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A Selection Method of Observing Positions for Highly Accurate Measurement

of Residual Stresses

Yukio UEDA * and Keiji FUKUDA **

Abstract

The authors have already proposed the general principles in measurement of residual stress. In this paper, the
authors developed a new method for selection of observing positions of strains to ensure highly accurate measurement of
residual stresses over a whole object by using the theory of inherent strain, which is based on one of these principles.

By this selection method, it is seen that the more number of observations ensures the better average accuracy of

estimated values. However,

there are many positions where observed values scarcely influence the accuracy of

measurement. These positions can be excluded from the measurements for reasons of economy and comparatively small
number of observing positions can be selected by the present theory, which still secures a high accuracy of measurement.

KEY WORDS: (Measuring Theory) (Residual Stresses) (Inherent Strains) (Selection of Observing Positions)

1. Introduction

The authors have already proposed the general
principles in measurement of residual stresses and shown
that there are two measuring theories for the application
of the principles, (1) theory of inherent strain in which
inherent strains are dealt as parameters of measurement
(2) theory of sectioned-force in which sectioned-forces are
dealt as parametersl). These measuring theories have
been formulated with the aid of the finite element
method, and generalized by a statistic approach in order
to investigate the reliability of estimated values. Using
these theories, residual stresses over a whole object can be
estimated by comparatively less observed strains.

Furthermore, the authors have presented a new
measuring method of three dimensional residual stresses
induced in a long welded joint, based on theory of in-
herent strain which simplified by utilizing the character-
istics of the distribution of inherent strains. With the
support of the rational theory, the distributions of re-
sidual stresses and longitudinal inherent strains in a
multipass welded joint have been measured for the first
time?).

But if very accurate estimate of the stress distribution
all over the object is required within a limited number of
observing positions, it is neccessary to choose appropriate
observing positions of strains.

In this paper, a new method for selection of observing
positions is proposed to optimize the number of observing
positions and ensure highly accurate measurement by

using the theory of inherent strain.

2. Basic Formulae of Measurement of Residual Stresses
Based on Theory of Inherent Strain

In a welded joint, residual inherent strains which
include dislocations are generally produced at the weld
and in its vicinity by thermal elastic plastic strain history
due to welding. Some portion of these residual inherent
strains results in free expansion-contraction of the welded
joint, and does not produce residual stresses. Then, the
remaining portion of the residual inherent strains causes
residual stresses. These inherent strains are called
effective inherent strains (sometimes called inherent
strains simply).

If the distribution of effective inherent strains is repre-
sented by an equation with q parameters {e*}, the
resulting residual elastic strain {e} at any point of the
body produced by the inherent strains are obtained in the
following form.

{e}= [A*]{e*}, [A*] = (nxq)
where n the total number of components of
elastic strains

q : the total number of parameters of in-
herent strains

)

In Eq. (1), the components of the jth row of elastic
response matrix [H*] correspond to elastic strains
produced in the body when only.jth parameter e*]- of the
inherent strain distribution being unit is imposed.
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If m number of elastic strains can be observed, m
equations can be taken out of Eq.(1)and the observation
equation is constituted as follows.

{m€} —[H*] {e*} ={ v}, [H*] = (mxq) (2)

where {m€} : observed strains

{v}: residuals

In the case of rank [H*] = q, the most probable values
{ €*} of parameters of the inherent strains are decided so
as to minimize the sum of squares of the residuals.

{ex}=[A] [H*]' { e} = [G*]{ ¢}
where [A]

(3)
(a;)=C[E [H*)™ = (g xq)
variance matrix

[G*]= (g;) = [A] [H*' = (g xm)

generalized inverse of matrix [H*]

Then, the elastic strain distribution in the whole object
can be calculated by substituting Eq. (3) into Eq. (1).

3. Selection Method of Observing Positions of Strains

In this section, a new method for selection of observing
positions of strains is proposed, in the framework of the
theory of inherent strain using the finite element method.
According to this method, it is possible to select observing
positions which ensure a high accuracy of measurement
within a limited number of observing positions. This
theory can be applicable to the case where the boundary
of distribution region of inherent strains is estimated
before measurement of residual stresses.

3.1 Condition for selection of observing positions of strains

Generally, it is considered that errors included in
the observed values of strains obeys the normal distri-
bution ( Gauss’ distribution ) N(0,s?). Then, the most
probable value €7 is a stochastic variable which also obeys
the normal distribution and its variance s"‘i2 is given by

2 - 2 .

s*; " =a;; -8 (i=1~4q) 4)
In the above equation, the coefficients a;; are the diagonal
components of the variance matrix [A] and express the
degree of propagation of observation errors.

Then, the accuracy of the estimated values over the
whole object can be evaluated by the mean value V,,, of
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“the variances of the inherent strains, that is,

vm=(iZz1 s;‘2)/q=tr[A]~ s*/q )

q
where tr[A] = i=21 a;

The variance s?> of observation errors in the above equa-
tions is related only with the performance of a measuring
instrument to observe strains and is not influenced by the
observing positions of strains. If the region of the
inherent strain distribution can be assumed in advance,
and q number of independent parameters of the ex-
pression for inherent strains are constant, the value V,,
depends only upon the trace of the matrix [A], the sum
of the diagonal components, which is related with the
components of the observation equation [H*]. These
components of the matrix [H*] may change by selection
of m number of observing positions from the elastic
response [H*] over the whole object.

If the total number of strains which can be observed is
equal to m, ( <n ), the combination of selection of m
observing positions is tCm- One of these combinations
which minimizes the value V, , that is tr[A], is con-
sidered the Dbest selection of observing positions.
However, when this theory is applied directly for selection
of observing positions, it is neccessary to compute the
inverse matrix ( [H*]T [H*] )~ !, thm times and
enormous computing time is required. In order to reduce
the computing time, a simplified method for selection of
observing position is proposed below.

3.2 Increase of the trace [A] with decrease of observing
positions

As mentioned above, the average accuracy of estimated
values over the object can be evaluated by tr[A]. Here,
first of all, changes of tr[A] will be studied when m,
number of observing positions are eliminated from (m, +
m, ) observing positions.

It is assumed that the observation equation [H*], the
variance matrix [A] and the generalized inverse [G*] for
the original (m, + m,) observing positions have been
already computed. And the matrices [H*} and [G*] may
be divided into two parts as follows.

me =[H] M) =(m, xq)
Hy [Hb]=(mqu) :
Q)
[G*] = [G,1G,] [G,] =(qxmy
(Gl =(q x my)
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Here, rank [H ] = q is assumed. This implies that the
generalized inverse can be obtained even if the number of
observing positions is reduced to m,.

In connection with Eqgs. (6), there exist some relations
between [H*] and [G*] which will be expressed in the
following.

[G*] = [A] [H¥]T = [A] [H,TiH,T] = [G, iG]

L H] = GV A, [H)=(6,1T A7 (D

[G*] [B*] =[G,] [H,]+[Gy]1 [Hy] = [1] @)

where

[1]

identity matrix

Using these relations, the generalized inverse for only m,
number of observing positions is given by

((H,1T (H,D)7! (1,17

=([A]7" [G,] [H,])"' [A]7'[G,]
=([A][A]71[G,) [H,]1)' [G,]
=([G,] [H,1)"'[G,]

=([1] - [G,] [H,]) ' [G,] ©)

On the other hand, there exists the next relation.

(117 = [G,] [H,1) (111 +[G,] [T —H,G, 17" [H,])
= [1] =[G, ] [H,] +[Gy] [1—H, G,]~" [H,]
— 1G] [H,] [Gy] [T—H, G, 17" [H,]
= [1] = [Gy] [H,] +[G,] ([1-H,G,] ™"
— [H,] [G,] [1-H,G,] ™) [H,]
=[11 - [G,] [H,] +[G,] ([1—H,G,]
[1-H,G,17") [H,]
= (1]

Then, the inverse matrix of the term on the right-hand
side of Eq. (9) can be evaluated as follows.
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[I-G H 1 "=[I]+[G] [I-H G ] '[H] (10)

And Eq. (9) can be rewritten in the following form by
using Eq. (10).

(17 [1,1)7" 1,17
=([I]+[Gb][I_Hbi]7l [Hb])[Ga] (11)

By Egs. (7) and (11), the variance and the trace are
calculated for m, observing positions, after eliminating
m, observing positions from the (m, + m, ) original
ones, as follows,

([H,17 [1,])"!

=[A] +[G,] ([1] —[H,] [G1) ' [G,]" (12)
tr ([H,]T[H,])™!

=tr [A]+tr [G, ] ([I-H G 1) [G1T  (3)

On the other hand, the following equation may be derived
by taking into account of the symmetry of the matrix

[H,][Gy].
[H,] [G,]1 =[G, 1" [A]7" [G,]

=[G, 1T ([H,]1T [H,]
+[H,1T [H,]) [G,]

=([H,] [G,1)'([H,][G,])
+([H,] (6,1 ([H,][G,])

=([H,] [G,1)T ([H,] [G,])

+([H,] [G,])? (14)
As the first term on the right-hand side of Eq. (14) is a
positive symmetric matrix, it has non-negative eigenvalues
k? . When the eigenvalues of the matrix [H,1[G] are
denoted by A, the following relationship between ; and
\; may exist# .
}\l = g%+ )\2
i i
0<N <1 (i-= (15)

1 ~m )
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This eigenvalue A; must satisfy the following condition,

det [ A1 — HG, | =0 (16)

If the eigenvalues of the matrix [ I — H G 171 are
denoted by u;, the following relation is derived.

det | ;1 — [I — H G ]!

det |1 — H G| ™" - det | [T - HG)-T]
0 :

1

As rank [H,] = q, Eq. (11) can'be calculated and the
determinant of the right-hand side in Eq. (11), det
[1— H, G, | ™", is not zero. Then, the eigenvalue y; of
the above equation is not equal to zero and the next
equation is derived.

dot | 1 — H,G,| ™" « det| (1 — 1/n;)

—HpGy l * U =0

Ldet| (1= ;) 1 — HGyl=0 amn
By using Egs. (16), (17) and (15),
xle”ul,ﬁ’ﬂl:l—lxl-Zl (18)

(i=1~my)

The sign of the second term on the right-hand side of Eq.
(13) is studied by utilizing Eq. (18). The matrix
[Gb] =(q x m,) is devided into m,-dimensional row
vector b]-. That is,

[Gb]=_lT_

=1

a (19)

The next expression is derived below

[Gb] [I_Hbi]#l [Gb]T

= f11: """""" fl'q
fql ——_""_":\qu
where fl.j=bl.T[I—Hbi]_‘bj
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Then, the second term on the right-hand side of Eq. (13)
can be expressed as follows.

tr [Gy] [T—H G, 17" [G, 1T
q
= by [1-Hy G, 17" b, (20)

i=

In the above equation, each term on the right-hand side
bl.T [I-H, G, ]17'b, is quadratic form of the matrix
[1-H, Gy 17! of which eigenvalues are all positive,
then, the above equation (20) is always positive. That is,

tr [Gy] [T-H,G, 17! [G,]1T >0 (1)

So, the trace increases being accompained with elimi-
nations of m, observing positions, because the first term
on right-hand side of Eq.(13) expresses the trace for the
(mal + m, ) original observations and the second term is
positive. As the result, the accuracy of the measurement
as a whole becomes worse if any observing positions are
eliminated.

This may be shown in the special case of m, = 1, the
matrices [Hy] and [Gb] are reduced to the following
vectors.

[H,1=1{hJ", [G, 1=1{g} (22)

where {h, },{g }: row vectors

Then, Eqgs. (11), (12) and (13) can be rewritten in simpler
forms to be shown below.*?

((H, 1T [H, 1)  [H1=[[1]+{g }{hy 37/

(1-{h, 1T {g, D1I[G,] 1y
(TH IT[H 1) ' =[A]+{g } {g '/
C(1—1{n, }T {g, D 2y

w([H1T(H 1) ' =tr [A]+{g 1T {g, }/

(1-{h, 3T {g, D 3y
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In Eq. (13)' the second term on the right-hand side is
positive, since the scalor { }T{gb} is such a value
between zero and unit as Eq. (15) indicates. So, the trace
always increases if any observing position is excluded
from the original observations.

However, a special attention should be paid to the fact
that there are some observing positions which hardly
influence the accuracy of estimation as a whole, because
an increase of the trace is very small even if these
positions are excluded from the original observations. By
excluding these observing positions in Egs. (11)", (12)"
and (13)’, it is possible to make highly accurate measur-
ement with a small number of observations as to be
described in the following.

First of all, an acceptable level of the trace or an
average variance V_of parameters in the expression for
inherent strain distribution is specified. And the matrices
[H*], [A] and [G*] for all the original capable observing
positions (mt) are computed. Next, by applying Eq. (13)’
to all the m, observing positions and excluding each
position in turn from the original observations, an increase
in the trace are computed and the least increase of the
trace is inspected. Then, the position which is least influ-
encial upon the accuracy could be excluded in the cal-
culation. If the increase of the trace by excluding that
position is less than the acceptable level, that position can
be eliminated from the observations. For the new set of
(mt — 1) observing positions, the general inverse and the
variance matrix can be obtained by Egs. (11)' and (12)".
By repeating this procedure, the number of observations
can be decreased step by step until the increase of the
trace reaches the acceptable level. Then, the neccessary
least number of observations and the location of the
observations can be determined by the above procedure.

4. Numerical Experiment

In order to show applicability of the proposed method
for selection of observing positions,
experiment is conducted.

In a plate shown in Fig. 1 (a), residual stresses are
produced only by independent inherent strains in the
direction of x-axis each other which are imposed in 11
elements along the center line of the plate.

It is neccessary to calculate the elastic response matrix
[H*] for the selection of observing positions. In this
example, the number of unknown independent para-
meters is ¢ = 11 and this matrix can be obtained by an
elastic stress analysis 11 times, using the finite element
method. If it is assumed that elastic strain € and e, can
be observed at the center of every finite element of the
plate, the total number of components of elastic strains

which can be observed is m, = 132.

a numerical
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(b) TRACE AGAINST NUMBER OF MEASUREMENTS

Changes of trace accompanied with decrease of
the number of measurements by the present
method

Fig. 1

When m number of observations are decreased by the
present theory, the trace changes as shown in Fig. 1(b). It
is seen that the trace scarcely changes if m =22, but that
the trace rapidly increases and the accuracy of the
estimation becomes worse if m<22. In the case of
m = 22, some possible observing positions are shown in
Fig.2. CASE A in Fig. 2 represents the most accurate set
of the observing positions among three cases which were
decided intuitively as adopted in Reference 1). CASE B is

—+ : STRAINS TO BE OBSERVED IN x & y DIRECTIONS
Ty : ERROR (+25u) IN OBSERVED STRAIN
: ERROR (-25u) IN OBSERVED STRAIN

\/’F—\\.//—\\_/——”A

[ [T T N U N U X
e — | == | - | il : — ||
CASE A : INTUITIVE SELECTION OF OBSERVING
POSITIONS ( tr[A]=134.8 )
Ay
e | meme| e | — | ceme | e |, | — — | — | X
—_—

SELECTION OF OBSERVING POSITIONS
BY THIS THEORY ( tr[A]=66.7 )

CASE B :

Fig. 2 Selections of observing positions
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determined by the present method. It is seen that the
trace in CASE B is about a half of that in CASE A and the
accuracy of the estimation is extremely high as will be
shown later. h

Next, the accuracies of the estimated inherent strains
in these two cases will be discussed. The true inherent
strains contained in 11 elements located along the center
line of the plate are assumed to be constant
(e,* = —4,0001) and the residual stress distribution
produced by these inherent strains is calculated with the
aid of the finite element method, which is called the true
residual stress distribution.

In the numerical experiments, strains are assumed to be
observed at the above two sets of observing positions and
to contain the same observation error of an absolute value
25 with a positive or negative sign which is determined
by random number, as shown in Fig. 2, the stress (strain)
distribution induced by the above observation strains are
estimated. The deviation §* of the estimated inherent
strains is shown in Fig. 3. [t is seen that the accuracy of
the estimated values over the object is very high if the

$* ()
® : CASE A
O :CASE B
100 ¢ 1
0 50 100
X (mm)

Fig. 3 Estimated deviations of inherent strains

observation positions are selected by the present method.
Furthermore, the accuracy of measurement in CASE B is
considered to be equivalent to one in the case where a
large number of observing strains are used because an
increase of the trace is hardly recognized even if the
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number of observations is reduced to m = 22, as shown
in Fig. 1(b). :

This implies that the present method is,very effective
for selection of observing positions.

5. Conclusion

In this paper, based on the theory of inherent strain
which is one of the measuring principles of three
dimensional residual stresses proposed by the authors, a
selection method for observing positions is developed in
order to ensure highly accurate measurement within a
limited number of observing positions. This method can

‘be applicalbe in the case where the boundary of inherent

strain distribution is estimated in advance.

A summary of the results obtained is shown below.

1) Generally, the more number of observations ensures
the better average accuracy of estimated values.

2) However, there are many positions where observed
values scarcely influence the accuracy of measure-
ment. By the proposed selection method, these posi-
tions can be excluded from the observations and com-
paratively small number of observing positions can
be selected, which still secures a high accuracy of
measurement,
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