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Abstract
In this paper, we consider a translating soliton for the inverse mean curvature flow given as a

graph of a function on a domain in a unit sphere whose level sets give isoparametric foliation.
First, we show that such function is given as a composition of an isoparametric function on the
unit sphere and a function which is given as a solution of a certain ordinary differential equation.
Further, we analyze the shape of the graphs of the solutions of the ordinary differential equation.
This analysis leads to the classification of the shape of such translating solitons for the inverse
mean curvature flow.

1. Introduction

1. Introduction
The author [6] classified the shape of the translating soliton for the mean curvature flow

given as a graph of a function on a domain in the unit sphere which is a composition of an
isoparametric function and some function. In this paper, we consider the case of the inverse
mean curvature flow by the similar way.

Let N be an n-dimensional Riemannian manifold. Define an immersion f of a domain
M ⊂ N into the product Riemannian manifold N × R by f (x) = (x, u(x)), x ∈ M with a
smooth function u : M → R on M. Also, denote the graph of u (i.e, f (M)) by Γ. For a
C∞-family of C∞-immersions { ft}t∈I of M into N ×R (I is an open interval including 0) with
f0 = f , as Mt = ft(M), {Mt}t∈I is called the inverse mean curvature flow starting from Γ if ft
satisfies

(1.1)
(
∂ ft
∂t

)⊥ ft

= − 1
‖Ht‖2 Ht,

where Ht is the mean curvature vector field of ft and (•)⊥ ft is the normal component of (•)
with respect to ft.

Furthermore, according to the definition of a soliton of the mean curvature flow by
Hungerbühler and Smoczyk [7], we define a soliton of the inverse mean curvature flow.
Let X be a Killing vector field on N × R and {φt}t∈R be the one-parameter transformation
associated to X on N × R, that is, φt’s are isometries and φt satisfies

∂φt

∂t
= X ◦ φt, φ0 = idN×R,

where idN×R is the identity map on N × R. Then, the inverse mean curvature flow {Mt}t∈I is
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called a soliton for the inverse mean curvature flow with respect to X if f̃t = φ−1
t ◦ ft satisfies

(1.2)
⎛⎜⎜⎜⎜⎝∂ f̃t
∂t

⎞⎟⎟⎟⎟⎠⊥ f̃t

= 0.

In the sequel, we call such soliton an X-soliton simply. In particular, when X = (0, 1) ∈
T (N × R) = T N ⊕ TR, we call the X-soliton a translating soliton.

Compared with the mean curvature flow, the translating soliton for the inverse mean cur-
vature flow is less studied. For a translating soliton for the mean curvature flow, the exis-
tence of the complete rotationally symmetric graphical translating soliton which is called
bowl soliton is showed by Clutterbuck, Schnürer and Schulze [3] (Altschuler and Wu [1]
had already showed the existence in the case n = 2). Also, they showed a certain type of
stability for the bowl soliton and investigated the asymptotic expansion as the distance func-
tion r in Rn approaches infinity because the bowl soliton is the graph of a function which is
a composition of r and the solution of a certain ordinary differential equation. Further, in the
case n = 2, Wang [16] showed that the bowl soliton is the only convex translating soliton
which is an entire graph. Also, Spruck and Xiao [15] showed that the bowl soliton is the only
complete translating soliton which is an entire graph. Inspired by Clutterbuck, Schnürer and
Schulze [3], the author [6] analyze the shape of the translating soliton for the mean curvature
flow given as a graph of a function which is a composition of an isoparametric function on
an n-dimensional unit sphere Sn and some function which is a solution of a certain ordinary
differential equation. For a translating soliton for the inverse mean curvature flow, Drugan,
Lee, and Wheeler [5] gave a translating soliton in R2 which is the cycloid generated by a
circle with radius 1/4 and gave a tilted cycloid product as a translating soliton in R3. Kim
and Pyo [8, 9] showed the existence and classification of rotationally symmetric translating
solitons in Rn+1 and showed that there is no complete translating soliton for inverse mean
curvature flow in Rn+1.

In the main theorem of this paper, we consider the case where N is the n-dimensional unit
sphere Sn and u is a composition of an isoparametric function r on Sn and some function V .
Then, the level sets of the isoparametric function r give compact isoparametric hypersurfaces
of Sn. The isoparametric hypersurfaces of Sn has been studied by several authors. Münzner
[11] showed that the number k of distinct principal curvatures of compact isoparametric
hypersurfaces of Sn is 1, 2, 3, 4 or 6. By Cartan [2], the isoparametric hypersurfaces in cases
k = 1, 2, 3 are classified. Also, these hypersurfaces are homogeneous. By the result of
Dorfmeister and Neher [4] and Miyaoka [10], the isoparametric hypersurfaces in case k = 6
are homogeneous. Furthermore, in case k = 4, Ozeki and Takeuchi [13, 14] constructed
non-homogeneous isoparametric hypersurfaces as the regular level sets of the restrictions of
the Cartan-Münzner polynomial functions to the sphere.

In this paper, we obtain the following theorem for the shape of the graph of V .

Theorem 1.1. Let r be an isoparametric function on Sn (n ≥ 2) and V be a C∞-function
on an interval J ⊂ r(Sn). If the inverse mean curvature flow starting from the graph of the
function u = (V ◦ r)|r−1(J) is a translating soliton, the shape of the graph of V is like one of
those illustrated by Figures 1.1−1.5.
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Fig.1.1. The graph of V (Type I)

Fig. 1.2. The graph of V
(Type II)

Fig. 1.3. The graph of V
(Type III)

Fig. 1.4. The graph of V
(Type IV)

Fig. 1.5. The graph of V
(Type V)

Remark 1.2. For the C∞-function V in Theorem 1.1, define a C∞-function ψ by ψ(r) =
k
√

1 − r2V ′(r) and define ψmin, ψmax by ψmin := minr∈Dom(ψ) ψ(r), ψmax := maxr∈Dom(ψ) ψ(r),
where Dom(ψ) means a domain of ψ. Also, define a constant R and functions η1, η2 on
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(−1, a] ∪ [b, 1) by

R :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 (k = 1, 3, 6)

−1 +
km

n − 1
(k = 2, 4),

η1(r) :=
(n − 1)(r − R) − √

((n − 1)2 + 4)r2 − 2R(n − 1)2r + R2(n − 1)2 − 4

2
√

1 − r2
,

η2(r) :=
(n − 1)(r − R) +

√
((n − 1)2 + 4)r2 − 2R(n − 1)2r + R2(n − 1)2 − 4

2
√

1 − r2
.

Here, m is the multiplicity of the smallest principal curvature of the isoparametric hyper-
surface defined by the level set of the isoparametric function r in Theorem 1.1 and a, b are
defined by

a :=
(n − 1)2R − 2

√
(n − 1)2(1 − R2) + 4

(n − 1)2 + 4
,

b :=
(n − 1)2R + 2

√
(n − 1)2(1 − R2) + 4

(n − 1)2 + 4
.

If the graph of V is like one illustrated by Figure 1.2, then we will see that there exists
r0 ∈ (b, 1) with ψmin = η1(r0) or ψmin = η2(r0). If the graph of V is like one illustrated by
Figure 1.3, then we will see that there exists r0 ∈ (−1, a) with ψmax = η1(r0) or ψmax = η2(r0).
Let the open interval (x, y) be the domain of ψ. Then, it is shown that, for each type of the
graph of V , the behavior of the graph of ψ is as in Table 1.

Table 1. The behavior of the graph of ψ

the graph of V Im(ψ) ψ′ r ↓ x r ↑ y
Type I (−∞,∞) < 0 ∞ −∞
Type II [ηi(r0),∞) − ∞ ∞
Type III (−∞, ηi(r0)] − −∞ −∞
Type IV [0,∞) < 0 ∞ 0
Type V (−∞, 0] < 0 0 −∞

2. Proof of Theorem 1.1

2. Proof of Theorem 1.1
Let (N, g) be an n-dimensional Riemannian manifold and u : M → R be a function on a

domain M ⊂ N. Denote the graph of u by Γ. Also, denote the gradient and Laplacian with
respect to g by ∇ and Δ respectively. Then, we have the following lemma about the soliton
of the inverse mean curvature flow.

Lemma 2.1. If the inverse mean curvature flow starting from Γ is a translating soliton, u
satisfies

(2.1) Δu + ‖∇u‖2 + 1 − ∇u(‖∇u‖2)
2(1 + ‖∇u‖2)

= 0.

Conversely, if u satisfies (2.1), the family of the images {Mt}t∈R definded by ft(x) = (x, u(x)+
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t), x ∈ M and Mt = ft(M) is a translating soliton for the inverse mean curvature flow.

Proof. Define the immersion f of M into the product Riemannian manifold N × R by
f (x) = (x, u(x)), x ∈ M and define the Killing vector X = (0, 1) ∈ T (N × R) = T N ⊕ TR.
Denote the mean curvature vector field of f by H. According to Hungerbühler and Smoczyk
[7] in the case of a soliton for the mean curvature flow, if the inverse mean curvature flow
starting from Γ is translating soliton, we find that

(2.2) (X ◦ f )⊥ f = − 1
‖H‖2 H.

Let (x1, · · · xn, s) be local coordinates of N × R. By X = ∂
∂s and f (x) = (x, u(x)), x ∈ M, we

find

(X ◦ f )⊥ f =
∂

∂s
− 1

1 + ‖∇u‖2 d f (∇u),

1
‖H‖2 H =

1 + ‖∇u‖2
Δu − ∇u(‖∇u‖2)

2(1+‖∇u‖2)

(
∂

∂s
− 1

1 + ‖∇u‖2 d f (∇u)
)
.

Therefore, we obtain that (2.2) is equivalent to (2.1).
Conversely, if u satisfies (2.1), we find that f satisfies (2.2). Then, for the one-parameter

transformation {φt}t∈R associated to X on N × R, since φt’s are isometries and f satisfies
(2.2), we find that ft = φt ◦ f satisfies(

∂ ft
∂t

)⊥ ft

+
1
‖Ht‖2 Ht = dφt

(
(X ◦ f )⊥ f +

1
‖H‖2 H

)
= 0,

and { ft}t∈R satisfies (1.1). So, {Mt}t∈R is the inverse mean curvature flow. Furthermore, we
find that ft satisfies (1.2) from φ−1

t ◦ ft = f . Therefore, {Mt}t∈R is a translating soliton. Then,
we have ft(x) = (x, u(x) + t), x ∈ M. �

We consider the case where u is a composition of an isoparametric function r and some
function V . A non-constant C∞-function r : N → R is called an isoparametric function if
there exist C∞-functions α, β such that⎧⎪⎪⎨⎪⎪⎩‖∇r‖2 = α ◦ r

Δr = β ◦ r.

Then, the level set of r with respect to a regular value is called an isoparametric hypersur-
face. For Lemma 2.1, considering the case where u is the composition of the isoparametric
function r : N → R and some function V , we obtain the following proposition.

Proposition 2.2. Let r : N → R be an isoparametric function on N. If the inverse mean
curvature flow starting from Γ is a translating soliton and if there exists a C∞-function V on
an interval J ⊂ r(N) such that u = (V ◦ r)|r−1(J), the function V satisfies

(2.3) 2αV ′′ + 2α2V ′4 + α(2β − α′)V ′3 + 4αV ′2 + 2βV ′ + 2 = 0,

where ′ denotes derivative on J and α, β are C∞-functions which satisfy ‖∇r‖2 = α ◦ r, Δr =
β ◦ r. Conversely, if V satisfies (2.3), the family of the images {Mt}t∈R defined by ft(x) =
(x, (V ◦ r)(x) + t), x ∈ M and Mt = ft(M) is the translating soliton for the inverse mean
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curvature flow.

Proof. From (2.1), we have

2(1 + ‖∇u‖2)(Δu + ‖∇u‖2 + 1) − ∇u(‖∇u‖2) = 0.

By u = V ◦ r, we find

‖∇u‖2 =
(
αV ′2

)
◦ r,

∇u(‖∇u‖2) =
(
αV ′2

(
2αV ′′ + α′V ′

)) ◦ r,

Δu =
(
αV ′′ + βV ′

) ◦ r.

Therefore, (2.1) is reduced to the following equation

2(1 + αV ′2)(αV ′′ + βV ′ + αV ′2 + 1) − αV ′2(α′V ′ + 2αV ′′) = 0.

From this equation, we obtain (2.3). �

In the case where N is the n-dimensional unit spere Sn, Münzner [11, 12] shows the
following theorem for an isoparametric function r on Sn.

Theorem 2.3 (Münzner [11, 12]). (i) Let r be an isoparametric function on Sn. Then, r
satisfies

(2.4)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
‖∇r‖2 = k2(1 − r2)

Δr =
m2 − m1

2
k2 − k(n + k − 1)r.

By the first equation of (2.4), we find that r(Sn) = [−1, 1]. Here, we consider that the
isoparametric hypersurface defined by the level set of r has k distinct principal curvatures
λ1 > · · · > λk with multiplicities m1, · · · ,mk respectively.

(ii) The number k of distinct principal curvatures is 1, 2, 3, 4 or 6.
(iii) If k = 1, 3, 6, then the mulitiplicities are equal. If k = 2, 4, then there are at most two

distinct multiplicities m1, m2.

In the sequel, we assume that N is the n-dimensional unit sphere Sn (n ≥ 2) and u =
(V ◦ r)|r−1(J) with an isoparametric function r : Sn → R and a C∞-function V on interval
J ⊂ r(Sn) = [−1, 1]. From Theorem 2.3 (iii), we find

m2 − m1 =

⎧⎪⎪⎨⎪⎪⎩0 (k = 1, 3, 6)

2
(
m2 − n−1

k

)
(k = 2, 4).

Therefore, substituting α and β in Theorem 2.3 (2.4) for the equation (2.3), we obtain

V ′′(r) = − k2(1 − r2)V ′(r)4 + k((n − 1)(r − R))V ′(r)3 − 2V ′(r)2(2.5)

+
(n + k − 1)r − (n − 1)R

k(1 − r2)
V ′(r) − 1

k2(1 − r2)
, r ∈ (−1, 1),

where R ∈ (−1, 1) is the constant defined by

R :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 (k = 1, 3, 6)

−1 +
km2

n − 1
(k = 2, 4).
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Here, we note that m2 is equal to the multiplicity of the smallest principal curvature of the
isoparametric hypersurface defined by the level set of r in the case k = 2, 4. The local
existence of the solution V of (2.5) is clear. To prove Theorem 1.1, we consider the graph of
the solution V of (2.5). Define ψ(r) = k

√
1 − r2V ′(r). Then, the equation (2.5) is reduced to

(2.6) ψ′(r) = − 1
k(1 − r2)

(
ψ(r)2 + 1

)(√
1 − r2ψ(r)2 − (n − 1)(r − R)ψ(r) +

√
1 − r2

)
.

Therefore, to obtain the behavior of the graph of V , first we consider the behavior of the
solution ψ of (2.6). Define the functions η1 and η2 on (−1, a] ∪ [b, 1)by

η1(r) :=
(n − 1)(r − R) − √

((n − 1)2 + 4)r2 − 2R(n − 1)2r + R2(n − 1)2 − 4

2
√

1 − r2
,

η2(r) :=
(n − 1)(r − R) +

√
((n − 1)2 + 4)r2 − 2R(n − 1)2r + R2(n − 1)2 − 4

2
√

1 − r2
.

Also, define a, b ∈ (−1, 1) (a < b) by

a :=
(n − 1)2R − 2

√
(n − 1)2(1 − R2) + 4

(n − 1)2 + 4
,

b :=
(n − 1)2R + 2

√
(n − 1)2(1 − R2) + 4

(n − 1)2 + 4
.

Then, we find a < R < b and obtain the following lemma.

Lemma 2.4.
(i) When r ∈ (−1, a] ∪ [b, 1),

(a) if η1(r) < ψ(r) < η2(r), then ψ′(r) > 0,
(b) if ψ(r) = η1(r) or ψ(r) = η2(r), then ψ′(r) = 0,
(c) if ψ(r) < η1(r) or ψ(r) > η2(r), then ψ′(r) < 0.

(ii) When r ∈ (a, b), ψ′(r) < 0.

Proof. Define A(x, r) and B(r) by

A(x, r) :=
√

1 − r2x2 − (n − 1)(r − R)x +
√

1 − r2, (x, r) ∈ R × (−1, 1),

B(r) := ((n − 1)2 + 4)r2 − 2(n − 1)2Rr + (n − 1)2R2 − 4, r ∈ (−1, 1).

Then, we have

A(x, r) =
√

1 − r2

(
x − (n − 1)(r − R)

2
√

1 − r2

)2

− 1

4
√

1 − r2
B(r),

B(r) =
(
(n − 1)2 + 4

) (
r − (n − 1)2R

(n − 1)2 + 4

)2

− 1
(n − 1)2 + 4

(
4(n − 1)2(1 − R2) + 16

)
.

Therefore, we find that if r ∈ (−1, a] ∪ [b, 1), then B(r) > 0, if r ∈ (a, b), then B(r) < 0,
and if r ∈ {a, b}, then B(r) = 0. Furthermore, we find that when r ∈ (−1, a] ∪ [b, 1), if
x ∈ (η1(r), η2(r)), then A(x, r) < 0, if x ∈ (−∞, η1(r)) ∪ (η2(r),∞), then A(x, r) > 0, and if
x ∈ {η1(r), η2(r)}, then A(x, r) = 0. Also, when r ∈ (a, b), we find that A(x, r) > 0. Since the
equation (2.6) is reduced to
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ψ′(r) = − 1
k(1 − r2)

(
ψ(r)2 + 1

)
A(ψ(r), r),

we obtain the statement of this lemma. �

Fig.2.1. The graph of η1 and η2

For the behavior of the graph of the solution ψ of (2.6), we obtain following lemmas.

Lemma 2.5. If there exists r0 ∈ (−1, a] with ψ(r0) < η1(r0), or if there exists r0 ∈ (a, 1)
with ψ(r0) < 0, then there exists r1 ∈ (r0, 1) such that

lim
r↑r1

ψ(r) = −∞.

Proof. When r > r0, we find ψ′(r) < 0 and ψ(r) < ψ(r0). Define η3(r) by

η3(r) :=
(n − 1)(r − R)

2
√

1 − r2
.

Then, we find η3(r) = 1
2 (η1(r) + η2(r)) on (−1, a] ∪ [b, 1). In the case where ψ(r0) ≤ η3(r0),

we have

ψ′(r) = − 1
k(1 − r2)

(
ψ(r)2 + 1

) (√
1 − r2ψ(r)2 − (n − 1)(r − R)ψ(r) +

√
1 − r2

)
< − 1

k(1 − r2)

(
ψ(r)2 + 1

) (
(1 + ψ(r0)2)

√
1 − r2 − ψ(r0)(n − 1)(r − R)

)
.

Therefore, we find

ψ′(r)
1 + ψ(r)2 < −

1 + ψ(r0)2

k
√

1 − r2
+
ψ(r0)(n − 1)r

k(1 − r2)
− ψ(r0)(n − 1)R

k(1 − r2)
.

Integrating from r0 to r, we have

arctanψ(r) < − 1 + ψ(r0)2

k
arcsin r − ψ(r0)(n − 1)

2k
log (1 − r2) − ψ(r0)(n − 1)R

2k
log

1 + r
1 − r

+
1 + ψ(r0)2

k
arcsin r0 +

ψ(r0)(n − 1)
2k

log (1 − r2
0) +

ψ(r0)(n − 1)R
2k

log
1 + r0

1 − r0

+ arctanψ(r0) =: h1(r).
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Then, h1 is decreasing on (r0, 1) and h1(r0) = arctanψ(r0), limr↑1 h1(r) = −∞. Therefore,
there exists r1 ∈ (r0, 1) with h1(r1) = −π/2 and

ψ(r) < tan h1(r)→ −∞ ( r ↑ r1 ).

Also, in the case where ψ(r0) > η3(r0), there exists r̄0 ∈ (r0,R) with ψ(r̄0) < η3(r̄0). By
replacing r0 by r̄0, the proof is reduced in the case where ψ(r0) ≤ η3(r0). �

Fig.2.2. The behavior of the graph of ψ in Lemma 2.5

Lemma 2.6. If there exists r0 ∈ (b, 1) with η1(r0) < ψ(r0) < η2(r0), then

lim
r↑1

ψ(r) = ∞.

Proof. Assume that there exists a constant C > 0 such that ψ(r) < C for all r ∈ (r0, 1).
Then, there exists r0 ∈ (r0, 1) such that ψ(r0) < ψ(r) < η3(r) for all r ∈ (r0, 1). Therefore,
we have

ψ′(r) = − 1
k(1 − r2)

(
ψ(r)2 + 1

) (√
1 − r2ψ(r)2 − (n − 1)(r − R)ψ(r) +

√
1 − r2

)
> − 1

k(1 − r2)

(
ψ(r)2 + 1

) (
(1 + ψ(r0)2)

√
1 − r2 − ψ(r0)(n − 1)(r − R)

)
.

Then, we find

ψ′(r)
1 + ψ(r)2 > −

1 + ψ(r0)2

k
√

1 − r2
+
ψ(r0)(n − 1)r

k(1 − r2)
− ψ(r0)(n − 1)R

k(1 − r2)
.

Integrating from r0 to r, we have

arctanψ(r) > − 1 + ψ(r0)2

k
arcsin r − ψ(r0)(n − 1)

2k
log (1 − r2) − ψ(r0)(n − 1)R

2k
log

1 + r
1 − r

+
1 + ψ(r0)2

k
arcsin r0 +

ψ(r0)(n − 1)
2k

log (1 − r2
0) +

ψ(r0)(n − 1)R
2k

log
1 + r0

1 − r0

+ arctanψ(r0) =: h2(r).

Then, h2 is increasing on (r0, 1) and h2(r0) = arctanψ(r0), limr↑1 h2(r) = ∞. Therefore, there
exists r1 ∈ (r0, 1) with h2(r1) = π/2 and



178 T. Fujii

ψ(r) > tan h2(r)→ ∞ ( r ↑ r1 ).

This contradicts the assumption that ψ(r) < C for all r ∈ (r0, 1). �

Fig.2.3. The behavior of the graph of ψ in Lemma 2.6

By proofs similar to Lemma 2.5 and Lemma 2.6, we obtain the following lemmas.

Lemma 2.7. If there exists r0 ∈ (−1, b] with ψ(r0) > 0 or if there exists r0 ∈ (b, 1) with
ψ(r) > η2(r), then there exists r1 ∈ (−1, r0) such that

lim
r↓r1

ψ(r) = ∞.

Fig.2.4. The behavior of the graph of ψ in Lemma 2.7

Lemma 2.8. If there exists r0 ∈ (−1, a) with η1(r0) < ψ(r0) < η2(r0), then

lim
r↓−1

ψ(r) = −∞.

By lemmas 2.4-2.8, we obtain the following proposition for the behavior of the graph of
the solution ψ of (2.6).
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Fig.2.5. The behavior of the graph of ψ in Lemma 2.8

Proposition 2.9. For the solution ψ of the equation (2.6), the behavior of the graph of ψ
is like one of those illustrated by Figures 2.6-2.10.

Fig.2.6. The graph of ψ (Type I)

Fig. 2.7. The graph of ψ

(Type II)
Fig. 2.8. The graph of ψ

(Type III)
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Fig. 2.9. The graph of ψ

(Type IV)
Fig. 2.10. The graph of ψ

(Type V)

For the graph of ψ in Proposition 2.9, we have not yet shown whether ψ in the case of
Figures 2.9 and 2.10 exists or not. From the following lemma, we obtain the existence.

Lemma 2.10. The solution ψ of the equation (2.6) in Figures 2.9 and Figure 2.10 exists.

Proof. For the set S of all solutions of the equation (2.6), we define sets S1, S2, S3 ⊂ S by

S1 := {ψ ∈ S|∃r0 ∈ (−1, 1) : ψ(r0) = 0},
S2 := {ψ ∈ S|∃r0 ∈ (−1, 1) : ψ(r0) = η1(r0) or ψ(r0) = η2(r0)},
S3 := {ψ ∈ S|ψ(1) = 0 or ψ(−1) = 0}.

Then, we have

(−1, 1) × R =
⋃

ψ∈S1∪S2∪S3

Graph(ψ),

where, Graph(ψ) is defined by Graph(ψ) := {(r, ψ(r)) ∈ (−1, 1) × R | r ∈ Dom(ψ)}. Since⋃
ψ∈S1

Graph(ψ) and
⋃
ψ∈S2

Graph(ψ) are open sets and (−1, 1) × R is connected, we find S3

is not an empty set and we obtain the statement of this lemma. �

Define ζ1 and ζ2 by ζi(r) = ηi(r)/(k
√

1 − r2), (i = 1, 2). By Proposition 2.9, we obtain the
following proposition.

Proposition 2.11. For the solution V of the equation (2.5), the behavior of the graph of
V ′ is like one of those illustrated by Figures 2.11-2.19. Here, the dotted curves in Figures
2.11-2.19 are the graphs of ζ1 and ζ2.

Proof. For the solution V of the equation (2.5), we have V ′(r) = ψ(r)/(k
√

1 − r2) and ψ
is the solution of the equation (2.6). Therefore, when the graph of ψ is like one of those
illustrated by Figure 2.6, 2.9 and 2.10, it is clear that the graph of V ′ is like one illustrated
by Figure 2.11, 2.18 and 2.19 respectively. In the case where the graph of ψ is like one
of those illustrated by Figure 2.7 and 2.8, there exists r0 ∈ (−1, a] ∪ [b, 1) with ψ(r0) =
η1(r0) or ψ(r0) = η2(r0) and we find ψ′(r0) = 0 by Lemma 2.4. Then, we obtain V ′′(r0) =

r0ψ(r0)/(k(1 − r2
0)

3
2 ) + ψ′(r0)/(k

√
1 − r2

0) = r0ψ(r0)/(k(1 − r2
0)

3
2 ). Therefore, when the graph
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Fig.2.11. The graph of V ′ (Type I)

Fig. 2.12. The graph of V ′

(Type II)
Fig. 2.13. The graph of V ′

(Type II′)

Fig. 2.14. The graph of V ′

(Type II′′)
Fig. 2.15. The graph of V ′

(Type III)
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Fig. 2.16. The graph of V ′

(Type III′)
Fig. 2.17. The graph of V ′

(Type III′′)

Fig. 2.18. The graph of V ′

(Type IV)
Fig. 2.19. The graph of V ′

(Type V)

of ψ is like one illustrated by Figure 2.7, if r0 > 0, then V ′′(r0) > 0 and the graph of V ′ is
like one illustrated by Figure 2.12, if r0 = 0, then V ′′(r0) = 0 and the graph of V ′ is like
one illustrated by Figure 2.13, and if r0 < 0, then V ′′(r0) < 0 and the graph of V ′ is like one
illustrated by Figure 2.14. Also, when the graph of ψ is like one illustrated by Figure 2.8, if
r0 < 0, then V ′′(r0) > 0 and the graph of V ′ is like one illustrated by Figure 2.15, if r0 = 0,
then V ′′(r0) = 0 and the graph of V ′ is like one illustrated by Figure 2.16, and if r0 > 0, then
V ′′(r0) < 0 and the graph of V ′ is like one illustrated by Figure 2.17. In the case k = 1, 3, 6,
we find a < R = 0 < b. Therefore, when the graph of ψ is like one of those illustrated by
Figure 2.7 and Figure 2.8, the graph of V ′ is like one illustrated by Figure 2.12 and Figure
2.15 respectively if k = 1, 3, 6. �

By Proposition 2.11, we obtain Theorem 1.1. For the solution V of the equation (2.5),
when the graph of V ′ is like one of those illustrated by Figure 2.11, 2.18 and 2.19, it is clear
that the graph of V is like one illustrated by Figure 1.1, 1.4 and 1.5 respectively. When the
graph of V ′ is like one of those illustrated by Figure 2.12, 2.13 and 2.14, the graph of V is
like one illustrated by Figure 1.2. Also, when the graph of V ′ is like one of those illustrated
by Figure 2.15, 2.16 and 2.17, the graph of V is like one illustrated by Figure 1.3.
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[2] É. Cartan: Familles de surfaces isoparamétriques dans les espaces à courbure constante, Ann. Mat. Pura
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[3] J. Clutterbuck, O.C. Schnürer and F. Schulze: Stability of translating solutions to mean curvature flow,
Calc. Var. Partial Differ. Equ. 29 (2007), 281–293.

[4] J. Dorfmeister and E. Neher: Isoparametric hypersurfaces, case g = 6, m = 1, Comm. Algebra 13 (1985),
2299–2368.

[5] G. Drugan, H. Lee and G. Wheeler: Solitons for the inverse mean curvature flow, Pacific J. Math. 284
(2016), 309–326.

[6] T. Fujii: Graphical translating solitons for the mean curvature flow and isoparametric functions, Tohoku
Math. J. 76 (2024), 391–410.

[7] N. Hungerbühler and K. Smoczyk: Soliton solutions for the mean curvature flow, Differ. Integral Equ. 13
(2000), 1321–1345.

[8] D. Kim and J. Pyo: Translating solitons for the inverse mean curvature flow, Results Math. 74 (2019).
[9] D. Kim and J. Pyo: Remarks on solitons for inverse mean curvature flow, Math. Nachr. 293 (2020).

[10] R. Miyaoka: Isoparametric hypersurfaces with (g,m) = (6, 2), Ann. of Math. 177 (2013), 53–110.
[11] H.F. Münzner: Isoparametrische Hyperflächen in Sphären, Math. Ann. 251 (1980), 57–71.
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[13] H. Ozeki and M. Takeuchi: On some types of isoparametric hypersurfaces in spheres, I, Tohoku Math. J.

(2) 27 (1975), 515–559.
[14] H. Ozeki and M. Takeuchi: On some types of isoparametric hypersurfaces in spheres, II, Tohoku Math. J.

(2) 28 (1976), 7–55.
[15] J. Spruck and L. Xiao: Complete translating solitons to the mean curvature flow in R3 with nonnegative

mean curvature, Amer. J. Math. 142 (2020), 993–1015.
[16] X.-J. Wang: Convex solutions to the mean curvature flow, Ann. of Math. 173 (2011), 1185–1239.

Department of Mathematics
Faculty of Science
Tokyo University of Science
1–3 Kagurazaka, Shinjuku-ku
Tokyo, 162–8601
Japan
e-mail: tfujii@rs.tus.ac.jp


