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Abstract
We show the existence of quadratic number fields possessing an everywhere unramified Galois

extension with Galois group Ãn, the double covering group of the alternating group, under the
assumption of Bunyakovsky’s conjecture.

1. Introduction

1. Introduction
Unramified extensions of number fields (and, indeed, of function fields) and their Galois

groups have been studied for a long time, due to their relevance in, e.g., class field theory
and inverse Galois theory. In particular, a problem of interest is to realize prescribed finite
groups as the Galois groups of unramified Galois extensions of low degree number fields. It
is expected (although of course way out of reach to prove in general) that every finite group
occurs as an unramified Galois group over infinitely many quadratic number fields. For cer-
tain solvable groups, this conjecture can be answered positively via class field theory (see,
e.g., [23]); for nonsolvable groups, the most classical results concern the construction of
quadratic fields having unramified extensions with alternating and symmetric groups (e.g.,
[20], [22], [3], [8], and [6]). Some further almost simple groups were realized in this sense in
[12], making crucial use of specialization of function field extensions as well as Abhyankar’s
lemma (together with the fact that these groups are generated by involutions). Additional
problems arise for non-solvable groups which are not almost-simple, notably central exten-
sions of almost simple groups, whose treatment may require the combination of established
techniques for the solvable and nonsolvable cases. A step in this direction was undertaken
in [7], dealing with direct products of alternating and cyclic groups. A yet different direc-
tion was explored in [9] and [10], yielding the first realizations of certain perfect groups not
generated by involutions as unramified Galois groups over infinitely many quadratic number
fields. These included in particular the realization of infinitely many quadratic number fields
having unramified Galois extensions with Galois group (the double covering group) Ãn for
n = 5.1

In this note, we investigate these covering groups Ãn in more generality. We will prove the
following general result, which, albeit conditional, reduces the problem to a well-accepted
number-theoretical conjecture.

2020 Mathematics Subject Classification. Primary 12F05; Secondary 12F12, 11R32.
1On a related note, see [18] for unramified realizations with Galois group Ã4 � SL2(3).
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Theorem 1.1. Assume that the Bunyakovsky conjecture holds. Then for every n ≥ 4, there
exist infinitely many quadratic number fields possessing an everywhere unramified Galois
extension with group Ãn, the unique double covering group of the alternating group An.

The relevance of Bunyakovsky’s conjecture, or indeed the more general Schinzel Hypoth-
esis, for certain problems in inverse Galois theory is known. Our proof of Theorem 1.1 in
Section 3.2 adapts previous arguments leading to a conditional proof of the so-called mini-
mal ramification problem for the symmetric groups Sn. Before this, in Section 3.1 we review
an approach using trinomials, which has also been successfully applied to many problems
in inverse Galois theory, and which can be applied to deduce some, but not all, cases of
Theorem 1.1.

2. Preliminaries

2. Preliminaries
We begin by collecting some terminology and results crucial to the proof of Theorem

1.1.

2.1. Hilbert’s irreducibility theorem.
2.1. Hilbert’s irreducibility theorem. We will make use of several aspects of Hilbert’s

irreducibility theorem. All of these are well-known, but may be useful to recall here. The
first is (a special case of) the irreducibility theorem as shown by Hilbert himself in [4].

Theorem 2.1. Let T1, . . . , Tr and X be independent transcendentals (r ≥ 1), and let
f (T1, . . . , Tr, X) ∈ Q[T1, . . . , Tr, X] be an irreducible polynomial, nonconstant in X. Then
there exist infinitely many values (t1, . . . , tr) ∈ Qr such that f (t1, . . . , tr, X) ∈ Q[X] is irre-
ducible. Moreover, given any arithmetic progressions ai + biZ (i = 1, . . . , r), these infinitely
many values (t1, . . . , tr) may additionally be chosen such that ti ∈ ai+biZ for all i = 1, . . . , r.

The following corollary on the preservation of Galois groups under specialization is also
well-known, see, e.g., [17, Prop. 3.3.3].

Corollary 2.2. Let f (T, X) ∈ Q[T, X] be an irreducible polynomial with Galois group
G. Then there exist infinitely many t ∈ Q such that f (t, X) ∈ Q[X] has Galois group G. If
furthermore the splitting field of f (T, X) is a Q-regular extension of Q(T ) (i.e., it contains no
nontrivial algebraic extension of Q), then these infinitely many values t may additionally be
chosen such that the splitting fields of the polynomials f (t, X) are pairwise linearly disjoint
over Q.

2.2. On Bunyakovsky’s conjecture.
2.2. On Bunyakovsky’s conjecture. The Bunyakovsky conjecture (see [2]) is a classical

conjecture on prime values of polynomials, stating the following:
(BC) If f ∈ Z[X] is an irreducible polynomial and D ∈ N is the largest integer dividing all
values f (n) (n ∈ Z), then there are infinitely many n ∈ Z for which f (n)/D ∈ Z is prime.2

Although it is supported by computational evidence and has been widely extended (e.g.,
into the Schinzel Hypothesis and the Bateman-Horn conjecture), it is not known for any
non-linear f . On the other hand, it has many applications to number-theoretical problems.

In this paper, we will invoke the the Bunyakovsky conjecture in its “multivariate” form,
i.e., use the following claim:

2Here, we count negatives of prime numbers as prime. Note that, strangely enough, many modern sources
explicitly demand the extra assumption D = 1. This is, however, not in the spirit of Bunyakovsky’s original
paper, which is in fact dedicated primarily to the investigation of such “fixed divisors” D.
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(MBC) For any r ≥ 1 and any irreducible integer polynomial f (X1, . . . , Xr) there exist
infinitely many different primes of the form f (x1, . . . , xr)/D, where x1, . . . , xr ∈ Z, and
D ∈ N denotes the largest integer dividing all integer specializations f (x1, . . . , xr) (xi ∈ Z).
We note that this is in fact implied by the univariate form of the conjecture.

Lemma 2.3. The “classical” Bunyakovsky conjecture (BC) and the multivariate Bun-
yakovsky conjecture (MBC) are equivalent.

Proof. Trivially (MBC) implies (BC). To show the converse, let f (X1, . . . , Xr) ∈
Z[X1, . . . , Xr] be irreducible and let D ∈ Z be the greatest common divisor of all inte-
ger specializations of f . It suffices to find polynomials g1(U), . . . , gr(U) ∈ Z[U] such
that F(U) := f (g1(U), . . . , gr(U)) ∈ Z[U] is irreducible and the greatest common divisor
of all its values is still D. We assume additionally that f (0, . . . , 0) =: N � 0; this as-
sumption can be made without loss of generality via a simple linear shift in the variables
Xi. It is elementary (see, e.g., [16, Theorem 5.6]) that there exist a1, . . . , ar ∈ Z such that
gcd(N, f (a1, . . . , ar)) = D, and thus automatically gcd(N, f (x1, . . . , xr)) = D for all x1 ≡ ai

mod N (i = 1, . . . , r). We now consider the auxiliary polynomial fU(X1, . . . , Xr,U) :=
f (X1U, . . . , XrU) ∈ Z[X1, . . . , Xr,U]. We claim that fU is irreducible. Firstly, fU is certainly
irreducible when viewed as a polynomial in X1, . . . , Xr over Q(U), since f is irreducible
and Xi �→ XiU is an invertible transformation over Q(U). Furthermore, fU is primitive
as a polynomial over the ring Z[U]. Indeed, all its coefficients equal the coefficients of
f (which is irreducible over Z, hence primitive) up to powers of U, whence the gcd of
all coefficients of fU must be a power of U; on the other hand the constant coefficient
fU(0, . . . , 0) = f (0, . . . , 0) is a non-zero constant, whence the gcd of all coefficients must
be 1. Since Z[U] is a UFD with field of fractions Q(U), the above observations imply
that fU is irreducible in Z[U][X1, . . . , Xr] = Z[X1, . . . , Xr,U]. Hilbert’s irreducibility theo-
rem (Theorem 2.1) now implies the existence of infinitely many (x1, . . . , xr) ∈ Zr such that
xi ≡ ai mod N for all i = 1, . . . , r, and F(U) := f (x1U, . . . , xrU) is irreducible. This also
automatically yields gcd(F(0), F(1)) = gcd( f (0, . . . , 0), f (x1, . . . , xr)) = D, i.e., the greatest
common divisor of all values of F is still D. This completes the proof. �

2.3. Stem extensions of alternating and symmetric groups.
2.3. Stem extensions of alternating and symmetric groups. In this section, we recall

some basic facts around stem extensions of the symmetric and alternating groups. See [21,
Chapter 2.7] for more details. Recall that a stem extension of a group G is an extension

1→ H → G0 → G → 1,(2.1)

where H ⊂ Z(G0) ∩G′0 is a subgroup of the intersection of the center of G0 and the derived
subgroup of G0. If the group G is finite, then there is a largest size for such a group G0, and
for every G0 of that size the subgroup H is isomorphic to one and the same group, called the
Schur multiplier of G. Moreover, if the finite group G is a perfect group, then G0 is unique
up to isomorphism and is itself perfect. Such G0 are often called universal perfect central
extensions of G, or covering groups. The following summarizes some important properties
of stem covers of An and Sn.
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Lemma 2.4. a) The Schur multiplier of An is C2 for n = 4, 5 or n > 7 and it is C6 for
n = 6 or 7. In particular, for all n ≥ 5,3 there is a unique degree-2 stem cover of An,
denoted by Ãn.

b) For all n ≥ 4, the Schur multiplier of Sn is C2. Furthermore, there are two degree-2
stem covers of Sn: in the first one, denoted by S̃n, the transpositions of Sn lift to
elements of order 2, whereas in the second one, denoted by Ŝn, they lift to elements
of order 4. Both these stem covers contain Ãn as a subgroup of index 2.

2.4. Embedding problems.
2.4. Embedding problems. The proof of the main theorem requires the solution of cer-

tain central embedding problems (with kernel of order 2). We recall some basic terminology
and key results around these.

A finite embedding problem over a field K is a pair (ϕ : GK → G, ε : G̃ → G), where
ϕ is a (continuous) epimorphism from the absolute Galois group GK of K onto G, and ε

is an epimorphism between finite groups G̃ and G fitting in an exact sequence 1 → N →
G̃ → G → 1. The kernel N = ker(ε) is called the kernel of the embedding problem.
An embedding problem is called central if ker(ε) ≤ Z(G̃). A (continuous) homomorphism
ψ : GK → G̃ is called a solution to (ϕ, ε) if the composition ε ◦ ψ equals ϕ. In this case,
the fixed field of ker(ψ) is called a solution field to the embedding problem. A solution ψ
is called a proper solution if it is surjective. In this case, the field extension of the solution
field over K has full Galois group G̃.

If K is a number field and p is a prime of K, every embedding problem (ϕ, ε) induces an
associated local embedding problem (ϕp, εp) defined as follows: ϕp is the restriction of ϕ to
GKp (well defined up to fixing an embedding of K into Kp), and εp is the restriction of ε to
ε−1(G(p)), where G(p) := ϕp(GKp).

Proposition 2.5 ([14], Chapter IV, Cor. 10.2). Let Γ = C.G be a central extension of G by
a cyclic group C of prime order and ε : Γ → G the canonical projection. Let ϕ : GQ → G
be a continuous epimorphism. Then the following hold:

a) The embedding problem (ϕ, ε) is solvable if and only if all associated local embed-
ding problems (ϕp, εp) are solvable, where p runs through all primes ofQ (including
the infinite one).

b) If additionally |C| = 2, the equivalence of a) holds already when the set of all primes
is replaced by “the set of all primes, with one exception” (hence, e.g., with the set
of all finite primes).

Proposition 2.6 ([17], Prop. 2.1.7). Let Γ = C.G be a central extension of G by a finite
abelian group C, let ε : Γ → G be the canonical projection, and let ϕ : GQ → G be a
continuous epimorphism such that the embedding problem (ϕ, ε) has a solution. For each
finite prime p, let ϕ̃p : GQp → Γ be a solution of the associated local embedding problem
(ϕp, εp), chosen such that all but finitely many ϕ̃p are unramified. Then there exists a (not
necessarily proper) solution ϕ̃ : GQ → Γ of (ϕ, ε) such that for all finite primes p, the
restrictions of ϕ̃ and ϕ̃p to the inertia group inside GQp coincide. In particular, ϕ̃ is ramified
exactly at those finite primes p for which ϕ̃p is ramified.

3In fact, this uniqueness property holds for n = 4 as well, even though A4 is not perfect.
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Remark 2.7. Note also that the local embedding problem (ϕp, εp) as in Propositions 2.5
and 2.6 is always solvable in the case where ϕp is unramified (simply lift the image of
Frobenius at p in G to any cyclic preimage in Γ).

3. Proof of Theorem 1.1

3. Proof of Theorem 1.1
We now proceed to the proof of Theorem 1.1. There are several ways to construct An-

unramified extensions over quadratic fields. A well-known approach works with trinomials,
i.e., polynomials of the form Xn + aXk + b. We demonstrate this approach and its limitations
for identifying Ãn-unramified extensions of quadratic number fields in Section 3.1, thereby
motivating the necessity of the more general approach of the following Section 3.2. Both
approaches construct suitable S̃n-extensions4 of Q, making use of the following observation.

Lemma 3.1. Let K ⊃ Q be the splitting field of an irreducible degree-n polynomial, and
assume that the following hold:

i) K/Q is ramified only at one finite prime p ≥ 3 and at the infinite prime, and
ii) the inertia groups at p and at∞ are generated by a transposition and by an involu-

tion with 4 j + 1 transpositions ( j ≥ 0), respectively.

Then K/Q is an Sn-extension and embeds into an S̃n-extension L/Q such that L/F is an
Ãn-unramified extension, where F ⊂ K denotes the fixed field of An.

Fig. 1. Diagram of fields and Galois groups in Lemma 3.1

Proof. First, note that Gal(K/Q) = Sn, since the Galois group of a Galois extension of Q
is generated by the set of all inertia subgroups at finite ramified primes, and furthermore it is
well known that a transitive permutation group G ≤ Sn generated by transpositions is neces-
sarily Sn itself, see e.g. [17, Lemma 4.4.4]. Now consider the embedding problem induced
by S̃n → Gal(K/Q) � Sn. The induced local embedding problems are automatically solv-
able at all unramified primes by Remark 2.7. Also, due to Condition ii), the local embedding
problem at infinity is solvable since the decomposition group at∞ in K/Q is generated by an
involution with 4 j+ 1 transpositions, and such an element is necessarily split in S̃n, cf., e.g.,
[5]. Thus, from Condition i), the local embedding problem is solvable at all primes except

4Recall that S̃n denotes the unique degree-2 stem cover of Sn in which the tranpositions of Sn split.
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possibly at p, and hence the global embedding problem is solvable due to Proposition 2.5b).
The solutions are automatically proper, since the extension S̃n → Sn is non-split. Next, apply
Proposition 2.6 to conclude that such solution fields L ⊃ K ⊃ Q may be chosen without any
newly ramified finite primes (compared to K/Q), and even without further ramification at
the prime p (since the inertia group at p is generated by a transposition, hence split in S̃n, i.e.,
doesn’t have any cyclic preimage of order larger than 2). In total, all inertia groups in L/Q
are generated by involutions outside of the index 2 normal subgroup Ãn of S̃n. This implies
that, if F ⊃ Q denotes the quadratic number field fixed by Ãn, then L/F is an everywhere
unramified Ãn-extension. �

3.1. A partial proof using trinomial extensions.
3.1. A partial proof using trinomial extensions.

Theorem 3.2. Assume Bunyakovsky’s conjecture. Then, for each n ≥ 4 with n ≡ 2, 3, 4
or 5 mod 8, there exists a trinomial f = Xn + aX + b ∈ Q[X] whose splitting field embeds
into a S̃n-extension K/Q, such that K/Q(

√
D( f )) is a Ãn-unramified extension where D( f ) is

the discriminant of f .

Proof. It suffices to show the existence of infinitely many different Galois extensions K/Q
which are splitting fields of trinomials f (X) = Xn + aX + b (a, b ∈ Z) and fulfill the assump-
tions of Lemma 3.1. For this, note that, as a special case of [19, Theorem 2], the discriminant
of f equals Δ(a, b) = (−1)(n−1)(n−2)/2((n − 1)n−1an − (−n)nbn−1). In particular, Δ(a, b) is irre-
ducible as a bivariate integer polynomial and without any fixed divisor D > 1 (since, e.g., it
takes the coprime values Δ(1, 0) = ±(n − 1)n−1 and Δ(0, 1) = ±nn). Furthermore, one of the
two variables a and b occurs of odd degree. It then follows from Bunyakovsky’s conjecture
that Δ takes infinitely many different values of the form Δ(a, b) = −p, for some prime num-
ber p.5 Choose now such values a, b ∈ Z. The inertia groups at primes extending p in K/Q
are then generated by a transposition, since p strictly divides the discriminant. Furthermore,
due to Δ(a, b) < 0, the inertia group at ∞ is generated by an odd involution; on the other
hand, since f is a trinomial, it has at most three real roots. Thus complex conjugation acts as
an involution σ ∈ Sn with at most three fixed points. The latter leaves, for each n, only two
possible cycle types, namely consisting of either � n

2� or � n
2� − 1 transpositions. Use now that

n ≡ 2, 3, 4 or 5 mod 8 to see immediately that an odd involution of this form must consist of
4 j+ 1 transpositions ( j ≥ 0). We have thus verified conditions i) and ii) of Lemma 3.1. This
completes the proof. �

Remark 3.3. In analogy with the above proof, one verifies that for n ≡ 0, 1, 6 or 7 mod 8
and for any trinomial Xn + aXk + b with Galois group Sn, the only candidates for a complex
conjugation σ ∈ Sn which are compatible with our problem (namely, which are odd invo-
lutions and fix at most three points) have 4 j − 1 transpositions. Since these are nonsplit in
S̃n, in order to make the trinomial approach work for these residues, one would then have
to use instead the second stem cover Ŝn of Sn (in which the involutions with 4 j − 1 trans-

5To see that the minus sign can be achieved, one may, e.g., consider Δ(a, (−1)
n
2 −1b2) (for n ≡ 2, 4 mod 8)

and Δ((−1)
n+1

2 a2, b) (for n ≡ 3, 5 mod 8), which are still irreducible without fixed divisor > 1, and are now even
degree polynomials with negative leading coefficient in one of the variables. Now it is easy, via specializing
first the other variable, to reduce to the case of a one-variable irreducible polynomial taking only finitely many
positive values in total.
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positions split). In this group, however, the transpositions are non-split, and hence prime
(or indeed squarefree) discriminants as obtained in the above argument are of no use since
a prime with transposition inertia in the Sn-extension would then necessarily ramify further
in the Ŝn-extension. This demonstrates the necessity of an argument beyond the trinomial
approach for a full proof of Theorem 1.1.

3.2. The general proof.
3.2. The general proof. We now present a construction which works for general n ∈ N.

As before, it suffices to justify the existence of infinitely many extensions K/Q fulfilling
Conditions i) and ii) of Lemma 3.1. The following lemma is more than we need for our
purposes, but may be useful in other contexts as well.

Lemma 3.4. Let n ∈ N, and let n1, . . . , nr and m1, . . . ,ms be positive integers such that∑r
i=1 ni =

∑s
j=1 mj = n. For each i = 1, . . . , r (resp. j = 1, . . . , s), let fi(X) (resp. g j(X))

be a “generic” monic polynomial of degree ni (resp., mj) over Q, i.e., its coefficients are
independent transcendentals over Q. Denote the vector of all coefficients of all fi by a,
and the vector of coefficients of the g j by b; set f (X) =

∏r
i=1 fi(X), g(X) =

∏s
j=1 g j(X),

and choose another independent transcendental t. Then the discriminant D ∈ Z[a, b, t] of
f (X) − tg(X) is irreducible in Q(a, b)[t].

Proof. Let F(X) and G(X) be generic monic degree-n polynomials (with mutually inde-
pendent coefficient vectors α, β). Then the discriminant Δ of F(X) − tG(X) is irreducible in
Q[α, β, t], e.g., as a special case of [11, Lemma 4.3]. By Hilbert’s irreducibility theorem,
there exist infinitely many rational specialization vectors α → α0, β → β

0
which preserve

the irreducibility of Δ (while also preserving its degree). Denote the specialized polynomials
by F0,G0 ∈ Q[X], and Δ0 ∈ Q[t], and let Ω ⊃ Q(t), resp. L ⊃ Q, be the splitting field of
F0 − tG0, resp. of Δ0. Since Δ0 is irreducible and hence in particular separable, all nontrivial
inertia groups of ΩQ/Q(t) are generated by transpositions. Consequently, Gal(ΩQ/Q(t)) is
generated by transpositions, hence isomorphic to Sn. Since this group is on the other hand a
subgroup of Gal(Ω/Q(t)), it follows that Ω/Q(t) is a Q-regular6 Sn-extension. Corollary 2.2
then implies that there are two (in fact, infinitely many) values t0, t1 ∈ Q ∪ {∞}7 such that
the splitting fields of F(X) − tiG(X) have Galois group Sn (i = 0, 1) and their compositum
is linearly disjoint from L over Q. By applying a suitable fractional Q-linear transformation
μ := μ(t), we may thus assume that t0 = 0 and t1 = ∞ are such values, i.e., the splitting
fields of F0 and G0 themselves are linearly disjoint from L. Importantly, μ does not change
L (the splitting field of Δ0), since it merely induces a fractional linear change on the multiple
values of the rational function t(X) := F0(X)

G0(X) , i.e., on the roots of the discriminant Δ0, thus
leaving the splitting field of Δ0 invariant.

Denote the splitting field of F0 by Ω1 and the one of G0 by Ω2. We thus have that L is
linearly disjoint over Q from Ω1Ω2. In particular, Δ0 is irreducible over Ω1Ω2. Let E1 ⊂ Ω1

be the fixed field of the (intransitive) subgroup Sn1 × · · · × Snr ≤ Sn, and E2 ⊂ Ω2 the fixed
field of Sm1 × · · · × Sms ≤ Sn. By definition, F0 factors over E1 into irreducible factors of
degrees n1, . . . , nr (i.e., the factorization pattern of our polynomial f (X) from the assertion),
and G0 factors over E2 into irreducible factors of degrees m1, . . . ,ms (i.e., the factorization
pattern of g(X)). This means that, for the polynomial f (X) − tg(X) ∈ Q(a, b)[t, X] from the

6I.e., Ω ∩ Q = Q.
7Here, for convenience, we define the specialization of F0(X) − tG0(X) at t = ∞ as G0(X).
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assertion, we have found specialization vectors a �→ a0 and b �→ b0 with entries in Ω1Ω2,
at which the discriminant D specializes to an irreducible polynomial in (Ω1Ω2)[t] (of non-
decreasing degree). This can only happen if D itself was irreducible in (Ω1Ω2)(a, b)[t], and
hence a fortiori in Q(a, b)[t]. �

We are now ready to complete the proof of Theorem 1.1.

Proof of Theorem 1.1. We apply Lemma 3.4 with (n1, . . . , nr) = (1, . . . , 1) and (m1, . . . ,

ms) = (2, . . . , 2, 1, . . . , 1), where, in view of Lemma 3.1, we demand the number of 2’s to
be congruent to 1 modulo 4. By Hilbert’s irreducibility theorem, there exist infinitely many
specializations of the coefficient vectors a and b maintaining the irreducibility (in Q[X]) of
the discriminant Δ0 of the thus specialized polynomial f0(X) − tg0(X). Moreover, we may
additionally demand each quadratic factor of g0 to remain irreducible over R; indeed, this
additional condition merely amounts to saying that the discriminant of each quadratic factor
X2 + biX + bi+1 should be negative, i.e., bi+1 should be chosen sufficiently large compared to
bi, something obviously compatible with Hilbert’s irreducibility theorem.

Now let E be the splitting field of f0 − tg0 over Q(t), and let  be the set of primes
dividing all integer values of Δ0. Since f0 is totally split over Q, for any p ∈  and any
p-adically sufficiently small value t0 ∈ Q, the polynomial f0(X) − t0g0(X) is totally split
over Qp by Krasner’s lemma. In particular, p is then unramified in the splitting field of
f0 − t0g0. We wish to restrict to integer specializations at such p-adically small values (for
all p ∈  simultaneously) from now on, which may be achieved by considering all integer
specialization values of f0−Nt ·g0(X) for a suitable non-zero integer N (namely, a product of
suitable high powers of the primes in ). Note also that, if t0 is of sufficiently large absolute
value, then its factorization pattern over the reals equals the one at t = ∞, i.e., the one of
g0, which by assumption splits into 4 j + 1 quadratic irreducible factors and linear factors
otherwise over R. In particular, complex conjugation in the splitting field is an involution
with 4 j + 1 transpositions. Assuming Bunyakovsky’s conjecture, there are infinitely many
integers t0 for which Δ0(Nt0) is of the form qD, where q is a prime and D is divisible only
by primes in  (we have used here that replacing t by Nt does not lead to any new fixed
prime divisors p �  , which is evident upon mod-p reduction, since gcd(p,N) = 1). This
means that the discriminant of the splitting field of f0(X) − Nt0g0(X) is also a prime up to at
most such a factor D. But also, by choice of N, we already know that the primes in  are
unramified in the latter splitting field. Therefore, there is only one ramified finite prime, and
its inertia group is generated by a transposition. Furthermore, for |Nt0| sufficiently large, the
inertia group at the infinite prime generated by an involution with 4 j + 1 transpositions, as
already explained. This yields infinitely many Sn-extensions of Q fulfilling the assumptions
of Lemma 3.1, thus completing the proof. �

Remark 3.5. An approach somewhat similar to the one taken above has been carried out
in the proof of [1, Theorem 6.5] (improving over the earlier [15, Remark 3.10]), namely
to show that (conditionally on Schinzel’s Hypothesis - and, in fact, ultimately only on Bun-
yakovsky’s conjecture) there exist Sn-extensions ofQ ramified at only one (necessarily finite)
prime. For this purpose, the authors necessarily require totally real Sn-extensions, whereas
we deliberately avoid this special scenario, since Proposition 2.6 would then not be suf-
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ficient to exclude the solution field of the embedding problem acquiring new ramification
over infinity.

4. Some explicit examples

4. Some explicit examples
While unconditional results on the existence of infinitely many quadratic number fields as

in the assertion of Theorem 1.1 may be hard (for arbitrary n), simple database checks (e.g.,
lmfdb.org, [13]) yield some fields of this form (for small n). In Table 1, we list, for small
values of n, the “smallest” database hit (when counting by discriminant norm) of a qua-
dratic number field F embedding into an Sn-extension K/Q which fulfills the assumptions
of Lemma 3.1, and thus in particular possessing an unramified Ãn-extension.

Table 1. Some quadratic fields with unramified Ãn-extension

n F
4 Q(

√−283)
5 Q(

√−4903)
6 Q(

√−92779)
7 Q(

√−3444743)
8 Q(

√−69367411)
9 Q(

√−2307632671)
10 Q(

√−215067767)
11 Q(

√−5901091967)
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