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ABSTRACT
Noninvasive Artificial Intelligence (AI) techniques have shown great potential in assisting clinicians through the analysis of 
medical images. However, significant challenges remain in integrating these systems into clinical practice due to the variability 
of medical data across multi-center databases and the lack of clear implementation guidelines. These issues hinder the ability to 
achieve robust, reproducible, and statistically significant results. This study thoroughly analyzes several decision-making steps 
involved in managing a multi-center database and developing AI-based segmentation models, using rectal cancer as a case study. 
A dataset of 1212 Magnetic Resonance Images (MRIs) from 14 centers was used. The study examined the impact of different 
image normalization techniques, network hyperparameters, and training set compositions (in terms of size and construction 
strategies). The findings emphasize the critical role of image normalization in reducing variability and improving performance. 
Additionally, the study underscores the importance of carefully selecting network structures and loss functions based on the 
desired outcomes. The potential of clustering approaches to identify representative training subsets, even with limited data sizes, 
was also evaluated. While no definitive preprocessing pipeline was identified, several networks developed during the study pro-
duced promising results on the external validation set. The insights and methodologies presented may help raise awareness and 
promote more informed decisions when implementing AI systems in medical imaging.
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1   |   Introduction

In recent years, more and more efforts have been made to 
develop Artificial Intelligence (AI) based systems to support 
clinicians in noninvasively detecting and characterizing tu-
mors, using medical images. Despite the wide application and 
encouraging results of recent studies [1–4], there is still a long 
way to go before these systems can be commonly used in clin-
ical practice either for automatic segmentation or for detection 
of tumors [5]. Many challenges and limitations still need to 
be overcome. Among these, the lack of multicenter studies, 
which are essential for system development and validation, 
represents a significant hurdle that has proven difficult to 
overcome [6, 7]. The difficulties involved in conducting large-
scale clinical trials are also represented by several technical 
challenges, as well as legal and administrative issues, which 
jointly make it difficult to collect images from different insti-
tutions [8]. Regarding the technical challenges, the inevitable 
high image variability between patients' images, related to 
both biological and nonbiological factors strongly constrain 
the reproducibility, repeatability, and generalizability of the 
results [9, 10]. Indeed, it's of fundamental importance to over-
come the variability issues to propose a commonly agreed 
pipeline for Magnetic Resonance Imaging (MRI), a standard-
ization guideline to be followed by each center to achieve 
compliance between images from different centers. Currently, 
various guidelines have been proposed to address the afore-
mentioned problem, but only for computed tomography (CT) 
and positron emission tomography (PET) imaging [9–11].

In the context of AI in medicine, deep learning (DL) algorithms 
are becoming increasingly prevalent in the development of 
segmentation tools for organs and tumors. Among various DL 

systems, the U-Net network [12] has become the backbone of the 
most widely used architectures due to its distinctive structure 
decoder–encoder and its promising results [1, 13–15]. Indeed, 
one of the main advantages of the U-Net is to automatically 
obtain a probability score map with the same size as the input 
data, classifying each pixel instead of the whole image in sec-
onds. Even if different structures have been proposed, it is still 
complex to precisely define the most suitable hyperparameters 
and training approaches providing robust and generalizable net-
works to solve the clinical task on real-world data.

Despite several studies having proposed a U-net structure for 
the segmentation of tumoral areas, few of them have used a 
multi-center dataset, and even fewer have specified and/or com-
pared different development choices made, crucial for the repro-
ducibility of the methods and subsequent evaluations [16–19]. 
Therefore, the aim of our study is to assess and evaluate the im-
pact of multiple technical decisions related to the management 
of a multicenter medical image database, variability reduction, 
and the development of DL-based systems in the oncological do-
main. In this way, we want to contribute to filling the gap related 
to the lack of commonly agreed guidelines providing sugges-
tions and insights for AI applications in medical imaging.

2   |   Experimental Setup

In this study, we have addressed some technical aspects related 
to the different steps of the development pipeline of a DL sys-
tem (Figure 1). More in detail, we focused on the analyses of the 
input data variability (Figure 1a), the impact of different U-Net 
architectures (Figure 1b), and the impact of the size and compo-
sition of the training set (Figure 1d).

FIGURE 1    |    Flowchart of the steps addressed for the development of a DL system: (a) analyses of the input data variability, (b) definition of the DL 
structure, (c) postprocessing to obtain the automatic segmentation mask, (d) evaluation of the impact of the training set, and finally (e) assessment of 
the network generalizability validating the results.
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3   |   Materials and Methods

3.1   |   Dataset

For this study, 1212 fast spin-echo axial T2-weighted 
(T2w) MRI sequences of patients with pathologically proven 
rectal cancer (RC), acquired before neoadjuvant chemo-
radiotherapy after October 2000, were retrospectively 
collected from 14 different Italian institutions, 10 from the 
“Alleanza Contro il Cancro (ACC)”—Record project and four 
from other multicenter collaborations. To ensure the develop-
ment of a system able to handle heterogeneity and variability 
of real-world images due to scanners and protocol differences, 
we decided to follow a vendor-agnostic strategy by stratifying 
patients according to the manufacturer of the MRI scanner, as 
follows:

•	 the construction (CONSTR) and the Internal Validation 
(IntVAL) sets were composed of sequences acquired with 
GE and Philips scanners;

•	 the External Validation (ExtVAL) set included sequences 
acquired with Siemens or sequences for which we did not 
have information about the manufacturer (N.A.).

The CONSTR was used to define both a preprocessing step, 
which is useful for variability reduction and developing the DL 
network. In contrast, IntVAL and ExtVAL were used to inter-
nally and externally validate the systems' performances.

This multicenter retrospective project was approved by the insti-
tutional review boards (IRBs) in each institution, with a waiver 
for the requirement of signed informed consent, as de-identified 
data were used. All exams were acquired according to MRI 
guidelines [20] for reporting RC staging.

3.2   |   Reference Standard

All tumor volumes were manually segmented on the T2w se-
quences by different radiologists, one per center, with high ex-
perience in reporting MRIs, and then revised by a centralized 
expert radiation therapist. These segmentation masks were used 
as ground truth for the development and validation of the auto-
matic segmentation algorithms.

3.3   |   Assessment and Reduction of Data Variability

As expected, the dataset was characterized by high variability 
in terms of both spatial and intensity characteristics, which are 
both highly dependent on the scanner characteristics and ac-
quisition parameters [21], as shown in Figure 2 and details in 
Table  S1. This can result in very different images in terms of 
field of view (FOV), i.e., inclusion and exclusion of different an-
atomical structures, and signal intensities. To address these is-
sues, we defined a preprocessing step that included both spatial 
and intensity normalization approaches.

3.3.1   |   Spatial Normalization

Since the pixel resolution ranges widely among sequences and 
the DL model requires an input with a fixed dimension, we 
first applied spatial normalization by resampling all images to 
the same in-plane resolution, defined as the median resolution 
of all sequences in the CONSTR (0.47 mm). Then, we centrally 
cropped the sequences to the same 2D FOV, i.e., 180 × 180 mm2, 
as it was the lowest FOV among all vendors and institutions 
(Table  S1). In this way, we obtained images with fixed di-
mensions (384 × 384 pixels) and the same FOV, thus reducing 
the variability of anatomical structures included within the 

FIGURE 2    |    (a) on the left are shown the median (M) and the interquartile range (IQR) of the pixel resolution, slice thickness, and field of view 
(FOV) of the different vendors; (b) on the right, the histogram distributions of the sequences according to the different vendors. The solid line rep-
resents the M intensity histogram distribution, while the colored areas represent the IQR.
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sequences. The same spatial normalization was applied to the 
masks as well (Figure 3a) [22].

3.3.2   |   Intensity Normalization

Since it has been demonstrated that among different intensity 
normalization methods, z-score and 3-sigma were the most suit-
able to properly reduce the differences in terms of histogram 
shape and ranges [9, 10], we decided to evaluate their impact on 
the performances of a DL model. In particular, we compared the 
z-score and 3-sigma methods to the no-norm case (Figure 3b). In 
addition, we applied the min–max normalization after each nor-
malization method, rescaling the input data intensities between 
[0,1]. This approach helps reduce computational demands and 
prevents issues like the vanishing gradient problem [23, 24].

3.4   |   Impact of Architectures and Parameters 
of the DL Network

3.4.1   |   Network's Architecture

Among the different parameters useful for defining the U-Net, 
there is the setting of the proper number of descending levels 
(or convolutional blocks), according to the difficulty of the task, 
the input data size, and the target object dimensions. In this 
case, considering the average dimension of the RC, we com-
pared the performance of U-Nets with 3 and 4 descending lev-
els (Figure 1b). In the proposed U-Nets, all convolutional layers 
were characterized by a 3 × 3 kernel and the Rectified Linear 
Unit (ReLU) activation function, except the output layer, which is 
defined by a 1 × 1 kernel and the sigmoid activation function [25].

3.4.2   |   Loss Functions

Due to the high imbalance between pixels related to the back-
ground and pathological ones, we evaluated the impact of three 
different loss functions, addressing this issue:

•	 The Binary Focal Loss (BFL):

where gt is the ground truth, pr is the prediction, and α and γ are 
weightings and modulating factors, respectively.

•	 The Dice Loss (DL):

•	 The Combo Loss (CoL), is obtained by summing (1) and (2):

3.5   |   Training Set Management

3.5.1   |   Composition of the Training Set

Another fundamental step for the development of robust sys-
tems is the training one, in which the network learns directly 
from the data provided; therefore, it is of key importance to 
provide datasets that are as representative as possible of the 
whole target population. For this reason, we analyzed the im-
pact of two training set composition approaches.

•	 Sampling-based on random approach

As the first approach, we assessed the impact of the most used 
training set (TR) composition procedure, random sampling. This 
method consists of a random selection of a subgroup of elements 
for the TR, while the remaining cases are included in the test 
(TS) set [1, 26–28]. We chose to split the CONSTR to have 70% of 
samples in the TR (300 sequences), and 30% (111) in TS. This set 
will be called RND.

•	 Sampling-based on clustering-based approach

(1)
BFL

(

gt, pr
)

= − gt�
(

1 − pr
)

� log
(

pr
)

−

(

1 − gt
)

�pr� log
(

1 − pr
)

(2)DL
(

gt, pr
)

= 1 −
2gtpr + 1

gt + pr + 1

(3)CoL
(

gt, pr
)

= BFL
(

gt , pr
)

+ DL
(

gt, pr
)

FIGURE 3    |    Variability reduction approaches: (a) description of the spatial normalization approach, i.e., resampling and cropping; (b) histogram 
distributions per each vendor with and without intensity normalization.
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This approach is based on an agglomerative hierarchical cluster-
ing method that organizes data in a hierarchical tree (dendrogram) 
based on proximity measures. Then, the final clusters are obtained 
by cutting the tree at a certain level. To apply this method, we first 
extracted the following 10 variables: mean, standard deviation, 
median, 25, and 75 percentiles of both tumoral and whole patient 
volumes [15]. The distances were evaluated using the Chebyshev 
metric. We then applied the hierarchical clustering on the patients 
and cut the tree to have eight clusters (Figure 4).

The cluster with only 13 samples was discarded for the TR 
construction, and those patients were included in the TS. The 
TR sets were then created by extracting the same number of 
patients from each cluster, when feasible, while the discarded 
ones were included in the TS set. To create a TR that had nearly 
the same dimension as that obtained with the RND approach, 
we decided to include 39 patients from each cluster except for 
the smallest ones (n = 39 and n = 36), which were entirely in-
cluded in the TR. This clustering method to construct the TR 
has been called CL.

In this study, we evaluated the impact of all the above-mentioned 
parameters, considering both composition approaches. To 
evaluate the impact of all the mentioned parameters, consider-
ing the normalization methods, loss functions, number of de-
scending levels, and training set combinations, a total number 
of 36 networks were trained. Once the best architecture and 
parameters were selected, we evaluated the impact of different 
training set dimensions on the IntVAL.

3.5.2   |   Training Set Size

The size of the training itself is another limiting aspect in the 
development of robust models. In this study, we evaluated the 

impact of three different dimensionalities, paying close attention 
to obtaining similar dimensions between the two approaches, 
i.e., CL and RND. In particular, we first defined three different 
sizes; then we applied both training composition methods per 
each, as follows:

1.	 Big: for the RND, we randomly selected 70% (n = 300) of the 
CONSTR dataset for the TR set. For the CL, we randomly 
selected 39 samples from each cluster except for the two 
smallest ones that were entirely included, finally including 
270 sequences.

2.	 Medium: for the RND, we randomly selected 50% (n = 204) 
of the samples for the TR set. For the CL, we randomly se-
lected 28 samples from each cluster, finally including 196 
sequences.

3.	 Small: for the RND, we randomly selected 25% (n = 138) of 
the samples for the TR set. For the CL, we randomly se-
lected 20 samples from each cluster, finally including 140 
sequences.

For each training set, we developed three models (called net1, 
net2, and net3), characterized by different starting random 
seeds, for a total of 18 trained networks. We decided to start 
with different starting seeds to assess the impact of the initial-
izations on the training. All networks were trained with 100 
epochs of training and batch size 10 (due to the GPU memory 
available). Additionally, we tried to avoid the overfitting of the 
networks by stopping the training using the callback function 
EarlyStopping, monitoring the “val_loss,” and maintaining the 
default value of min_delta (absolute change [24]. All analyses 
were implemented in Python (v. 3.7.4), using the Tensorflow 
(v. 2.2.0) library, with the Adam optimizer [18] and a starting 
learning rate value of 0.001, β1 of 0.9 and β2 of 0.999. The GPU 
used was NVIDIA Tesla T4 with 16GB of memory.

FIGURE 4    |    Dendrogram of patients, highlighting the number of samples for each cluster.
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3.6   |   Statistical Analysis

To evaluate the performances of the DL models, all the output 
masks underwent post-processing steps. First, output masks 
were binarized using Otsu's threshold [29] evaluation, which 
considered all the patient's slides. Then, volumes spatially con-
nected on < 3 slices and having the maximum predicted value 
lower than the median of the related patient were discarded 
(Figure 1c). The parameters evaluated were:

•	 Dice Similarity Coefficient

•	 Precision

•	 Recall

where TPv are all true positive voxels within the 3D masks, 
FPv and FNv are false positive and false negative (FN) voxels, 
respectively. The detection rate was computed as the number 
of correctly detected tumors over the total number of tumors. 
As commonly used [30], a tumor was considered detected if 
the DSC between the manual and automatic masks was ≥ 0.10; 
otherwise, it was defined as a FN. Only detected tumors were 
included in the evaluation of median DSC, Pr, and Re. Once 
all models' combinations (data pre-processing, network struc-
ture, and training size) have been trained and optimized on the 
CONSTR and then internally validated on the IntVAL, the best 
model that achieved the highest DSC and lower percentage of 
FN tumors was selected. Subsequently, its performances were 
validated on ExtVAL. To statistically compare the difference 
between FN we used the Pearson's Chi-Square Test, while for 

DSC, Pr, and Re distributions, we performed the Mann–Whitney 
U-Test. For p-values < 0.05, the difference is considered statisti-
cally significant. All analyses were performed using Python 3.7, 
Matlab (R2023a) and MedCalc Software Ltd. 2024.

4   |   Results

4.1   |   Dataset

The CONSTR set comprised 422 patients, all of whom were ac-
quired using 1.5T scanners. Of these, 282 were acquired with 
a GE scanner and 140 with a Philips scanner. The IntVAL set 
included 307 patients, 285 of whom were acquired with a 1.5T 
scanner and 22 with a 3T one. The ExtVAL set included 483 ex-
aminations, 315 of which were acquired with both a 1.5T and 3T 
Siemens scanner and 168 for which the scanner information was 
missing (Figure 5).

4.2   |   Parameters' Impact Analysis

Considering all the parameters' combinations, we trained 36 
networks. Figure  6 shows the impact of the different normal-
izations' strategies, loss functions, and descending levels on the 
segmentation performances (DSC, Pr, and Re) obtained on the 
IntVAL with different training compositions, cluster, and ran-
dom. The details of the performance of all combinations and 
networks are presented in Table S2.

Image normalization doesn't have a strong impact on DSC only 
with the 4-level U-Nets, while it has a strong impact on the 3-
level U-Net. In this case, results as high as the 4-level are reached 
only with either 3-sigma or z-score and RND training set and 
no-norm in combination with the CL approach (Figure 6a). The 
combination of no-norm and RND generally exhibits the lowest 
results (DSC ranging from 0.48 to 0.68). An important assump-
tion can be made from this analysis regarding the importance 
of the choice of patients in the training set, especially when the 
dataset is heterogeneous (no-norm). Indeed, in this case, if we 

(4)DSC =
2TPv

2TPv + FPv + FNv

(5)Pr =
TPv

TPv + FPv

(6)Re =
TPv

TPv + FNv

FIGURE 5    |    Dataset division into CONSTR, IntVAL, and ExtVAL.
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apply the CL approach to construct the training set, we can in-
crease DSC up to 20%. The same considerations are true also 
considering Pr and Re; however, these metrics are largely af-
fected by other parameters and the number of descending levels. 
In general, the best results in terms of Pr among image normal-
izations were reached by z-score and 3-sigma (z-score ranging 
from 0.72 to 0.85 and 3-sigma 0.60 to 0.83).

Focusing on the impact of the loss functions (Figure 6b), it can be 
observed that they strongly affect Pr and Re. In particular, BFL 
reached one of the lowest Pr regardless of the number of levels, 
image normalizations, and training set composition approach 
(from 0.59 to 0.72 for 4-level and 0.59 and 0.70 for 3-level). Again, 
the CL method can smooth out differences between images, es-
pecially in the no-norm dataset for certain configurations, e.g., 
DL and CL reached Pr > 0.8 both in the 3-level and 4-level net-
works. In general, except for DL, Pr is similar between different 
normalization methods for BFL and CoL. However, it can be 
observed that BFL (both for RND and CL) generally yields the 
lowest results (0.59–0.72 for 4-level). In contrast, DL and CoL 
yield similar higher results (0.80–0.85), particularly with the 
CL approach. Re and Pr exhibit inverse behavior, reflecting the 

contrasting nature of the concepts they represent. Re imposes 
a penalty for under-segmentations, whereas precision penalizes 
over-segmentations.

Lastly, the number of levels' impact is not as evident as for the 
other parameters (Figure 6c). However, what is clear is that 4-
level networks obtained more robust results across loss func-
tions, image normalization, and training set compositions. In 
this case, BFL combined with z-score reached the highest results 
in terms of DSC with a good compromise between Pr and Re for 
both RND and CL training, i.e., DSC of 0.73 and 0.70, Pr 0.72 and 
0.70, and Re 0.80 and 0.81, respectively. Conversely, the behavior 
is more variable when considering the 3-level networks, which 
reached good results only when trained with BLF (Re from 0.83 
to 0.89, DSC from 0.68 to 0.73).

Table  1 shows the percentage of FN in IntVAL yielded by 
each combination of the different parameters. The 3-level 
shows a statistically significantly higher incidence of FN, 
with an average of 26.2% ± 12.3% compared to 16.7% ± 6.8% 
for the 4-level. Focusing solely on the 4-level networks, the 
mean percentage of FN obtained by RND and CL training 

FIGURE 6    |    Impact of the normalization approaches (6a), loss functions (6b), and descending levels (6c) on the segmentation performances (DSC, 
Pr, and Re) obtained on the IntVAL. The solid lines represent the median values across all patients using a random approach (RND) and the dotted 
line with a cluster one (CL).
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compositions is comparable (17.4% vs. 15.9%), while the stan-
dard deviation exhibits a notable discrepancy (8.7% vs. 4.7%). 
However, the overall performances are not statistically sig-
nificantly different (p-values > 0.05). This may indicate that 
the CL approach allows for more stable performance despite 
the different parameters. Focusing on the normalization 
methods, it was found that the no-norm exhibited an average 
FN value of 20.2% ± 8.4%, the 3-sigma 15.5% ± 6.8%, and the 
z-score 14.3% ± 4.3%, highlighting that the latter allows for a 
lower percentage of FNs on average as the loss functions vary. 
BFL, as we expected from high values of Re at the cost of Pr, 
is prone to over-segmentation, resulting in it having the lowest 
mean percentages of FNs: 11.8% ± 5.6% vs. 21.5% ± 6.8% and 
16.7% ± 5.0% of DL and CoL.

Regarding the sample size, it is evident that an increase in the 
number of patients in the training set will result in a reduction 
in the number of FNs (Figure 7a) and this can be attributed to 
the fact that the samples included in the TR more accurately 
reflect the heterogeneity that characterizes the RC. This in-
ference is further substantiated by the fact that the approach 

employed in the construction of the training set (RND vs. CL) 
dataset exhibited varying effects contingent on the size of the 
training database. The details of the performance of all combi-
nations and networks are presented in Table S3.

In the big TR size, there are no statistically significant differ-
ences between the two construction methods (p-value < 0.05); 
on the contrary, when dealing with smaller dimensions, the CL 
approach yields better performances in terms of FN percentage 
(Figure  7a). The percentage for medium TR ranges between 
5%–13% and 4%–10% for RND and CL approaches, respectively, 
while for small TR, it ranges from 11% to 20% and from 6% to 
12%, respectively.

Figure 7b shows the bar diagram related to the DSC, Pr and Re 
metrics. Focusing on the impact of the two composition ap-
proaches, no statistically significant differences have been found 
between big and medium sizes, except for Re considering big size. 
On the contrary, the results yielded by the CL approach are sta-
tistically significantly higher than those yielded by the RND one 
(p-value < 0.05) for the small size. Moreover, they are comparable 

TABLE 1    |    Percentages of false negative (FN) patients in the internal validation set (IntVAL) per each combination of loss functions, normalizations, 
descending levels, and training compositions.

0 5 10 15 20 25
legend

Note: The color legend reflects performance in terms of percentage of FN: green denotes better performance, whereas red indicates worse performance.
Abbreviations: BFL: Binary Focal Loss, CL: clustering, CoL: Combo Loss DL: Dice Loss, IntVAL: Internal Validation, RND: random.

FIGURE 7    |    (a) False negative (FN) patients' percentage per combination in the internal validation set. (b) Bar diagrams showing the networks' 
performance distributions, divided according to the procedure followed for the training construction (CL and RND) and size (big, medium, and 
small). *Represents statistically significant differences.
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with those yielded by the bigger training set sizes, having always 
p-values > 0.05. In detail, Table  S4 shows the p-values for each 
combination of size and construction approach for all metrics. 
This supports the hypothesis that when dealing with small-sized 
TR sets, the CL approach may allow the construction of more 
representative training sets than RND, yielding comparable re-
sults in all metrics with respect to big sizes.

In conclusion, from our analysis, we observed, as we expected, 
that increasing the size of the TR leads to an improvement in the 
ability networks to detect the tumoral volumes, without strongly 
affecting its ability to precisely segment it.

4.3   |   External Validation

The optimal configuration was identified as one that achieves a 
satisfactory FN percentage and a high Pr value on the IntVAL. 
This choice was driven by the consideration that the clinical goal 
is to precisely and reliably detect the tumoral area, without in-
cluding too many nonpathological pixels. Therefore, the selected 
model was the one that used z-score as an image normalization 
technique, whose U-Net was characterized by four descending 
levels and that used CoL as a loss function during the training, 
and the big size TR set. This model achieved a DSC of 0.68, Pr 
of 0.78, and Re of 0.66 for RND and 0.66, 0.83, 0.60 for CL in 
IntVAL. Since there are no statistically significant differences 
between the two models for the big training set size, we consid-
ered the model trained with the RND set.

The selected network was externally validated on the 483 exam-
inations, and results comparable to the IntVAL (Table 2) proved 
the ability of the model to generalize its performance also on an 
external dataset. Figure 8 presents some examples of segmenta-
tions provided by the best-performing model on some patients of 
ExtVAL. The first row shows an example of good segmentation 
(all metrics), while the second and third rows show two cases 
with DSC < 0.6 that exhibit divergent patterns regarding Pr and 
Re. The one in the second row (id. 015) depicts a relatively under-
segmented tumor, for which an accuracy of 0.76 is attained as 
opposed to a Re of 0.18 (Figure 8b). Conversely, the last one ex-
emplifies a case of over-segmentation for whom we obtained a 
Re of 0.97 and a Pr of 0.32 (Figure 8c).

5   |   Discussion and Conclusion

In this work, we proposed a standard pipeline for the 
development of an automatic DL-based system for RC segmenta-
tion on T2w sequences, providing insights related to the impact 
of multiple decisional parameters, using images from 14 differ-
ent centers. To our knowledge, no other studies have conducted a 
comprehensive analysis and comparison of technical parameters 

such as intensity normalization methods, network architecture, 
loss functions, and training sets on abdominal MRI.

Focusing on the image preprocessing step, we demonstrated the 
complexity of defining the most suitable approach. Our previous 
study [10] revealed that spatial normalization, characterized by 
cropping and resizing, has emerged as a principal method to re-
duce spatial variability. Conversely, among studies on automatic 
RC segmentation, there is still no consensus on the optimal ap-
proach for intensity variability reduction [16–19]. For these rea-
sons, we analyzed the effect of the two most frequently used 
image normalization techniques (z-score and 3-sigma) compared 
to no-norm condition, and we demonstrated that both z-score and 
3-sigma normalizations improved the overall performance of the 
system: the Pr has been increased from 0.58–0.71 for the no-norm 
to 0.72–0.85 and 0.60–0.83 for z-score and 3-sigma, respectively. 
Although both normalization approaches show potential in reduc-
ing intensity variability by realigning the histogram distributions, 
selecting the optimal method must still be done carefully, tailoring 
it to the specific dataset and methodology. Additionally, ensuring a 
consistent rescaling of input intensities to the [0,1] range is highly 
recommended to mitigate the vanishing gradient problem.

Following the DL development pipeline, we then evaluated how 
the network architecture and loss function significantly influ-
enced the system's ability to accurately detect tumor volumes. On 
one hand, we demonstrated that an encoder design consisting of 
four convolutional blocks yields better results compared to three 
blocks (DSC ranging from 0.61 to 0.75 vs. 0.49 to 0.73), indicating 
greater robustness. On the other, we demonstrated that the im-
pact of the overall performance in terms of DSC is not strongly 
affected by the different loss functions, with values ranging be-
tween 0.70–0.73 for BFL, 0.61–0.70 for DL, and 0.62–0.71 for 
CoL. However, we have proved the potential of combining mul-
tiple loss functions to obtain more precise segmentation systems, 
with an overall improvement of the10% for Pr compared to BFL. 
No previous studies have investigated the impact of different loss 
functions on RC segmentation. Instead, most works [17, 19] sim-
ply reported the selected loss function without explicitly justi-
fying their choice. This lack of transparency significantly limits 
the reproducibility of results and a comprehensive understand-
ing of the role played by loss functions in medical image analysis.

Finally, we analyzed the impact of both sample size and the 
construction method of the TR set on system performance. As 
expected, smaller TR sets led to lower performance compared 
to larger ones. However, when data availability was limited, a 
clustering-based construction approach allowed for DSC val-
ues to remain consistent across different sample sizes (0.67, 
0.69, and 0.69 for large, medium, and small sets, respectively). 
Additionally, this method increased Pr by 10% compared to ran-
dom selection, as it ensured the inclusion of more representative 
data. This finding is particularly relevant for developers working 

TABLE 2    |    Best model performances in terms of DSC, Pr and Re for both validation sets.

Dataset FN % DSC median (IQR) PR median (IQR) RE median (IQR)

IntVAL 2 0.68 (0.20) 0.78 (0.24) 0.66 (0.31)

ExtVAL 4 0.66 (0.24) 0.75 (0.25) 0.61 (0.36)

Abbreviation: IQR: InterQuartile range.
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with limited datasets, a common scenario in medical image anal-
ysis. Therefore, before applying Data Augmentation, which may 
introduce overfitting, we suggest considering this strategy as an 
alternative. In the literature, there are only a few papers that have 
conducted analyses on TR construction, mainly on the brain, 
and none, as far as we know, on the rectum. On the brain vol-
umes, Narayana et al. [31], Wulms et al. [32], and Fang et al. [33] 
showed that the relationship between size and DL performance 
depends on the characteristics of the volume of interest. Despite 
the different body parts, our study also suggests that an increase 
in the TR size (at least 300 sequences) could provide better re-
sults for the RC segmentation.

Overall, our results demonstrate that following the reported 
pipeline results in a performance improvement of up to 25% 
in terms of DSC. Our optimal model shows generalizability 
across different institutions and MRI scanners (DSC of 0.66 on 
ExtVAL), yielding similar results as Wang et al. [27] and Pang 
et al. [28], who performed ExtVAL on three and one different 
centers and reached DSCs of 0.59 and 0.66, respectively. The 
best results were reported by Ma et al. [17], who achieved a mean 
DSC of 0.84. However, their study used data from a single exter-
nal center with 88 patients, all acquired with a vendor scanner 
included in the training set, which may have contributed to their 
higher results compared to ours. It is worth noting that our re-
sults were developed and validated on 14 centers, whereas the 
cited studies included a maximum of 4. To summarize, we are 
consistent with the recent literature, although the primary ob-
jective of this study was not solely focused on the development 
of automatic RC segmentation.

Our study has some limitations. First, we considered only one 
architecture, the U-Net, since it has been recognized as the most 
effective method for biomedical image segmentation [34]; in-
deed, the most recent papers still chose to use this backbone net-
work [16–19]. However, it could be of interest to compare other 
more innovative architectures and assess their impact combined 
with all the other technical parameters. Second, we compared 
the random sampling approach with one clustering method, ob-
tained by evaluating first-order radiomics variables, and it would 
be valuable to investigate other clustering techniques using 
alternative radiomics features. Furthermore, assessing the im-
pact of various transfer learning techniques, which have shown 
growing success across multiple fields [35, 36], and considering 
other database divisions into CONSTR, IntVAL, and ExtVAL 
could offer additional insights and improvements. Future work 
could be focused also on additional tasks, e.g., characterization 
and exploring different approaches. Despite these limits, our 
paper presents some interesting insights from both technical 
and clinical points of view: on one side, the crucial importance 
of defining the most suitable DL parameters combination to 
solve the task; on the other, the importance of normalization 
and preprocessing in realigning the distributions of images in a 
multicenter setting.

In conclusion, the study provides a methodological approach 
for helping in developing robust and reproducible AI-based seg-
mentation tools in medical imaging. Indeed, these guidelines 
may not only support and guide informed decision-making but 
also represent a step toward the standardization of the design of 
such systems for their introduction into clinical practice.

FIGURE 8    |    Examples of segmentation masks of rectal cancers belonging to the ExtVAL. In the first column the clear T2w, the second presents 
the manual segmentation in green, and the third row shows the automatic segmentation in red.
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