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Abstract
A 2k-move is a local deformation on a knot diagram adding or removing 2k half-twists, where
k is a positive integer. We show that if two virtual knots are related by a finite sequence of
2k-moves, then their odd writhes are congruent modulo 2k. Moreover, we provide a necessary
and sufficient condition for two virtual knots to have the same congruence class of odd writhes
modulo 2k.

1. Introduction

Let k be a positive integer. A 2k-move on a knot diagram is a local deformation adding
or removing 2k half-twists as shown in Figure 1.1. A 2-move is equivalent to a crossing
change; that is, a 2-move is realized by a crossing change, and vice versa. In this sense a
2k-move can be considered as a generalization of a crossing change. The 2k-moves form
an important family of local moves in classical knot theory. In fact, they have been well
studied by means of many invariants of classical knots and links in the 3-sphere; for example,
Alexander polynomials [15], Jones, HOMFLYPT and Kauffman polynomials [21], Burnside
groups [5, 6], Milnor invariants [18] and quandles [10].
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2k half-twists

Fig.1.1. A 2k-move

This paper studies 2k-moves in the setting of virtual knots, which are a generalization
of classical knots discovered by Kauffman [12]. Roughly speaking, a virtual knot is an
equivalence class of generalized knot diagrams called virtual knot diagrams under seven
types of local deformations. We say that two virtual knots are related by a 2k-move if a
diagram of one is a result of a 2k-move on a diagram of the other.

For a virtual knot K, Kauffman [13] introduced an integer-valued invariant J(K) called
the odd writhe. Satoh and Taniguchi [22] generalized it to a sequence of integer-valued
invariants J,(K) of K called the n-writhes (n € Z\{0}). This sequence {J,,(K)},0 gives rise to
a polynomial invariant Pk (¢) of K known as the affine index polynomial due to Kauffman [14]
as follows:
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Pr(t) = ) J (K" = 1),
n#0
which is essentially equivalent to the writhe polynomial due to Cheng and Gao [4]. Refer
to [3] for a good survey of virtual knot invariants derived from chord index, including the
invariants J(K), J,(K) and Pg(t).
Recently, Jeong, Choi and Kim [11] established a necessary condition for two virtual
knots to be equivalent under 2k-moves using their affine index polynomials as follows:

Theorem 1.1 ([11, Theorem 2.3]). If two virtual knots K and K’ are related by a finite
sequence of 2k-moves, then Pg(t) and Pk (t) are congruent modulo k; that is, J,(K) and
J.(K") are congruent modulo k for any nonzero integer n.

Examining their proof of this theorem given in [11], we can find another necessary con-
dition in terms of odd writhes, which states that if two virtual knots K and K’ are related
by a finite sequence of 2k-moves, then J(K) and J(K’) are congruent modulo 2k (Proposi-
tion 2.2).

A E-move on a virtual knot diagram is a local deformation exchanging the positions of
c1 and c¢3 of three consecutive real crossings ¢, ¢ and c3 as shown in Figure 1.2, where
we omit the over/under information of every crossing ¢; (i = 1,2,3). The E-move arises
naturally as a diagrammatic characterization of virtual knots having the same odd writhe. In
fact, Satoh and Taniguchi [22] showed the following theorem.

Theorem 1.2 ([22, Theorem 1.7]). For two virtual knots K and K’, the following are
equivalent:
(1) J(K) and J(K') are equal.
(i) K and K’ are related by a finite sequence of Z-moves.

Inspired by this theorem, we use E-moves together with 2k-moves to characterize virtual
knots having the same congruence class of odd writhes modulo 2k. The following theorem
is our main result.

Theorem 1.3. For two virtual knots K and K’, the following are equivalent:

(1) J(K) and J(K') are congruent modulo 2k.
(i) K and K’ are related by a finite sequence of 2k-moves and Z-moves.

In [1, Proposition 25], Carter, Kamada and Saito proved that not every virtual knot can
be unknotted by crossing changes, although the crossing change is an unknotting operation
for classical knots. Refer also to [9, 23]. This fact justifies the notion of flat virtual knots. A
flat virtual knot [12], also known as a virtual string [23], is an equivalence class of virtual
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knots up to crossing changes. Equivalently, a flat virtual knot is represented by a virtual
knot diagram with all the real crossings replaced by flat crossings, where a flat crossing is a
transverse double point with no over/under information.

In [2, Lemma 2.2], Cheng showed that the odd writhe for any virtual knot takes values
in even integers. Hence any virtual knot K and the trivial one O satisty J(K) = J(O) = 0
(mod 2). By Theorem 1.3 for k = 1, the two knots K and O are related by a finite sequence
of 2-moves and E-moves. In other words, we have the following corollary.

Corollary 1.4. Any flat virtual knot can be deformed into the trivial knot by a finite
sequence of flat E-moves; that is, the flat E-move is an unknotting operation for flat virtual
knots. Here, a flat Z-move is a Z-move with all the real crossings replaced by flat ones.

For two virtual knots K and K’ that are related by a finite sequence of 2k-moves, we
denote by dy (K, K’) the minimal number of 2k-moves needed to deform a diagram of K
into that of K’. In particular, when K’ = O is the trivial knot, we set uy(K) = dy(K, O).

In [11], Jeong, Choi and Kim provided a lower bound for dy; (K, K”) using the coefficients
of the affine index polynomials of K and K’ (that is, the n-writhes of K and K’), and demon-
strated that their lower bound for uy(K) is sharp for some virtual knots K. However, they
did not make it clear whether for a pair of nontrivial virtual knots K and K’, the lower bound
for dyi(K, K’) is sharp. We answer this by proving the following theorem.

Theorem 1.5. Let p be a positive integer. For any virtual knot K, there is a virtual knot
K’ with dy (K, K") = p.

Moreover we have the following theorem.

Theorem 1.6. For any positive integer p, there are infinitely many virtual knots K with
u(K) = p.

The rest of this paper is organized as follows. In Section 2, we review the definitions of
a virtual knot, a Gauss diagram, the n-writhe and the odd writhe, and prove the invariance
of the modulo 2k reduction of the odd writhe under 2k-moves. Section 3 is devoted to the
proof of Theorem 1.3. Our main tool is the notion of shell-pairs, which are certain pairs of
chords of a Gauss diagram introduced in [17]. Finally, in Section 4, we prove Theorems 1.5
and 1.6 using Jeong-Choi-Kim’s lower bound for dy; of virtual knots.

2. Odd writhes and 2k-moves

We begin this section by recalling the definitions of virtual knots and Gauss diagrams
from [8, 12]. A virtual knot diagram is the image of an immersion of an oriented circle
into the plane whose singularities are only transverse double points. Such double points
consist of positive, negative and virtual crossings as shown in Figure 2.1. A positive/negative
crossing is also called a real crossing.

Two virtual knot diagrams are said to be equivalent if they are related by a finite sequence
of generalized Reidemeister moves 1-VII as shown in Figure 2.2. A virtual knot is the
equivalence class of a virtual knot diagram. In particular, a classical knot in the 3-sphere
can be considered as a virtual knot diagram with no virtual crossings, called a classical knot
diagram, up to the moves I, II and III. In [8, Theorem 1.B], Goussarov, Polyak and Viro
proved that two equivalent classical knot diagrams are related by a finite sequence of moves
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Fig.2.1. Types of double points

I, II, and III; that is, the set of virtual knots contains that of classical knots. In this sense,
virtual knots are a generalization of classical knots.

o e ) (28 LD
“e ) (2 A

Fig.2.2. Generalized Reidemeister moves [-VII

A Gauss diagram is an oriented circle equipped with a finite number of signed and ori-
ented chords whose endpoints lie disjointly on the circle. In figures the underlying circle and
chords of a Gauss diagram will be drawn with thick and thin lines, respectively. Gauss dia-
grams provide an alternative way of representing virtual knots. For a virtual knot diagram D
with n real crossings (and some or no virtual crossings), the Gauss diagram Gp associated
with D is constructed as follows. It consists of a circle and n chords connecting the preimage
of each real crossing of D. Each chord of G has the sign of the corresponding real crossing
of D, and it is oriented from the overcrossing to the undercrossing. For a virtual knot K, a
Gauss diagram of K is defined to be a Gauss diagram associated with a virtual knot diagram
of K.

A motivation of introducing virtual knot theory comes from the realization of Gauss dia-
grams. In fact, the construction above defines a surjective map from virtual knot diagrams
onto Gauss diagrams, although not every Gauss diagram can be realized by a classical knot
diagram. Moreover, this map induces a bijection between the set of virtual knots and that of
Gauss diagrams modulo Reidemeister moves I, II and III defined in the Gauss diagram level
as shown in Figure 2.3 [8, Theorem 1.A]. Refer also to [12, Section 3.2]. Therefore a virtual
knot can be regarded as the equivalence class of a Gauss diagram.

We will use two deformations on Gauss diagrams as shown in Figure 2.4 as well as the
Reidemeister moves I, II and III. These deformations are the counterparts of a 2k-move and
a Z-move for Gauss diagrams. More precisely, a 2k-move on a Gauss diagram adds or
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Fig.2.3. Reidemeister moves I, II and III on Gauss diagrams (& = 1)

removes 2k chords with the same sign & whose initial and terminal endpoints appear alter-
nately. Let Py, P, and P5 be three consecutive endpoints of chords of a Gauss diagram. A
E-move exchanges the positions of P, and P, preserving the signs €1, £;, €3 and orientations
of the chords. In the right of the figure, a pair of dots e marks the two endpoints P; and P;
exchanged by a Z-move.

2% 1| €2| €3 = €1\ €2 €3
> €| E| eee |€ |€ «—>
\ 7 L] L] L] L]
P P, P3 P; P, P

2k chords

Fig.2.4. A 2k-move and a Z-move on Gauss diagrams

Now we define the n-writhe and the odd writhe of a virtual knot K using Gauss diagrams.
For a Gauss diagram G of K, let v be a chord of G. If y has a sign ¢, then we assign &
and —¢ to the terminal and initial endpoints of vy, respectively. The endpoints of y divide
the underlying circle of G into two oriented arcs. Let a be the arc running from the initial
endpoint of y to the terminal one; see Figure 2.5. The index of y, ind(y), is the sum of the
signs of all the endpoints of chords on a.

—&

Fig.2.5. A chord y with sign ¢ and its specified arc &
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For an integer n, we denote by J,(G) the sum of the signs of all the chords with index
n. In [22, Lemma 2.3], Satoh and Taniguchi proved that J,,(G) is an invariant of the virtual
knot K for any n # 0; that is, it is independent of the choice of G. This invariant is called
the n-writhe of K and denoted by J,(K). The odd writhe J(K) of K due to Kauffman [13]
can be defined by

JK) = ) Jur(K).
nez
Refer to [3, 13, 22] for more details.
The following lemma given in [11] reveals the behavior of J,(G) of a Gauss diagram G
under a 2k-move on G, and Theorem 1.1 follows from this lemma immediately. We use this
lemma to prove the invariance of the modulo 2k reduction of the odd writhe under 2k-moves.

Lemma 2.1 ([11, Lemma 2.2]). If two Gauss diagrams G and G’ are related by a single
2k-move, then there is a unique integer n such that

Jn(G) = Ju(G') = gk, J_n(G) — J_4(G') = ek and J,n(G) = Ju(G")
for some € = =1 and any integer m # +n.

Proposition 2.2. If two virtual knots K and K’ are related by a finite sequence of 2k-
moves, then J(K) and J(K') are congruent modulo 2k.

Proof. Assume that K and K’ are related by a single 2k-move, and let G and G’ be Gauss
diagrams of K and K’, respectively. Then G and G’ are related by a finite sequence of a
single 2k-move and several Reidemeister moves. By Lemma 2.1 and [22, Lemma 2.3], there
is a unique integer n such that

Ju(G) - Jn(G/) =&k, J_(G) - J—n(G/) = ek and J,,(G) = Jm(G/)

for some € = =1 and any integer m # +n. Therefore the difference J(K) — J(K’) equals 2k
for n odd and O for n even. |

In [7], Fox introduced the notion of congruence classes modulo (n, q) of classical knots
for nonnegative integers n and ¢, and asked whether the set of congruence classes of a
classical knot determines the knot type. More precisely, his question is: if two classical
knots are congruent modulo (n,q) for all n > 1 and g > 0, then are they the same type? It
is known [7, 16, 20] that the Alexander and Jones polynomials of classical knots provide
information about their congruence classes. For example, in [16, Corollary 2.4], Lackenby
proved that if two classical knots are congruent modulo (n, 2) for all n > 1, then they have
the same Jones polynomial.

The notion of Fox’s congruence classes can be extended to virtual knots by a diagram-
matic way as shown in [16, Figure 1]. We can see that if two virtual knots are related by a
finite sequence of 2k-moves, then they are congruent modulo (k,2). Therefore it would be
interesting to know whether the set of 2k-move equivalence classes of a virtual knot deter-
mines the knot type. As a consequence of Theorem 1.2 and Proposition 2.2, we show the
following proposition related to this question, which states that the set of 2k-move equiva-
lence classes of a virtual knot K determines the Z-move equivalence class of K.
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Proposition 2.3. If two virtual knots K and K’ are related by a finite sequence of 2k-
moves for all k > 1, then J(K) and J(K') are equal. Equivalently, if two virtual knots are
related by a finite sequence of 2k-moves for all k > 1, then they are related by a finite
sequence of E-moves.

Proof. By assuming that K and K’ have different odd writhes, there is a positive integer
k such that J(K) # J(K’) (mod 2k). By Proposition 2.2, this contradicts that K and K’
are related by a finite sequence of 2k-moves for all k > 1. Thus we have J(K) = J(K').
Equivalently by Theorem 1.2, K and K’ are related by a finite sequence of Z-moves. m|

3. Proof of Theorem 1.3

In our proof of Theorem 1.3, the main tool is the notion of a shell-pair, which is a certain
pair of chords of a Gauss diagram developed in [17] for classifying 2-component virtual
links up to E-moves. It is defined as follows.

Let P;, P, and P3 be three consecutive endpoints of chords of a Gauss diagram G. We
say that a chord of G is a shell if it connects P; and Ps; see the left of Figure 3.1. Note
that the orientation of a shell can be reversed by a E-move exchanging the positions of P
and Ps. A positive shell-pair (or negative shell-pair) consists of a pair of positive shells (or
negative shells) whose four endpoints are consecutive; see the right of the figure, where we
omit the orientations of shells.

P, P, P positive negative

Fig.3.1. A shell and a positive/negative shell-pair

We prepare three results (Lemmas 3.1, 3.2 and Proposition 3.3) to give the proof of The-
orem 1.3. The first and second results are used to prove the third one.
The following lemma was shown in [17, 22].

Lemma 3.1 ([17, Lemmas 4.1 and 4.2], [22, Fig. 13]). Let G, G’ and G" be Gauss
diagrams.

(1) If G’ is obtained from G by a local deformation exchanging the positions of a shell-
pair and an endpoint of a chord in G, which preserves the orientations of the chords,
as shown in the top of Figure 3.2, then G and G’ are related by a finite sequence of
E-moves and Reidemeister moves.

(i1) IfG" is obtained from G by a local deformation adding or removing two consecutive
shell-pairs with opposite signs as shown in the bottom of Figure 3.2, then G and G”
are related by a finite sequence of Z-moves and Reidemeister moves.

Lemma 3.2. Let G and G’ be Gauss diagrams, and k a positive integer. If G’ is obtained
from G by a local deformation adding or removing k consecutive shell-pairs with the same
sign € as shown in Figure 3.3, then G and G’ are related by a finite sequence of 2k-moves,
E-moves and Reidemeister moves.



206 K. Wabpa

S £

et I e

e an W

Fig.3.2. Local deformations in Lemma 3.1
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k shell-pairs

Fig.3.3. Adding or removing k consecutive shell-pairs

Proof. We only prove the result for k = 2. The other cases are shown similarly.
Assume that G’ is obtained from G by adding two consecutive shell-pairs with sign e.
The proof follows from Figure 3.4, which gives a sequence of Gauss diagrams

G =Gy,Gy,...,Ge =G’

such that for each i = 1,2,...,6, G; is obtained from G;_; by a combination of 4-moves,
E-moves and Reidemeister moves. More precisely, we obtain G| from Gy = G by a Reide-
meister move I adding a positive chord, G, from G| by a 4-move adding four chords with
sign g, and G3 from G, by a E-move exchanging the positions of the two endpoints with
dots . By Lemma 3.1(i), we can move the resulting shell-pair, preserving the orientations
of the chords, to get G4 from G3. After deforming G4 into Gs by a =-move, we finally ob-
tain G¢ = G’ by two E-moves reversing the orientations of shells and a Reidemeister move
I removing a positive chord. O

For an integer a, let G(a) be the Gauss diagram in Figure 3.5; that is, it consists of |a]
shell-pairs with sign &, where € = 1 fora > 0 and € = —1 for a < 0. In particular, G(0)
is the Gauss diagram with no chords. Denote by K(a) the virtual knot represented by G(a).
We remark that K(a) satisfies J(K(a)) = 2a.

We give a normal form of an equivalence class of virtual knots under 2k-moves and =-
moves as follows:

Proposition 3.3. Any virtual knot K is related to K(a) for some a € Z with 0 < a < k by
a finite sequence of 2k-moves and Z-moves.

Proof. By [22, Proposition 7.2], any Gauss diagram G of K can be deformed into G(a)
for some a € Z by a finite sequence of Z-moves and Reidemeister moves. If a satisfies
0 < a < k, then we have the conclusion.

For k < a, there is a unique positive integer p with 0 < a — pk < k. Lemma 3.2 allows
us to add pk consecutive negative shell-pairs to G(a). From the resulting Gauss diagram, we
can remove pk pairs of shell-pairs with opposite signs by Lemma 3.1(ii) in order to obtain
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Fig.3.4. Proof of Lemma 3.2 for k = 2
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al| shell-pairs
|a P

Fig.3.5. The Gauss diagram G(a)

G(a — pk). Thus G is related to G(a — pk) by a finite sequence of 2k-moves, E-moves and
Reidemeister moves.

In the case a < 0, let g be the positive integer with 0 < a + gk < k. Using Lemmas 3.1(i1)
and 3.2, we add gk consecutive positive shell-pairs to G(a), and then remove gk pairs of
shell-pairs with opposite signs. Finally G is related to G(a + gk) by a finite sequence of
2k-moves, Z-moves and Reidemeister moves. O

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. (i)=(ii): By Proposition 3.3, K and K’ are related to K(a) and
K(a’) for some a,a’ € Z with 0 < a,d’ < k, respectively, by a finite sequence of 2k-moves
and E-moves. Then it follows from Theorem 1.2 and Proposition 2.2 that

J(K) = J(K(a)) =2a (mod 2k)
and
J(K) = J(K(a")) =24’ (mod 2k).

By assumption, we have 2a = 2a’ (mod 2k). Since the nonnegative integers a and a’ are
less than k, we have a = a’. Thus K(a) and K(a’) coincide.
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(i1)=(i1): This follows from Theorem 1.2 and Proposition 2.2. O

The following corollary is an immediate consequence of the proof of Theorem 1.3.

Corollary 3.4. A complete system of representatives of the equivalence classes of virtual
knots under 2k-moves and Z-moves is given by the set

(K(@)|laceZ, 0<a<k}

In particular, the number of equivalence classes equals k.

4. Proofs of Theorems 1.5 and 1.6

For two virtual knots K and K’ that are related by a finite sequence of 2k-moves, Jeong,
Choi and Kim [11] provided a lower bound for dy;(K, K”) using the affine index polynomials
of K and K’, which can be rephrased in terms of the n-writhes as follows:

Theorem 4.1 ([11, Theorem 2.3]). Let K and K’ be virtual knots such that they are related
by a finite sequence of 2k-moves. Then we have

’ 1 AV 1 ’
do(K. K') 2 2 3 1K) = Ju(KO) = = D 1K) = Ju(KO))

n>0 n<0

In particular, when K’ = O is the trivial knot, we have

1 1
w(K) 2 2 ) 1Ol = 2 ) (K.

n>0 n<0

We conclude this paper with the proofs of Theorems 1.5 and 1.6.

Proof of Theorem 1.5. Consider a long virtual knot diagram T whose closure represents
the virtual knot K. Let K’ be the virtual knot represented by the diagram D in the left of
Figure 4.1. The Gauss diagram Gp associated with D is given in the right of this figure,
where the boxed part depicts the Gauss diagram G corresponding to 7.

|+ + +

2pk half-twists N~
2pk chords

(e
0C-20p ]~ |

Fig.4.1. A diagram D of K’ and its Gauss diagram Gp

Removing 2 pk half-twists from D by 2k-moves p times, we can deform D into a diagram
of K. Thus we have dy (K, K’) < p.

The 2pk vertical chords in G consist of pk positive chords with index 1 and pk positive
chords with index —1, and the remaining one chord of Gp excluding the chords in G has
index 0. Therefore it follows from [22, Lemma 4.3] that
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JW(K)+pk  ifn=1,
Ju(K') ={J_((K) + pk ifn=—1,
Jo(K) ifn#0,+l.

By Theorem 4.1, we have
! 1 ! 1
du(K,K") > %IJl(K) - Ji(K")| = %| — pkl = p,
and hence dy (K, K’) = p. O

Proof of Theorem 1.6. For a positive integer s, let K be the virtual knot represented
by the diagram D; in Figure 4.2. As shown in the proof of [19, Theorem 2.8], the set
{Ky | s > 1} forms an infinite family of virtual knots with u(K;) = pk for any s > 1, where
u(Kj) is the minimal number of crossing changes needed to deform a diagram of K| into that
of the trivial knot O.

-

A

- JURS
M : 2s — 1 half-twists

X
2pk half-twists J

Fig.4.2. A virtual knot diagram D

L

Since a 2k-move is realized by crossing changes k times, we have uy(K;) > %u(Ks) =p.
On the other hand, since D; can be deformed into a diagram of O by 2k-moves p times
removing 2 pk half-twists, we have uy(Ky) < p. Thus K satisfies uy(Ky) = p for any s > 1.

O
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