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A B S T R A C T

We developed the novel Atom-Mimetic Cube-Diagonally Multi-Axed Phase-Transforming Cellular Material 
(AMCDMA-PXCM), hereafter AM-PXCM for short, for a multi-axial bistable metamaterial designed with inspi-
ration from a face-centered cubic (FCC) crystal structure: the designed AM-PXCM consists of spheres at atomic 
positions of structure and dogleg-shaped beams connecting nearest neighbor spheres. Stress-strain relationship of 
AM-PXCM was investigated by Finite Element Method (FEM) simulation. Analyzing the results by Logistic 
classification revealed that the mechanical properties significantly depend on the designing parameters and the 
distance between the beam and the tetrahedron (k) dominantly determines the bistability of the FCC-based AM- 
PXCM. In addition, combined with the machine learning method (i.e., inverse design), we succeeded to predict 
the designing parameters to have the desired mechanical properties for a bistable metamaterial. The designed 
AM-PXCMs were realized using a 3D printer and validified to show the predicted mechanical properties. This 
established method for developing AM-PXCM is suggested to be also applied to a development of an AM-PXCM 
with the symmetry of other crystal structures.

1. Introduction

Metamaterials are materials that create fine periodic structures on a 
directly controllable scale and develop properties that cannot be real-
ized with existing materials [1,2]. For example, metamaterials exhibit-
ing unique optical properties, such as negative index of refraction [3,4]
and negative Poisson’s ratio [5–7].

Phase-transforming cellular materials (PXCMs) [8], which are one 
kind of mechanical metamaterials, are attracting much attention 
because of their potential applications utilizing the bistability of their 
shape. PXCM has two stable configurations transformed from one phase 
to another phase by applying stress. This bistability enables us to use the 
PXCM as a repeatable shock absorber [9–11]. Many types of PXCMs 
have been suggested [12–16] based on the idea of mechanical behavior 
under one-directional load [17,18]. Recently, the PXCMs have been 
developed to exhibit bistability in several directions [19–23]. The 
multi-axed PXCMs are expected to be applied for curved shapes, such as 
human and car bodies, in which loads are not unidirectional. However, 
the application is a challenge because the conventional PXCMs show 
bistable only to the load axis within 5̊ from the ideal load axis [24]. 

Therefore, a novel strategy is required to design a multi-axed PXCM 
which is easy to apply to curved shapes.

In this study, we developed a novel design method for Atom-Mimetic 
Cube-Diagonally Multi-Axed Phase-Transforming Cellular Material 
(AMCDMA-PXCM), hereafter AM-PXCM for short, based on a face- 
centered cubic (FCC) structure. We designed a PXCM bistable in four 
directions by applying the knowledge of material science to design 
PXCMs with symmetry of atomic arrangements. We also aimed to clarify 
the relationship between the design parameters and mechanical prop-
erties and to achieve the desired mechanical properties.

2. Design of AM-PXCM

Fig. 1a shows the designed AM-PXCM structure based on the FCC 
structure (Fig. 1b). Spheres are placed at the corner of the tetrahedra 
which is corresponding to the position of atoms in the FCC structure and 
the edges of the tetrahedra structure as beams representing interatomic 
bonds by combining two sinusoidal beams (Fig. 1c–f). The FCC lattice is 
constructed using the two distinct tetrahedra as illustrated in Fig. 1g: the 
beams are bent toward the center of the tetrahedra colored by red. On 
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the other hand, the beams are bent towards the opposite direction in the 
blue colored tetrahedra. The space group of this structure is Fd3m while 
that of atomic/ FCC structure is Fm3m because of the symmetry of the 
bended beams. The designed structure is expected to show multi-axial 
bistability to 4 three-fold rotation axes, i.e., < 111 > directional axes, 
of FCC structure by deformation of tetrahedral structures shifts towards 
the bottom surface on the opposite side.

The designed structure can be defined by the five design parameters 
as shown in Fig. 1f: the radius of sphere R, the thickness of beam t, the 
distance between nearest neighboring spheres a, the angle between 
beam direction and sphere surface ϕ, and the distance between the 
center of the beam and the center of tetrahedron k. The shape of sinu-
soidal beams is defined by: 

y =
h
2

{

1 − cos
(

2π
λ
(x − Rcosϕ )

)}

+Rsinϕ (1) 

where h is the amplitude (peak to valley) of the sinusoidal beam and λ is 
the wavelength of sinusoidal beams. Two sinusoidal beams are con-
nected at the dashed line which makes the whole curved beam mirror- 
symmetric at the dashed line. h and λ are expressed as follows: 

h =

̅̅̅
2
3

√
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The sinusoidal beam is a straight beam (h = 0) when 

k = k1 =

̅̅̅
3
2

√

Rsinϕ. (4) 

On the other hand, two joining points between the sphere and the 
sinusoidal beam and a joining point between two sinusoidal beams line 
up on a straight line when 
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a
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3
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We defined the geometry coefficient of the curved beam kr using k1 
and k2 as 

kr =
k − k1

k2 − k1
(6) 

The curved beam is a more bent shape with smaller kr and straighter 
with closing kr to 1.

The most remarkable difference between this design and other multi- 
directional bistable structures is the number of directions that exhibit 
bistability: the AM-PXCM show bistability to the four directions, which 
is more than the three orthogonal directions of the previously suggested 

Fig. 1. (a) CAD model of the unit cell of AM-PXCM. Arrows indicate the direction of AM-PXCM exhibiting bistability, which is < 111 > direction of FCC structure. (b) 
Schematic of FCC structure. (c) Drawing of a beam of AM-PXCM and (d) CAD model of a tetrahedral structure of AM-PXCM. (e, f) 3D printed tetrahedral structures of 
AM-PXCM before and after deformed by pressing one of the vertexes and stabilizes at a meta-stable phase. (g) FCC-lattice consisting of two distinct tetrahedra.
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PCXM [12,20–22]. Moreover, the AM-PXCM can be transformed with 
the larger strain almost 100 %, as shown in Fig. 1b and c, compared to 
that up to 30 % of the conventional PXCMs, which are mostly composed 
of a cubic frame and curved bistable beams and can be transformed to a 
metastable state only by the amplitude of the curved beams [12,20–22].

3. Method

3.1. Finite element method simulations

Finite-element method (FEM) analysis has been performed using 
COMSOL software to investigate the mechanical response and defor-
mation of AM-PXCM. The FEM model was simplified consisting of a 
beam and two spheres on both ends of the beam, as schematically 
illustrated in Fig. 1f. The model was compressed in < 111 > direction by 
moving the sphere along the vertical dashed-dotted lines. Generally, a 
force-displacement relation is obtained by applying a load to a model in 
FEM simulations. On the other hand, a force-displacement relation of the 
structure with a snap buckling behavior cannot be obtained by the same 
way because of the decrease in force after a snap buckling. Therefore, a 
load-displacement curve was obtained using the displacement control 
method in this study: The displacement was gradually increased and the 
required load at each displacement was calculated. The sphere on the 
bottom end was fixed, and displacement was applied to the sphere on 
the top end downward by 0.01 mm per step until the apparent strain 
reached 1.5. The displacement d of the sphere and the applied force f are 
measured to evaluate the load-displacement relationship of the simpli-
fied model. The apparent stress ε and strain σ of AM-PXCM can be ob-
tained by 

ε[ − ] =
d[m]
̅̅
2
3

√
a[m]

(7) 

σ[Nm− 2] =
3f [N]

̅̅
3

√

4 πR[m]
2
× 2

. (8) 

Apparent Young’s modulus E was calculated from the gradient of the 
stress-strain curve at ε = 0. In addition, the minimum and the maximum 
local stresses (σmax and σmin) and local strains (εmax and εmin) were 
evaluated to consider the effect of the designing parameters on strength, 
yield point, and bistability. The linear elastic material model was used 
for the simulation. The FEM simulations were conducted with a total 
number of 1225 using the parameters shown in Table 1.

In this study, we used two machine models, logistic regression and 
inverse design models, to analyze the relationship between the me-
chanical properties of the AM-PXCM and the design parameters. We 
performed logistic regression to understand the tendency of bistability 
qualitatively. Conversely, an inverse model analysis was conducted to 
predict and control the mechanical properties of the AM-PXCM.

Logistic regression analysis is a linear classification method that 
classifies datasets that whose data is labelled as 0 or 1 using the logistic 
function (Eq. (9)). 

f(x) =
1

1 + e− x (9) 

In this case, design parameters that were monostable were labelled 
as 0, and design parameters that were bistable were labelled "1". 

Explanatory variable for logistic regression analysis is represented by 
Eq. (10): 

X =

⎡

⎢
⎢
⎣

R
a
ϕ
k

⎤

⎥
⎥
⎦ (10) 

X was standardized and substituted for perceptron represented by 
Eq. (11): 

Y = f
(
XTW+ b

)
(11) 

where Y is the objective variable and is defined as Y = 1 for bistable and 
Y = 0 for monostable, W refers to the weights, and b represents the bias. 
The logistic regression model was trained, achieving an impressive ac-
curacy of 96 %. The resulting weights W and bias b are given in Eq. (12): 

W =

⎡

⎢
⎢
⎣

− 0.50
− 6.60
− 1.62
9.58

⎤

⎥
⎥
⎦, b = − 1.61 (12) 

The design parameters are predicted to exhibit bistability are 
determined by Eqs. (13) and (14): 

f
(
XTW+ b

)
≥ 0.5 (13) 

XTW+ b ≥ 0 (14) 

Eq. (14) expresses the boundary condition for the bistability of the 
AM-PXCM.

3.2. Machine learning assisted optimization

We performed machine learning for the inverse estimation the design 
parameters of AM-PXCM with desired properties based on the FEM 
deformation analysis. The bistability is caused by snap-through; the two 
displacements are relative to the one stress and the relationship between 
displacements and the stress is nonlinear. Therefore, it is difficult to 
solve the inverse problem by an analytical model. Recently, machine 
learning methods have been recognized as a powerful tool for opti-
mizing design parameters and introduced to material design [25] and 
metamaterial design [7,26]. Among them, we introduced the robust 
machine learning technique based on neural networks (NNs) that pro-
vides predictions for the inverse problem, i.e., Inverse design [27–30]. 
Inverse design contains two neural networks: forward neural network 
(f-NN) and inverse neural network (i-NN). The f-NN can predict me-
chanical properties from design parameters. On the other hand, the i-NN 
can predict design parameters from mechanical properties. In addition, 
the f-NN is also used to check the accuracy of i-NN in the inverse design 
[27].

Fig. 2 shows the schematic illustration of the inverse design [27]. 
First, explanatory variables are predicted from objective variables by 
i-NN with random initial weights. The predicted explanatory variables 
are next substituted to f-NN to reconstruct objective variables. The 
reconstructed objective variables are compared with the true objective 
variables. The error between the reconstructed value and the true value 
is calculated with the loss function. The weights and biases of i-NN are 
updated by the sensitivity. The inverse design model was trained by 
repeating this process and updating the weights of i-NN.

In the present study, the ReLU and the linear functions were used as 
activation functions for hidden layers and the output layers, respec-
tively. First, the f-NN model was trained, and then the i-NN was trained 
with the verification using the trained f-NN as follows [27]: 

(1) Solving the inverse problem using i-NN.
(2) Inputting the predicted design parameters to a pre-trained f-NN, 

and the properties are reconstructed.

Table 1 
List of values for each design parameter.

Design parameter value

R/t 4, 5, 6, 7, 8
a/R 6, 7, 8, 9, 10, 11, 12
ϕ 15̊, 22.5̊, 30̊, 37.5̊, 45̊
kr 1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8
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(3) Comparing the initially inputted and the reconstructed properties 
and coefficient of determination is evaluated.

(4) Updating the weights of i-NN using gradient descent based on the 
loss function.

(5) Repeating steps (1) to (4).

We trained the NNs using a data set of 1225 designs obtained by the 
FEM simulations with the parameters shown in Table 1. The NNs were 
optimized using the gradient descent method and validated by cross- 
validation method to achieve highly accurate learning with a small 
amount of data. In this study, we used the mean-squared error (MSE) as 
the loss function expressed as follows: 

MSE =

∑n

i=1
(ai − yi)

2

n
#

(15) 

where ai and yi are true and predicted values, respectively.
The hyperparameters of the number of hidden layers, the number of 

nodes per layer, the learning rate, and the number of cross-validation 
segments for f-NN and i-NN are optimized to have the maximized pre-
diction accuracy and the minimized loss function. The 1050 combina-
tions of the hyperparameters were tested, and Table 2 shows the 
optimized hyperparameters for f-NN and i-NN.

3.3. Experimental validation

The predicted AM-PXCMs were fabricated by the powder-bed fusion 
(PBF) type additive manufacturing, i.e., selective-laser sintering (SLS), 
using the polymer-PBF machine (Sinterit LISA) and thermoplastic 
polyurethane (TPU) powders (Sinterit FLEXA BRIGHT), which is a 
typical elastomer used in the PBF process. 2 AM-PXCMs were fabricated 
using the designing parameters shown in Table 3, which are expected to 
exhibit monostable and bistable mechanical properties. The 

compression tests of the fabricated AM-PXCM were performed using the 
universal testing machine (Shimadzu AG-IN 500 N) to investigate the 
deformation behavior and bistability. The built specimens were first 
compressed at a quasi-static compression rate of 0.5 mm/s up to a 
deformation of 15 mm. Then, the specimen was unloaded to the initial 
position with 0.5 mm/s. E, σmax, σmin, εmax, and εmin were evaluated.

4. Results and discussion

4.1. FEM analysis of deformation behavior of AM-PXCM

Fig. 3 shows the snapshots of the deformation behavior of a beam in a 
bistable AM-PXCM simulated by FEM for the cases of parameter set A (i. 
e., t = 1 mm, R = 4 mm, a = 24 mm, ϕ = 45̊, kr = 7⁄8) (Fig. 3a1–a6) and 
parameter set B (i.e., t = 1 mm, R = 4 mm, a = 24 mm, ϕ = 45̊, kr = 1/2) 
(Fig. 3b1–b6). Fig. 3a1–a5 show the shape of the model at the moments 
indicated by the points a1–a5 in the force-displacement curve Fig. 3a6, 
respectively. On the other hand, Fig. 3b1–b5 show the shapes of the 
model at the moments indicated by the points b1–b5 in the force- 
displacement curve (Fig. 3b1–b5), respectively. The colors of the im-
ages indicate the magnitude of von Mises stress. Fig. 3a1 and b1 show 
the original shape without any load. Fig. 3 a2 and b3 are for the mo-
ments where the load started to decrease after showing maximum. The 
elastic strain energy is maximum when the slope of the load- 
displacement curve is negative, and the load is zero. Then, the von 
Mises stress at this point is the maximum value. It is noted that the beam 
is bent so that the center point of the beam goes up in the case of 
parameter set A (Fig. 3a2), while the beam is bent so that the center 
point of the beam goes down in the case of parameter set B (Fig. 3b2) at 
the beginning of the deformation. However, the center points go down 
finally in both cases of parameter sets A and B. The difference in the 
stability of the deformed shape seems to be related to the change in the 
direction of movement of the midpoint of the beam. In the case where 

Fig. 2. Schematic of the inverse design process. The neural network for the inverse problems takes a queried mechanical property as input and output design 
parameters. The predicted design parameters are fed to the neural network for the forward problem to reconstruct mechanical properties and verify the predictions of 
the inverse problem. Both NN models consist of three hidden layers with the indicated number of nodes.

Table 2 
Hyperparameters for each neural network in the Inverse design process.

Number of 
hidden 
layers

Number of 
nodes in 
hidden layer

Learning 
rate

Number of 
batches

Epochs

Forward 
problem

3 250 0.001 20 100

Inverse 
problem

3 1000 0.005 20 100

Table 3 
Design parameter sets of atom-mimetic cube-diagonally multi-axed phase- 
transforming cellular material.

Design parameter Parameter set A Parameter set B

R/t 4 4
a/R 6 6
ϕ 45̊ 45̊
kr 7/8 1/2

M. Okugawa et al.                                                                                                                                                                                                                              Extreme Mechanics Letters 77 (2025) 102319 

4 



the beam bends to move over the center of the beam during the defor-
mation process (parameter set A, Fig. 3a2), the beam bends in such a 
way that it buckles. In the initial stage of deformation, axial compressive 
deformation of the beam is considered to be the dominant deformation 
mode. On the other hand, in the case where the beam bends down the 
center of the beam (parameter set B, Fig. 3b2), the dominant deforma-
tion mode is the bending deformation of the beam. This difference in 
deformation mode is considered to cause a large difference in apparent 
Young’s modulus (Fig. 3a6 and b6).

Fig. 4 shows E, εmax, σmax, εmin, σmin, and ρ plotted as a function of the 
design parameters of R/t (the radius of spheres with respect to the 
thickness of the beam), a/R (the distance between adjacent spheres with 
respect to the radius of spheres), ϕ and kr (the degree of straightness of 
the beam). These design parameters influence the mechanical properties 
and density of the AM-PXCM. However, the multiple parameters are 
mutually influencing each other, making it difficult to express the 
characteristics as functions of each parameter.

The bistability of PXCM is determined by the sign (i.e., positive, or 
negative) of the stress of the minima. When the stress of the minima is 
positive, no metastable state exists, and therefore, PXCM is monostable. 
On the other hand, when the stress of minima is negative, a metastable 
state appears, therefore, PXCM becomes bistable. Fig. 5 shows σmin/σmax 
plotted as a function of the design parameters of R/t, a/R, ϕ, and kr. The 
stress of maxima σmax represents the strength, and σmin/σmax is consid-
ered to ignore the strength and represent the bistability. According to 

the graph bistability barely depends on design parameters R/t, a/R, and 
ϕ, but strongly depends on kr (the degree of straightness of the beam). 
The threshold of bistability was kr ~ 0.52. When σmin / σmax has a 
negative value with a large absolute value, the energy barrier between 
the stable state and metastable state becomes larger. Therefore, the 
metastable state is most stable at kr = 3/4.

Fig. 6 shows three-dimensional plots of the design parameter sets 
colored by the bistability result of the parameter set. The design 
parameter sets that were monostable are plotted in blue, and the design 
parameter sets that were bistable are plotted in red. The planar 
boundary between monostable and bistable was determined by logistic 
regression and plotted as a blue surface. Substituting the trained weights 
and bias, the boundary condition resulted in Eq. (15): 

− 0.50 R* − 6.60 a* − 1.62 ϕ* + 9.58 k* ≥ 1.61                          (16)

where R*, a*, ϕ*, and k* are normalized R, a, ϕ, and k, respectively, and 
those values were scaled in the ranged from 0 to 1. The coefficients can 
be interpreted as the magnitude of the contributions to the bistability. 
The analysis revealed that k and a have large contributions. Therefore, 
AM-PXCM tends to be bistable with larger k which has a positive coef-
ficient, and smaller a which has a negative coefficient.

Fig. 3. (a1–5) Deformation behavior of a beam in a bistable AM-PXCM. (a6) Force-displacement relationship of a beam in a bistable AM-PXCM. (b1–5) Deformation 
behavior of a beam in a monostable AM-PXCM. (b6) Force-displacement relationship of a beam in a monostable AM-PXCM.
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4.2. Prediction design parameters to have desired mechanical properties 
and experimental verification

To control the mechanical properties of the AM-PXCM to the desired 
ones by properly selecting parameters in the large design parameter 
space, the results are analyzed by the Inverse design method [27]. Fig. 7
shows the correlations between the true values and the predicted values 
obtained using the trained f-NN (Fig. 7a-f) and i-NN (Fig. 7g–j). The 
coefficients of determination (CoD, R2) for f-NN are all high enough to 
conclude that the mechanical properties of the AM-PXCM can be pre-
dicted with sufficient accuracy with an error range of smaller than 
0.1 %. On the other hand, the CoD for i-NN were all lower than those for 

the f-NN, but the prediction accuracy of the i-NN is still high, with an 
error range of less than 0.1 %. This suggests that the i-NN able to predict 
the optimal design parameters to achieve the desired mechanical 
properties accurately. The i-NN provides a more comprehensive un-
derstanding of the design space and the trade-offs between different 
design parameters, allowing for the identification of designs that bal-
ance performance and manufacturability.

The AM-PXCMs with monostable and bistable properties were 
fabricated using the SLS-type 3D printer for verification using the design 
parameters shown in Table 3. The lattice of Sample A created with 
Parameter set A has a relatively small bending of the beam. On the other 
hand, the lattice of Sample B made with Parameter set B has a large 

Fig. 4. Relation between mechanical properties of AM-PXCM and design parameters evaluated by FEM simulation: (a) effect of R/t, (b) a/R, (c) ϕ, and (d) kr.
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bending of the beam. Fig. 8 shows the load-displacement curves of the 
AM-PXCMs under compression and unloading tests and the corre-
sponding snapshots. In the deformation of the sample A (Fig. 8a1–a12), 
the load increased greatly at the initial stage of deformation and then 
deformed with buckling as seen in Fig. 8a5 (corresponding to the point 
a5 in Fig. 8a3). This lattice exhibited bistability as expected in the 
simulation. Correspondingly, the stress became negative at the point of e 

where the lattice became compacted and horizontally flat as seen in 
Fig. 8a8 in the experiment after the buckling, indicating a metastable 
state in compression. In Sample B (Fig. 8b1–b12), the beam, which 
originally had a large bending, increased the bending angle from the 
initial stage of deformation. This deformation is easy, and the load is 
relatively small. As expected by the simulation, the lattice of sample B 
exhibited no bistability, and the load never went to zero. Thus, the 

Fig. 5. Dependence of the ratio of minima stress to maxima stress on the design parameters on (a) R/t, (b) a/R, (c) ϕ, and (d) kr.

Fig. 6. 3D plots of bistability and boundary plane determined by logistic regression. (a) R = 4 mm, (b) 5 mm, (c) 6 mm, (d) 7 mm, and (e) 8 mm.
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deformation behavior greatly differs depending on the difference in the 
bending of the beam. A clear difference, i.e., the presence or absence of 
bistability, arose as the result of the difference in the bending of the 
beams.

Overall, the results of our inverse design model demonstrate the 
potential of machine learning techniques to accelerate the development 
of new mechanical metamaterials with tailored properties. The accuracy 
of our model suggests that it can be applied to the design of a wide range 
of metamaterials with different geometries and mechanical properties. 
The investigation of the deformation behavior of larger AM-PXCM fab-
rications and its FEM simulation using a representative volume element 
model for more accurate prediction of the large deformation behavior 
are currently underway.

5. Conclusion

In this study, we developed the novel Atom-Mimetic Phase-Trans-
forming Cellular Material (AM-PXCM) with a cube-diagonally multi- 
axed structure based on the face-centered cubic (FCC) crystal structure. 
The mechanical properties of the AM-PXCM were investigated by the 
Finite Element Method (FEM) simulations, and it has been found that the 
designing parameters, especially the bending of the beams, played a 
dominant role in determining the bistability of the material. By applying 
machine learning techniques, specifically the inverse design method, we 
were able to predict the designing parameters that would yield the 
desired mechanical properties for a bistable metamaterial. The accuracy 
of the predictions was verified through the actual fabrication and testing 
of AM-PXCM samples fabricated with a thermo-plastic polyurethane by 
a 3D printer. The experimental results matched reasonably with the 

predicted mechanical properties, confirming the effectiveness of our 
approach.

This study demonstrated the potential of AM-PXCM as a multi-axial 
bistable metamaterial with controllable mechanical properties. It has 
been demonstrated that it is possible to tailor apparent Young’s 
modulus, stress-strain relationship, and bistability of the material by 
manipulating the design parameters, such as the radius of spheres, the 
thickness of beams, the distance between neighboring spheres, the angle 
between beam direction and sphere surface, and the distance between 
the center of the beam and the center of the tetrahedron, (i.e., the 
straightness of the beam). The inverse design method proved to be a 
powerful tool for predicting the optimal design parameters, enabling the 
efficient development of AM-PXCMs with desired mechanical 
properties.

Our research contributes to the advancement of mechanical meta-
materials and expands their potential applications. The ability to design 
and fabricate multi-axial bistable metamaterials opens up new possi-
bilities in areas such as shock absorbers, energy absorption, and flexible 
structures. Furthermore, the insights gained from this study can be 
applied to the development of AM-PXCMs based on other crystal 
structures, providing a framework for the design of metamaterials with a 
wide range of properties.

This study provides a comprehensive understanding of the rela-
tionship between the design parameters and mechanical properties of 
AM-PXCMs. The combination of FEM simulations and machine learning 
techniques offers a powerful approach to the efficient design and 
development of metamaterials with tailored properties. We believe that 
our findings will contribute to the advancement of materials science and 
engineering and inspire further research in the field of multi-axial 

Fig. 7. (a)-(f) True vs. f-NN reconstructed mechanical properties. (g)-(j) true vs. i-NN predicted design parameters.
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M. Okugawa et al.                                                                                                                                                                                                                              Extreme Mechanics Letters 77 (2025) 102319 

9 



Data availability

Data will be made available on request.

References

[1] J.U. Surjadi, L. Gao, H. Du, X. Li, X. Xiong, N.X. Fang, Y. Lu, Mechanical 
metamaterials and their engineering applications, Adv. Eng. Mater. 21 (2019) 
1800864, https://doi.org/10.1002/adem.201800864.

[2] M. Askari, D.A. Hutchins, P.J. Thomas, L. Astolfi, R.L. Watson, M. Abdi, M. Ricci, 
S. Laureti, L. Nie, S. Freear, R. Wildman, C. Tuck, M. Clarke, E. Woods, A.T. Clare, 
Additive manufacturing of metamaterials: a review, Addit. Manuf. 36 (2020) 
101562, https://doi.org/10.1016/j.addma.2020.101562.

[3] R.A. Shelby, D.R. Smith, S. Schultz, Experimental verification of a negative index of 
refraction, Science 292 (2001) 77–79, https://doi.org/10.1126/science.1058847.

[4] G. Zhao, S. Bi, Design and verification of double band negative refraction 
metamaterial, Chem. Phys. Lett. 725 (2019) 92–96, https://doi.org/10.1016/j. 
cplett.2019.04.020.

[5] X. Ren, R. Das, P. Tran, T.D. Ngo, Y.M. Xie, Auxetic metamaterials and structures: a 
review, Smart Mater. Struct. 27 (2018) 023001, https://doi.org/10.1088/1361- 
665X/aaa61c.

[6] H. Yang, L. Ma, Design and characterization of axisymmetric auxetic 
metamaterials, Compos. Struct. 249 (2020) 112560, https://doi.org/10.1016/j. 
compstruct.2020.112560.

[7] J.K. Wilt, C. Yang, G.X. Gu, Accelerating auxetic metamaterial design with deep 
learning, Adv. Eng. Mater. 22 (2020) 1901266, https://doi.org/10.1002/ 
adem.201901266.

[8] D. Restrepo, N.D. Mankame, P.D. Zavattieri, Phase transforming cellular materials, 
Extrem. Mech. Lett. 4 (2015) 52–60, https://doi.org/10.1016/j.eml.2015.08.001.

[9] C.S. Ha, R.S. Lakes, M.E. Plesha, Design, fabrication, and analysis of lattice 
exhibiting energy absorption via snap-through behavior, Mater. Des. 141 (2018) 
426–437, https://doi.org/10.1016/j.matdes.2017.12.050.

[10] D.M. Correa, T. Klatt, S. Cortes, M. Haberman, D. Kovar, C. Seepersad, Negative 
stiffness honeycombs for recoverable shock isolation, Rapid Prototyp. J. 21 (2015) 
193–200, https://doi.org/10.1108/RPJ-12-2014-0182.

[11] T. Frenzel, C. Findeisen, M. Kadic, P. Gumbsch, M. Wegener, Tailored Buckling 
Microlattices as Reusable Light-Weight Shock Absorbers, Adv. Mater. 28 (2016) 
5865–5870, https://doi.org/10.1002/adma.201600610.

[12] F. Pan, Y. Li, Z. Li, J. Yang, B. Liu, Y. Chen, 3D pixel mechanical metamaterials, 
Adv. Mater. 31 (2019) 1900548, https://doi.org/10.1002/adma.201900548.

[13] D.M. Correa, C.C. Seepersad, M.R. Haberman, Mechanical design of negative 
stiffness honeycomb materials, Integr. Mater. Manuf. Innov. 4 (2015) 165–175, 
https://doi.org/10.1186/s40192-015-0038-8.

[14] D.A. Debeau, C.C. Seepersad, M.R. Haberman, Impact behavior of negative stiffness 
honeycomb materials, J. Mater. Res. 33 (2018) 290–299, https://doi.org/10.1557/ 
jmr.2018.7.

[15] S. Kanegae, M. Okugawa, Y. Koizumi, Martensitic phase-transforming 
metamaterial: concept and model, Materials 16 (2023) 6854, https://doi.org/ 
10.3390/ma16216854.

[16] H. Nagayama, S. Kanegae, M. Hosoda, M. Okugawa, Y. Koizumi, Thermally 
induced phase transforming cellular lattice driven by bimetal beams, MRS Adv. 7 
(2022) 701–705, https://doi.org/10.1557/s43580-022-00334-y.

[17] J. Qiu, J.H. Lang, A.H. Slocum, A Curved-Beam Bistable Mechanism, J. Micro Syst. 
13 (2004) 137–146, https://doi.org/10.1109/JMEMS.2004.825308.

[18] B. Camescasse, A. Fernandes, J. Pouget, Bistable buckled beam: Elastica modeling 
and analysis of static actuation, Int. J. Solids Struct. 50 (2013) 2881–2893, https:// 
doi.org/10.1016/j.ijsolstr.2013.05.005.

[19] H. Yang, L. Ma, Angle-dependent transitions between structural bistability and 
multistability, Adv. Eng. Mater. 22 (2020) 1900871, https://doi.org/10.1002/ 
adem.201900871.

[20] X. Tan, B. Wang, S. Zhu, S. Chen, K. Yao, P. Xu, L. Wu, Y. Sun, Novel 
multidirectional negative stiffness mechanical metamaterials, Smart Mater. Struct. 
29 (2020) 015037, https://doi.org/10.1088/1361-665X/ab47d9.

[21] H. Yang, L. Ma, 1D to 3D multi-stable architected materials with zero Poisson’s 
ratio and controllable thermal expansion, Mater. Des. 188 (2020) 108430, https:// 
doi.org/10.1016/j.matdes.2019.108430.

[22] C.S. Ha, R.S. Lakes, M.E. Plesha, Cubic negative stiffness lattice structure for energy 
absorption: Numerical and experimental studies International Journal of Solids and 
Structures Cubic negative stiffness lattice structure for energy absorption: 
Numerical and experimental studies, Int. J. Solids Struct. 178–179 (2019) 
127–135, https://doi.org/10.1016/j.ijsolstr.2019.06.024.

[23] C. Ren, D. Yang, H. Qin, Mechanical performance of multidirectional buckling- 
based negative stiffness metamaterials: an analytical and numerical study, 
Materials 11 (2018) 1078, https://doi.org/10.3390/ma11071078.

[24] Y. Zhang, D. Restrepo, M. Velay-Lizancos, N.D. Mankame, P.D. Zavattieri, Energy 
dissipation in functionally two-dimensional phase transforming cellular materials, 
Sci. Rep. 9 (2019) 12581, https://doi.org/10.1038/s41598-019-48581-8.

[25] H. Fujii, D.J.C. Mackay, H.K.D.H. Bhadeshia, Bayesian neural network analysis of 
fatigue crack growth rate in nickel base superalloys, ISIJ Int 36 (1996) 1373–1382, 
https://doi.org/10.2355/isijinternational.36.1373.

[26] A. Bacigalupo, G. Gnecco, M. Lepidi, L. Gambarotta, Machine-learning techniques 
for the optimal design of acoustic metamaterials, J. Optim. Theory Appl. 187 
(2020) 630–653, https://doi.org/10.1007/s10957-019-01614-8.

[27] S. Kumar, S. Tan, L. Zheng, D.M. Kochmann, Inverse-designed spinodoid 
metamaterials, Npj Comput. Mater. 6 (2020) 1–10, https://doi.org/10.1038/ 
s41524-020-0341-6.

[28] B. Kim, S. Lee, J. Kim, Inverse design of porous materials using artificial neural 
networks, Sci. Adv. 6 (2020) 1–8, https://doi.org/10.1126/sciadv.aax9324.

[29] X. Zheng, X. Zhang, T.Te Chen, I. Watanabe, Deep learning in mechanical 
metamaterials: from prediction and generation to inverse design, Adv. Mater. 35 
(2023), https://doi.org/10.1002/adma.202302530.

[30] K. Zhang, Y. Guo, X. Liu, F. Hong, X. Hou, Z. Deng, Deep learning-based inverse 
design of lattice metamaterials for tuning bandgap, Extrem. Mech. Lett. 69 (2024) 
102165, https://doi.org/10.1016/j.eml.2024.102165.

M. Okugawa et al.                                                                                                                                                                                                                              Extreme Mechanics Letters 77 (2025) 102319 

10 

https://doi.org/10.1002/adem.201800864
https://doi.org/10.1016/j.addma.2020.101562
https://doi.org/10.1126/science.1058847
https://doi.org/10.1016/j.cplett.2019.04.020
https://doi.org/10.1016/j.cplett.2019.04.020
https://doi.org/10.1088/1361-665X/aaa61c
https://doi.org/10.1088/1361-665X/aaa61c
https://doi.org/10.1016/j.compstruct.2020.112560
https://doi.org/10.1016/j.compstruct.2020.112560
https://doi.org/10.1002/adem.201901266
https://doi.org/10.1002/adem.201901266
https://doi.org/10.1016/j.eml.2015.08.001
https://doi.org/10.1016/j.matdes.2017.12.050
https://doi.org/10.1108/RPJ-12-2014-0182
https://doi.org/10.1002/adma.201600610
https://doi.org/10.1002/adma.201900548
https://doi.org/10.1186/s40192-015-0038-8
https://doi.org/10.1557/jmr.2018.7
https://doi.org/10.1557/jmr.2018.7
https://doi.org/10.3390/ma16216854
https://doi.org/10.3390/ma16216854
https://doi.org/10.1557/s43580-022-00334-y
https://doi.org/10.1109/JMEMS.2004.825308
https://doi.org/10.1016/j.ijsolstr.2013.05.005
https://doi.org/10.1016/j.ijsolstr.2013.05.005
https://doi.org/10.1002/adem.201900871
https://doi.org/10.1002/adem.201900871
https://doi.org/10.1088/1361-665X/ab47d9
https://doi.org/10.1016/j.matdes.2019.108430
https://doi.org/10.1016/j.matdes.2019.108430
https://doi.org/10.1016/j.ijsolstr.2019.06.024
https://doi.org/10.3390/ma11071078
https://doi.org/10.1038/s41598-019-48581-8
https://doi.org/10.2355/isijinternational.36.1373
https://doi.org/10.1007/s10957-019-01614-8
https://doi.org/10.1038/s41524-020-0341-6
https://doi.org/10.1038/s41524-020-0341-6
https://doi.org/10.1126/sciadv.aax9324
https://doi.org/10.1002/adma.202302530
https://doi.org/10.1016/j.eml.2024.102165

	Multi-axed phase-transforming cellular material: A data-driven design and validation using finite-element method and machin ...
	1 Introduction
	2 Design of AM-PXCM
	3 Method
	3.1 Finite element method simulations
	3.2 Machine learning assisted optimization
	3.3 Experimental validation

	4 Results and discussion
	4.1 FEM analysis of deformation behavior of AM-PXCM
	4.2 Prediction design parameters to have desired mechanical properties and experimental verification

	5 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgment
	Data availability
	References


