

and EPCAM) were compared to identify common genes. These genes were further filtered to identify those encoding secretory proteins that were
associated with overall survival (OS) (created with Biorender). (B) Scatter plot showing the correlations between KRT19 and EPCAM (a), KRT19

and PROM1 (b), and EPCAM and PROM1 (c) mRNA levels in TCGA-LIHC cohort. (C) (a) Venn diagram showing the overlap among genes correlated
with KRT19 (1870 genes), PROM1 (1469 genes), EPCAM (1417 genes) and upregulated genes (186 genes). (b) Venn diagram showing the overlap
among common genes (873 genes) and predicted secretory proteins (186 genes). (D) Quantitative PCR analysis showing the expression

levels of the folate receptor 1 (FOLRT) mRNA in control and HCC samples from TCGA-LIHC cohort. **p < 0.01. (E) Kaplan—Meier survival curves

for TCGA-LIHC cohort stratified by high (red line) and low (black line) FOLRT mRNA expression levels. (F-G) Scatter plot showing the correlation
between FOLRT mRNA expression and KRT19 (left panel), EPCAM (middle panel), and PROM1 (right panel) mRNA expression levels in TCGA-LIHC
cohort (F) and the Thailand Initiative in Genomics and Expression Research for Liver Cancer (TIGER-LC) cohort (G). (H) Kaplan—Meier survival curves
for the TIGER-LC cohort stratified by high (red line) and low (black line) FOLRT mRNA expression levels
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a blood-based biomarker for HCC patients by evalu-
ating the serum of 247 patients diagnosed with HCC
and 238 patients diagnosed with chronic hepatitis C
(CHC) without HCC, along with 50 patients diagnosed
with colon polyps without liver disease who served as
normal controls. Compared with CHC patients, HCC
patients were significantly older, predominantly male,
and presented higher fibrosis-4 (FIB-4) index val-
ues, while their platelet counts, prothrombin times,
and albumin levels were significantly lower (Table 1).
Compared with those in both normal controls and
CHC patients, serum FOLR1 levels were significantly
elevated in HCC patients (Fig. 3B). The univari-
ate logistic regression analysis revealed that FOLR1
levels, albumin-bilirubin (ALBI) scores, the FIB-4
index, alpha-fetoprotein (AFP), alanine aminotrans-
ferase (ALT), g-GTD, alkaline phosphatase (ALP), and
albumin levels, the platelet count, age, and sex were
associated with the occurrence of HCC among CHC
patients (Table 2). The multivariate analysis revealed
FOLRLI levels, AFP levels, ALT levels, ALP levels, age
and sex as independent diagnostic factors for HCC in
CHC patients (Table 2). The serum FOLR1 level dis-
criminated between HCC and CHC patients with an
area under the receiver operating characteristic curve
(AUROC) of 0.685 (Fig. 3C), which was comparable
to the AFP level, with an AUROC of 0.708 (Fig. 3D).
The optimal threshold level of FOLR1 for indicating a
higher diagnostic value for HCC is 409.45 pg/mL. At
this threshold, the sensitivity is 61.5% and the speci-
ficity is 68.5%. Compared with AFP alone, the com-
bination of these two markers yielded an AUROC of
0.764 for discriminating HCC from CHC, indicating
a significant improvement in diagnostic performance
(»p=0.019) (Fig. 3E). In addition, we have constructed
a diagnostic model based on multivariate regression
analysis incorporating FOLR1 and other clinical vari-
ables. Nomogram-based diagnostic model showed sig-
nificantly higher diagnostic value compared to AFP or
FOLR1 alone (Supplementary Fig. 3). Taken together,
these findings indicate that the serum FOLRI level
may be a potential tumor marker for detecting HCC,
especially in combination with AFP.

(See figure on next page.)
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The serum FOLRT1 level is a prognostic biomarker of early
HCC, especially in combination with the GALAD score
Next, we evaluated the utility of serum FOLR1 levels as
a prognostic marker in 247 HCC patients (Table 1). We
stratified patients into two groups based on the cutoff
value of serum FOLR1 levels determined by the Youden
index. HCC patients with high serum FOLR1 levels expe-
rienced significantly shorter OS than those with low
serum FOLRI levels (Fig. 4A). A subgroup analysis was
then conducted based on the treatment methods used
for HCC. No significant differences in FOLR1 levels were
observed among the 3 treatment methods, including
radiofrequency ablation (RFA), transarterial chemoem-
bolization (TACE) and operation (OP) (Fig. 4B). Patients
with high serum FOLRI levels had a significantly worse
prognosis than those with low serum FOLRI levels,
regardless of treatment (Fig. 4C). A subgroup analysis
based on HCC stage did not reveal significant differences
in FOLRI1 levels among the groups (Fig. 4D). However,
patients early-stage tumors (stages 1 and 2) presenting
with high FOLR1 levels had a significantly worse prog-
nosis (Fig. 4E). Thus, the serum FOLRI level is highly
useful as a prognostic marker, especially for early-stage
HCC. We then investigated the clinical factors associated
with high FOLR1 expression. The high FOLR1 group pre-
sented lower hemoglobin levels and serum albumin lev-
els and higher serum creatinine levels and FIB-4 index,
ALBI, and Child-Pugh scores than the low FOLR1 group
did, but no significant differences in tumor size, number,
or stage were observed (Table 3). FOLRI levels showed
a tendency to increase as the degree of differentiation
decreased, but it was not statistically significant (Sup-
plementary Fig. 4). An examination of the correlation
between FOLRI1 levels and the levels of various clinical
markers revealed no strong associations with clinical
variables (Supplementary Fig. 5). A univariate Cox pro-
portional hazard analysis revealed that FOLR1, GALAD
score, the neutrophil-lymphocyte ratio (NLR), the FIB-4
index, age, AST levels, ALP levels, albumin levels, AFP,
ALBI, stage and treatment methods were associated with
a poor prognosis (Table 4). The multivariate analysis
revealed that high FOLR1 levels and the GALAD score
were associated with poor prognosis (Table 4). Indeed,
HCC patients with high GALAD scores experienced

Fig. 2 Tumoral FOLR1 expression represents a poor prognostic molecular subtype of HCC with aggressive biological features. A Heatmap
showing gene expression, clinical features, molecular subclasses, and gene set enrichment scores of hallmark gene sets evaluated by single-set
gene set enrichment analysis (ssGSEA). B FOLRT mRNA levels in each molecular class. **p < 0.01. ****p < 0.0001. C Gene set enrichment analysis
(GSEA) comparing the FOLR1 high- and low-expression groups. Enrichment plot from GSEA showing the distribution of the enrichment scores
for the FOLR1-H and FOLR1-L expression groups. D Gene set enrichment scores of HCC patients with either high or low FOLRT mRNA levels in The

Cancer Genome Atlas (TCGA)-LIHC cohort. ****p <0.0001
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Fig. 3 The serum FOLR1 level is a diagnostic biomarker of HCC, especially in combination with AFP. A Scatter plot showing the correlation
between FOLRT mRNA expression and serum FOLR1 levels in the surgically resected HCC cohort. B Comparison of serum FOLRT levels

among patients with colorectal polyps, patients with chronic hepatitis C (CHC), and hepatocellular carcinoma (HCC) patients. *p < 0.05.

***%n <0,0001. C-D Receiver operating characteristic (ROC) curves representing the diagnostic performance of FOLR1 (C) and alpha-fetoprotein
(AFP) (D) for HCC. (E) ROC curve illustrating the combined diagnostic performance of FOLRT and AFP for HCC. The black line represents the FOLR/

AFP combination, and the blue line represents AFP

significantly shorter OS than did those with low GALAD
scores (Fig. 4F). The multivariate analysis of subgroup
revealed that FOLR1 was associated with poor progno-
sis among patients who underwent surgical treatment
and who were either stage I or II, while GALAD score
was associated with poor prognosis among patients who
underwent TACE treatment (Supplementary Table 2-7).
Finally, we integrated these two prognostic predictors of
HCC and found that the combination of FOLR1 levels
and the GALAD score further stratified patients accord-
ing to the prognosis (Fig. 4G). Overall, serum FOLR1
levels may be a prognostic biomarker of early HCC, espe-
cially in combination with the GALAD score.

Discussion

In this study, we identified FOLR1 as a biomarker of
HCC. The physiological roles of FOLR1 include the cel-
lular uptake of folate, which plays an important role in

cell growth, differentiation, and proliferation. FOLR1 has
been reported to be overexpressed in multiple cancers
of epithelial origin [27], and overexpression of FOLR1 is
associated with cancer progression and a poor patient
prognosis [28, 29]. Additionally, FOLR1 or portions of
the receptor are released into the circulation and func-
tion as serum markers for ovarian cancer [23, 30]. How-
ever, the role of FOLR1 in HCC has not been reported.
This study is the first to show the potential utility of both
tumor-derived and circulating FOLR1 as a prognos-
tic biomarker for HCC. Especially, serum FOLR1 levels
serve as a diagnostic marker for HCC and a prognostic
indicator for early-stage disease.

Recent research has emphasized the role of cancer
stem cells in driving HCC progression, metastasis, and
treatment resistance [22]. Indeed, a variety of cancer
stem cell and stemness markers are closely associated
with the aggressive behavior and poor clinical outcomes
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Table 1 Background of CHC and HCC patients in our cohort

Factor All (N=485) CHC(N=238) HCC(N=247) P value

Unit MEDIAN IQR Missing (N) MEDIAN IQR MEDIAN IQR

FOLR1 ng/plL 391.38 284.2-5144 0 337.3 249.6-439.1 4554 333.8-575.6  <0.001
Age Years 71 61-785 0 67 55-74 75 68-81 <0.001
Sex(M/F) 265/220 0 91/147 174/73 <0.001
BMI kg/m2 226 20.6-254 0 228 20.5-25.6 225 20.6-25.3 0.645
WBC /mm3 4800 3750-5780 1 4990 4020-5860 4580 3460-5720 0.097
Hb g/dL 12.95 11.7-14.2 1 13.1 12.1-145 12.7 11.2-14 <0.001
Plt 10%/uL 14.5 8.9-19.6 0 16.7 10.825-213 132 79-17.3 <0.001
AST U/L 4 29-59.5 0 415 29-62 40 30-58 0.200
ALT uU/L 34 22-53 0 39 24-59 29 20-44 <0.001
ALP U/L 291.5 226-39425 3 272 209.5-349.5 323 240.8-4615 <0.001
Na mmol/L 140 139-141 76 140 139-141 140 138-141 0.030
T-Bil mg/dL 0.7 0.5-0.9 0 0.6 0.5-0.8 0.7 0.5-1 0.019
g-GT U/L 40 25-70 1 35 23-59.5 46 29-84 0.006
Cr mg/dL 0.74 0.62-0.88 33 0.68 0.58-0.8025 0.8 0.69-0.95 <0.001
PT % 83 72-93 3 87 75.5-95 80 69-90 <0.001
PT-INR 1.09 1.04-1.17 5 1.07 1.03-1.15 1.11 1.04-1.18 0347
ALB g/dL 39 35-42 1 4 3.7-43 37 3.3-41 <0.001
AFP ng/mL 7 3-185 36 4 3-9 1 5-545 0.060
Fib4-index 3.68 2.11-6.61 0 2.81 1.67-5.18 4.57 2.81-7.51 <0.001
NLR 215 1.49-3.25 2 2.02 142-28 241 1.54-340 0.333
Child-Pugh  (5/6/7/8/9/10/11/12)  281/79/51/27/7/6/1/1 32 178/29/12/9/1/3/1/1 99/50/39/18/6/3/0/0 <0.001

ALBI -2.64 -225—291 2 -2.77 -3.02—250 -244 -2.79—-211  <0.001

Abbreviations: Age Patient Age, Sex (M/F) Sex (Male/Female), BMI Body Mass Index, WBC White Blood Cell count, Hb Hemoglobin, Plt Platelet, AST Aspartate
Aminotransferase, ALT Alanine Aminotransferase, ALP Alkaline Phosphatase, Na Sodium, T-Bil Total Bilirubin, y-GT Gamma-Glutamyl Transferase, Cr Creatinine, PT
Prothrombin Time, PT-INR Prothrombin Time-International Normalized Ratio, ALB Albumin, AFP Alpha-Fetoprotein, FIB4-index Fibrosis-4 Index, NLR Neutrophil-

Lymphocyte Ratio, Child-Pugh Child-Pugh Score, ALBI Albumin-Bilirubin Score, IQR Interquartile Range

Table 2 Logistic Regression Analysis for the dianogosis of HCC in 485 Patients

Factor Univariate analysis Multivariate analysis
Odds ratio 95% Cl Pvalue Odds ratio 95% Cl Pvalue

FOLRT 1.003 1.002-1.005 <0.001 1.002 1.000-1.003 0013
NLR 1.045 0.955-1.145 0.329

ALBI 2.665 1.814-3916 <0.001 2.073 0.215-19.994 0.528
Fib4-index 1.123 1.069-1.179 <0.001 1.085 0.977-1.205 0.120
AFP 1.022 1.013-1.032 <0.001 1.021 1.010-1.032 <0.001
BMI 0.990 0.948-1.034 0.644

AST 0.998 0.994-1.001 0.189

ALT 0.984 0.978-0.991 <0.001 0.977 0.967-0.988 <0.001
g-GT 1.003 1.001-1.006 0.003 1.003 0.999-1.007 0.091
ALP 1.003 1.002-1.004 <0.001 1.002 1.000-1.004 0.025
ALB 0420 0.294-0.599 <0.001 3.068 0.378-24.893 0292
Pt 1.000 1.000-1.000 <0.001 1.000 1.000-1.000 0.588
Age 1.078 1.058-1.098 <0.001 1.078 1.050-1.107 <0.001
Sex (Male vs Female) 3.850 2.638-5.620 <0.001 6.328 3.637-11.011 <0.001

Abbreviations: NLR Neutrophil-Lymphocyte Ratio, ALBI Albumin-Bilirubin Score, FIB4-index Fibrosis-4 Index, AFP Alpha-Fetoprotein, BMI Body Mass Index, AST
Aspartate Aminotransferase, ALT Alanine Aminotransferase, y-GT Gamma-Glutamyl Transferase, ALP Alkaline Phosphatase, ALB Albumin, Plt Platelet, Age Patient Age;

Sex
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of HCC. Therefore, in this study, we used a novel strat-
egy to identify prognostic markers for HCC by focusing
on genes strongly associated with HCC stem/progeni-
tor markers, including KRT19, EPCAM, and PROMI.
This strategy resulted in the discovery of FOLR1, which
was strongly associated with a poor prognosis. FOLRI is
known to activate pathways such as the ERK [31, 32] and
JAK/STAT3 [33, 34] pathways, which are critical for stem
cell survival and proliferation. The uptake of folic acid is
renewed in cancer cells, and folic acid is thought to con-
tribute to cell proliferation [35]. Excessive administra-
tion of folic acid has also been reported to promote liver
carcinogenesis in a rat model [36]. FOLR1 is also known
to be a transcription factor that controls the expres-
sion of genes involved in stem cell maintenance, such
as OCT4, SOX2, and KLF2 [37, 38]. Interestingly, our
study revealed that high FOLR1 expression was associ-
ated with a variety of oncogenic pathways, including the
p53, Myc, E2F, and PI3K/AKT/mTOR pathways.These
reports might expect any functional role of FOLR1 in
tumor aggressiveness/stemness in HCC. Meanwhile, the
observed associations of FOLR1 with KRT19, EPCAM,
and PROML1 in our study are only correlative and could
be influenced by other factors. Future research is neces-
sary to investigate the causal link between FOLRI, bio-
logical aggressiveness, and stem/progenitor features in
HCC.

Various biomarkers have been studied, but new bio-
markers other than AFP have not yet become routine in
the diagnosis of HCC [39]. AFP is the most widely used
serum biomarker for HCC diagnosis and HCC surveil-
lance using ultrasound and AFP at semiannual intervals
is recommended in the American Association for the
Study of Liver Diseases (AASLD) guideline [40]. How-
ever, its role is debated due to limitations in sensitivity.
In addition, not all HCC cases produce AFPD, and its levels
can also be elevated in cirrhosis or hepatitis. A large pro-
spective study found AFP positivity (>11 ng/mL) in 46%
of all HCC cases and only 23.4% in small HCC (<2 cm)
[41]. Another survey indicated that nearly half of HCC
patients, especially those with early or small tumors,
are AFP-negative, highlighting its limitations [41]. Con-
sequently, the European Association for the Study of

(See figure on next page.)
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the Liver (EASL) clinical practice guidelines described
that the utility of AFP as biomarker is suboptimal in
terms of cost-effectiveness for routine surveillance of
early HCC (evidence low) [42]. This highlights the need
for new biomarkers, particularly for AFP-negative HCC
patients. In this study, the multivariate logistic regres-
sion analysis identified serum FOLR1 levels as an inde-
pendent diagnostic factor for HCC. While the diagnostic
performance of FOLR1 was comparable to that of AFP,
combining these two markers significantly increased the
diagnostic accuracy, suggesting potential diagnostic util-
ity. In our cohort, ALT, ALP, age, and sex are also rec-
ognized as independent diagnostic factors for HCC in
CHC patients. Age is a significant factor as prolonged
liver injury increases HCC risk, and males are at higher
risk due to hormonal and environmental factors, both of
which are well-known risk factors of HCC [43]. While
elevated ALT levels typically reflect active liver inflam-
mation, lower ALT levels have been associated with
HCC occurrence, particularly in cirrhotic patients, where
reduced hepatocyte function and numbers leads to lower
ALT release [44]. Elevated ALP levels may indicate chol-
estasis or hepatic dysfunction, both of which are linked
to advanced liver disease and HCC development [45].
Including these parameters strengthens the diagnostic
framework for HCC in CHC patients.

More importantly, our study revealed the potential of
serum FOLRLI levels as a prognostic indicator for HCC
patients. Patients with high serum FOLR1 levels expe-
rienced significantly shorter OS than those with low
serum FOLR1 levels did, regardless of the therapeutic
procedure. Moreover, the multivariate Cox proportional
hazard analysis proved that the serum FOLRI level inde-
pendently predicted the prognosis of patients with HCC.
Currently, no definitive prognostic biomarkers are avail-
able for HCC. The GALAD score was originally devel-
oped for the early detection of HCC [46] and has recently
drawn attention as a prognostic marker. Several groups
have shown its usefulness for predicting the prognosis
of HCC [47-50]. Consistently, we also found that the
GALAD score was capable of stratifying patients accord-
ing to prognosis in our HCC cohort. Since both FOLR1
levels and the GALAD score are independent predictors

Fig.4 The serum FOLR1 level is a prognostic biomarker of early HCC, especially in combination with the GALAD score. (A) Kaplan—-Meier survival
curves for HCC patients stratified by high (red line) and low (black line) serum FOLR1 levels. (B) Comparison of serum FOLR1 levels among patients
treated with radiofrequency ablation (RFA), transarterial chemoembolization (TACE), and operation (OP). (C) Subgroup analysis of survival, showing
survival curves for patients with high and low serum FOLR1 levels and stratified by treatment with RFA (FOLR1 RFA), TACE (FOLR1 TACE) and OP
(FOLR1 OP). (D) Serum FOLR1 levels across different stages of HCC (stage 1 to stage 4). (E) Subgroup analysis of survival, showing survival curves
for patients with high and low serum FOLR1 levels and stratified by HCC stage ((a) FOLR1 stage 1, (b) FOLR1 stage 2 and (c) FOLR1 stage 3). (F)
Survival curves of HCC patients stratified by the GALAD score. (G) Survival curves of patients stratified by serum FOLR1 levels and GALAD score
into the following groups: low/low (L/L), low/high or high/low (L/H or H/L), and high/high (H/H). *p <0.05. **p < 0.01. ****p < 0.0001
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Fig. 4 (See legend on previous page.)

of a poor prognosis in patients with HCC, we tested the
potential of their combination and demonstrated a bet-
ter stratification capacity. While the combination may

improve predictive performance, it also increases model
complexity, raising concerns about overfitting and
reduced generalizability. Overfitting can limit the model’s
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Table 3 Background of HCC patients with FOLR1 high or low expression in our cohort

Factor Unit FOLR1-H(n=74) FOLR1-L(n=173) P value

MEDIAN IQR MEDIAN IQR

FOLR1 ng/plL 708.7 614.7-852.1 387.7 305.0-507.1 <0.001
Age Years 77.0 70-81 74.0 67-80 0.088
Sex(M/F) 47/27 127/46 0.122
BMI kg/m2 22.1 20.3-25.3 226 20.7-25.3 0.981
WBC /mm3 4150.0 3175-5372.5 4860.0 3610-5805 0418
Hb g/dL 116 10.2-12.8 13.2 12.0-14.3 <0.001
Plt 10%/uL 1.2 79-164 139 8.1-17.7 0.149
AST u/L 435 29.8-63.5 38 30-55 0.024
ALT u/L 27.5 20-44.3 30 20-44 0.230
ALP u/L 384 287-531.5 296.5 234-405 0.056
Na mmol/L 140 138.5-141 140 138-141 0711
T-Bil mg/dL 0.7 0.5-1 0.7 0.5-1 0.732
y-GT u/L 425 33.8-705 48 26.5-89 0.951
Cr mg/dL 0.99 0.81-1.63 0.76 0.66-0.86 <0.001
PT % 78 67-87.9 81 70-90 0.538
PT-INR 113 1.07-1.20 1.1 1.04-1.17 0403
ALB g/dL 35 32-39 38 34-4.2 <0.001
AFP ng/mL 16 55-126 9 5-48 0.058
AFP-L3 ng/mL 5.95 3.5-20.38 7.25 4.1-25.68 0.889
FIB4 561 3.50-9.51 4.16 248-7.33 0.009
GALAD 3.81 2.62-7.07 4.20 244-6.01 0.282
NLR 255 1.67-3.61 230 1.52-333 0440
Child-Pugh (5/6/7/8/9/10) 15/16/18/7/4/1 84/34/21/11/2/2 0.001
ALBI -2.31 -2.61—1.93 -2.56 -2.86—-2.18 <0.001
Tumor Diameter mm 13.00 10-18 13.00 10-20 0.841
Tumor Number 1 1 1-2 0.153
Stage (I/1I/111/IV) 26/30/15/3 75/65/30/3 0.683

Abbreviations: Age Patient Age, Sex (M/F) Sex (Male/Female), BMI Body Mass Index, WBC White Blood Cell count, Hb Hemoglobin, Pit Platelet, AST Aspartate
Aminotransferase, ALT Alanine Aminotransferase, ALP Alkaline Phosphatase, Na Sodium, T-Bil Total Bilirubin, y-GT Gamma-Glutamyl Transferase, Cr Creatinine, PT
Prothrombin Time, PT-INR Prothrombin Time-International Normalized Ratio, ALB Albumin, AFP Alpha-Fetoprotein, AFP-L3 Alpha-Fetoprotein-L3, FIB4 Fibrosis-4 Index,
GALAD Gender, Age, AFP-L3, AFP, DCP (a scoring system for HCC prediction), NLR Neutrophil-Lymphocyte Ratio, Child-Pugh Child-Pugh Score, ALBI Albumin-Bilirubin
Score, Tumor Diameter Tumor Diameter, Tumor Number Number of Tumors, Stage (I/1l/1ll/IV) Tumor Stage (I to IV), IQR Interquartile Range

applicability to new datasets, emphasizing the need for
robust validation methods such as cross-validation and
external cohort testing. Additionally, the increased com-
plexity may impact clinical usability, as intricate models
are harder to implement in practice. Future efforts should
focus on balancing improved accuracy with simplicity to
ensure the model’s practicality in real-world settings. In
this study, serum FOLRI1 levels were measured preop-
eratively and the potential role of postoperative FOLR1
dynamics in influencing patient outcomes remains
unexplored. Future studies should investigate whether
changes in FOLR1 levels after surgery correlate with
prognosis, as this could provide further insights into its
utility as a dynamic biomarker for monitoring treatment
response and disease progression.

Our study has several important limitations. First,
while the biomarker potential of tumoral FOLR1 was
confirmed in the validation cohort, that of serum FOLR1
was only tested in the single retrospective cohort. A pro-
spective validation study will be initiated. Second, our
cohort for the serum analysis included only Japanese
patients; thus, the robustness of our findings across races
could not be evaluated. Third, we could not compare the
diagnostic ability of FOLR1 and GALAD scores for HCC
because of the large number of missing values of Lens
culinaris agglutinin-reactive fraction of alpha-fetoprotein
(AFP-L3) in CHC patients without HCC and in the colon
polyp cohort. Forth, patients with colon polyps were used
as the control group; however, this group may not serve
as an appropriate healthy control population, as there is
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Table 4 Cox Proportional Hazards Regression Model for Predicting Overall Survival in HCC Patients

Factor Univariate analysis Multivariate analysis
Hazard ratio 95% Cl p value Hazard ratio 95% Cl p value

FOLR1 1.002 1.001-1.003 <0.001 1.002 1.001-1.004 0.005
GALAD 1.208 1.108-1.310 <0.001 1.134 1.018-1.263 0.022
NLR 1.189 1.036-1.343 0.015 1.140 0.886-1.465 0.308
FIB4 1.063 1.027-1.096 0.001 0.999 0.945-1.056 0973
Age 1.041 1.017-1.067 0.001 1.022 0.988-1.056 0212
BMI 0.968 0.917-1.024 0.258

Plt 1.000 1.000-1.000 0.140

AST 1.011 1.006-1.018 <0.001 1.009 0.997-1.021 0.155
ALT 1.001 0.992-1.010 0.763

ALP 1.001 1.000-1.002 0.007 0.999 0.998-1.001 0.537
ALB 0335 0.228-0.496 <0.001 1.215 0.138-10.695 0.861
g-GT 1.000 0.997-1.001 0.642

AFP 1.000 1.000-1.000 0.018 1.000 1.000-1.000 0324
ALBI 3.260 2.129-4.970 <0.001 3.875 0.329-45.590 0.282
Sex (Male vs Female) 0.802 0.512-1.257 0.343

Stage (IIHV vs 1) 1.885 1.207-2.943 0.004 1.640 0.700-3.842 0.255
Treatment (TACE vs RFA) 2543 1.592-4.062 <0.001 1.794 0.779-4.131 0.148

Abbreviations: GALAD Gender, Age, AFP-L3, AFP, DCP (a scoring system for HCC prediction), NLR Neutrophil-Lymphocyte Ratio, FIB4 Fibrosis-4 Index, BMI Body Mass
Index, Pt Platelet, AST Aspartate Aminotransferase, ALT Alanine Aminotransferase, ALP Alkaline Phosphatase, ALB Albumin, g-GT Gamma-Glutamyl Transferase, AFP
Alpha-Fetoprotein, ALBI Albumin-Bilirubin Score, Stage (lI-1V vs I) Tumor Stage (lI-1V versus I)

no information regarding the effect of colon polyps on
serum FOLRI1 levels. Fifth, there is no cohort of patients
treated with systemic therapy. Therefore, the value of
FOLRI in predicting the prognosis of these patients
remains to be elucidated.

Conclusions

In conclusion, our study presents compelling evidence
supporting the potential utility of FOLR1 as a prognos-
tic marker for HCC, with implications for improved risk
stratification and personalized treatment approaches.
Further validation studies are warranted to establish the
clinical utility of FOLRI and its potential impact on HCC
management.
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AFP Alpha-fetoprotein

AFP-13 Lens culinaris agglutinin-reactive fraction of alpha-fetoprotein
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Supplementary Material 1: Supplementary Fig. 1. Workflow for Identifying
FOLRT as a Biomarker in HCC. Schematic of the workflow used to identify
FOLRT1 as a biomarker. Genes upregulated in hepatocellular carcinoma
(HCC) and correlated with cancer stemness markers (KRT19, PROM1, and
EPCAM) were compared to identify candidate genes. These candidates
were further filtered to select secretory proteins associated with overall
survival (OS). FOLR1 was validated using independent cohorts for diag-
nostic and prognostic efficacy (created with Biorender).

Supplementary Material 2: Supplementary Fig. 2. Correlation between
the expression of the FOLRT mRNA and stemness-related genes. Scatter
plot showing the correlations between KRT19 and EPCAM (a), KRT19
and PROM1 (b), and EPCAM and PROM1 (c) mRNA levels in the TIGER-LC
cohort.

Supplementary Material 3: Supplementary Fig. 3. Nomogram for HCC
Prediction and its Diagnostic Performance. (a) Nomogram for predicting
HCC based on FOLRT, ALP, ALT, sex, age, and AFP. Each variable contributes
points, which are summed to estimate the probability of HCC. Density
plots next to each predictor illustrate their distributions in the dataset. (b)
ROC curves comparing the diagnostic performance of FOLRT (purple),
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AFP (green), and the combined nomogram model (black). The area under
the curve (AUC) values for FOLR1, AFP, and the nomogram are 0.689,
0.709, and 0.883, respectively, indicating superior predictive performance
of the nomogram.

Supplementary Material 4: Supplementary Fig. 4. Expression of FOLR1
mRNA Across Tumor Grades. Quantitative PCR analysis showing the
expression levels of FOLRT mRNA across different tumor grades (G1-G4)
in HCC samples from TCGA-LIHC cohort.

Supplementary Material 5: Supplementary Fig. 5. Correlations between
FOLR1 mRNA levels and clinical markers. Scatter plot showing the cor-
relations between FOLRT mRNA levels and aspartate aminotransferase
(AST) levels, aspartate aminotransferase (ALT) levels, platelet counts, the
neutrophil-lymphocyte ratio (NLR), des-gamma-carboxy prothrombin
(DCP) levels, AFP levels, the FIB4 index, aloumin-bilirubin (ALBI) score and
GALAD score.
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