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Abstract

A pseudo-Riemannian metric is called geodesic orbit if its geodesics are the orbits of one-
parameter subgroups of the group of isometries. In this paper, we study pseudo-Riemannian
geodesic orbit metrics on compact homogeneous spaces. First we obtain a sufficient and neces-
sary condition for a pseudo-Riemannian metric to be geodesic orbit. Then we show that every
Tamaru’s homogeneous space admits a two-parameter family of pseudo-Riemannian geodesic
orbit metrics. Finally, we obtain a complete description of pseudo-Riemannian geodesic or-
bit metrics on spheres. In particular, we prove that a Sp(n + 1)-invariant pseudo-Riemannian
geodesic orbit metric on S#*3 = Sp(n + 1)/Sp(n) must be Sp(n + 1)Sp(1)-invariant.

1. Introduction

Let (M, g) be a connected (pseudo-)Riemannian manifold and G be a subgroup of the
full group of isometries (M, g). A geodesic y : R — M is called G-homogeneous if there
exists a vector X € g such that y(f) = exp(tX) - y(0), where g denotes the Lie algebra of
G and exp denotes the exponential map of g. The notion of a homogeneous geodesic plays
a fundamental role in the theory of geodesic orbit manifolds (i.e., a (pseudo-)Riemannian
manifold whose geodesics are all G-homogeneous). In [13], Kowalski and Vanhecke started
a systematical study on Riemannian geodesic orbit manifolds and presented a fundamental
geodesic lemma for a geodesic to be G-homogeneous. Since then, many excellent works
have been done. In particular, it is worth to mention that, Gordon in [11] claimed that the
classification of Riemannian geodesic orbit manifolds can be reduced to three special cases:
(1) Riemannian geodesic orbit nilmanifolds (i.e., a nilpotent Lie group with a left invariant
Riemannian metric), (2) compact Riemannian geodesic orbit manifolds, and (3) a Riemann-
ian geodesic orbit manifold admitting a transitive non-compact semisimple Lie group of
isometries. Later, in [17], Nikonorov found that Gordon’s reduction is not generally correct
by showing some examples of Riemannian geodesic orbit solvmanifolds that are different
from nilmanifolds (see Examples 6 and 7 in [17]). Recently, Gordon and Nikonorov [12]
corrected an error (Theorem 1.15 of [11]) to a slightly weakened version of this statement
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(Theorem 3.1 of [12]) and so the study of an arbitrary Riemannian geodesic orbit manifold
largely reduced to the study of the nilradical and two homogeneous spaces generated by the
compact and non-compact parts of the Levi group of its isometry group. Moreover, Tamaru
[20] classified the compact and non-compact Riemannian geodesic orbit manifolds fibered
over irreducible symmetric spaces, we list the classification in [20] in Table 1. Nikonorov
[16] obtained a complete classification of Riemannian geodesic orbit metrics on spheres and
constructed some explicit geodesic vectors. Chen, Nikolayevsky and Nikonorov [7] classi-
fied all G-invariant Riemannian geodesic orbit metrics on a compact and simply connected
homogeneous space G/H, where G is (almost) effective and H is a simple Lie group. For
more information about homogeneous geodesics and related topics, we refer the readers
to [2, 3] and the references therein. More recently, the geodesic orbit property has been
extensively studied in Finsler setting [1, 6, 9, 22, 23, 24, 25, 26].

The situation is more complicated for pseudo-Riemannian geodesic orbit manifolds, see
[21]. For example, Nikolayevsky and Wolf [15] showed that a geodesic orbit Lorentz nil-
manifold need not be two step nilpotent. Moreover, unlike the Riemannian case, it seems
not an evident fact that every compact homogeneous space admits a pseudo-Riemannian ge-
odesic orbit metric. In this paper, motivated by Tamaru and Nikonorov’s results on compact
Riemannian geodesic orbit manifolds, we are going to study pseudo-Riemannian geodesic
orbit metrics on compact homogeneous spaces. Now we introduce the main results of this
paper. Let M = G/H be a compact homogeneous space with B-orthogonal reductive de-
composition g = h + m, where B is an Ad(G)-invariant positive definite inner product on g
(always exists) and Iy denotes the Lie algebra of H. Then G-invariant pseudo-Riemannian
metrics on G/H are in one-to-one correspondence with Ad(H)-invariant indefinite inner
products on m. We obtain a characterization of pseudo-Riemannian metrics on compact
homogeneous spaces to be geodesic orbit, which generalizes Proposition 2 of [27] to the
pseudo-Riemannian setting.

Theorem 1.1. A G-invariant pseudo-Riemannian metric g on G/H is geodesic orbit with
respect to G if and only if for every T € m, there exist a vector Z € Y and a constant ¢ € R
such that

[A(T), T + Z] = cA(T),
where A denotes the metric endomorphism of g defined by
X,Y)=B(AX),Y),VX,Y e m,
(-, ) is the indefinite inner product on m determined by g.

As applications of Theorem 1.1 to Tamaru’s homogeneous spaces (see Table 1), we
prove that every Tamaru’s homogeneous space admits a two-parameter family of pseudo-
Riemannian geodesic orbit metrics. Moreover, we obtain a complete description of pseudo-
Riemannian naturally reductive, weakly symmetric and geodesic orbit metrics on spheres
and mainly prove the following result, a pseudo-Riemannian version of Theorem 1 of [16].

Theorem 1.2. A Sp(n + 1)-invariant pseudo-Riemannian metric g on S**3 = Sp(n +
1)/Sp(n) is geodesic orbit with respect to Sp(n+1) if and only if it is Sp(n+1)Sp(1)-invariant.

This paper is organized as follows. In Section 2, we recall some basic facts about pseudo-
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Riemannian geodesic orbit, naturally reductive and weakly symmetric manifolds and prove
Theorem 1.1. In Section 3, we review the Tamaru’s classification of Riemannian geodesic
orbit manifolds fibered over irreducible symmetric spaces and show that every such space
admits a two-parameter family of pseudo-Riemannian geodesic orbit metrics. In Section 4,
we study pseudo-Riemannian geodesic orbit metrics on spheres and prove Theorem 1.2.

2. Pseudo-Riemannian geodesic orbit metrics on compact homogeneous spaces

In this section we discuss the characterization of pseudo-Riemannian geodesic orbit met-
rics on compact homogeneous spaces. First we recall the definition of pseudo-Riemannian
geodesic orbit manifolds, which is a generalization of Riemannian geodesic orbit manifolds.

DerniTION 2.1. Let (M, g) be a connected pseudo-Riemannian manifold and G be a sub-
group of the full group of isometries I(M, g). (M,g) is called a geodesic orbit manifold
with respect to G if every geodesic of (M, g) is an orbit of a one-parameter subgroup of G.
That is, if ¥y : R — M is a geodesic of (M, g), then there exists a vector X € g such that
y(t) = exp(tX) - ¥(0), where g denotes the Lie algebra of G and exp denotes the exponential
map of g.

Now let G be a compact Lie group and H be a closed subgroup of G, which has no nontriv-
ial normal subgroup of G. As usual we denote the Lie algebras of G and H by g and [) respec-
tively. As H is compact, g has an Ad(H)-invariant reductive decomposition g = )+m, where
m is a subspace of g satisfying [h, m] € m. In this case, one can identify m with the tangent
space T,(G/H) of G/H at the point 0 = eH via the mapping 7 : X — % -0 €Xp(rX) - 0.
Moreover, under this identification, G-invariant pseudo-Riemannian metrics on homoge-
neous space G/H are in one-to-one correspondence with Ad(H)-invariant indefinite inner

products on 1.

Lemma 2.2 ([10], Lemma 2.1). Notation as above. Let G|/H be a compact homogeneous
space with reductive decomposition § = ) + m. Then a G-invariant pseudo-Riemannian
metric g on G|H is geodesic orbit with respect to G if and only if for every T € m, there
existZ =7(T) € hand c = ¢(T) € R such that

2.1 (T +Z, T, T) = (T, T")

holds for all T" € m, where {-,-) is the indefinite inner product on m associated to g and
[-, -1 is the projection to m with respect to the decomposition g = b + m.

Remark 2.3. Take 77 = T in (2.1), we can see that ¢ = 0 unless 7 is a null vector.

Since G is compact, there exists an Ad(G)-invariant positive definite inner product B on
g. We can choose the decomposition g = b + m by requiring B(h, m) = 0. In this situa-
tion, for an Ad(H)-invariant indefinite inner product (-, -) on m associated to a G-invariant
pseudo-Riemannian metric g on G/H, there exists a unique Ad(H)-equivariant, symmetric
and nondegenerate endomorphism A : m — m, called the metric endomorphism of g, such
that

(X,Y) = B(AX), Y),VX, Y € m.
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Proof of Theorem 1.1. By Lemma 2.2, a G-invariant pseudo-Riemannian metric g on
G/H is geodesic orbit with respect to G if and only if for every T € m, there exist Z € ) and
¢ € R such that

(T +Z,T ., T) = (T, T"Y,NT' € m.
Notice that

(AT +Z, T, Ty — T, T")
= B(T+ZT'],A(T)) — cB(A(T), T")
= B(T',[A(T), T + Z]) — ¢cBA(T),T")
= B(T',[A(T),T + Z] — cA(T)),
which implies that g is geodesic orbit if and only if [A(T),T + Z] — cA(T) € }.
On the other hand, since the metric endomorphism A is Ad(H)-equivariant and symmetric
with respect to B, for every X € b, we have
B([A(T),T + Z],X) = B(IA(T), T1, X)
= —B(T,[A(]), X]) = -B(T, A([T, X))
= -BAD),[T.X]) = B(T,A(T)], X).

Thus B([A(T), T1,X) = 0and [A(T), T+Z]-cA(T) € m. As aresult, [A(T), T+Z]-cA(T) €}
if and only if [A(T), T + Z] = cA(T). This completes the proof. |

Recall that a G-invariant pseudo-Riemannian metric g on homogeneous space G/H is
said to be naturally reductive with respect to G if there is an Ad(H)-invariant decomposition
(not necessarily B-orthogonal) g = h + m such that

(22) <[T,7 T]m’ T> = 0’ VT’ T, € ma

where (-, -) is the indefinite inner product on m induced by the pseudo-Riemannian metric g
on G/H. We can also replace equation (2.2) by

(23) <[T’ Tl]m, TU) + <[T5 T”]m’ T/> = 0’ VTa T/s TU € m.

It is easily seen that a pseudo-Riemannian naturally reductive metric must be geodesic
orbit. The following result is due to Ovando [18].

Theorem 2.4 ([18], Theorem 2.2). Let (G/H, g) be a compact pseudo-Riemannian nat-
urally reductive homogeneous space with respect to a reductive decomposition g = b + m.
Assume g = m+[m, m], then there exists a unique Ad(G)-invariant symmetric nondegenerate
bilinear form Q on g such that

Q(b’ m) = Oa Q|m = <'9 '>9
where (-, ) is the indefinite inner product on m associated to g.

Now we present a sufficient condition for a special class of G-invariant pseudo-
Riemannian metrics on G/H to be naturally reductive. It can be viewed as a pseudo-
Riemannian version of Theorem 3 of [28].
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Theorem 2.5 ([28], Theorem 3). Let G/H be a compact homogeneous space with B-
orthogonal reductive decomposition g = h+m. Assume G is semisimple and H is connected.
If m has an Ad(H)-invariant B-orthogonal decomposition m = my +my, with [h, my] = 0 and
[y, my] € my, then the G-invariant pseudo-Riemannian metrics g, on G/H corresponding
to aB|y, + bB|,, (ab < 0,a,b € R) are naturally reductive with respect to G X K, where K is
the connected subgroup of G with the Lie algebra t = m,.

Proof. The proof is similar to that of Theorem 3 of [28]. Let G = G x K. For any
(g9,k) € G, g operates on G/H by left translation with ¢g and k operates on G/H by right
translation with k~!, then the isotropy subgroup of this action at the point eH is H = H x K
with embedding (4, k) — (hk, k). The reductive decomposition of the Lie algebra is

g=g@t=0+m(s)=(h,0) +F+1my +1my(s),

where T = {(X,X)|X € my}, m; = (my,0), Ma(s) = {(sX,(s — DX)|X € my}, s € R. We
need to find a real number s € R for g, to be naturally reductive with respect to the above
decomposition.

Clearly, both 1it; and 1, (s) are Ad(H)-invariant subspaces. Notice that the isomorphism
between the tangent spaces ¢ : 1) + 1p(s) — my + my is given by

(X, 0+ (sY,(s= DY) =X+Y,VX emy,Y e my.

Hence the Ad(H)-invariant indefinite inner product (-, ), on 1 + 1M(s) induced by the
pseudo-Riemannian metric g,, on G/H is given as follows:

<(Xa 0)’ (Y’ 0)>a,b = aB(X’ Y)aX’ Y e my,

(M, Ma(8))ap = 0,

((sX, (s = DX), (sY, (s = DY))yp = bB(X, Y), X, Y € my.

Note that [h, mp] = 0 and [my, my] C my, one easily has that [m, my] € m;. Now for
every X, Y € my and Z € my, by a direct computation we have

(X, 0), (Y, 0)]incs)» (5Z, (s = DZ))as
+((X,0), (sZ, (s = DD)lss)» (¥, 0))ap
= (X, Y], 0) + (s[X, Y]y, (s = DIX, Y]iny), (8Z, (s = DZ))ap
+5(([X, Z],0), (¥, 0))a,p
= bB([X,Y]w,,Z) + saB([X,Z],Y)
= (b-sa)B(X,Y],2).
So let s = g and by a similar computation as above, we see that g, is naturally reductive

with respect to G X K. Namely, the associated indefinite inner product (-, -), 5 on 11} + 1,(s)
satisfies equation (2.3). This completes the proof of the theorem. |

Another important class of pseudo-Riemannian geodesic orbit manifolds consist of
pseudo-Riemannian weakly symmetric manifolds introduced by Selberg [19], Chen and
Wolf [8].
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DEriniTiON 2.6. Let (M, g) be a connected pseudo-Riemannian manifold. Suppose that
for every x € M and every nonzero tangent vector & € T, M, there is an isometry ¢ = ¢, ¢ of
(M, g) such that ¢(x) = x and d¢p(¢) = —&. Then we say that (M, g) is a pseudo-Riemannian
weakly symmetric manifold. In particular, a pseudo-Riemannian weakly symmetric mani-
fold is homogeneous.

Derinition 2.7. Let G be a Lie group and H be a closed subgroup of G. The pair (G, H)
is called a weakly symmetric pair if there exists an automorphism 6 of G such that

(i) O(H) c H and there exists h € H such that 8> = Ad(h) (i.e., 8*(g) = hgh™', g € G).

(ii) HA(g)H = Hg~'H for all g € G.

Theorem 2.8 ([4, 8]). Let (G, H) be a weakly symmetric pair and M = G/H, then every
G-invariant pseudo-Riemannian metric on M is weakly symmetric and geodesic orbit with
respect to G.

At the last of this section, we study the isometry group of the indefinite inner product on
the tangent space of a pseudo-Riemannian geodesic orbit manifold. We first need a technical
lemma.

Lemma 2.9. Let g be a Lie algebra and {-, -) be an indefinite inner product on g satisfying
the condition of Lemma 2.2(the isotropy subalgebral) is assumed trivial). Namely, for every
T € g, there exists a constant ¢(T) € R such that

(IT,T'1,T) = «(TXT,T")
holds for all T" € g. Then we have
([T, T'1,T) =0,VT, T’ € g.

Proof. Fix a non-null vector 7" € g, then ¢(T) = 0 and {[7,T’],T) = 0 holds for all
T" € g. Set Vi = {Y € g(Y,T) = 0}, then g = RT + V;. Moreover, for every ¥ € Vr,
([, T1,Y) =c(Y)XY,T) =0. Now forevery X =yT +Y € g,y € R, Y € Vy, we obtain

(X.TLX) ={yT + Y. T].yT +Y) ={[X. T].yT) +([Y.T].Y) = 0,

which implies that ad(7’) is skew-symmetric.

Finally, assume 7 € g is a null vector. One can always find another null vector § € g
such that (S, T) = 1. Notice that (2T + S,27 + S) =4 and (T + S, T + S) = 2, by the above
arguments, we have

(X, T, X) =(X,2T + S], X) — (X, T + S, X) =0,VX € g.

This asserts that for all T € g, ad(T) is skew-symmetric, which completes the proof of the
lemma. =

Now assume G is a Lie group (not necessarily compact) and H is a compact subgroup
of G, which has no nontrivial normal subgroup of G. Let H, be the unit component of
H and Ns(H)) be the normalizer of Hy in G. Note that Ng(H) has a well-defined action
on the homogeneous space G/H by g(xH) = gxg~'H, Vg € Ng(Hp), x € G. In [17],
Nikonorov proved that the inner product, generating the metric of a Riemannian geodesic



PseuD0-RIEMANNIAN GEODESIC ORBIT METRICS 191

orbit manifold, is not only Ad(H)-invariant but also Ad(Ng(Hp))-invariant (see Corollary 4
of [17]). We prove that this statement is still true in pseudo-Riemannian case.

Theorem 2.10. Notation as above. Let (G/H, g) be a pseudo-Riemannian geodesic orbit
manifold with respect to G. Then the indefinite inner product -, -) on m is not only Ad(H)-
invariant but also Ad(Ng(Hy))-invariant.

Proof. Let K be the Killing form of g, then K is negative definite on f) (see Lemma 2
of [17]). So the Lie algebra g of G has a K-orthogonal decomposition g = b + m, where f
denotes the Lie algebra of H, m is a subspace of g and we identify it with the tangent space
T,(G/H) as described above. Let (-, -) be the indefinite inner product on m determined by g.
Obviously, (-, -) is Ad(H)-invariant, we will show that it is also Ad(Ns(Hy))-invariant.

According to Proposition 11 of [17], the Lie algebra N,(h) of Ng(Hp) is given by

Ny(h) = {X € g[X, D] C b} = C4(h) + [b, D],
where Cy(h) = {X € g|[X, h] = 0} denotes the centralizer of [) in g. Notice that

K(, [Cq(D), a]) = K([b, Cy(b)], 8) = 0,

one has [C,4(D), g] € m. Hence C,4(bh) keeps m invariant and consequently Ad(Ng(Hp)) keeps
m invariant. It is clear that Cy(h) = Cy(h) N H + Cy(h) N m, so to prove the theorem, it is
sufficient to prove that for every T € Cy4(h) N'm, ad(T)|,,, is skew-symmetric with respect to
<', >

By Proposition 9 of [17], regarding m as an ad(h)-module, we have the K-orthogonal
decomposition

m = Cy(h) N m + [h, m].
Moreover, this decomposition is also (-, -)-orthogonal, since

(Cy(b) N, [b, m]) = —([h, Cy(h) Nm],m) = 0.

Hence the restriction of (-, -) to C4(h) N m is nondegenerate. We note also that

[D, [Cy(h) Nm, Cy(h) N m]] < [[D, Cy(h) Nm], Cy(h) N m] =0,

therefore [Cy(h)Nm, Cy(h)Nm] C Cy(h) and consequently [Cy(h)Nm, Co(h)yNnm] € Cy(h)Nm.
This asserts that Cy(h) N m is a Lie subalgebra of g and (Cy(h) N, (-, -)|c,@mnm) satisfies the
condition of Lemma 2.9. Hence for every T € Cy(h) N m, ad(T)|c,m)nm is skew-symmetric.
Now for every X € [, m], there exist a vector Z € b and ¢(X) € R such that

(T, X + Z]n, X) = =c(XXT,X) =0

holds for all T € Cy(h) N m. Obviously, [Cy(h) N m, [h, m]] C [h, m], so the above equality
says that ([T, X],X) = 0, VT € Cy(h) N m. This implies that ad(7)},, is skew-symmetric,
which completes the proof of the theorem. m|

3. Pseudo-Riemannian geodesic orbit metrics on Tamaru’s homogeneous spaces

Let G/H be a compact homogeneous space and K be an intermediate closed subgroup of
G, H < K < G. Consider the B-orthogonal decomposition of g:
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g=bh+m=0bh+my +my,f=bH+my,

where t denotes the Lie algebra of K.
In [11], Gordon studied the geodesic orbit property of G-invariant Riemannian metrics
gap on G/H generated by aB|,, + bB|.,, a,b > 0.

Theorem 3.1 ([11], Theorem 3.3). The G-invariant Riemannian metric g, is geodesic
orbit with respect to G for every a,b > 0 if and only if, for every X € my and Y € my, there
exists Z € b such that [Z,Y] = 0 and [Z, X] = [Y, X].

Later in [20], Tamaru classified the triples (G, K, H) whose Lie algebras satisfy Theo-
rem 3.1 and (G, K) are compact effective irreducible symmetric pairs. These triples of Lie
algebras are listed in Table 1. Now we state the main result of this section.

Theorem 3.2. Let (G, K, H) be a triple listed in Table 1. Then for every a,b € R, ab <
0, the G-invariant pseudo-Riemannian metric g, on G/H generated by aB|,,, + bB|,, is
geodesic orbit with respect to G.

Proof. It is easily seen that the metric endomorphism of g, is
A = ald|,, + bld|,,.

Then forevery T = X +Y € m, X € my, Y € my, by Theorem 3.1 we can choose a Z € h
such that [Z, Y] = 0 and [Z, X] = Z4[Y, X]. A direct computation shows that

a

[AT), T +Z]=[aX +bY, X+ Y +Z]=(a—- D)X, Y] +alX,Z] =0,

which asserts that g, is geodesic orbit with respect to G, according to Theorem 1.1. |

RemARK 3.3. From the proof of Theorem 3.2, the constant ¢ = ¢(7T') associated to a geo-
desic vector T + Z is necessarily equal to 0.

4. Pseudo-Riemannian geodesic orbit metrics on spheres

In this section, we study pseudo-Riemannian geodesic orbit metrics on spheres. We will
give a complete description of pseudo-Riemannian geodesic orbit, naturally reductive and
weakly symmetric metrics on spheres. These results are listed in the last column of Table
2. Spheres can be viewed as a special class of homogeneous spaces. Borel in [5] and
Montgomery and Samelson in [14] classified the compact connected Lie groups that admit
an effective transitive action on spheres. In Table 2 we list all homogeneous spheres G/H
where G is a compact connected Lie group with an effective action on G/H. We also give
the isotropy representations of the homogeneous spaces.

e Cases 1, 2, 3. The isotropy representations are irreducible, there are no invariant pseudo-
Riemannian metrics.

e Case 4. (Spin(9), Spin(7)) is a weakly symmetric pair [8] and the isotropy representation
of Spin(9)/Spin(7) has two irreducible components. The family of pseudo-Riemannian in-
variant metrics on Spin(9)/Spin(7) is two-parametric. All these pseudo-Riemannian metrics
are weakly symmetric but not naturally reductive, according to Theorem 2.4.

e Case 5. (U(n + 1),U(n)) is a weakly symmetric pair and the family of pseudo-



PseuD0-RIEMANNIAN GEODESIC ORBIT METRICS

Table 1. Tamaru’s homogeneous spaces.
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g f b Cond.
1.1 | so2n+1) so(2n) u(n) n>?2
1.2 | so(4n+1) s0(4n) su(2n) n>1
1.3 s(8) s0(7) a0
1.4 s0(9) s0(8) so(7)
15| su(n+1) u(n) su(n) 2
1.6 | sun+1) u(2n) u(l) @ sp(n) >2
1.7 | sun + 1) u(2n) sp(n) n>?2
1.8 | sp(n+1) sp(1) @ sp(n) u(l) ® sp(n) n>1
1.9 | sp(n+1) sp(1) @ sp(n) sp(n) n>1
2.1 | su@r+n) | sw(ry@su(r+n) @R | su(r)@dsu(r+n) | r>2,n>1
2.2 | so(4r+2) ur+1) su2r+ 1) r>2
2.3 eg R @ so(10) sn(10)
3.1 s0(9) so(7) ® so(2) a2 ® s0(2)
3.2 s0(10) s0(8) @ so(2) spin(7) @ so(2)
33 so(11) s0(8) @ so(3) spin(7) @ so(3)
Table 2. Homogeneous spheres.
G/H iso. rep Cond.
1 SO + 1)/SO(n) irreducible n>1
2 G,/SU3) irreducible
3 Spin(7)/G, irreducible
4 Spin(9)/Spin(7) m=my +m W.S.
5 Um + 1)/U(n) m =g+ ny >1 | ws.,nr
6 SUm + 1)/SU(n) m =g+ ny >2 | ws., g.0.
7 SUQ) trivial
8 Sp(n + 1)/Sp(n) m =g + ny >1
9 | Sp(n + 1)Sp(1)/Sp(n)diag(Sp(1)) m=my +my n>1|ws.,nr
10| Sp(n+ HU1)/Sp(n)diag(U(1)) | m=m; +my+m3 | n>1 W.S.

Riemannian invariant metrics on U(n + 1)/U(n) is two-parametric. Every such metric is
naturally reductive and weakly symmetric [8].

e Case 6. This case is just the case 1.5 of Table 1. Hence every SU(n + 1)-invariant
pseudo-Riemannian metric on SU(n + 1)/SU(n) is geodesic orbit with respect to SU(n + 1).
Moreover, note that every SU(n+1)-invariant pseudo-Riemannian metric on SU(n+1)/SU(n)
is U(n + 1)-invariant. Hence every such metric is weakly symmetric and naturally reductive
with respect to U(n + 1) (not SU(n + 1)), see Theorem 2.5.

e Case 7. We will show that SU(2) admits no left invariant pseudo-Riemannian geodesic
orbit metrics with respect to SU(2).

Lemma 4.1. Assume A is an invertible linear isomorphism on su(2). If for every T €
su(2), there exists ¢ € R satisfying
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[A(T), T] = cA(T),
then A = yId for some y € R.

Proof. Since [A(T),T] = cA(T), T is in the normalizer N(R - A(T")) of R - A(T) in su(2).
As R - A(T) is the maximal torus subalgebra of s1(2), the normalizer N(R - A(T)) must be
one-dimensional subalgebra of s1(2). Consequently, N(R - A(T)) = R-A(T') and there exists
¢ € R such that A(T) = ¢T. Since T is an arbitrary element in su(2) we have A = yld for
some y € R. m|

Theorem 4.2. Let g be any left invariant pseudo-Riemannian metric on SU(2), then it is
not geodesic orbit with respect to SU(2).

Proof. Let A be the metric endomorphism corresponding to the left invariant pseudo-
Riemannian metric g on SU(2). By Theorem 1.1, g is geodesic orbit with respect to SU(2) if
and only if for every T € su(2), there exists ¢ € R such that [A(T'), T] = cA(T). The theorem
follows from Lemma 4.1. O

e Cases 8 and 9. Case 9 is a special situation of case 8. We adopt the notation as in [16].
Let H = R + Ri + Rj + Rk be the field of quaternions, where i, j, k are the quaternionic
units in H. That is, ij = —ji = k, jk = —-kj =i, ki = —ik = j, ii = jj = kk = —1. For
u = xo+xi+xj+x3k € H, xo, x1, x2, x3 € R, define Re(«) = xp and ## = xp — x1i— x2j — x3K.
In the Lie algebra sp(n + 1) of Lie group Sp(n + 1), we define

B(X,Y) = —%tr (Re(XY)), X,Y €sp(n+1).

It is easy to see that B is an Ad(Sp(n+1))-invariant inner product on the Lie algebra sp(n+1).
So we have a B-orthogonal reductive decomposition of sp(n + 1):

sp(n+ 1) = sp(n) + m = sp(n) + my + my,

where my = RiG| + RjG; + RkG, G| denotes the matrix with V2 in the (1, 1)-th entry, and
zeros elsewhere,

m={l % o)

Every Sp(n + 1)-invariant pseudo-Riemannian metric g on can be generated by a
metric endomorphism A = A + ald|,,, for some a € R and some symmetric nondegenerate
operator A : my — my. In particular, when A = bld|,,, for some b € R, the corresponding
Sp(n + 1)-invariant pseudo-Riemannian metric g on S*'*3 is Sp(n + 1)Sp(1)-invariant and
naturally reductive with respect to Sp(n + 1)Sp(1), according to Theorem 2.5. Moreover, the
pair (Sp(n + 1)Sp(1), Sp(n)diag(Sp(1))) is also a weakly symmetric pair.

a:(ul$u2"--aun)€Hn}’ d=(ﬁl’ﬁ2""’ﬁn)'

S4n+3

Proof of Theorem 1.2.  Assume g is geodesic orbit with respect to Sp(n + 1), then
according to Theorem 1.1, for every T € my, there exists Z € sp(n) and ¢ € R such that

4.4) [A(T), T + Z] = cA(T).
Since A(T) € my and [A(T), Z] = 0, we obtain that equation (4.4) is equivalent to [A(T),T] =
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cA(T). By Lemma 4.1 and the fact that my is isomorphic to su(2), we get A = yId for some
v € R. Consequently, g is Sp(n + 1)Sp(1)-invariant.

On the other hand, we consider any Sp(n + 1)Sp(1)-invariant pseudo-Riemannian met-
ric on S¥*3. Tt is generated by a metric endomorphism of the type A = ald|,, + bld|y,,
a,b € R, ab < 0. It coincides with the case 1.9 of Table 1, hence by Theorem 3.2, every
Sp(n + 1)Sp(1)-invariant pseudo-Riemannian metric on S*'*3 is geodesic orbit with respect
to Sp(n + 1). m]

e Case 10. The family of Sp(n + 1)U(1)-invariant pseudo-Riemannian metrics on S**+3
is three-parametric. Every such metric is weakly symmetric and we have a three-parameter
family of pseudo-Riemannian geodesic orbit metrics. In the following, we give an explicit

description of geodesic vectors for Sp(n + 1)U(1)-invariant pseudo-Riemannian metrics on
S4n+3‘

Identify sp(1) with mg, Blsy1) is an Ad(Sp(1))-invariant inner product and we can extend
B to an Ad(Sp(n + 1)Sp(1))-invariant inner product (also denoted by B) on the Lie algebra
sp(n+1)®sp(1) by assuming B((sp(n+ 1), 0), (0, sp(1))) = 0. Let u(1) be any Lie subalgebra
of sp(1) (= mgp) and m, be the B-orthogonal complement of u(1) in my,. We have a B-
orthogonal reductive decomposition of sp(n + 1) @ u(1):

spn+ ) @u(l) = b+ my + My + M,

where ) = b +b, b = {(X, 0) € sp(n+D@u(1)|X € sp(n)}, by = {(X, X) € sp(n+Ddu(1)|X €
u(D}, my = {(X,0) € spn+ D@u()X € my}, my = {(X,0) € sp(n + 1) ® u(1)|X € my,},
m; = {(X, =X) € sp(n + 1) ® u(1)|X € u(1)}. We have the following relations:

(01,5 =0, [b),m] =0, [b,m3]1=0, [by,m3]=0.

It is easy to see that the modules m;, i = 1,2, 3, are ad(E)—irreducible. Then every Sp(n +
1)U(1)-invariant pseudo-Riemannian metric g on S***3 is determined by the metric endo-
morphism

A = xiIdlz, + xldlg, + x31dl5,

for some nonzero numbers xp, X2, x3 € R.
Without losing generality, we may assume 1(1) = RiG; and then m; = RjG| + RKG;.

Proposition 4.3. Notation as above. For every T1 = (V,0) € my, T» = ((sj + tk)G1,0) €
Wy, T3 = (MG, —riG)) € M, 1,5, € R, let Zy = (U,0) € by, Zp = (£ = DriGy, (2 -

l)riGl) Egz, where U satisfies

UV = (2 = Zyri+ (2 - 1)(sj + 1K)Gr. V.
X1 X2 X1

Then T, + T, + T3 + Z) + Z; is a geodesic vector.
Proof. It follows by a direct calculation.
[A(T), T + Z]
= (01 = x)[Ty, To] + (x1 = x3)[T1, T3] + [T, Z1] + [T, 23]
+x2[T2, Zo] + (x2 = x3)[ T2, T3]
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= (x1 = x)[(V,0), ((sj + K)G1,0)] + (x1 — x3)[(V;0), (riGy, —riGy)]

+x1[(V, 0), (U, 0)] + x1[(V, 0),((E - l)riGl,(E - l)riGl)]
X2 X2
. X3 . X3 .
+x2[((sj + k)G, 0), ((— - 1) riGy, (— - 1) rlGl)]
X2 X2

+(x2 = x3)[((sj + 1K)G1,0), (riGy, —riG )]
= ((x1 =)V, (sj + K)G1] + (x1 = x3)[V, riG] + x([V, U]

+x1[v,(ﬁ - l)riGl] + xl(sj + tk)Gl,(E - 1) G|
X2 X2
+(x2 — x3)[(sj + 1K)G1, riG1], 0)

= ([V,((x1 = x2)(sj + 1K) + (x1 — x3)ri + x1 (;C—z - 1) MG ]+ x1[V,U],0)

0. O

REmARK 4.4. For the explicit matrix form of U in Proposition 4.3, one can see Lemma 3
of [16] or Lemma 6.2 of [1].
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