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ABSTRACT

Noninvasive Artificial Intelligence (AI) techniques have shown great potential in assisting clinicians through the analysis of
medical images. However, significant challenges remain in integrating these systems into clinical practice due to the variability
of medical data across multi-center databases and the lack of clear implementation guidelines. These issues hinder the ability to
achieve robust, reproducible, and statistically significant results. This study thoroughly analyzes several decision-making steps
involved in managing a multi-center database and developing AI-based segmentation models, using rectal cancer as a case study.
A dataset of 1212 Magnetic Resonance Images (MRIs) from 14 centers was used. The study examined the impact of different
image normalization techniques, network hyperparameters, and training set compositions (in terms of size and construction
strategies). The findings emphasize the critical role of image normalization in reducing variability and improving performance.
Additionally, the study underscores the importance of carefully selecting network structures and loss functions based on the
desired outcomes. The potential of clustering approaches to identify representative training subsets, even with limited data sizes,
was also evaluated. While no definitive preprocessing pipeline was identified, several networks developed during the study pro-
duced promising results on the external validation set. The insights and methodologies presented may help raise awareness and

promote more informed decisions when implementing AI systems in medical imaging.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original

work is properly cited, the use is non-commercial and no modifications or adaptations are made.
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FIGURE1 |

Flowchart of the steps addressed for the development of a DL system: (a) analyses of the input data variability, (b) definition of the DL

structure, (c) postprocessing to obtain the automatic segmentation mask, (d) evaluation of the impact of the training set, and finally () assessment of

the network generalizability validating the results.

1 | Introduction

In recent years, more and more efforts have been made to
develop Artificial Intelligence (AI) based systems to support
clinicians in noninvasively detecting and characterizing tu-
mors, using medical images. Despite the wide application and
encouraging results of recent studies [1-4], there is still a long
way to go before these systems can be commonly used in clin-
ical practice either for automatic segmentation or for detection
of tumors [5]. Many challenges and limitations still need to
be overcome. Among these, the lack of multicenter studies,
which are essential for system development and validation,
represents a significant hurdle that has proven difficult to
overcome [6, 7]. The difficulties involved in conducting large-
scale clinical trials are also represented by several technical
challenges, as well as legal and administrative issues, which
jointly make it difficult to collect images from different insti-
tutions [8]. Regarding the technical challenges, the inevitable
high image variability between patients’ images, related to
both biological and nonbiological factors strongly constrain
the reproducibility, repeatability, and generalizability of the
results [9, 10]. Indeed, it's of fundamental importance to over-
come the variability issues to propose a commonly agreed
pipeline for Magnetic Resonance Imaging (MRI), a standard-
ization guideline to be followed by each center to achieve
compliance between images from different centers. Currently,
various guidelines have been proposed to address the afore-
mentioned problem, but only for computed tomography (CT)
and positron emission tomography (PET) imaging [9-11].

In the context of Al in medicine, deep learning (DL) algorithms
are becoming increasingly prevalent in the development of
segmentation tools for organs and tumors. Among various DL

systems, the U-Net network [12] has become the backbone of the
most widely used architectures due to its distinctive structure
decoder-encoder and its promising results [1, 13-15]. Indeed,
one of the main advantages of the U-Net is to automatically
obtain a probability score map with the same size as the input
data, classifying each pixel instead of the whole image in sec-
onds. Even if different structures have been proposed, it is still
complex to precisely define the most suitable hyperparameters
and training approaches providing robust and generalizable net-
works to solve the clinical task on real-world data.

Despite several studies having proposed a U-net structure for
the segmentation of tumoral areas, few of them have used a
multi-center dataset, and even fewer have specified and/or com-
pared different development choices made, crucial for the repro-
ducibility of the methods and subsequent evaluations [16-19].
Therefore, the aim of our study is to assess and evaluate the im-
pact of multiple technical decisions related to the management
of a multicenter medical image database, variability reduction,
and the development of DL-based systems in the oncological do-
main. In this way, we want to contribute to filling the gap related
to the lack of commonly agreed guidelines providing sugges-
tions and insights for AI applications in medical imaging.

2 | Experimental Setup

In this study, we have addressed some technical aspects related
to the different steps of the development pipeline of a DL sys-
tem (Figure 1). More in detail, we focused on the analyses of the
input data variability (Figure 1a), the impact of different U-Net
architectures (Figure 1b), and the impact of the size and compo-
sition of the training set (Figure 1d).
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a) s Pixel resolution  Slice thickness FOV
canner (MIQR) (mm)  (M-IQR) (mm)  (M-IQR) (mm)
GE
Medical 0.70 3.00 180
(0.39-1.09)  (3.00-4.00) (180-220)
System
Philips 0.49 3.00 250
Healthcare (0.47-0.67) (3.00-4.00) (240-280)
Siemens 0.78 3.00 250
(0.59-0.94)  (3.00-3.00)  (200-300)
NA info 0.70 4.00 315
(0.59-0.74)  (3.60-4.40)  (200-405)
FIGURE 2

Pixel Count

Histogram Distributions

0 100 200 300 400

Pixel Intensity

| (a) on the left are shown the median (M) and the interquartile range (IQR) of the pixel resolution, slice thickness, and field of view

(FOV) of the different vendors; (b) on the right, the histogram distributions of the sequences according to the different vendors. The solid line rep-

resents the M intensity histogram distribution, while the colored areas represent the IQR.

3 | Materials and Methods
3.1 | Dataset

For this study, 1212 fast spin-echo axial T2-weighted
(T2w) MRI sequences of patients with pathologically proven
rectal cancer (RC), acquired before neoadjuvant chemo-
radiotherapy after October 2000, were retrospectively
collected from 14 different Italian institutions, 10 from the
“Alleanza Contro il Cancro (ACC)”—Record project and four
from other multicenter collaborations. To ensure the develop-
ment of a system able to handle heterogeneity and variability
of real-world images due to scanners and protocol differences,
we decided to follow a vendor-agnostic strategy by stratifying
patients according to the manufacturer of the MRI scanner, as
follows:

« the construction (CONSTR) and the Internal Validation
(IntVAL) sets were composed of sequences acquired with
GE and Philips scanners;

» the External Validation (ExtVAL) set included sequences
acquired with Siemens or sequences for which we did not
have information about the manufacturer (N.A.).

The CONSTR was used to define both a preprocessing step,
which is useful for variability reduction and developing the DL
network. In contrast, IntVAL and ExtVAL were used to inter-
nally and externally validate the systems' performances.

This multicenter retrospective project was approved by the insti-
tutional review boards (IRBs) in each institution, with a waiver
for the requirement of signed informed consent, as de-identified
data were used. All exams were acquired according to MRI
guidelines [20] for reporting RC staging.

3.2 | Reference Standard

All tumor volumes were manually segmented on the T2w se-
quences by different radiologists, one per center, with high ex-
perience in reporting MRIs, and then revised by a centralized
expert radiation therapist. These segmentation masks were used
as ground truth for the development and validation of the auto-
matic segmentation algorithms.

3.3 | Assessment and Reduction of Data Variability

As expected, the dataset was characterized by high variability
in terms of both spatial and intensity characteristics, which are
both highly dependent on the scanner characteristics and ac-
quisition parameters [21], as shown in Figure 2 and details in
Table S1. This can result in very different images in terms of
field of view (FOV), i.e., inclusion and exclusion of different an-
atomical structures, and signal intensities. To address these is-
sues, we defined a preprocessing step that included both spatial
and intensity normalization approaches.

3.3.1 | Spatial Normalization

Since the pixel resolution ranges widely among sequences and
the DL model requires an input with a fixed dimension, we
first applied spatial normalization by resampling all images to
the same in-plane resolution, defined as the median resolution
of all sequences in the CONSTR (0.47mm). Then, we centrally
cropped the sequences to the same 2D FOV, i.e., 180X 180 mm?,
as it was the lowest FOV among all vendors and institutions
(Table S1). In this way, we obtained images with fixed di-
mensions (384 X384 pixels) and the same FOV, thus reducing
the variability of anatomical structures included within the
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FIGURE 3 | Variability reduction approaches: (a) description of the spatial normalization approach, i.e., resampling and cropping; (b) histogram

distributions per each vendor with and without intensity normalization.

sequences. The same spatial normalization was applied to the
masks as well (Figure 3a) [22].

3.3.2 | Intensity Normalization

Since it has been demonstrated that among different intensity
normalization methods, z-score and 3-sigma were the most suit-
able to properly reduce the differences in terms of histogram
shape and ranges [9, 10], we decided to evaluate their impact on
the performances of a DL model. In particular, we compared the
z-score and 3-sigma methods to the no-norm case (Figure 3b). In
addition, we applied the min-max normalization after each nor-
malization method, rescaling the input data intensities between
[0,1]. This approach helps reduce computational demands and
prevents issues like the vanishing gradient problem [23, 24].

3.4 | Impact of Architectures and Parameters
of the DL Network

3.4.1 | Network's Architecture

Among the different parameters useful for defining the U-Net,
there is the setting of the proper number of descending levels
(or convolutional blocks), according to the difficulty of the task,
the input data size, and the target object dimensions. In this
case, considering the average dimension of the RC, we com-
pared the performance of U-Nets with 3 and 4 descending lev-
els (Figure 1b). In the proposed U-Nets, all convolutional layers
were characterized by a 3x3 kernel and the Rectified Linear
Unit (ReLU) activation function, except the output layer, which is
defined by a 1 x 1 kernel and the sigmoid activation function [25].

3.4.2 | Loss Functions

Due to the high imbalance between pixels related to the back-
ground and pathological ones, we evaluated the impact of three
different loss functions, addressing this issue:

« The Binary Focal Loss (BFL):

BFL(g,.p;) = —ga(1—-p,)rlog(p,) — (1 -g)ap,ylog(1 - p,)
@

where g, is the ground truth, p, is the prediction, and « and y are
weightings and modulating factors, respectively.

o The Dice Loss (DL):

28y +1

DL(g.p,) =1- p—l

@

« The Combo Loss (CoL), is obtained by summing (1) and (2):

CoL(g.p,) = BFL(g,,p,) + DL(g.p,) ®3)

3.5 | Training Set Management
3.5.1 | Composition of the Training Set

Another fundamental step for the development of robust sys-
tems is the training one, in which the network learns directly
from the data provided; therefore, it is of key importance to
provide datasets that are as representative as possible of the
whole target population. For this reason, we analyzed the im-
pact of two training set composition approaches.

« Sampling-based on random approach

As the first approach, we assessed the impact of the most used
training set (TR) composition procedure, random sampling. This
method consists of a random selection of a subgroup of elements
for the TR, while the remaining cases are included in the test
(TS) set [1, 26-28]. We chose to split the CONSTR to have 70% of
samples in the TR (300 sequences), and 30% (111) in TS. This set
will be called RND.

« Sampling-based on clustering-based approach
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This approach is based on an agglomerative hierarchical cluster-
ing method that organizes data in a hierarchical tree (dendrogram)
based on proximity measures. Then, the final clusters are obtained
by cutting the tree at a certain level. To apply this method, we first
extracted the following 10 variables: mean, standard deviation,
median, 25, and 75 percentiles of both tumoral and whole patient
volumes [15]. The distances were evaluated using the Chebyshev
metric. We then applied the hierarchical clustering on the patients
and cut the tree to have eight clusters (Figure 4).

The cluster with only 13 samples was discarded for the TR
construction, and those patients were included in the TS. The
TR sets were then created by extracting the same number of
patients from each cluster, when feasible, while the discarded
ones were included in the TS set. To create a TR that had nearly
the same dimension as that obtained with the RND approach,
we decided to include 39 patients from each cluster except for
the smallest ones (n =39 and n=36), which were entirely in-
cluded in the TR. This clustering method to construct the TR
has been called CL.

Inthisstudy, we evaluated theimpact of all the above-mentioned
parameters, considering both composition approaches. To
evaluate the impact of all the mentioned parameters, consider-
ing the normalization methods, loss functions, number of de-
scending levels, and training set combinations, a total number
of 36 networks were trained. Once the best architecture and
parameters were selected, we evaluated the impact of different
training set dimensions on the IntVAL.

3.5.2 | Training Set Size

The size of the training itself is another limiting aspect in the
development of robust models. In this study, we evaluated the

x"[m" W|r

i

h' IHMII

il
36

i

Dendrogram of patients, highlighting the number of samples for each cluster.

impact of three different dimensionalities, paying close attention
to obtaining similar dimensions between the two approaches,
i.e., CL and RND. In particular, we first defined three different
sizes; then we applied both training composition methods per
each, as follows:

1. Big: for the RND, we randomly selected 70% (n=300) of the
CONSTR dataset for the TR set. For the CL, we randomly
selected 39 samples from each cluster except for the two
smallest ones that were entirely included, finally including
270 sequences.

2. Medium: for the RND, we randomly selected 50% (n=204)
of the samples for the TR set. For the CL, we randomly se-
lected 28 samples from each cluster, finally including 196
sequences.

3. Small: for the RND, we randomly selected 25% (n=138) of
the samples for the TR set. For the CL, we randomly se-
lected 20 samples from each cluster, finally including 140
sequences.

For each training set, we developed three models (called netl,
net2, and net3), characterized by different starting random
seeds, for a total of 18 trained networks. We decided to start
with different starting seeds to assess the impact of the initial-
izations on the training. All networks were trained with 100
epochs of training and batch size 10 (due to the GPU memory
available). Additionally, we tried to avoid the overfitting of the
networks by stopping the training using the callback function
EarlyStopping, monitoring the “val_loss,” and maintaining the
default value of min_delta (absolute change [24]. All analyses
were implemented in Python (v. 3.7.4), using the Tensorflow
(v. 2.2.0) library, with the Adam optimizer [18] and a starting
learning rate value of 0.001, 1 of 0.9 and 32 of 0.999. The GPU
used was NVIDIA Tesla T4 with 16GB of memory.

50f 12

85U80|7 SUOWLWOD dAea1D 8|qed!|dde ay3 Aq pausenob afe ssjonie YO ‘85N JO Se|n. 10} Areiq1T8UlUQ AB]IA UO (SUORIPUOO-PUE-SWLBILICD" A8 1M ATe1q1jBUI [UO//:SANY) SUORIPUOD PUe SWie 1 8u3 88S *[S202/70/LT] Uo Areiqiauliuo AB1IM BXesO JO AiseAiun ay L Aq 92002 BWI/Z00T 0T/I0p/wod A3 1M Akeiq1jeutjuoy/sdny wo.j pepeojumod ‘€ ‘SZ0Z ‘860T860T



/ Construction set
/ (CONSTR)
! (n=422)
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1.5T Philips (n=140)
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\ (n=307)

‘ 1.5T GE (n=160) .
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: 3T GE (h=12) .
[ 3T Philips (n=10) )

FIGURE 5 | Dataset division into CONSTR, IntVAL, and ExtVAL.

3.6 | Statistical Analysis

To evaluate the performances of the DL models, all the output
masks underwent post-processing steps. First, output masks
were binarized using Otsu's threshold [29] evaluation, which
considered all the patient's slides. Then, volumes spatially con-
nected on < 3 slices and having the maximum predicted value
lower than the median of the related patient were discarded
(Figure 1c). The parameters evaluated were:

+ Dice Similarity Coefficient

2TP,
DSC= ——M—— (4)
2TP, + FP, + FN,
o Precision
TP,
S ©)
TP, + FP,
« Recall
TP,
Re= ®
TP, + FN,

where TP, are all true positive voxels within the 3D masks,
FP, and FN, are false positive and false negative (FN) voxels,
respectively. The detection rate was computed as the number
of correctly detected tumors over the total number of tumors.
As commonly used [30], a tumor was considered detected if
the DSC between the manual and automatic masks was >0.10;
otherwise, it was defined as a FN. Only detected tumors were
included in the evaluation of median DSC, Pr, and Re. Once
all models' combinations (data pre-processing, network struc-
ture, and training size) have been trained and optimized on the
CONSTR and then internally validated on the IntVAL, the best
model that achieved the highest DSC and lower percentage of
FN tumors was selected. Subsequently, its performances were
validated on ExtVAL. To statistically compare the difference
between FN we used the Pearson's Chi-Square Test, while for

External Validation set
(ExtVAL)
(n=483)

Siemens (n=315) :
NA (n=168) I
/

DSC, Pr, and Re distributions, we performed the Mann-Whitney
U-Test. For p-values <0.05, the difference is considered statisti-
cally significant. All analyses were performed using Python 3.7,
Matlab (R2023a) and MedCalc Software Ltd. 2024.

4 | Results
4.1 | Dataset

The CONSTR set comprised 422 patients, all of whom were ac-
quired using 1.5T scanners. Of these, 282 were acquired with
a GE scanner and 140 with a Philips scanner. The IntVAL set
included 307 patients, 285 of whom were acquired with a 1.5T
scanner and 22 with a 3T one. The ExtVAL set included 483 ex-
aminations, 315 of which were acquired with both a 1.5T and 3T
Siemens scanner and 168 for which the scanner information was
missing (Figure 5).

4.2 | Parameters’' Impact Analysis

Considering all the parameters’ combinations, we trained 36
networks. Figure 6 shows the impact of the different normal-
izations' strategies, loss functions, and descending levels on the
segmentation performances (DSC, Pr, and Re) obtained on the
IntVAL with different training compositions, cluster, and ran-
dom. The details of the performance of all combinations and
networks are presented in Table S2.

Image normalization doesn't have a strong impact on DSC only
with the 4-level U-Nets, while it has a strong impact on the 3-
level U-Net. In this case, results as high as the 4-level are reached
only with either 3-sigma or z-score and RND training set and
no-norm in combination with the CL approach (Figure 6a). The
combination of no-norm and RND generally exhibits the lowest
results (DSC ranging from 0.48 to 0.68). An important assump-
tion can be made from this analysis regarding the importance
of the choice of patients in the training set, especially when the
dataset is heterogeneous (no-norm). Indeed, in this case, if we
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FIGURE 6 | Impactofthe normalization approaches (6a), loss functions (6b), and descending levels (6¢) on the segmentation performances (DSC,

Pr, and Re) obtained on the IntVAL. The solid lines represent the median values across all patients using a random approach (RND) and the dotted

line with a cluster one (CL).

apply the CL approach to construct the training set, we can in-
crease DSC up to 20%. The same considerations are true also
considering Pr and Re; however, these metrics are largely af-
fected by other parameters and the number of descending levels.
In general, the best results in terms of Pr among image normal-
izations were reached by z-score and 3-sigma (z-score ranging
from 0.72 to 0.85 and 3-sigma 0.60 to 0.83).

Focusing on the impact of the loss functions (Figure 6b), it can be
observed that they strongly affect Pr and Re. In particular, BFL
reached one of the lowest Pr regardless of the number of levels,
image normalizations, and training set composition approach
(from 0.59 to 0.72 for 4-level and 0.59 and 0.70 for 3-level). Again,
the CL method can smooth out differences between images, es-
pecially in the no-norm dataset for certain configurations, e.g.,
DL and CL reached Pr> 0.8 both in the 3-level and 4-level net-
works. In general, except for DL, Pr is similar between different
normalization methods for BFL and CoL. However, it can be
observed that BFL (both for RND and CL) generally yields the
lowest results (0.59-0.72 for 4-level). In contrast, DL and CoL
yield similar higher results (0.80-0.85), particularly with the
CL approach. Re and Pr exhibit inverse behavior, reflecting the

contrasting nature of the concepts they represent. Re imposes
a penalty for under-segmentations, whereas precision penalizes
over-segmentations.

Lastly, the number of levels' impact is not as evident as for the
other parameters (Figure 6¢). However, what is clear is that 4-
level networks obtained more robust results across loss func-
tions, image normalization, and training set compositions. In
this case, BFL combined with z-score reached the highest results
in terms of DSC with a good compromise between Pr and Re for
both RND and CL training, i.e., DSC of 0.73 and 0.70, Pr 0.72 and
0.70, and Re 0.80 and 0.81, respectively. Conversely, the behavior
is more variable when considering the 3-level networks, which
reached good results only when trained with BLF (Re from 0.83
to 0.89, DSC from 0.68 to 0.73).

Table 1 shows the percentage of FN in IntVAL yielded by
each combination of the different parameters. The 3-level
shows a statistically significantly higher incidence of FN,
with an average of 26.2%+12.3% compared to 16.7% + 6.8%
for the 4-level. Focusing solely on the 4-level networks, the
mean percentage of FN obtained by RND and CL training
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TABLE1 | Percentagesoffalse negative (FN) patientsin the internal validation set (IntVAL) per each combination of loss functions, normalizations,

descending levels, and training compositions.

4 levels 3levels
IntVAL RND CL RND CL
no-norm z-score  3-sigma |no-norm z-score  3-sigma |no-norm z-score  3-sigma |no-norm z-score  3-sigma
BFL S 20 5 16 8 13 14 15 11
DL 15 18 22 17 | 28
ColL 23 11 22 17 15 12
legend

[0 5 10 15 20[25]

Note: The color legend reflects performance in terms of percentage of FN: green denotes better performance, whereas red indicates worse performance.
Abbreviations: BFL: Binary Focal Loss, CL: clustering, CoL: Combo Loss DL: Dice Loss, IntVAL: Internal Validation, RND: random.
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FIGURE 7 |

(a) False negative (FN) patients’ percentage per combination in the internal validation set. (b) Bar diagrams showing the networks’

performance distributions, divided according to the procedure followed for the training construction (CL and RND) and size (big, medium, and

small). *Represents statistically significant differences.

compositions is comparable (17.4% vs. 15.9%), while the stan-
dard deviation exhibits a notable discrepancy (8.7% vs. 4.7%).
However, the overall performances are not statistically sig-
nificantly different (p-values>0.05). This may indicate that
the CL approach allows for more stable performance despite
the different parameters. Focusing on the normalization
methods, it was found that the no-norm exhibited an average
FN value of 20.2% + 8.4%, the 3-sigma 15.5% +6.8%, and the
z-score 14.3% +4.3%, highlighting that the latter allows for a
lower percentage of FNs on average as the loss functions vary.
BFL, as we expected from high values of Re at the cost of Pr,
is prone to over-segmentation, resulting in it having the lowest
mean percentages of FNs: 11.8% +5.6% vs. 21.5% +6.8% and
16.7% = 5.0% of DL and CoL.

Regarding the sample size, it is evident that an increase in the
number of patients in the training set will result in a reduction
in the number of FNs (Figure 7a) and this can be attributed to
the fact that the samples included in the TR more accurately
reflect the heterogeneity that characterizes the RC. This in-
ference is further substantiated by the fact that the approach

employed in the construction of the training set (RND vs. CL)
dataset exhibited varying effects contingent on the size of the
training database. The details of the performance of all combi-
nations and networks are presented in Table S3.

In the big TR size, there are no statistically significant differ-
ences between the two construction methods (p-value <0.05);
on the contrary, when dealing with smaller dimensions, the CL
approach yields better performances in terms of FN percentage
(Figure 7a). The percentage for medium TR ranges between
5%-13% and 4%-10% for RND and CL approaches, respectively,
while for small TR, it ranges from 11% to 20% and from 6% to
12%, respectively.

Figure 7b shows the bar diagram related to the DSC, Pr and Re
metrics. Focusing on the impact of the two composition ap-
proaches, no statistically significant differences have been found
between big and medium sizes, except for Re considering big size.
On the contrary, the results yielded by the CL approach are sta-
tistically significantly higher than those yielded by the RND one
(p-value < 0.05) for the small size. Moreover, they are comparable
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TABLE 2 | Best model performances in terms of DSC, Pr and Re for both validation sets.

Dataset FN % DSC median (IQR) PR median (IQR) RE median (IQR)
IntVAL 2 0.68 (0.20) 0.78 (0.24) 0.66 (0.31)
ExtVAL 4 0.66 (0.24) 0.75 (0.25) 0.61 (0.36)

Abbreviation: IQR: InterQuartile range.

with those yielded by the bigger training set sizes, having always
p-values>0.05. In detail, Table S4 shows the p-values for each
combination of size and construction approach for all metrics.
This supports the hypothesis that when dealing with small-sized
TR sets, the CL approach may allow the construction of more
representative training sets than RND, yielding comparable re-
sults in all metrics with respect to big sizes.

In conclusion, from our analysis, we observed, as we expected,
that increasing the size of the TR leads to an improvement in the
ability networks to detect the tumoral volumes, without strongly
affecting its ability to precisely segment it.

4.3 | External Validation

The optimal configuration was identified as one that achieves a
satisfactory FN percentage and a high Pr value on the IntVAL.
This choice was driven by the consideration that the clinical goal
is to precisely and reliably detect the tumoral area, without in-
cluding too many nonpathological pixels. Therefore, the selected
model was the one that used z-score as an image normalization
technique, whose U-Net was characterized by four descending
levels and that used CoL as a loss function during the training,
and the big size TR set. This model achieved a DSC of 0.68, Pr
of 0.78, and Re of 0.66 for RND and 0.66, 0.83, 0.60 for CL in
IntVAL. Since there are no statistically significant differences
between the two models for the big training set size, we consid-
ered the model trained with the RND set.

The selected network was externally validated on the 483 exam-
inations, and results comparable to the IntVAL (Table 2) proved
the ability of the model to generalize its performance also on an
external dataset. Figure 8 presents some examples of segmenta-
tions provided by the best-performing model on some patients of
ExtVAL. The first row shows an example of good segmentation
(all metrics), while the second and third rows show two cases
with DSC < 0.6 that exhibit divergent patterns regarding Pr and
Re. The one in the second row (id. 015) depicts a relatively under-
segmented tumor, for which an accuracy of 0.76 is attained as
opposed to a Re of 0.18 (Figure 8b). Conversely, the last one ex-
emplifies a case of over-segmentation for whom we obtained a
Re 0f 0.97 and a Pr of 0.32 (Figure 8c).

5 | Discussion and Conclusion

In this work, we proposed a standard pipeline for the
development of an automatic DL-based system for RC segmenta-
tion on T2w sequences, providing insights related to the impact
of multiple decisional parameters, using images from 14 differ-
ent centers. To our knowledge, no other studies have conducted a
comprehensive analysis and comparison of technical parameters

such as intensity normalization methods, network architecture,
loss functions, and training sets on abdominal MRI.

Focusing on the image preprocessing step, we demonstrated the
complexity of defining the most suitable approach. Our previous
study [10] revealed that spatial normalization, characterized by
cropping and resizing, has emerged as a principal method to re-
duce spatial variability. Conversely, among studies on automatic
RC segmentation, there is still no consensus on the optimal ap-
proach for intensity variability reduction [16-19]. For these rea-
sons, we analyzed the effect of the two most frequently used
image normalization techniques (z-score and 3-sigma) compared
to no-norm condition, and we demonstrated that both z-score and
3-sigma normalizations improved the overall performance of the
system: the Pr has been increased from 0.58-0.71 for the no-norm
to 0.72-0.85 and 0.60-0.83 for z-score and 3-sigma, respectively.
Although both normalization approaches show potential in reduc-
ing intensity variability by realigning the histogram distributions,
selecting the optimal method must still be done carefully, tailoring
it to the specific dataset and methodology. Additionally, ensuring a
consistent rescaling of input intensities to the [0,1] range is highly
recommended to mitigate the vanishing gradient problem.

Following the DL development pipeline, we then evaluated how
the network architecture and loss function significantly influ-
enced the system's ability to accurately detect tumor volumes. On
one hand, we demonstrated that an encoder design consisting of
four convolutional blocks yields better results compared to three
blocks (DSC ranging from 0.61 to 0.75 vs. 0.49 to 0.73), indicating
greater robustness. On the other, we demonstrated that the im-
pact of the overall performance in terms of DSC is not strongly
affected by the different loss functions, with values ranging be-
tween 0.70-0.73 for BFL, 0.61-0.70 for DL, and 0.62-0.71 for
CoL. However, we have proved the potential of combining mul-
tiple loss functions to obtain more precise segmentation systems,
with an overall improvement of the10% for Pr compared to BFL.
No previous studies have investigated the impact of different loss
functions on RC segmentation. Instead, most works [17, 19] sim-
ply reported the selected loss function without explicitly justi-
fying their choice. This lack of transparency significantly limits
the reproducibility of results and a comprehensive understand-
ing of the role played by loss functions in medical image analysis.

Finally, we analyzed the impact of both sample size and the
construction method of the TR set on system performance. As
expected, smaller TR sets led to lower performance compared
to larger ones. However, when data availability was limited, a
clustering-based construction approach allowed for DSC val-
ues to remain consistent across different sample sizes (0.67,
0.69, and 0.69 for large, medium, and small sets, respectively).
Additionally, this method increased Pr by 10% compared to ran-
dom selection, as it ensured the inclusion of more representative
data. This finding is particularly relevant for developers working
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Id. 068

DSC: 0.85
a) provs

Re: 0.93

Id. 015

DSC: 0.29
b) Pr: 0.76

Re: 0.18

Id. 033

DSC: 0.48
C) Pr: 0.32

Re: 0.97

FIGURE 8 | Examples of segmentation masks of rectal cancers belonging to the ExtVAL. In the first column the clear T2w, the second presents

the manual segmentation in green, and the third row shows the automatic segmentation in red.

with limited datasets, a common scenario in medical image anal-
ysis. Therefore, before applying Data Augmentation, which may
introduce overfitting, we suggest considering this strategy as an
alternative. In the literature, there are only a few papers that have
conducted analyses on TR construction, mainly on the brain,
and none, as far as we know, on the rectum. On the brain vol-
umes, Narayana et al. [31], Wulms et al. [32], and Fang et al. [33]
showed that the relationship between size and DL performance
depends on the characteristics of the volume of interest. Despite
the different body parts, our study also suggests that an increase
in the TR size (at least 300 sequences) could provide better re-
sults for the RC segmentation.

Overall, our results demonstrate that following the reported
pipeline results in a performance improvement of up to 25%
in terms of DSC. Our optimal model shows generalizability
across different institutions and MRI scanners (DSC of 0.66 on
ExtVAL), yielding similar results as Wang et al. [27] and Pang
et al. [28], who performed ExtVAL on three and one different
centers and reached DSCs of 0.59 and 0.66, respectively. The
best results were reported by Ma et al. [17], who achieved a mean
DSC of 0.84. However, their study used data from a single exter-
nal center with 88 patients, all acquired with a vendor scanner
included in the training set, which may have contributed to their
higher results compared to ours. It is worth noting that our re-
sults were developed and validated on 14 centers, whereas the
cited studies included a maximum of 4. To summarize, we are
consistent with the recent literature, although the primary ob-
jective of this study was not solely focused on the development
of automatic RC segmentation.

Our study has some limitations. First, we considered only one
architecture, the U-Net, since it has been recognized as the most
effective method for biomedical image segmentation [34]; in-
deed, the most recent papers still chose to use this backbone net-
work [16-19]. However, it could be of interest to compare other
more innovative architectures and assess their impact combined
with all the other technical parameters. Second, we compared
the random sampling approach with one clustering method, ob-
tained by evaluating first-order radiomics variables, and it would
be valuable to investigate other clustering techniques using
alternative radiomics features. Furthermore, assessing the im-
pact of various transfer learning techniques, which have shown
growing success across multiple fields [35, 36], and considering
other database divisions into CONSTR, IntVAL, and ExtVAL
could offer additional insights and improvements. Future work
could be focused also on additional tasks, e.g., characterization
and exploring different approaches. Despite these limits, our
paper presents some interesting insights from both technical
and clinical points of view: on one side, the crucial importance
of defining the most suitable DL parameters combination to
solve the task; on the other, the importance of normalization
and preprocessing in realigning the distributions of images in a
multicenter setting.

In conclusion, the study provides a methodological approach
for helping in developing robust and reproducible AI-based seg-
mentation tools in medical imaging. Indeed, these guidelines
may not only support and guide informed decision-making but
also represent a step toward the standardization of the design of
such systems for their introduction into clinical practice.
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