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Abstract
Following our previous work, we develop an algorithm to compute a presentation of the funda-

mental group of certain partial compactifications of the complement of a complex arrangement
of lines in the projective plane. It applies, in particular, to homology planes arising from ar-
rangements of lines. In certain cases, the presentation is trivial, and we can obtain infinite new
exotic algebraic and analytic structures on Cn for n ≥ 3. We also find the first examples of
homology planes of log-general type with an infinite fundamental group. The infiniteness can
be obtained geometrically by orbifold morphisms to orbicurves.

1. Introduction

1. Introduction
The computation of the fundamental group of smooth quasi-projective complex varieties

is in general a difficult task. There exist, however, certain classes of these type of varieties
where specific methods have been developed in order to obtain at least, a presentation for
these groups. For example, for the complement P2 \A of an arrangement of lines A in P2,
a presentation for π1(P2 \A ) is obtained in [1], [2], [3], [4], [5].

In [6], by modifying the method in [2], we have developed a method to obtain a presenta-
tion for the fundamental group of certain partial compactifications of the complement P2\A
of an arrangement of lines A ⊂ P2 under the hypothesis that the lines in A are defined by
real linear forms.

The purpose of this note is to generalize our method in two directions:
• to admit a general arrangement A ⊂ P2 defined by complex linear forms, and
• to admit a more general class M(A , I, P) of partial compactifications of P2 \A . See

2.3.1 for a precise definition.
In particular, some of these partial compactifications give rise to homology planes, see

below. It also contains some partial compactifications constructed by Fowler in the study of
rational homology disks in [7], see also [8, 9].

We proceed in two different ways: firstly, following [3] and [4], whose work generalize
[2] to complex arrangements, we define a wiring diagram  that encodes some over or
under-crossing of the lines in A arising by the complex nature of the forms defining them.
The graph  encodes enough information to obtain a presentation of π1(M(A , I, P)).
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Theorem 1.1. A presentation for π1(M(A , I, P)) can be obtained from  . The set of
generators are in correspondence with the set of lines in A and the set of relations has two
types of them:

• those relations Rp coming from a singular point p of A . These relations already
appeared in a presentation of π1(M(A )), and
• for each element ι either in I or in P, a relation Rι which is a product of conjugates

of some generators depending on ι.

As in [6], a main step in the proof of Theorem 1.1 consists in the explicit computation of
an expression for the meridians around certain exceptional divisors, obtained by blowing-up
A in some singular points, in terms of the generators. We also obtain in Theorem 3.17,
similar to loc. cit., a presentation for the fundamental group of an orbifold whose moduli
space BlP0 P

2 is a blow-up of P2 at some singular points P0 of the arrangement A and the
non-trivial isotropy groups lie in a divisor D contained in the total transform of A in BlP0 P

2.
This is motivated by the Shafarevich conjecture of the Hirzebruch covering surfaces with
different weights. For the explicit relation and for the equal weights case see [10].

Secondly, let U denote a closed regular tubular neighborhood of A in P2. We call ∂U
the boundary manifold of A . In [5], a presentation for π1(M(A )) is obtained from a pre-
sentation of π1(∂U) by studying the map π1(∂U) → π1(M(A )) induced by the inclusion
∂U ↪→ M(A ). For the homological version see [11].

It turns out that their methods can also be applied to determine a presentation for the
fundamental group of some partial compactifications M(A , I, P). However, in order to study
the boundary manifolds ∂UD of strict transforms D of A in some birational model of P2, we
start from a different presentation for the boundary manifold ∂U of A than that used in [5].

Indeed, when D =
∑

Di is a connected, simple normal crossing divisor such that π1(D)
is trivial, Mumford gave a presentation for π1(∂UD) in [12]. This, together with the graph-
manifold structure in the sense of Waldhausen [13], permitted Westlund to give a presen-
tation of π1(∂U) in [14] (see also [15]). Here, by a choice of a surface birational to P2

where the strict transform of A satisfies the hypothesis for the presentation of Mumford,
we obtain the same presentation of Westlund. See Theorem 4.1. Following this construc-
tion, we are able to give a presentation for the fundamental group of a boundary manifold
∂UD of a divisor D lying in a surface X̄ obtained by successive blows-up of P2 such that
M(A , I, P) = X̄ \ D.

We obtain in Theorem 4.3 a presentation for π1(M(A )) by studying the map i∗ : π1(∂U)
→ π1(M(A )). Moreover, as the construction for π1(∂U) depends of several choices, we can
make them in such a way that the image under i of the meridians of the lines in A lying in
∂U, whose homotopy class are part of the generators of π1(∂U), lie in the same homotopy
class as the meridians constructed for Theorem 1.1. From this, we do not only obtain that the
presentation of Theorems 4.3 and 1.1 are equivalent, but that the image of the set of relation
in the presentation of π1(M(A )) coincides with the relations as in Theorem 1.1. From this,
we can obtain a presentation for partial compactifications π1(M(A , I, P), see Theorem 4.14.

The presentation of Theorem 1.1 applies in particular for homology planes, affine smooth
surfaces with trivial reduced integral homology, arising from arrangement of lines. To the
knowledge of the author, no general algorithm for computing a presentation for their funda-
mental groups were known.
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The arrangements of lines giving rise to homology planes were classified by T. Tom Dieck
and T. Petri, see [16, 17, 18] . There exists one infinite family L(1, n+1) and six arrangement
L(2), . . . , L(7) of at most ten lines.

As in algebraic surfaces, the study of homology planes is usually divided by its log-
Kodaira dimension: the only homology plane X with k̄(X) = −∞ satisfies X � C2 [19,
Theorem 3.2], there are no homology planes with k̄(X) = 0 and all the homology planes
with k̄(X) = 1 can be obtained from L(1, n + 1), see [20].

For homology planes X with k̄(X) = 2, Tom Dieck and Petri gave examples arising from
L(2) in [21] as well as a general algorithm to obtain homology planes out of arrangement
of lines. As the fundamental group π1(P2 \ L(2)) is abelian, all homology planes arising
from L(2) are contractible. In [22], Zaidenberg gave a countable number of contractible
homology planes arising from the arrangement L(3). By using the algebraic, respectively
analytic, cancellation theorem of Iitaka-Fujita [23], respectively Zaidenberg [22], we obtain
the following corollary.

Corollary 1.2. There exists new infinite algebraic and analytic exotic structures on Cn

for n ≥ 3.

Homology planes of log-Kodaira dimension one were classified in [24], see also [20].
Among them, there are homology planes with an infinite fundamental group. In fact, they
admit an orbifold morphism to an orbicurve with coarse space P1 and isotropy at n ≥ 3
points. However, to the knowledge of the author, no homology plane of log-general type
with infinite fundamental group were known.

Corollary 1.3. There exists infinite examples of homology planes of log-general type with
an infinite fundamental group.

These homology planes arise as in [21]. The infinitude was obtained at first, using the
presentation of Theorem 1.1, but the nature of the groups suggested the following more
geometric construction: using certain pencils of lines associated to the (sub)-arrangements
L(3), L(4), L(5), as presented by Suciu in [25], we can construct homology planes X having a
fibration that induces a surjective homomorphism to the fundamental group of an orbicurve
which is infinite. In fact, all homology planes with infinite fundamental group that we obtain
are of this form.

For the nature of the group π1(X) for a homology plane X, it is superperfect, we believe
that our examples are a good testing ground for the following question:

Question 1. Can these morphisms to orbicurves be characterized in terms of the jumping
loci of the cohomology in a representation variety R(π1(X),G) for some non-abelian group
G?

Note that the classical setting of Arapura in [26], or its extension to the orbifold setting
[27], gives no information as π1(X) is perfect. Other groups different to C∗ are needed, see
[28], [29].

We present examples of homology planes, where the image of the fundamental group of
a general fiber is a quotient of Z, see examples 5.3, 5.5 and others, where it is a quotient
of the free group in two generators F2 = π1(P1 \ {3 − points}), see examples 5.2, 5.4. This
motivates the following question:
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Question 2. Let X be a homology plane with infinite fundamental group. Does π1(X)
always admit an infinite quotient isomorphic to the fundamental group of an orbicurve?

This is the case for the homology planes X with k̄(X) = 1, see [20]. Adapting these
arguments, we show in Proposition 5.6, that this is also the case for the homology planes
arising from L(3).

Finally, by using again Theorem 1.1, we give examples of contractible homology planes
arising from L(6) and L(7). Following the arguments of Zaidenberg in [22], we can show
that these examples are not isomorphic to those obtained from L(1, n + 1) and L(3). These
arguments also show that these homology planes are of log-general type.

It would be interesting to have a classification of the fundamental groups of Q-homology
planes. The conjectural classification of Q-homology planes in [30] would definitely be
helpful. The questions about fundamental groups and topology of Q-homology planes can
also be asked for singularQ-homology planes with smooth locus not of general type by using
the work [31, 32, 33]. On the other hand, rational homology balls are of special interest in
low-dimensional topology, see [34, 35]., it would be interesting to use the techniques of
this area to study homology planes. Some connections of algebraic geometry and low-
dimensional topology were studied in [36].

2. Preliminaries

2. Preliminaries2.1. Notations.
2.1. Notations. We will denote by P2 the complex projective plane.
Let A = {L1, . . . , Ln+1} be an arrangement of n + 1 lines in P2. The complement of the

arrangement will be sometimes denoted by M(A ) := P2 \A .
Let X be a complex manifold, for p ∈ X we denote by π : Blp X → X the blow up of X

at p. If D ⊂ X is a divisor, we denote by |D| the reduced divisor with the same support as D
and by Sing D the set of singular points of D.

We will denote by ab = b−1ab if a, b ∈ G with G a group. If a ∈ G and b ∈ Z, we denote
as well by ab the b-power of a.

2.2. Meridians.
2.2. Meridians. Let X be a complex manifold and H ⊂ X a hypersurface. Let p ∈ H

be a smooth point and Δ a disc cutting transversaly H at p. A loop γ in π1(X \ H) freely
homotopic to the boundary of Δ with the natural orientation is called a meridian.

The following proposition is well-known, for a proof see [37].

Proposition 2.1. Let X be a complex manifold and D =
∑

Di a divisor such that each
irreducible reduced component |Di| of D is smooth. Let γi be a meridian of |Di|, then every
other meridian of |Di| is a conjugate of γi in π1(X \D) and the kernel of the map π1(X \D)→
π1(X) is the normal subgroup generated by the meridians of its irreducible components.

2.3. Dual graph of a divisor and partial compactifications of its complement.
2.3. Dual graph of a divisor and partial compactifications of its complement. Let X̄

be a projective smooth surface and let D =
∑N

i=1 Di ⊂ X̄ be a reduced simple normal crossing
divisor with the Di being the irreducible components of D and denote by wi = Di · Di the
self-intersection number of Di. Let Δ be the unoriented graph, where the vertices V(Δ) :=
{v1, . . . , vN} are in correspondence with the irreducible components Di of D and the edges
(Δ) correspond with the intersection of the irreducible components of D, this is, there is an
unoriented edge joining vi and v j for each point in Di ∩ Dj. Denote by X := X̄ \ D.
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We want to define some partial compactifications of X. The idea goes as follows: we
choose a subset of irreducible components of D indexed by I which are not to be removed
from X̄, we then select a subset P of points in Sing

∑
i�I Di to be blown-up and remove the

strict transform of
∑

i�I Di in BlP X̄.
More precisely, let I ⊂ {1, . . . ,N}, P = {p1, . . . , ps1} ⊂ Sing(

∑
i�I Di) and denote by

π : BlP X̄ → X̄ the composite of the blow-ups at the points in P. Denote by π∗D =
∑N+s1

i=1 D′i
the total transform of the divisor D in BlP X̄, suppose that for i = 1, . . . ,N, we have that D′i
is a strict transform of Di and for j = 1, . . . , s1, the D′N+ j are exceptional divisors. Define
the divisor

D′(I, P) = π∗D −
∑
i∈I

D′i −
∑
N< j

D′j.

Note that BlP X̄ \ π∗D ↪→ X′(I, P) := BlP X̄ \ D′(I, P). By restricting π, we obtain an
isomorphism BlP X̄ \ π∗D ∼→ X. We call X′(I, P) a partial compactification of X = X̄ \ D.
By Proposition 2.1, the induced homomorphism π1(X)→ π1(X′(P, I)) is surjective.

We comment on the effects of this construction in the dual graph. Denote by Δ′(I, P) the
dual graph of D′(I, P). It is obtained from Δ by deleting the following vertices and edges:
for the set I, we have a subset V(I) ⊂ V(Δ) of vertices corresponding to the lines Di for i ∈ I,
remove these vertices from Δ, together with all edges in (Δ) having an endpoint in V(I).
We also remove the edges corresponding to P: let p j ∈ P, there exists j1, j2 ∈ {1, . . . ,N}
such that p j = Dj1∩Dj2 . In the dual graph of π∗D the edge corresponding to p j in Δ has been
divided in two, with a vertex in between corresponding to the exceptional divisor coming
from p j.

2.3.1. Partial compactifications for an arrangement of lines.
2.3.1. Partial compactifications for an arrangement of lines. We can carry the above

construction for a divisor D ⊂ X̄ coming from an arrangement of lines A = {L1, . . . , Ln+1} ⊂
P2. In fact, this will be the only case we will be interested in.

Let A ⊂ P2 be an arrangement of lines. Denote by P0 := {p1, . . . , ps0} ⊂ Sing A the
points with multiplicity strictly bigger than 2. Define π : X̄ := BlP0 P

2 → P2 and denote by
D = |π∗A | = ∑n+1+s0

i=1 Di the reduced total transform of A in X̄. Note that D is simple normal
crossing. For a divisor D where the irreducible components are smooth rational curves, the
set of edges (Δ) of the dual graph Δ can be described as (Δ) = {(i, j) ∈ {1, . . . , n+1+ s0}2 |
Di ∩Dj � ∅, i < j} once the irreducible components of D are numbered. We assume that Di

is the strict transform of Li.
Let I ⊂ {1, . . . ,N = n + 1 + s0} and P = {p′1, . . . , p′s1

} ⊂ Sing
∑

i�I Di. Consider π′ :
BlP X̄ → X̄ and let D′ = π′∗(D) − ∑i∈I D′i −

∑
N< j D′j as above. We write M(A , I, P) :=

X′(I, P) = BlP X̄ \ D′ for a partial compactification of the complement of an arrangement
M(A ) = P2 \A .

We can iterate this construction in the following way; consider a sequence of blow-ups:

BlPk ,...,P1 X̄
π(k)

→ BlPk−1,...,P1 X̄
π(k−1)

→ . . .
π(2)

→ BlP1 X̄
π(1)

→ X̄
π(0)

→ P2,

with Pl ⊂ Sing((π(0)◦π(1)◦· · ·◦π(l−1))∗A ) for l = 1, . . . , k and π(l) : BlPl,...,P1 X̄ → BlPl−1,...,P1 X̄
denoting the blow-up of BlPl−1,...,P1 X̄ at Pl. We can suppose that the irreducible components
of the reduced divisor
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D′ :=
∣∣∣(π(0) ◦ · · · ◦ π(k))∗A

∣∣∣ =
|A |∑
1

D′i +
|A |+|P0 |∑
|A |

D′j + . . . +
|A |+|P0 |+...+|Pk |∑
|A |+|P0 |+...+|Pk−1 |

D′l ,

where |P| denotes the cardinality of the set P, are ordered in such a way that π(l) ◦ · · · ◦ π(k)

contracts the curves D′i with i > |A | + . . . + |Pl−1| for l = 1, . . . , k. Let I ⊂ {1, . . . , |A | +
. . . + |Pk|} and define M(A , I, P1, . . . , Pk) := BlPk ,...,P1 X̄ \ D′ −∑i∈I D′i as an iterated partial
compactification of M(A ).

Lemma 2.2. Let (X̄′,D′) be a smooth projective surface such that

(1) the divisor D′ is a simple normal crossing divisor,

(2) there is a birational morphism X̄′
ψ→ X̄,

(3) we have that ψ∗D ⊃ D′,
then there exists an iterated partial compactification (X̄′′,D′′) and a proper birational mor-

phism X̄′
ψ′′→ X̄′′ such that (ψ′′)−1D′′ ⊃ D′ and π1(X̄′′ \D′′)

∼← π1(X̄′ \D′) is an isomorphism.

Here we will restrict the study to M(A , I, P) unless otherwise stated. The results are
easily generalized to the above more general setting of iterated partial compactifications.

Remark 2.3. We have that π1(X̄′ \ D′) is a quotient group of π1(M(A )) by Proposition
2.1.

2.4. Boundary manifolds.
2.4. Boundary manifolds. Let X̄ be a projective smooth surface and D =

∑k
i=1 Di ⊂ X̄

be a connected divisor. We can construct a regular tubular neighborhood U of D in X̄ which
comes with a surjective continuous retraction ϕ : U → D such that ϕ|D = idD. The boundary
∂U of U is an oriented, connected, closed 3-manifold (see [12]). We call the 3-manifold ∂U
the boundary manifold of D and denote by ψ : ∂U → D the restriction of ϕ to ∂U.

Suppose now that (X,D) is simple normal crossing and assume that:
• the divisor D is connected,
• the irreducible components Di of D are rational curves ,
• the dual graph of D has no cycles, in particular #Di ∩ Dj = 0 or 1 if i � j. This dual

graph is a tree that we denote by  .
For such a pair, a presentation of π1(∂U) is given in [12, p. 235] (See also [38]). As we shall
need the notations, let us describe it.

Fix a base point Qi ∈ Di \ ∪i�mDm in every rational curve i = 1, . . . , k. Denote by P′im the
unique point in Di∩Dm, if any. Select a simple contractible oriented curve li ⊂ Di containing
Qi and passing through every point P′im ∈ Di as in Fig. 1a and denote by l = ∪li ⊂ D. We
can construct a continuous map h : l → ∂U such that ψ ◦ h|li = idli and h(li) ∩ h(lm) � ∅ if
P′im = Di ∩ Dm = li ∩ lm � ∅.

It is easy to see that l is a homeomorphic image of a tree and deformation retracts to a
point.

Label the points P′im ∈ Di by the order they intersect li as Pi1, . . . , Piki , see Fig. 1a.
Denote by ψi : ∂Ui → Di the boundary manifold of Di. Let D∗i = Di \ ∪ki

m=1Δ(Pim) with
Δ(Pim) a small open disk around Pim in Di. Define ∂U∗i := ψ−1

i (D∗i ). We may suppose that
∂U ∩ ∂Ui = ∂U∗i .

We may also assume that Qi ∈ D∗i . Define another contractible path l′i ⊂ D∗i as follows:
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Fig.1. Generators

join every two connected components of li ∩ D∗i touching the boundary of a disk ∂Δ(Pim),
by the segment of ∂Δ(Pim) that connects these two points when traveled in the natural ori-
entation, see Fig. 1b. We assume li and ∂Δ(Pim) intersect transversally at two points for all
m = 1, . . . , ki − 1.

Consider the circle ∂Δ(Pim) traveled in the natural orientation and connect it to Qi via a
segment of l′i . We obtain a path β′im ∈ π1(D∗i ,Qi), for m = 1, . . . , ki, see Fig. 1b. Note that
β′i1 · · · β′iki

= 1 in π1(D∗i ).
We can construct continuous maps hi : ∪ki

m=1β
′
im → ∂U∗i such that ψi ◦ hi|β′im = idβ′im for

every i = 1, . . . , k. Let hi(Qi) be a base point in ∂U∗i , denote by γ′im = hi(β′im) and let γ′i be a
fiber S1 at Qi of ∂U∗i traveled in the natural orientation.

By using the long homotopy sequence of a fiber bundle, Mumford obtained the following
presentation in [12]. See also [38].

Lemma 2.4 ([12, pp. 236–237]). The fundamental group of ∂U∗i is given by the following
presentation

(1)
〈
γ′i1, . . . , γ

′
iki
, γ′i
∣∣∣ [γ′im, γ′i ] m = 1, . . . , ki, γ

′−wi
i = γ′i1 · · · γ′iki

〉
with wi = Di · Di the self-intersection number of Di.

Remark 2.5. Note that ∂U∗i is non canonically homeomorphic to the trivial bundle S1×D∗i ,
but the image of the paths γ′im are not longer identified with a path freely homotopic to one
of the form {point} × ∂Δ(Pim). In fact, we need to twist this image by a multiple of γ′i for it
to be of such form. See [12, p. 235].

Now, to globalize this construction to ∂U, we can use h(l) ⊂ ∂U as a skeleton to define
paths generating π1(∂U). Let γi be the loop based at h(Q1) constructed as follows. Join
h(Q1) to h(Qi) by a segment λ of h(l), follow γ′i and come back by λ−1. Then it is homotopic
to the canonical representative of γ′i in π1(∂U∗i ∪ h(l), h(Q1)) using the natural isomorphism
π1(∂U∗i ∪ h(l), h(Q1)) → π1(∂U∗i ,Qi) thus obtained. Define similarly γim for 1 ≤ m ≤ ki.
Then γim = γ j (i,m) for some injective map m �→ j (i,m) from {1, . . . , ki} to {1, . . . , k}.

By gluing the ∂U∗i together and by using van Kampen theorem, Mumford obtained the
following presentation for π1(∂U).
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Theorem 2.6 ([12]). With the notations and assumptions as above, a presentation for
π1(∂U) is given by:

π1(∂U) =
〈
γ1, . . . , γk

∣∣∣∣∣ [γi, γ j (i,m)], m = 1, . . . , ki, γ
−wi
i =

ki∏
m=1

γ j (i,m), 1 ≤ i ≤ k
〉
,

where wi = Di · Di, [a, b] = aba−1b−1, a0 = 1, the identity of the group.

3. Wiring diagrams and a first presentation of the fundamental group of a partial
compactification

3. Wiring diagrams and a first presentation of the fundamental group of a partial
compactification

We will describe the construction of a diagram permitting to express some meridians
around different points in the lines of A , lying in a pencil of lines passing through a base
point R ∈ P2 \A , in terms of a fixed set of meridians lying in a fixed fiber of the pencil.

As an application we obtain a first presentation for the fundamental group of a partial
compactification M(A , I, P). To do that we will use a modification of the presentation of
the fundamental group of M(A ) given in [3] and [4].

This diagram will also carry the information to compute the image of the cycles in the
boundary manifolds of A into M(A ). This will be done in Section 4.

3.1. Wiring diagram associated to a complex arrangement.
3.1. Wiring diagram associated to a complex arrangement. Consider an arrangement

of lines A in P2. Let us fix a base point R ∈ P2 \ A and denote by πR : BlR P2 → P2

the blow-up at R. Let f̄ : BlR P2 → P1 be the morphism defined by the pencil of lines
passing through R. In what follows, we assume that we have chosen R in such a way that
f̄ |Sing A : Sing A → P1 is injective.

Let ∗ ∈ P1, consider a simple piece-wise linear path β : ([0, 1], 0) → (P1, ∗) starting at ∗
and passing through every point f̄ (p) for all p ∈ Sing A , being locally linear around these
points.

By abuse of notation let us denote by A the union of the lines of arrangement in P2.

Definition 3.1. The wiring diagram of A with respect to β is  =
⋃

t∈[0,1](A ∩ f̄ −1(β(t)))
⊂ BlR P2. The i-wire Wi is Li ∩ . Here, we view A , Li as subvarieties of BlR P2 since
R � A .

By the choice of β, as it passes through the points f̄ (p) for p ∈ Sing A , we have that
Sing A ⊂ .

Lemma 3.1. Every wire is a piece-wise linear simple curve.

Proof. As no line in A passes through R, every Li ∈ A induces a section of BlR P2 → P1

which is in fact an isomorphism. By the choice of β the result follows. �

3.1.1. Planar representation of the wiring diagram.
3.1.1. Planar representation of the wiring diagram. By considering the pullback

β∗() and a trivialization β∗ BlR P2 � [0, 1] × P1, we can view β∗() as a closed graph
embedded in [0, 1]×P1. Sometimes we will continuing writing  for β∗(). Moreover we
can remove the exceptional divisor π−1

R (R) from [0, 1] × P1 and we can view  as a closed
graph embedded in [0, 1] × C via a piece-wise linear isomorphism.

There exists a complex coordinate z in C such that the projection (p : [0, 1] × C →
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[0, 1] ×R, (t, z) �→ (t,�(z))) is generic, in the sense that the extra crossings in p() arise as
transversal intersection of only two wires p(Wi) and p(Wk) for certain t ∈ [0, 1] and wires
Wi,Wk that do not intersect in f̄ −1(β(t)). We call these crossings virtual vertices. We obtain
a planar diagram which can be represented as in the Fig. 2.

We assume that the order of the lines L1, . . . , Ln is such that, at the very right of the planar
representation of  , the wire W1 is at the bottom of  , above it is the wire W2 and then W3,
continuing in this way until Wn.

Definition 3.2. Consider coordinates (t, x, y) in R3. We say that a wire Wi passes above
Wk at a point t′ ∈ [0, 1] if (t′, x, yi) ∈ Wi, (t′, x, yk) ∈ Wk and yi < yk.

In order to distinguish the virtual vertices arising in the projection we mark the projection
p(Wi) ∩ p(Wk) to indicate if the wires over or under crossed in β∗ as in Fig. 5. We call
the first a positive braiding (or positive virtual vertex) and the second a negative braiding (or
negative virtual vertex).

Remark 3.2. As in the [4], we read the wiring diagram from right to left.

Fig.2. Wiring Diagram

Example 3.1. Let (z1 : z2 : z3) be homogeneous coordinates of P2. Consider the arrange-
ment consisting of two transverse pairs of parallel lines in C2 � P2 \ {z3 = 0}, defined by the
equation (z2 − z1)(z2 − z1 + z3)(z2 + z1)(z2 + z1 − z3)z3 = 0. The wiring diagram associated to
this arrangement is shown in Fig. 2. There are no virtual vertices since the arrangement is
real and β is a real segment.

Remark 3.3. When no under or overcrossing is marked in a wiring diagram  , it co-
incides with the notion of wiring diagram in [39]. They are in correspondence with ar-
rangement of ”pseudo-lines”, in particular there exists a wiring diagram of 9 wires that does
not comes from an arrangement of lines (the so called non-Pappus arrangement, see [39,
Proposition 8.3.1]), however for 8-wires or less they are in correspondence with the real
arrangement of lines [39, Thm 6.3.1].

3.2. Using the diagram to obtain presentations.
3.2. Using the diagram to obtain presentations.

3.2.1. Algorithm for computing a presentation of the fundamental group of M(A ).
3.2.1. Algorithm for computing a presentation of the fundamental group of M(A ).

We will use the following well-known Lemma.

Lemma 3.4. Let Z ⊂ X be an algebraic subvariety of an algebraic smooth surface X. Fix
a point R ∈ X \ Z. Denote by πR : BlR X → X, then π1(X \ Z) � π1(BlR X \ π∗RZ).
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This allow us to compute π1(M(A )) in the total space of the fiber bundle f̄ : BlR P2 → P1.
We will find suitable subspaces of the total space of this fiber bundle to apply the van-
Kampen Theorem.

Let  ⊂ BlR P2 be a wiring diagram. Let β∗() ⊂ [0, 1]×P1 be as in 3.1.1. Every vertical
line t × P1 in [0, 1] × P1 corresponds to the fiber f̄ −1(β(t)). Recall that if p ∈ f̄ −1(β(tp)) for
p ∈ Sing A and tp ∈ [0, 1], then no other point in Sing A lies in the same fiber. Suppose
that there are s points tp1 , . . . , tps corresponding to p1, . . . , ps in Sing A .

By fixing a planar representation p(β∗()) of β∗() as in 3.1.1, some under or over-
crossing can arise. As the projection is generic, they correspond to a finite number t′1, . . . , t

′
ν

of elements of [0, 1] distinct from the tpr .
Order the set {tp1 , . . . , tps , t

′
1, . . . , t

′
ν} by increasing order and relabel them by tκ for κ =

1, . . . , ν + s. Let Bκ ⊂ P1 be a neighborhood of β(tκ) homeomorphic to a disk in C such
that Bκ ∩ Bj = ∅ if |κ − j| > 1 and Bκ ∩ Bκ+1 is homeomorphic to a disk. Consider Mκ :=
f̄ −1(Bκ) ⊂ BlR(P2) for κ = 1, . . . , ν + s and denote by Mκ(A ) := Mκ \ Mκ ∩ π∗RA .

Lemma 3.5. We have that

π1(Mκ(A ) ∩ Mκ+1(A )) � Fn for κ = 1, . . . , ν + s − 1,

with Fn the free group in n generators.

Proof. First note that as Bκ ∩ Bκ+1 ⊂ P1 \ { f̄ (p) | p ∈ Sing A } we have that Mκ(A ) ∩
Mκ+1(A ) = f̄ −1(Bκ ∩ Bκ+1) is the restriction of a fiber bundle to a contractible base. The
fundamental group of any fiber in Bκ ∩ Bκ+1 is a free group in n generators. �

Proposition 3.6. We have that

π1(M(A )) � π1(M1(A )) ∗
π1(M1(A )∩M2(A ))

· · · ∗
π1(Mν+s−1(A )∩Mν+s(A ))

π1(Mν+s(A )).

Proof. By Lemma 3.4, we have that the morphism BlR P2 \ π∗RA → M(A ) = P2 \ A

induces an isomorphism in the fundamental groups.
Denote the restriction of f̄ to BlR P2\π∗RA by f : BlR P2\π∗RA → P1. Let∞ ∈ P1\∪ν+s

κ=1Bκ
and note that f −1(P1\{∞}) is the complement in BlR P2\π∗RA of a smooth irreducible divisor
D∞ that is the restriction to BlR P2\π∗RA of the strict transform of a line in P2 passing through
R .

By Proposition 2.1, we have that

π1(BlR P2 \ π∗RA ) = π1

(
f −1(P1 \ {∞})

)
/〈〈γD∞〉〉,

where γD∞ is a meridian around D∞.
Note that, as R ∈ P2 \ A , we have that π−1

R (R) ⊂ BlR P2 \ π∗RA and its restriction to
f −1(P1\{∞}) is isomorphic to C. The meridian γD∞ can be chosen to lie inside this restriction
and therefore γD∞ = 1. We obtain that π1( f −1(P1 \ {∞})) � π1(M(A )).

Observe that ∪ν+s
κ=1Mκ(A ) has the same homotopy as (BlR P2 \A ) \ f −1(∞). We conclude

by successive applications of the van-Kampen Theorem: by construction B1 ∩ Bν+s = ∅, we
obtain that π1(∪ν+s

κ=1Mκ(A )) is isomorphic to
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Fig.3. Geometric generating set in different fibers

π1(M1(A )) ∗
π1(M1(A )∩M2(A ))

· · · ∗
π1(Mν+s−1(A )∩Mν+s(A ))

π1(Mν+s(A )). �

We want to compute now π1(Mκ(A )) for κ = 1, . . . , ν + s and the morphisms of amal-
gamation π1(Mκ(A )) ← π1(Mκ(A ) ∩ Mκ+1(A )) → π1(Mκ+1(A )). In fact, if no point of
Sing A lies in Mκ(A ) we will have that π1(Mκ(A )) � Fn. However, some conjugations
may arise in the meridians due to braiding of the wires in  .

We have to distinguish 3 cases depending in the nature of Mκ: Mκ contains a point of
Sing A , it contains a positive braiding of  or it contains a negative braiding.

Let θκ < tκ be sufficiently close so that β(θκ) ∈ Bκ ∩ Bκ−1 and denote by x(κ)
1 , . . . , x(κ)

n+1 the
set of points in the planar representation p(β∗()) of the wiring diagram  labeled from
bottom to top corresponding to the points in f̄ −1(β(θκ)) ∩A .

Definition 3.3. A geometric generating set Γ(κ) = {λ(κ)
1 , . . . , λ(κ)

n+1} of the group
π1( f̄ −1(β(θκ)) \ ( f̄ −1(β(θκ)) ∩A ), qκ) with qκ = π−1

R (R) ∩ f̄ −1(β(θκ)) is the datum of λ(κ)
1 , . . . ,

λ(κ)
n+1 meridians around x(κ)

1 , . . . , x(κ)
n+1, respectively, all of them based at qκ such that λ(κ)

n+1 · · ·
λ(κ)

1 is nullhomotopic in f̄ −1(β(θκ)) \ {x(κ)
1 , . . . , x(κ)

n+1} � P1 \ {(n + 1) − points}.

Remark 3.7. A geometric generating set Γ(κ) = {λ(κ)
1 , . . . , λ(κ)

n+1} induces a geometric base
Γ(κ)′ = {λ(κ)

1 , . . . , λ(κ)
n } of π1(C \ {x(κ)

1 , . . . , x(κ)
n }, qκ).

We consider here the geometric generating set Γ(κ) = {λ(κ)
1 , . . . , λ(κ)

n+1} as in Fig. 3a. As
π1(π−1

R (R)) is trivial, we can fix a point q ∈ π−1
R (R) as a global base point for all the geometric

generating set Γ(κ) with κ = 1, . . . , ν + s by joining qκ to q by a simple path in π−1
R (R).

We describe how the meridians change when we move the generators of Γ(κ) to the fiber
f̄ −1(β(θκ+1)) and express them in the generators Γ(κ+1), see Fig. 3b. We record as well the
relations arising in between.

Suppose that p ∈ Sing A ∩ Mκ, and let Γ(κ) be as above. Denote by j the first index of
the meridians of Γ(κ) corresponding to a line passing through p, and by m the last. We have
that λ(κ+1)

k = λ(κ)
k for k < j and k > m as we can deform continuously λ(κ)

k to λ(i+1)
k having the

same homotopy type in π1(Mκ(A )).
Let Rκ = [λ(κ)

m , λ(κ)
m−1, . . . , λ

(κ)
j ] denote the set of equations of the form λ(κ)

m · λ(κ)
m−1 · · · λ(κ)

j =
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λ(κ)
σ(m)λ

(κ)
σ(m−1) · · · λ(κ)

σ( j), where σ varies in the set of cyclic permutations in m − j + 1 elements.

Fig.4. Actual vertex

Lemma 3.8. Let p ∈ Sing A ∩ Mκ. Then π1(Mκ(A ), qκ) is generated by the elements of
Γ(κ) and Γ(κ+1) together with the relations Rκ, λ

(κ+1)
k = λ(κ)

k for k < j or m < k, λ(κ)
n+1 · · · λ(κ)

1 = 1
and

λ(κ+1)
m = λ(κ)

j ,

λ(κ+1)
m−1 = λ

(κ)
j+1

λ j
(κ)

,

λ(κ+1)
m−2 = λ

(κ)
j+2

λ j+1
(κ)λ j

(κ)

,

...

λ(κ+1)
j = λ(κ)

m
λ(κ)

m−1···λ(κ)
j .

(see Fig. 3 and Fig. 4.)
Proof. Let Vp be a neighborhood around p homeomorphic to a product Bκ × D with D

a disk not intersecting Lk ∈ A with k < j or k > m. The local fundamental π1(Vp \ A )
equals the fundamental group of the link associated to the singularity p which is a Hopf link
of m − j + 1 circles (see [40, Lemma 5.75]).

For the complement Mκ(A ) \ Vp we have π1(Mκ(A ) \ Vp) � Fn−(m− j) and if V ′ is a small
neighborhood of Vp we have that as Vp \A retracts to ∂Vp \A then π1((Mκ(A )\Vp)∩V ′) �
π1(Vp \A ). By van-Kampen we obtain the relation λ(κ)

n+1 · · · λ(κ)
1 = 1. �

Lemma 3.9. Suppose that there is a positive braiding of the wires j and j + 1 in Mκ(A ).
Then the group π1(Mκ(A ), qκ) admits the presentation〈

λ(κ)
1 , . . . , λ(κ)

n+1, λ
(κ+1)
j , λ(κ+1)

j+1 | λ(κ+1)
j+1 = λ

(κ)
j , λ

(κ+1)
j = λ(κ)

j+1
λ(κ)

j

〉
.

(See Fig. 5a.)

Proof. As in lemma 3.8, we have that we can deform λ(κ+1)
k to λ(κ)

k for k < j or j + 1 < k
without changing the homotopy type.

The result follows from the Wirtinger presentation of a braid interchanging the j and the
j + 1 wire: consider the meridians λ(κ)

j , λ
(κ)
j+1 in f̄ −1(β(θκ+1)) as in Fig. 3b. Note that in

π1( f̄ −1(β(θκ+1)), qκ+1) these meridians satisfy the relations:

λ(κ+1)
j+1 = λ

(κ)
j , λ(κ+1)

j = λ(κ)
j+1

λ(κ+1)
j+1 = λ(κ)

j+1
λ(κ)

j .
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Fig.5. Braiding in 

This can be seen directly from Fig. 3b (cf. [40, Lemmas 5.73, 5.74]). �

Lemma 3.10. Suppose that there is a negative braiding in Mκ(A ), then the group
π1(Mκ(A ), qκ) admits the presentation〈

λ(κ)
1 , . . . , λ(κ)

n+1, λ
(κ+1)
j , λ(κ+1)

j+1 | λ(κ+1)
j+1 = λ

(κ)
j
λ(κ)

j+1
−1

, λ(κ+1)
j = λ(κ)

j+1

〉
.

(See Fig. 5b.)

We can summarize the information carried by a wiring diagram  and the changes in the
geometric sets Γ(κ) as they cross a vertex in  as follows.

For every tκ ∈ {t1, . . . , tν+s} there exists a crossing pκ in the planar representation of  , let
Π(κ) = {σ(κ)(1) < . . . < σ(κ)(n + 1)} be an ordered set, with σ(κ) a permutation of {1, . . . , n +
1} such that the k-th element σ(κ)(k) records the position of the wire Wσ(κ)(k) in the fiber
f̄ −1(β(θκ)), when  is read from bottom to top, with θκ as in Definition 3.3. This is, x(κ)

k ∈
Wσ(κ)(k) for k = 1, . . . , n + 1. Note that σ(1) = id.

The order in Π(κ) records the local position of the wires of  in f̄ −1(β(θκ)), while the
order {1, . . . , n+1} induced from the order of the lines in A is a global order. For a wire Wk

of  , we write σ(κ)−1(k) to indicate that the wire Wk is in the σ(κ)−1(k) position in the fiber
f̄ (β(θκ)).

Consider the free group F(κ)
n+1 generated by the meridians in Γ(κ) and let τ(κ) : {1, . . . , n +

1} → F(κ)
n+1 defined as follows:

Suppose that the crossing pκ corresponding to tκ satisfies pκ = Wσ(κ)( j) ∩Wσ(κ)( j+1) ∩ . . . ∩
Wσ(κ)(m), then

τ(κ)(k) =
⎧⎪⎨⎪⎩ e for k = 1, . . . , j,m + 1, . . . , n + 1,
λ(κ)

k−1 · · · λ(κ)
j for j < k ≤ m,

if tκ is an actual vertex,

τ(κ)(k) =
⎧⎪⎨⎪⎩ e for k = 1, . . . , j, j + 2, . . . , n + 1,
λ(κ)

j for k = j + 1,

if tκ is a positive virtual vertex, and

τ(κ)(k) =
⎧⎪⎨⎪⎩ e for k = 1, . . . , j − 1, j + 1, . . . , n + 1,

(λ(κ)
j+1)−1 for k = j,

if tκ is a negative virtual vertex.
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Thus, Lemmas 3.8, 3.9 and 3.10 imply the following proposition.

Proposition 3.11. Let Γ(κ) = {λ(κ)
1 , . . . , λ(κ)

n+1}, Γ(κ+1) = {λ(κ+1)
1 , . . . , λ(κ+1)

n+1 } be geometric
generating set as in 3.2.1 and suppose that pκ ∈ Mκ. Then we have that in π1(Mκ(A ), qκ):

λ(κ+1)
σ(κ+1)−1(σ(κ)(k))

= (λ(κ)
k )τ

(κ)(k) for k = 1, . . . , n + 1,

or equivalently,

λ(κ+1)
k = (λ(κ)

σ(κ)−1(σ(κ)(k))
)τ

(κ)
(
σ(κ)−1(σ(κ+1)(k))

)
for k = 1, . . . , n + 1.

Note that if pκ = Wσ(κ)( j) ∩ . . . ∩Wσ(κ)(m) we have that

σ(κ+1)−1
(σ(κ)(k)) =

{
k for k = 1, . . . , j − 1,m + 1, . . . , n + 1,
m − ι for k = j + ι and ι = 0, . . . ,m − j.

As the fundamental group of M(A ) is generated by the meridians around each line, we
fix the geometric generating set Γ(1) = {λ(1)

1 , . . . , λ(1)
n+1} = {λ1, . . . , λn+1} ⊂ M1(A ).

Theorem 3.12. Let A = {L1, . . . , Ln+1} be a complex arrangement of lines in P2 and let
Γ(1) be a geometric generating set as above. A presentation for the fundamental group of
M(A ) is given by

π1(M(A ), q) =
〈
λ1, . . . , λn+1

∣∣∣∣∣
⋃
κ

Rκ, λn+1 · · · λ1

〉
,

with Rκ as Lemma 3.8 and each κ corresponding to a point pκ ∈ Sing A .

Remark 3.13. The relations Rκ are expressed in terms of the geometric generating set Γ(1)

by substituting λ(κ)
k by a conjugate of λ(1)

σ(κ)(k) by elements of Γ(1) by repeated applications of
Proposition 3.11.

Proof. From Proposition 3.6 we know that π1(M(A ))= π1(M1(A ))∗Fn · · ·∗Fnπ1(Mν+s(A )).
Now, the groups π1(Mκ(A )) are presented in generators Γ(κ) and Γ(κ+1), and relations which
are words in these letters (see Lemmas 3.8, 3.9, 3.10). The geometric generating set Γ(κ) is
chosen in such a way that it lies in a fiber over a point of Bκ−1 ∩ Bκ, and therefore, we can
assume that the amalgamation π1(Mκ−1(A ))∗Fn π1(Mκ(A )) permits to see Γ(κ) in Mκ(A ) and
Mκ−1(A ) simultaneously.

Note that λ(κ+1)
m · · · λ(κ+1)

j = λ(κ)
m · · · λ(κ)

j , hence λ(κ+1)
n+1 . . . λ(κ+1)

1 = λ(κ)
n+1 · · · λ(κ)

1 for every κ =
1, . . . , ν + s − 1.

The relations in π1(Mκ(A )) when there is a positive or virtual vertex in Mκ(A ), can be
omitted in the presentation of π1(M(A )) by writing every meridian of Γ(κ+1) in terms of Γ(κ)

as in Lemmas 3.9, 3.10.
When there is an actual vertex in Mκ(A ), the relation Rκ = [λ(κ)

m , λ(κ)
m−1, . . . , λ

(κ)
j ] will ap-

pear in the presentation of π1(M(A )). This relation can be expressed in terms of Γ(1) in a re-
cursive way, by expressing Γ(κ) in terms of Γ(κ−1) by using the amalgamation of π1(Mκ−1(A ))
and π1(Mκ(A )) over Bκ−1 ∩ Bκ and the presentation of Mκ−1(A ) given by proposition 3.11.
More precisely, we have that

λ(κ)
k = λ

τ(1)(σ(κ)(k))·τ(2)
(
σ(2)−1(σ(κ)(k)

)
···τ(κ−1)

(
σ(κ−1)−1(σ(κ)(k))

)
σ(κ)(k) for k = 1, . . . , n + 1,
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and every τ(r)
(
σ(r)−1(σ(κ)(k))

)
can be expressed in terms of Γ(1) in a recursive way for r =

1, . . . , i − 1. �

3.2.2. Algorithm for determining the presentation for a partial compactification
M(A , I, P).

3.2.2. Algorithm for determining the presentation for a partial compactification
M(A , I, P). Let  be a wiring diagram and 〈λ1, . . . , λn+1 | ∪kRk, λn+1 · · · λ1〉 a presentation
of π1(M(A )) as in Theorem 3.12.

Consider a partial compactification M(A , I, P) of P2 \ A as in 2.3.1. Here, we let P0 =

{p1, . . . , ps0} ⊂ Sing A denote the points of multiplicity strictly bigger than two, consider
π : X̄ = BlP0 P

2 → P2 and denote by D =
∑n+1+s0

i=1 Di = π
∗A . Select I ⊂ {1, . . . , n + 1 + s0}

and P = {p′1, . . . , p′s1
} ⊂ Sing

∑
i�I Di. Consider another blow-up π′ : BlP X̄ → X̄ and

write π′∗D =
∑n+1+s0+s1

i=1 D′i . Define D′ = π′∗(D) −∑i∈I D′i −
∑

i>n+1+s0
D′i and M(A , I, P) =

BlP1 X̄ \ D′.
From Proposition 2.1, we have that a presentation for the fundamental group

π1(M(A , I, P)) can be obtained from 〈λ1, . . . , λn+1 | ∪kRk, λn+1 · · · λ1〉 by adding as relations
certain words λ(D′i) representing some meridians around the irreducible components D′i with
either i ∈ I or n + s0 + 1 < i. In order to do so, we have to distinguish four cases for these
irreducible components D′i of π′∗D:

(1) D′i is the strict transform of a line in A . In this case i ≤ n + 1.
(2) D′i is the strict transform of an exceptional divisor Di in X̄. In this case n + 1 < i ≤

n + 1 + s0.
(3) D′p is an exceptional divisor coming from a double point p in Sing A .
(4) D′p is an exceptional divisor obtained by blowing-up a point p = Dr ∩ Dk with

r ≤ n + 1 and n + 1 < k ≤ n + 1 + s0.
For the lines as in (1) we let λ(D′i) = λi.
For the lines as in (2), suppose that Di ⊂ X̄ is an exceptional divisor coming from a

point p ∈ Sing A and suppose that p ∈ Mκ, this is, tp is the κ-element in the ordered set of
vertices t1, . . . , tν+s of a planar representation of  as in 3.2.1. In other words tp = tκ ∈ [0, 1]
satisfies β(tκ) = f̄ (p) and consider Γ(κ) = {λ(κ)

1 , . . . , λ(κ)
n+1} the geometric generating set of

f̄ −1(β(θκ)) \ (x(κ)
1 , . . . , x(κ)

n+1) ⊂ Mκ(A ) and suppose that p = Wσ(κ)( j)∩Wσ(κ)( j+1)∩ . . .∩Wσ(κ)(m)

with the local index Π(κ) = {σ(κ)(1) < . . . < σ(κ)(n + 1)} as in 3.2.1. Associate to Di and to
its strict transform D′i , the word λ(Di) = λ(D′i) = λ

(κ)
m · λ(κ)

m−1 · · · λ(κ)
j+1 · λ(κ)

j .

Lemma 3.14. Let D′i be a line as in (2). Then λ(D′i) = λ
(κ)
m · λ(κ)

m−1 · · · λ(κ)
j+1 · λ(κ)

j represents
a meridian around Di, and by pull-back, also around D′i .

Proof. Let ψ : U → D and ψi : Ui → Di be the boundary manifolds of D and Di in
X̄, respectively. Note that we can use the meridians λ(κ)

j , . . . , λ
(κ)
m to give a presentation of

π1(∂U∗), with ∂U∗i = ∂U ∩ ∂Ui as in 2.4, as follows: the projection π(∂Ui) to P2 can be seen
as the boundary of a 4-real ball Bp centered at p. There exists Rp ∈ ∂Bp such that for each
j ≤ k ≤ m the loop αk := λ(κ)

k is homotopic to a product α
αk2
k1

with
• The loop αk1 starting at Rp, lying completely in ∂Bp and surrounding the line Lσ(κ)(k).
• The loop αk2 is a simple path connecting Rp and the point R ∈ P2 \A .

By pulling-back the meridians α j1 , . . . , αm1 to X̄ we can see them as lying in ∂U. By con-
struction of the geometric generating set Γ(κ), the product αm1 · · ·α j1 is homotopic to a path
encircling the lines Lσ(κ)( j), . . . , Lσ(κ)(m) and therefore the projection ψi∗(αm1 · · ·α j1 ) = e in
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π1(D∗i , ψi(Rp)). We can construct a continuous map hi : ∪m
k= jψi(αk1 ) → ∪m

k= jαk1 such that
hi(ψ(αk1 )) = αk1 and therefore the loops α j1 , . . . , αm1 together with a fiber αi of ∂Ui gener-
ate the group π1(∂U∗i ) as in Lemma 2.4. Moreover, as Di · Di = −1, we have the relation
αi = αm1 · · ·α j1 in π1(∂U∗i ,Rp).

By construction of Γ(κ), we have that every two αk2 and αk′2 with j ≤ k, k′ ≤ m are
homotopic. Therefore, by connecting αi to R via α j2 , we obtain the relation α

α j2
i = λ

(κ)
m · · · λ(κ)

j

in π1(P2 \A ).
By pulling-back α

α j2
i to BlP1 we obtain that it is homotopic to a meridian around D′i . �

For the lines D′p as in (3), suppose that p = Dr∩Dk with r, k ≤ n+1. Consider the unique
index 1 ≤ κ ≤ ν+ s such that p ∈ Mκ and let Γ(κ) = {λ(κ)

1 , . . . , λ(κ)
n+1} be a geometric generating

set of π1(Mκ(A )). We denote

λ(D′p) := λ(κ)
σ(κ)−1(r)

λ(κ)
σ(κ)−1(k)

.

Recall that σ(κ)−1(r) and σ(κ)−1(k) record the local position of the wires Wr,Wk, respectively,
in the local order of the wires of  in f̄ −1(β(θκ)) given byΠ(κ) = {σ(κ)(1) < . . . < σ(κ)(n+1)}.

Finally, let D′p be as in (4) with p ∈ P. We have that p = Dr ∩ Dk with r ≤ n + 1 and
Dk an exceptional divisor coming from a point p(k) ∈ P0. Let us suppose that p(k) ∈ Mκ.
Denote by Γ(κ) = {λ(κ)

1 , . . . , λ(κ)
n+1} ⊂ Mκ(A ) the geometric generating set as above. We can

suppose that p(k) = Wσ(κ)( j) ∩ . . . ∩Wσ(κ)(m). As n + 1 ≤ k ≤ n + 1 + s0, we can consider the
word λ(Dk) = λ(κ)

m · · · λ(κ)
j as in Lemma 3.14 above.

Lemma 3.15. A meridian of D′p is given by λ(D′p) = λ(κ)
σ(κ)−1(r)

λ(Dk). Moreover, λ(κ)
σ(κ)−1(r)

commutes with λ(Dk).

Proof. Recall that by construction, λ(κ)
σ(κ)−1(r)

is the meridian of Lr lying in the geometric

generating set Γ(κ).
Let ψDk : ∂UDk → Dk be the boundary manifold of Dk in X̄. For k′ = j, . . . ,m, let us

decompose the loops αk′ = λ
(κ)
k′ in two parts αk′1 , αk′2 , as in the proof of the Lemma 3.14, such

that αk′ is homotopic to α
αk′2
k′1

. The proof of the same Lemma and 2.4 give us that

π1(∂U∗Dk
,Rk) = 〈α j1 , . . . , αm1 , αk | [αk, αk′1 ], αk = αm1 · · ·α j1〉

for a point Rk ∈ ∂U∗Dk
and αk a fiber of ∂U∗Dk

. We can globalize the relations in this pre-

sentation by considering α
αk′2
k′1

and obtain that λ(Dk) commutes with λ(κ)
k′ for k′ = j, . . . ,m, in

particular as Dr intersect Dk, we have that λ(κ)
σ(κ)−1(r)

commutes with λ(Dk).

Furthermore, the point Rk can be chosen to lie in the boundary ∂Bp of a ball Bp ⊂ X̄
around p. Let ψD′p : ∂UD′p → D′p be the boundary manifold of D′p in BlP X̄ and Δ1,Δ2 a pair
of disks about the points D′p ∩D′r and D′p ∩D′k, respectively. Denote ∂U∗D′p = ψ

−1
D′p

(D′p \ (Δ1 ∪
Δ2)). By working in local coordinates, it can be seen that αk, ασ(κ)−1(r)1

and a fiber αp of ∂UD′p
at Rk generate the group π1(∂U∗D′p) and that

π1(∂U∗D′p) =
〈
αk, ασ(κ)−1(r)1

, αp

∣∣∣∣∣∣
[αk, αp], [ασ(κ)−1(r)1

, αp],
αp = αk · ασ(κ)−1(r)1

〉
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by Lemma 2.4 and because D′p · D′p = −1. �

Theorem 3.16. Let A ⊂ P2 be an arrangement of lines,  a wiring diagram and
M(A , I, P) a partial compactification. Then

π1(M(A , I, P), q) =
〈
λ1, . . . , λn+1

∣∣∣∣∣
⋃

k

Rk, λn+1 · · · λ1,
⋃
i∈I

λ(D′i),
⋃
p∈P

λ(D′p),
〉
,

is a presentation for the fundamental group of the partial compactification.

Proof. We only have to justify the expression for those meridians around lines as in (1)
and (3). For the meridians of lines as in (2) and (4), the expression λ(D′i) and λ(D′p) is
explained by Lemmas 3.14 and 3.15, respectively. We will conclude by Proposition 2.1.

For the meridians around lines as in (1), it is immediate by the biholomorphism property
of the blow-up outside the exceptional divisor.

Consider a line Di as in (3) and suppose that it comes from a point p = Dr ∩ Dk with
r, k ≤ n + 1. Note that there is essentially no difference with a line as in (2) besides the
change of local indexation to a global one, and therefore, we can proceed as in the proof of
Lemma 3.14 to obtain that λ(κ)

σ(κ)−1(r)
λ(κ)
σ(κ)−1(k)

is homotopic to a fiber of ∂U∗i connected to the
global base point R. �

As D =
∑N

i=1 Di is a simple normal crossing divisor with N = n + 1 + s0, we can consider
an orbifold structure in (BlP0 P

2,D) (see [10] for the notation) by choosing weights r =
(r1, . . . , rN) ∈ (N∗ ∪ {+∞})N .

Theorem 3.17. Let A be a complex arrangement of lines,  a wiring diagram and
consider the weights r of D as above. The fundamental group π1((BlP0 P

2,D, r)) of the
orbifold (BlP0 P

2,D, r) admits the following presentation:
〈
λ1, . . . , λn+1

∣∣∣∣∣∣
⋃

k

Rk, λn+1 · · · λ1,

N⋃
i=1

λ(Di)ri

〉
,

where the relation λ(Di)ri is omitted if ri = +∞.

4. Boundary Manifolds methods

4. Boundary Manifolds methods
In this Section we use the results of Mumford as stated in 2.4 in order to study the funda-

mental group of the boundary manifold ∂U of an arrangement of lines A .
The notion of wiring diagram defined in the previous section will play an important role,

a presentation of π1(M(A , I, P)) will be obtained as a quotient of the presentation of π1(∂U)
and compared with Theorem 3.16.

4.1. Boundary manifold of an arrangement of lines.
4.1. Boundary manifold of an arrangement of lines.

4.1.1. Fundamental group of the boundary manifold of an arrangement of lines.
4.1.1. Fundamental group of the boundary manifold of an arrangement of lines. Let

A = {L1, . . . , Ln+1} ⊂ P2 be an arrangement of lines and denote by π : X̄ → P2 the blow-up
of the projective plane at the s0 points of Sing A of multiplicity equal or higher than 3 as in
2.3.1. Recall that D = |π∗D| = ∑n+s0+1

i=1 Di is the reduced total transform of A in X̄ and let
ψ : ∂U → D be its boundary manifold.

Using the description of Mumford (Theorem 2.6) and that of a weighted graph, Westlund
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gave a presentation of the fundamental group π1(∂U) of ∂U [14] (see also [15]). Let us
describe this presentation.

Denote by Δ the dual graph of D and by  the set of edges of Δ as in 2.3 above. As-
sociate to each vertex vi a weight wi corresponding with the self-intersection number of the
associated line Di in X̄.

Let  be a maximal tree of Δ (a subgraph of Δ containing no cycles and all the vertices
of Δ) and denote by  = Δ \  . Note that g = | | = b1(Δ) equals the number of independent
cycles in Δ.

The edges in  correspond to g points {p1, . . . , pg} in Sing D. Let us denote by π(1) :
Blp1,...,pg X̄ → X̄ the blow-up at these points. Denote by D′ =

∑n+s0+1
i=1 D′i the strict transform

of D in Blp1,...,pg X̄ and let ψ′ : ∂U′ → D′ be the boundary manifold of D′. Note that the
dual graph of D′ is a tree that can be identified with  by removing from Δ the edges in .
In particular, D′ and ∂U′ are connected. Let π(1)∗(D) = D′ +

∑g
k=1 Ek be the total transform

of D with E1, . . . , Ek exceptional divisors.
Now, if (i, j) ∈  corresponds to the point pk for some 1 ≤ k ≤ g, there exists an

exceptional divisor Ek ∈ Blp1,...,pg X̄ and D′i ,D
′
j strict transforms of irreducible components

Di,Dj of D, respectively such that Ek ∩ D′i � ∅, Ek ∩ D′j � ∅ and Di ∩ Dj = pk. Denote its
boundary manifold by ψEk : ∂UEk → Ek, ψ

′
i : ∂U′i → D′i , ψ

′
j : ∂U′j → D′j.

Select a base point Qi ∈ D′i \ (∪ j�iD′j
⋃∪gk=1Ek) as in 2.4 and a simple curve li ⊂ D′i

containing Qi and every intersection of the form:
(1) D′i ∩ D′j, with (i, j) an edge in  ,
(2) D′i ∩ Ek, with Ek coming from a point pk corresponding to an edge (i, j) in .

Let us label these points by the order they intersect li as Pi1, . . . , Pik′i . Note that for every
Pim there corresponds a unique edge (i, jΔ(i,m)) in Δ. This defines an injective function
m �→ jΔ(i,m) from {1, . . . , k′i } to {1, . . . , n + s0 + 1}.

We also label only the points as in (1) by the order they intersect li as P′i1, . . . , P
′
iki

and
define a function m �→ j (i,m) from {1, . . . , ki} to {1, . . . , n + s0 + 1} as in 2.4.

Let l = ∪lk ⊂ D′ and h′ : l → ∂U′ be a continuous function such that ψ′ ◦ h′ = idl. For
an exceptional divisor Ek corresponding to an edge (i, j) in , we let lEk ⊂ Ek be a simple
path connecting Ek ∩ D′i to Ek ∩ D′j and hEk : lEk → ∂UEk such that ψEk ◦ hEk = idlEk

,
hEk (lEk ) ∩ h′(li) � ∅ and hEk (lEk ) ∩ h′(l j) � ∅. This create a cycle ck = ci j in the boundary
manifold of π(1)∗(D), which we orient passing first by h′(li), following hEk (lEk ) and coming
back by h′(l j). We denote by γ1, . . . , γn+1+s0 the meridians around D′1, . . . ,D

′
n+1+s0

obtained
as in 2.4 using h′(l).

Theorem 4.1 (Westlund). A presentation for π1(∂U) is given by

π1(∂U) =

〈
γ1, . . . , γn+s0+1

∣∣∣∣[γi, γ
si j

j ], (i, j) ∈ 
c1, . . . , cg

∣∣∣∣∣γ−wi
i =

∏k′i
m=1 γ

si jΔ(i,m)

jΔ(i,m) 1 ≤ i ≤ n + s0 + 1

〉
,

where

si j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
c−1

k if (i, j) equals the k-th element in ,

ck if ( j, i) equals the k-th element in ,

1 if (i, j) is an edge of  .



Arrangements, Homology Planes and Fundamental Groups 251

Proof. From Theorem 2.6 we know that

π1(∂U′) =
〈
γ1, . . . γn+s0+1

∣∣∣∣∣[γi, γ j (i,m) ] m = 1, . . . , ki, γ
−w′i
i =

ki∏
m=1

γ j (i,m)

〉
,

where w′i is the intersection number of the strict transform D′i of Di in Blp1,...,pg X̄. Note
that (i, l) is an edge of  if and only if l = j (i,m) for some m ∈ {1, . . . , ki} and therefore
the set of relations A = {[γi, γ j (i,m)] | m = 1, . . . , ki, i = 1, . . . , n + s0 + 1} is the same as
B = {[γi, γl] | (i, l) an edge of  }.

Let Ek be an exceptional divisor corresponding to an edge (i, j) in  as above. We can
remove two disks Δ′1 ⊂ D′i ,Δ

′
2 ⊂ D′j in D′ around the points Ek∩D′i and Ek∩D′j, respectively,

and obtain a pair of torus T ′i , T
′
j as boundary from ∂U′◦ = ψ′−1(D′ \ Δ′1 ∪ Δ′2). Let γ(Ek)′i , γi

and γ(Ek)′j, γ j be generators of π1(T ′i ) and π1(T ′j) with γ(Ek)′i , γ(Ek)′j constructed from ∂Δ′1,
∂Δ′2 as in 2.4. We obtain the following presentation for π1(∂U′◦):〈

γ1, . . . γn+s0+1, γ(Ek)′i , γ(Ek)′j

∣∣∣∣∣∣
A, [γi, γ(Ek)′i], [γ j, γ(Ek)′j]
γ
−w′l
l =

∏kl
m=1 γ j (l,m) for l � i, j,

γ
−w′i
i = γ j (i,1) · · · γ(Ek)′i · · · γ j (i,ki),

γ
−w′j
j = γ j ( j,1) · · · γ(Ek)′j · · · γ j (i,k j)

〉
,

where the products in the lowest row of the relations are taken in such a way that
1 = ψi(γ′i1) · · ·ψi(γ(Ek)′i) · · ·ψi(γ′iki

) holds in π1(D′i
∗ \ Δ1) and similarly 1 = ψ j(γ′j1) · · ·

ψ j(γ(Ek)′j) · · ·ψ j(γ′jk j
) in π1(D′j

∗ \ Δ2) for generators γr, γ
′
r1, . . . , γ

′
rkr

generators of π1(∂U′r
∗)

for r = i, j as in 2.4.
Let E∗k denote the submanifold of Ek obtained by removing another pair of disks Δ1,Δ2

of Ek about the points Ek ∩ D′i and Ek ∩ D′j as in 2.4. Write ∂U∗Ek
for ψ−1

Ek
(E∗k). Note that

the boundary of ∂U∗Ek
consists also of a pair of torus Ti, T j corresponding to Δ1 and Δ2,

respectively. Let γ′i , γ(Ek) and γ′j, γ(Ek) be generators of π1(Ti) and π1(T j), respectively. By
(1), we have that π1(∂U∗Ek

) = 〈γ(Ek), γ′i , γ
′
j | [γ(Ek), γ′i ], [γ(Ek), γ′j], γ(Ek) = γ′iγ

′
j〉 � 〈γ′i , γ′j |

[γ′i , γ
′
j]〉 � Z2 because Ek · Ek = −1.

We can glue ∂U′◦ to ∂U∗Ek
by first gluing Ti to T ′i by a longitude-to-meridian orientation-

preserving attaching map f , and similarly T j to T ′j by a map g.
First, by the van Kampen Theorem we obtain that γi = γ

′
i and γ(Ek) = γ(Ek)′i . Then, from

HNN extension we get γ j = c−1
k γ′jck and γ(Ek)′j = c−1

k γ(Ek)ck.
We obtain the following presentation of π1(∂U′◦ ∪ f ,g ∂U∗Ek

) by replacing γ′i = γi, γ
′
j =

γ
c−1

k
j , γ(Ek) = γiγ

c−1
k

j , γ(Ek)′i = γiγ
c−1

k
j , γ(Ek)′j = γ

ck
i γ j in terms of γi, γ j, ck〈

γ1, . . . γn+s0+1, ck

∣∣∣∣∣∣
[γi, γ

c−1
k

j ], [γi, γl] with (i, l) ∈ 
γ
−w′l
l =

∏kl
m=1 γ j (l,m) for l � i, j,

γ
−w′i
i = γ j (i,1) · · · γiγ

c−1
k

j · · · γ j (i,ki)
,

γ
−w′j
j = γ j ( j,1) · · · γck

i γ j · · · γ j ( j,k j)

〉
.

Note that the row of the relations corresponding to i can be simplified to

(2) γ
−(w′i+1)
i = γ j (i,1) · · · γc−1

k
j · · · γ j (i,ki)

,
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as γi commutes with every γ j (i,m). A similar simplification can be made for the relation
corresponding to j.

We repeat the above process for every Ek with k = 1, . . . , g. After this, the order for the
product as in (2), is given by the function m �→ jΔ(i,m) and the conjugations si j as in the
statement of the Theorem. We get that γ−(w′i+(k′i−ki))

i =
∏k′i

m=1 γ
si jΔ(i,m)

jΔ(i,m) . Note that k′i − ki equals
the number of points in {p1, . . . , pg} ∩ Di, and therefore w′i + (k′i − ki) = wi.

This gives a presentation for the fundamental group of the boundary manifold of the total
transform of D, which is homeomorphic to ∂U. �

A central computation in our work is the expression of the meridians around the excep-
tional divisors Dn+2, . . . ,Dn+s0+1 in D =

∑n+s0+1
i=1 Di in terms of meridians of the lines in A .

As a partial result we obtain an expression in the following corollary. The cycles ck will be
expressed in terms of meridians of the lines in 4.2.

Corollary 4.2. For r = n + 2, . . . , n + s0 + 1, we have that in π1(∂U),

γr =

k′r∏
m=1

γ
sr jΔ(r,m)

jΔ(r,m) with sr j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
c−1

k if (r, j) equals the k-th element in ,

ck if ( j, r) equals the k-th element in ,

1 if (r, j) is an edge in  .

Proof. It follows from the relation γ−wr
r =

∏k′r
m=1 γ

sr jΔ(r,m)

jΔ(i,m) in the presentation of π1(∂U)
in Theorem 4.1, the fact that wr = −1 because Dr is an exceptional divisor and hence
jΔ(r,m) ∈ {1, . . . , n + 1}. �

4.1.2. Choice of a maximal tree.
4.1.2. Choice of a maximal tree. In what follows, we will define a maximal tree  ′ of

the dual graph Δ of D as defined in [15, Section 3.3].
In the arrangement A = {L1, . . . , Ln+1}, we will fix the line Ln+1 as the line at infinity,

recall that we denote by Di the strict transform by Li for i ≤ n + 1 in D =
∑

Di ⊂ X̄.
Consider the following subset of edges  ′ ⊂  which defines a maximal tree  ′ ⊂ Δ of

the dual graph Δ of D:
(1) Let ( j, n + 1), (n + 1, j) ∈  ′ if Dn+1 ∩ Dj � ∅. This is, all the edges having as an

endpoint the vertex corresponding to Dn+1.
(2) Let (i, j) ∈  ′ if n + 1 < j (Dj is an exceptional divisor) with either

• Dj ∩ Dn+1 = ∅ and i = min{l | Dl ∩ Dj � ∅}. Note that Dj comes from a point
in Sing A \ Ln+1, or
• Dj ∩ Dn+1 � ∅ and Di ∩ Dj � ∅. The line Di is the strict transform of a line

Li intersecting Ln+1 in a point p of multiplicity > 2 and Dj is the exceptional
curve obtained by blowing-up p.

Note that  \  ′ consists either:
• of edges corresponding to double points Li ∩ Lj with i, j < n + 1, or
• if p = Li1 ∩ . . . ∩ Lil with i1 < . . . < il < n + 1, 2 < l, and E j denotes the exceptional

divisor obtained by blowing up at p, of edges of the form (ir, j) with r = 2, . . . , l.
Let us consider the presentation of π1(∂U) as in Theorem 4.1. If (i, j) equals the k-th element
in Δ \  ′ as in the first point above, we denote the cycle ck by ci, j. Recall that if i < j, we
pass first through h′(li) and then through h′(l j).
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For the cycles created by the edges in the second point, let us suppose that the irreducible
component of D are ordered in such a way that Dn+1 ∩ Dj � ∅ for j = n + 2, . . . , s′ and
Dn+1 ∩ Dk = ∅ for k > s′.

For s′ < ι ≤ n + 1 + s0, we have that, as Dι is an exceptional divisor, 1 ≤ jΔ(ι,m) ≤ n for
1 ≤ m ≤ k′i , and γ−wιι =

∏k′ι
m=1 γ

sι jΔ(ι,m)

jΔ(ι,m) holds as in Theorem 4.1. Note that if ( jΔ(ι,m), ι) equals
the k-th element in Δ \  ′, we have that sι jΔ(ι,m) = ck. In this case, we denote ck by c jΔ(ι,m),ι.
As  ′ is a maximal tree, the edges corresponding to ( jΔ(ι,m), ι) for 1 < m ≤ k′i , give rise to
k′i − 1 independent cycles c jΔ(ι,m),ι in Δ.

Using the tree  ′ and corollary 4.2, we can express the meridian around an exceptional
divisor in terms of the meridians of the lines and the cycles cs′′t ,s′′ :

(3) γι = γ
c jΔ(ι,1),ι

jΔ(ι,1) γ
c jΔ(ι,2),ι

jΔ(ι,2) · · · γ
c jΔ(ι,k′ι ),ι
jΔ(ι,k′ι )

for s′ < ι ≤ n + 1 + s0

with c jΔ(ι,r),ι = 1 if r = min{ jΔ(ι,m) | m = 1, . . . , k′i }.

4.2. From a presentation for the boundary manifold of an arrangement of lines to a
presentation of its complement.

4.2. From a presentation for the boundary manifold of an arrangement of lines to
a presentation of its complement. Let A ⊂ P2 be an arrangement of lines and ∂U its
boundary manifold. We identify ∂U with the boundary manifold of the total transform D of
A in π : X̄ → P2, the blow-up of P2 at the points of Sing A of multiplicity higher than two.
Denote by i : ∂U ↪→ P2 \A the inclusion map and by i∗ : π1(∂U)→ π1(P2 \A ) the induced
homomorphism.

Consider the presentations 〈γ1, . . . , γn+1, c1, . . . , cg | R′〉 of π1(∂U) with R′ the set of
relations as in Theorem 4.1 and 〈λ1, . . . , λn+1 | ∪Rk, λn+1 · · · λ1〉 of π1(P2 \A ) as in Theorem
3.12.

Recall that the construction of the meridian γk around the irreducible component Dk of
D =

∑n+1+s0
k=1 Dk depends on a choice of a maximal tree  of the dual graph Δ of D, con-

tractible paths lk ⊂ Dk, and a section h : l = ∪lk → ∂U, see 2.4. We choose the maximal
tree  ′ constructed at 4.1.2. For p = Lη1 ∩ . . .∩ Lηr ∈ Sing A \ Ln+1, we have a unique cycle
cη1,η2 if r = 2 and r − 1 cycles if r > 2, in this case let us denote by Dι the corresponding
exceptional divisor in X̄, therefore we have the cycles cη2,ι, . . . , cηr ,ι. See 4.1.2.

Consider a wiring diagram  of A as in 3.1. There exists κ ∈ N∗ such that p ∈ Mκ.
Consider the geometric generating set Γ(κ) = {λ(κ)

1 , . . . , λ(κ)
n+1}. Recall that, as in Remark 3.13,

there exists a word ξ(κ)
j in λ(1)

1 , . . . , λ(1)
n+1 (see also 4.2.2), such that

λ(κ)
σ(κ)−1( j)

= λ(1)
j
ξ(κ)

j for j = 1, . . . , n + 1.

The main objective of this subsection is to prove the following theorem.

Theorem 4.3. The paths l1, . . . , ln+1+s0 , the map h : l → ∂U and the wiring diagram 

of A can be chosen in such a way that

(1) The generator γk of π1(∂U) lies in the same homotopy class as λk in P2 \ A for
k = 1, . . . , n + 1.

(2) If p = Lη1 ∩ . . . ∩ Lηr ∈ Sing A \ Ln+1 and p ∈ Mκ as above, then
• if r = 2, the cycle cη1,η2 is homotopic in P2 \A to ξ(κ)

η1 (ξ(κ)
η2 )−1, and

• if r > 2, the cycle cηa,ι is homotopic to ξ(κ)
ηa ξ

(κ)
η1

−1
, for a = 2, . . . , r.

By the point (1), we can also consider each ξ(κ)
ηa as a word in γ1, . . . , γn+1.
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(3) If p = Lη1 ∩ . . . ∩ Lηr ∈ Sing A \ Ln+1, denote by R′(p) the set of relations:
• {c−1

η1,η2
ξ(κ)
η1 (ξ(κ)

η2 )−1} if r = 2 , or
• {c−1

ηa,ι
ξ(κ)
ηa (ξ(κ)

η1 )−1 | a = 2, . . . , r} if r > 2.
We have that 〈γ1, . . . , γn+1, c1, . . . , cg | R′,∪p∈Sing A \Ln+1R

′(p)〉 and 〈λ1, . . . , λn+1 |
∪Rk, λn+1 · · · λ1〉 are Tietze-equivalent presentations of π1(P2 \A ).

By using a different presentation of π1(∂U) and different techniques, the image of the gen-
erators of π1(∂U) under the map i∗ was computed in [5] (see Proposition 2.13 and Theorem
4.5 of loc. cit.). The proof of Theorem 4.3 is inspired by the ideas of [5].

4.2.1. Constructing equivalent generators.
4.2.1. Constructing equivalent generators. Let us choose the point R ∈ P2 \A close to

Ln+1, consider the blow-up πR : BlR P2 → P2 and denote by f̄ : BlRP2 → P1 the associated
pencil as in 3.1.

Let β : [0, 1] → P1 be as in 3.1 such that it passes first through the projection of the
points Sing A ∩ Ln+1 to P1 via f̄ . Take its associated wiring diagram  corresponding to
the arrangement A and fix a planar representation p(β∗) as in 3.1.1.

Let us order the representation of all the singular points Sing A = {p1, . . . , ps} in p(β∗)
together with the virtual vertices {p′1, . . . , p′ν} ∈ p(β∗), by the order they are crossed by the
fiber p(β∗)|t with t increasing in [0, 1], and let t1, . . . , ts+ν ∈ (0, 1) be such that either an
actual or a virtual vertex lies in p(β∗())|tκ , for all κ = 1, . . . , s+ ν. By abuse of notation we
will also denote by tκ the crossings in p(β∗) at the fiber p(β∗())|tκ and we will write 

for p(β∗). Let Γ(κ) = {λ(κ)
1 , . . . , λ(κ)

n+1} be the geometric generating set defined in 3.2.1, for
κ = 1, . . . , s + ν.

Recall that we have assumed that the order of the lines L1, . . . , Ln is such that, at the very
right of the planar representation of  , the wire W1 is at the bottom of  , above it is the
wire W2 and then W3, continuing in this way until Wn.

For an irreducible component Dk of D ⊂ X̄, denote its boundary manifold by ψk : ∂Uk →
Dk and recall that we can consider ψk|∂U∗k : ∂U∗k = ∂Uk ∩ ∂U → D∗k (see 2.4). A set of
generators for π1(∂U∗k ) was constructed by fixing a base point Qk ∈ D∗k, simple paths lk ⊂ Dk

from which we obtain paths l′k ⊂ D∗k (see Fig. 1) and h : ∪lk → ∂U as in 2.4. The generators
γ1, . . . , γn+1+s were constructed by joining the different generators of π1(∂U∗k ) to a common
base point Q via the contractible path h(∪lk) in ∂U.

Recall that the first n + 1 irreducible components D1, . . . ,Dn+1 of D correspond to the
lines L1, . . . , Ln+1, respectively and that, as in the end of 4.1.1, there exists s′ such that for
j = n + 2, . . . , s′, we have that Dn+1 ∩ Dj � ∅ and for j > s′, we have Dn+1 ∩ Dj = ∅.

Lemma 4.4. For k = n + 1, . . . , s′, we can choose l′k ⊂ D∗k, a continuous map h′k : l′k →
∂U∗k and a base point Q ∈ hn+1(l′n+1) for the fundamental group π1(∂U) in such a way that
i∗(γr) lies in the same homotopy class as λ(1)

r for r = 1, . . . , n + 1.

Proof. We begin by defining those l′k for k = n + 2, . . . , s′. Essentially, we arrange the
choices in an appropriate way to obtain the stated in the lemma.

More precisely, let Dk be an exceptional divisor corresponding to a point p = p(k) ∈
Sing A ∩ Ln+1 with multiplicity higher or equal to three. Suppose that p = Lj ∩ Lj+1 ∩ . . .∩
Lm−1 ∩ Lm ∩ Ln+1 (which can be written in this way by the order of the lines chosen above).
Consider the boundary manifold ψk : ∂Uk → Dk in X̄. We will also write ∂Up for the image
π(∂Uk) ⊂ P2 under the map π : X̄ → P2. For r = j, . . . ,m, each meridian λ(1)

r (see Fig. 3a)
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is homotopic to a meridian λ′r
(1) (see Fig. 6) that can be decomposed in the following way:

λ′r
(1) = λpλr1λ

−1
p with λr1 ⊂ ∂Up a meridian of Lr based at a point qp ∈ ∂Up and λp a path

connecting R and qp.
We can further decompose each λr1 as the boundary of a disk Δ around a point in Lr and a

path λr2 connecting the point qp to ∂Δ. Define the path l′k in D∗k as the projection ψk(∪m
r= jλr2 ).

We define h|l′k such that h|l′k ◦ ψk|∪m
r= jλr2

= id|∪m
r= jλr2

.

Fig.6. Decomposing a meridian

Note that, up to a slight change in R, the paths λp are homotopic to paths λ′p lying in
∂U∗n+1.

Now, let p = Lj ∩ Ln+1 be a double point in Sing A ∩ Ln+1. The meridian λ(1)
j can be

decomposed as λ′j · ∂Δ j · λ′−1
j , with ∂Δ j a fiber of ∂U∗j and λ′j ⊂ ∂U∗n+1 a path starting at R

and finishing at point q j ∈ ∂U∗j ∩ ∂U∗n+1.
Finally, for k = n + 1 we define lk ∈ Dk as the image of β([0, 1]) under the section of

the pencil f̄ : BlR P2 → P1 with range Dk. By construction lk passes over all the points in
Sing A ∩ Ln+1. We let h|ln+1 be a continuous function such that ψn+1|h|ln+1 (ln+1) ◦ h|ln+1 = idln+1 ,
h|ln+1 (ln+1) is a simple path passing through each q j with Lj ∩ Ln+1 a double point, touching
each λ(n+1)2 (p) for each point p ∈ Sing A ∩ Ln+1 of multiplicity greater or equal to two, and
such that each λp · λ j2 is homotopic to a segment of h|ln+1 (ln+1).

By the construction of the maximal tree  ′, these paths are sufficient to construct γ j for
j = 1, . . . , n + 1 and by construction, they lie in the same homotopy class as λ(1)

j . �

Corollary 4.5. The morphism i∗ : π1(∂U)→ π1(P2 \A ) is surjective.

Proof. The group π1(P2 \ A ) is generated by the elements Γ(1) = {λ(1)
1 , . . . , λ(1)

n+1}, as
i∗(γk) = λ(1)

k for k = 1, . . . , n + 1 the result follows. �

Suppose that p ∈ Mκ ∩ (Sing A \ Ln+1) is of multiplicity higher or equal to three and that
p = Lσ(κ)( j) ∩ Lσ(κ)( j+1) ∩ . . . ∩ Lσ(κ)(m). Denote by ψp : ∂Up → Ep the boundary manifold of
the exceptional divisor Ep ⊂ X̄ obtained by blowing-up p. We select l′p ⊂ E∗p in a similar
way as in the proof of the precedent Lemma for a point of multiplicity higher than two
lying in Ln+1: decompose each γ(κ)

j , . . . , γ
(κ)
m into a path λ(κ)

p connecting R ⊂ P2 and a point
qp ∈ ∂Up, and λr1

(κ) with r ∈ { j, . . . ,m} based at qp and generating π1(∂U∗p) as in Fig. 6.
Decompose further λr1

(κ) into a boundary of a disk ∂Δr around a point of the line Lσ(κ)(r)

and a path λr2
(κ) connecting qp and ∂Δr. We take l′p = ψp(∪λr2

(κ)) and define h|l′p such that
h|l′p ◦ ψp|∪λr2

(κ) = id|∪λr2
(κ) .

For every k = 1, . . . , n, we define lk ⊂ Dk as the image of β([0, 1]) under the section of
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Fig.7. A meridian follows another boundary manifold

f̄ : BlR P2 → P1 that has as range Dk. We define h|lk such that it is continuous, ψk|h|lk (lk)◦hlk =

idlk , hlk (lk) intersects ∪λ(κ)
r2 in a point if p ∈ Mκ ∩ (Sing A ∩ Lk) with the notations as in the

paragraph above, hlk (lk) ∩ hlk′ (lk′) � ∅ if Lk ∩ Lk′ � ∅ is a double point and hlk (lk) is not
homotopic to a multiple of a fiber S1 of ∂Uk.

4.2.2. Expressing the cycles in terms of the meridians.
4.2.2. Expressing the cycles in terms of the meridians. Let tη ∈  be an actual vertex

and suppose that tη = Wη1 ∩ Wη2 ∩ . . . ∩ Wηr with the global order of the wires of  such
that η1 < η2 < . . . < ηr < n+ 1. By definition of the maximal tree  ′, to each ηa, with a > 1,
corresponds a cycle cηa,tη which is a generator of π1(∂U), see 4.1.2. This cycle is constructed
by connecting h|ηa(lηa) · h|tη(l′tη) · h|η1 (lη1 ) to R if r > 2 and by connecting h|η1 (lη1 ) · h|ηa(lηa) to
R if r = 2.

For every κ ≤ η, consider the geometric generating set Γ(κ) = {λ(κ)
1 , . . . , λ(κ)

n+1} as in 3.2.1
and recall the construction of the functions τ(κ) : {1, . . . , n + 1} → F(κ)

n+1 as defined before
Proposition 3.11. For 1 ≤ a ≤ r, denote by

(4) ξ(κ)
ηa
= τ(1)(ηa) · τ(2)

(
σ(2)−1

(ηa)
)
. . . τ(κ−1)

(
σ(κ−1)−1

(ηa)
)
.

Proposition 4.6. Let 1 < a ≤ r. The image of the cycle ctη,ηa under the map i∗ equals
ξ

(η)
η1 (ξ(η)

ηa )−1 if r = 2 or ξ(η)
ηa (ξ(η)

η1 )−1 if r > 2.

We consider the points θκ < tκ very close to tκ as before Definition 3.3.

Lemma 4.7. Let Γ(κ) = (λ(κ)
1 , . . . , λ(κ)

n+1) be a generating set as above. Then, for ι =

1, . . . , n + 1 we have that (λ(κ)
ι )ξ

(κ)
ηa
−1

is homotopic to a meridian of Lσ(κ)(ι) at the point x(κ)
ι =

f̄ −1(β(θκ)) ∩ Lσ(κ)(ι) constructed by:

(1) following h|ηa(lηa) until f̄ −1(β(θκ)),
(2) then joining it to a circle in f̄ −1(β(θκ)) about x(κ)

ι , and
(3) coming back via h|ηa(lηa).

See Fig. 7.

Proof. Note that if σ(κ)(ι) = ηa and as λ(κ)
ι = λ

ξ(κ)
ηa
ηa , by successive applications of Proposi-

tion 3.11, we can choose a meridian in the homotopy class of (λ(κ)
ι )ξ

(κ)
ηa
−1

= ληa that satisfies
the properties stated in the Lemma (see Fig. 3b).

Now, if σ(κ)(ι) � ηa, we proceed by induction. Let t1 = Wj∩Wj+1∩ . . .∩Wm and consider

ξ(2)
ηa
= τ(1)(ηa) =

⎧⎪⎨⎪⎩ λ
(1)
ηa−1 · · · λ(1)

j if na ∈ { j + 1, . . . ,m},
1 if ηa � { j + 1, . . . ,m}.
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By construction, for k ∈ { j+ 1, . . . ,m} the product λ(1)
k . . . λ(1)

j is freely homotopic to a circle

containing the points x(1)
j , . . . , x(1)

k .
Now, note that the paths in Γ(1) are homotopic to paths in the fiber f̄ −1(β(θ2)) as in Fig.

3b. Such representative of the homotopy class of λ(1)
ι can be seen as lying in the boundary

manifold ∂U∗ι .
By considering (λ(2)

ι )ξ
(2)
ηa
−1

we obtain a path as in Fig. 7 if τ(1)(ηa) � 1. This meridian can
be decomposed as stated.

For a general Γ(κ+1), note that as ξ(κ+1)
ηa = ξ(κ)

ηa · τ(κ)(σ(κ)−1
(ηa)) and by repeating the above

procedure, we can decompose (λ(κ+1)
ι )τ

(κ)−1(σ(κ)−1(ηa)) as a meridian of Lσ(κ+1)(ι) that follows l′ηa

between f̄ −1(β(θκ)) and f̄ −1(β(θκ+1)) (see Fig. 7). By applying induction, we obtain that
(λ(κ+1)
ι )ξ

(κ+1)
ηa

−1

can be decomposed as stated in the lemma. �

Proof of Proposition 4.6. Note that we have that

ξ
(η)
ηa = τ

(1)(ηa) · · · τ(η−1)(σ(η−1)−1
(ηa))

= τ(η−1)
(
σ(η−1)−1

(ηa)
)ξ(η−1)

ηa
−1

· · · τ(2)
(
σ(2)−1

(ηa)
)ξ(2)

ηa
−1

τ(1)(ηa).

by using ξ(κ)
ηa = ξ

(κ−1)
ηa · τ(κ−1)

(
σ(κ−1)−1(ηa))

)
for κ = 2, . . . , η.

Now, if τ(κ)(σ(κ)−1(ηa)) � 1, it is homotopic to a path in f̄ −1(β(θκ)) encircling the points
x(κ)

j , . . . , x(κ)
σ(κ)−1(ηa)

and by applying Lemma 4.7 to each factor of τ(κ)(σ(κ)−1(ηa)) = λ(κ)
σ(κ)−1(ηa)

. . .

λ(κ)
j we obtain that τ(κ)(σ(κ)−1(ηa)) can be decomposed in three parts as in Lemma 4.7.
Recall that we have constructed the lηa ⊂ Dηa from a section of the map f̄ . By the choice

of h|ηa we can suppose that hηa ⊂ f̄ −1(β[0, 1]) ∩ ∂Uηa .
By considering Y = f̄ −1(β([0, 1]))\π−1

R (R) ⊂ BlR P2, we can see the cycles ctη,ηa ⊂ Y ⊂ R3.
Moreover, we can choose coordinates in R3 and define that h|ηa(lηa) passes above h|lk (lk) (or
h|lk (lk) passes below h|lηa

(lηa)) in some fiber f̄ −1(β(θ′)) with θ′ ∈ [tκ − ε, tκ + ε] with ε > 0
sufficiently small, if the wires Wηa ∩Wk � ∅ in a planar representation of the fiber f̄ −1(β(tκ))
and σ(κ)−1(ηa) < σ(κ)−1(k).

We can see then (τ(κ)(σ(κ)(ηa)))ξ
(κ)
ηa
−1

as a path encircling the lines Lk corresponding to
those h|lk (lk) passing below h|lηa

(lηa) in some fiber f̄ −1(β′(θ′)) with θ′ ∈ [tκ − ε, tκ + ε]. By
construction, ξ(η)

ηa is homotopic to a path encircling all the lines Lk such that h|lk (lk) lies below
hlηa

(lηa) at some point in β([0, tη]).
Therefore, we can decompose ξ(η)

ηa in three parts:
(1) The first path starting at Q ∈ h(ln+1) and following h(lηa) until f̄ −1(β(θη)). Then,
(2) a simple path starting at h(lηa) ∩ f̄ −1(β(θη)), lying completely in f̄ −1(β(θη)) and fin-

ishing at f̄ −1(β(θη)) ∩ π−1
R (R), and

(3) a path connecting π−1
R (R) ∩ f̄ −1(β(θη)) to Q ⊂ π−1

R (R).

By decomposing in a similar fashion ξ(η)
η1 , it follows that the cycle ctη,ηa is homotopic in

P2 \A to ξ(η)
η1 (ξ(η)

ηa )−1 if r = 2 and to ξ(η)
ηa (ξ(η)

η1 )−1 if r > 2. �
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4.2.3. Expressing the relations in terms of the generators.
4.2.3. Expressing the relations in terms of the generators. For every r = n+2, . . . , n+

s0 + 1, we let R′r be the subset of the set of relations R′ of the presentation of π1(∂U) as in
Theorem 4.1 such that

R′r = {[γk, γ
skr
r ], γ−wr

r =

k′r∏
m=1

γ
sr jΔ(r,m)

jΔ(r,m) | (k, r) ∈ },

with

skr =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
c−1
ι if (k, r) equals the ι-th element in ,

cι if (r, k) equals the ι-th element in ,

1 if (k, r) is an edge of  ′.

Proposition 4.8. Consider an exceptional divisor Eκ = Dr ⊂ X̄ coming from a singular
point tκ ∈ Sing A ∩Mκ of multiplicity higher or equal to 3. The image of the set of relations
R′r as above, under the map i∗, equals the set of relations Rκ = [λ(κ)

m , . . . , λ(κ)
j ] as in Lemma

3.8.

Proof. Let tκ = Wσ(κ)( j) ∩ Wσ(κ)( j+1) ∩ . . . ∩ Wσ(κ)(m) with the local order given by Π(κ) =

{σ(κ)(1) < . . . < σ(κ)(n + 1)}. As wr = −1 and by the local order of the wires we have that
γr = γ

cσ(κ)(m),tκ

σ(κ)(m) · · · γ
cσ(κ)( j),tκ

σ(κ)( j) , that [γr, γ
cσ(κ),tκ
σ(κ) ] and that cσ(κ)(k),tκ = c−1

tκ,σ(κ)(k).

Let us omit the superscript λκ = λ
(1)
κ for the elements in Γ(1).

By considering the image under i∗ of the elements in R′r, we have by Lemma 4.4 and by
Proposition 4.6 that

i∗(γr) = λ
ξ(κ)
σ(κ)(m)

ξ(κ)
ι
−1

σ(κ)(m) · · · λξ
(κ)
σ(κ)( j+1)

ξ(κ)
ι
−1

σ(κ)( j+1) λ
ξ(κ)
σ(κ)( j)

ξ(κ)
ι
−1

σ(κ)( j) , [i∗(γr), λ
ξ(κ)
σ(κ)(k)

ξ(κ)
ι
−1

σ(κ)(k) ]

with ι = min{σ(κ)( j), σ(κ)( j + 1), . . . , σ(κ)(m)}.
The commutators can also be written as [i∗(γr)ξ

(κ)
ι , λ

ξ(κ)
σ(κ)(k)

σ(κ)(k)] . But as i∗(γr)ξ
(κ)
ι = λ

ξ(κ)
σ(κ)(m)

σ(κ)(m) · · ·
λ
ξ(κ)
σ(κ)( j+1)

σ(κ)( j+1)λ
ξ(κ)
σ(κ)( j)

σ(κ)( j), we have that the relations [i∗(γr)ξ
(κ)
ι , λ

ξ(κ)
σ(κ)(k)

σ(κ)(k)] can be condensed as [λ
ξ(κ)
σ(κ)(m)

σ(κ)(m), · · · ,
λ
ξ(κ)
σ(κ)( j+1)

σ(κ)( j+1), λ
ξ(κ)
σ(κ)( j)

σ(κ)( j)]. Now, if Rκ = [λ(κ)
m , . . . , λ(κ)

j+1, λ
(κ)
j ] denotes the relation given in Theorem

3.12 for the point tκ as in Lemma 3.8, recall that we have the equality λ(κ)
k = λ

ξσ(κ)(k)

σ(κ)(k). By
replacing it in the commutators above, the result follows. �

Proposition 4.9. For r = 1, . . . , n + 1, we have the equality

i∗(γwr
r

k′r∏
m=1

γ
sr jΔ(r,m)

jΔ(r,m) ) = γn+1 · · · γ1,

in π1(P2 \A ) with sr j as above.

Proof. Fix Lr ∈ A . Let {p1, . . . , pb} ⊂ Sing A ∩ Lr be the singular points of the arrange-
ment lying in Lr. Note that b = k′r. Indeed, we can find a partition A ∪ B = {1, . . . , k′r}, with
A a set indexing the double points of Sing A ∩ Lr, and B indexing the points of multiplicity
strictly bigger than two. Let π : X̄ → P2 be the blow-up of P2 at the points of Sing A of mul-
tiplicity strictly bigger than two and let Dr denote the strict transform of Lr in X̄. We have
that A also indexes all the strict transforms of lines in A which have no empty intersection
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with Dr, and B the exceptional divisors of X̄ crossing Dr. It is clear then that b = k′r.
It follows that γ jΔ(r,m) is a meridian of an irreducible component DjΔ(r,m) of D = π∗D

for m = 1, . . . , k′r. Recall that γr commutes with γ
sr jΔ(r,m)

jΔ(r,m) and note that the self-intersection
number wr of Dr is 1 − |B|.

Let us study the geometric meaning of the product γ−1
r γ

sr jΔ(r,m)

jΔ(r,m) with m ∈ B. Let us write
ι = jΔ(r,m), denote by Dι = DjΔ(r,m) the exceptional divisor that γ jΔ(r,m) surrounds, and let
Dι1 , . . . ,Dιk be the irreducibles components of D = π∗A that intersect Dι ordered in such a
way that, if we denote by γι j the meridians around Dι j used for the presentation of π1(∂U),
γ−wιι = γ

sιι1
ι1 · · · γ

sιιk
ιk holds. As Dι is an exceptional divisor, we have that wι = −1. By Theorem

4.1, we have that [γι, γ
sιι j
ι j ] for j = 1, . . . , k = k(ι).

Replacing the expression γι as above in [γι, γ
sιι j
ι j ], we can show that these commutators

relations are equivalent to

γ
sιι1
ι1 γ

sιι2
ι2 · · · γ

sιιk
ιk = γ

sισ(ι1)

σ(ι1) γ
sισ(ι2)

σ(ι2) · · · γ
sισ(ιk )

σ(ιk) ,

where σ runs over the cyclic permutations of the elements {ι1, . . . , ιk}. Hence there exists
some cyclic permutation σ′ such that σ′(ι1) = r because Dr intersects DjΔ(r,m) = Dι. Note
that srι = s−1

ιr = s−1
ισ′(ι1) and hence γ−1

r γsrι
ι = (γ

sισ′(ι2)

σ′(ι2) · · · γ
sισ′(ιk )

σ′(ιk) )srι represents a loop which
surrounds the lines Lσ′(ι2), . . . , Lσ′(ιk) following l′r by construction of the cycle srι.

Now, the product γwr
r
∏k′r

m=1 γ
sr jΔ(r,m)

jΔ(r,m) can be written as γr
∏k′r

m=1 Υm with

Υm =

⎧⎪⎪⎨⎪⎪⎩
γ

sr jΔ(r,m)

jΔ(r,m) if m ∈ A,
γ−1γ

sr jΔ(r,m)

jΔ(r,m) if m ∈ B,

by commuting γr with γ
sr jΔ(r,m)

jΔ(r,m) . Note that, for Υm with m ∈ A, the path Υm is a meridian
around the other line that intersects Dr in the double point corresponding to m ∈ A. Hence,
by the precedent paragraph, γr

∏k′r
m=1 Υm is a product of the meridians of all the lines in A

ordered in the way they intersect Lr.
Now, by choosing a line L sufficiently close to Lr we have that the product

γwr
r
∏k′r

m=1 γ
sr jΔ(r,m)

jΔ(r,m) is a path encircling L \ (L ∩A ) and therefore it is equivalent to λn+1 · · · λ1

in π1(P2 \A ). �

4.2.4. End of proof of the Theorem 4.3.
4.2.4. End of proof of the Theorem 4.3. The point (1) of the Theorem is obtained by

Lemma 4.4.
The point (2) follows from Proposition 4.8.
For the point (3), recall that R′ denotes the set of relations for the presentation of π1(∂U)

as in Theorem 4.1. Using the notation of 4.2.3 we have that

R′ \ ∪R′k =

⎧⎪⎪⎪⎨⎪⎪⎪⎩γwr
r

k′r∏
m=1

γ
sr jΔ(r,m)

jΔ(r,m) , [γk, γ
skr
r ]

∣∣∣∣∣∣ r = 1, . . . , n + 1,Dk ∩ Dr ∈ Sing A \ P0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,
this is, Dk ∩ Dr is a double point.

By Proposition 4.9, we have that i∗(γwr
r
∏k′r

m=1 γ
sr jΔ(r,m)

jΔ(r,m) ) = λn+1 . . . λ1.
By proceeding as in Proposition 4.8, it can be seen that for a double point pκ = Dk ∩ Dr,

the relation [γk, γ
skr
r ] correspond to the relation Rκ as in Theorem 3.12.

Hence, in 〈γ1, . . . , γn+1, c1, . . . , cg | R′,∪p∈Sing A \Ln+1R
′(p)〉 the set of relations R′ is equiv-
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alent to the set of relations ∪Rκ ∪ {λn+1 · · · λ1}. This concludes the proof of Theorem 4.3.

4.2.5. Independence of the maximal tree.
4.2.5. Independence of the maximal tree. Let D =

∑n+1+s0
k=1 Dk be the total transform of

the arrangement A in X̄ and denote by Δ the dual graph of D as above.
Let  ⊂ Δ be an arbitrary maximal tree and denote by G( ) = {γ1( ), . . . , γn+1+s0 ( ),

c1( ), · · · , cg( )}, the set of generators of π1(∂U) as in Theorem 4.1. Recall that these are
constructed using  . Denote by R( ) the set of relations given in the same Theorem.

Consider also the maximal tree  ′ defined as in 4.1.2 and denote by γ1, . . . , γn+1+s0 ,

c1, . . . , cg the generators of π1(∂U) as in Theorem 4.3 and by R the set of relations.
Consider the inclusion i : ∂U ↪→ P2 \ A and fix i∗(γ1) = λ1, . . . , i∗(γn+1+s0 ) = λn+1+s0

as a set of generators for π1(P2 \ A ) with Γ(1) = {λ1, . . . , λn+1} as in Theorem 4.3. For
ι = 1, . . . , n + 1 + s0, we have that i∗(γι( )) and λι are meridians of the same smooth curve
Dι, therefore, we can express i∗(γι( )) as a conjugate of λι by elements in λ1, . . . , λn+1. We
let δι denote the word in π1(P2 \ A ) representing i∗(cι) in the letters λ1, . . . , λn+1+s0 and by
δ′ι the same word in the letters γ1, . . . , γn+1+s0 as in Theorem 4.3.

Reciprocally, by fixing i∗(γ1( )), . . . , i∗(γn+1+s0 ( )) as generators of π1(P2 \ A ), we
can express λι as a conjugate of i∗(γι( )) by elements in i∗(γ1( )), . . . , i∗(γn+1+s0 ( )) for
ι = 1, . . . , n + 1. The image i∗(cι( )) of the cycle cι( ) can be expressed in terms of
i∗(γ1( )), . . . , i∗(γn+1+s0 ( )) for ι = 1, . . . , g. We let δι( ) be this expression when it is
written in terms of γ1( ), . . . , γn+1+s0 ( ) such that δι( ) ∈ 〈G( ) | R( )〉.

Proposition 4.10. A presentation of π1(P2 \A ) can be obtained as follows:

π1(P2 \A ) � 〈G( ) | R( ), c1( ) · δ1( )−1, · · · , cg( ) · δg( ))−1〉.
Proof. The presentations 〈G( ) | R( )〉 and 〈γ1, . . . , γn+1+s0 , c1, . . . , cg | R〉 of π1(∂U) as

in Theorem 4.1 can also be obtained as graphs of groups (see [41]). These graphs of groups
are constructed over Δ as follows: the vertices groups are given as in Lemma 2.4, the edges
groups are Z2. To each tree of Δ there correspond a presentation and the presentations are
Tietze-equivalent.

Let us fix vn+1, the vertex corresponding to Dn+1 as a base point for π1(Δ) and c1, . . . , cg
a generating set. Every cycle cι( ) ∈ π1(Δ, vn+1) can be expressed as cι( ) = cι1 · · · cιrι
where cιm ∈ {c1, . . . , cg} with m = 1, . . . , rι and ι = 1, . . . , g. Therefore i∗(cι( )) =
i∗(cι1) · · · i∗(cιrι) = δι1 · · · διrι . Let us show that

cι( ) · δι( )−1 = cι1 · · · cιrιδ′ιrι−1 · · · δ′ι1−1 ∈ 〈〈c1 · δ′ι1−1, . . . , cg · δ′g−1〉〉.
Note that

(cι1δ′ι1
−1)(cι2δ′ι2

−1)δ
−1
ι1 = cι1cι2δ′ι2

−1δ′ι1
−1,

...

(cι1δ′ι1
−1) · · · (cιrιδ′ιrι−1)δ

′
ιrι
−1···δ′ι1−1

= cι1 · · · cιιrδ′ιrι−1 · · · δ′ι1−1.

In a similar way we can prove that cι · δ′ι−1 ∈ 〈〈c1( ) · δ1( )−1, . . . , cg( ) · δg( )−1〉〉.
This proves that the presentations 〈G( ) | R( ), c1( )δ1( )−1, · · · , cg( )δg( ))−1〉, and
〈γ1, . . . , γn+1+s0 , c1, . . . , cg | R, c1δ

′
1
−1, . . . , cgδ′g

−1〉 are equivalent. We conclude by Theorem
4.3. �
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4.3. Boundary manifold of a partial compactification.
4.3. Boundary manifold of a partial compactification. Here we will present another

presentation for the fundamental group of certain partial compactifications M(A , I, P),
where M(A , I, P) is as in 2.3.1, but the lines of D indexed by I correspond only to ex-
ceptional divisors, this is, I ⊂ {n + 2, . . . , n + 1 + s0}.

4.3.1. Inclusion of the boundary of a partial compactification.
4.3.1. Inclusion of the boundary of a partial compactification. Let us recall the nota-

tion of section 2.3.1.
Let A ⊂ P2 be an arrangement of lines and X̄ the blow-up at the points P0 = {p1, . . . , ps0}

of Sing A with multiplicity strictly higher than two and let D =
∑n+1+s0

k=1 Dk be the reduced
total transform of A in X̄.

Here, we suppose that I ⊂ {n+ 2, . . . , n+ 1+ s0} and let P = {p′1, . . . , p′s1
} ⊂ Sing

∑
k�I Dk.

Denote by π′ : BlP X̄ → X̄ the blow-up map and the dual graph of |π′∗D| by Δ. Note that in
the previous section Δ denoted instead the dual graph of D. Consider the divisor D′ ⊂ BlP X̄
as in 2.3.1 and denote by Δ′ the dual graph of D′. Recall that Δ′ is obtained from Δ by
removing some vertices and the corresponding adjacent edges.

In 2.3.1 we defined the partial compactification M(A , I, P) of M(A ) as BlP X̄ \ D′.
Let us assume that D′ is connected, which is equivalent to Δ′ being connected. Therefore,

there exists a maximal tree Δ′ ⊂ Δ′. Note that every cycle in Δ′ can be seen as a cycle in Δ.

Lemma 4.11. Any maximal tree Δ′ can be completed to a maximal tree Δ′,Δ in Δ.

Proof. Let {v1, . . . , vk} be the vertices of Δwhich are to be removed along with its adjacent
edges in order to obtain Δ′.

As I ⊂ {n + 2, . . . , n + 1 + s0} and P ⊂ Sing
∑
ι�I Dι, we have that all the vertices in

{v1, . . . , vk} correspond to exceptional divisors in BlP X̄, therefore there is no edge connecting
vι and v j for ι � j and to complete Δ′ to a maximal tree of Δ it suffices to take no matter
what edge connecting a vertex in Δ′ and vι for ι = 1, . . . , k because no cycle will be created
in this way. �

Corollary 4.12. Let g denote the number of independent cycles in Δ. Let c1(Δ′), . . . ,
cg′(Δ′) be independent cycles in Δ′ each one formed by adjoining one edge in Δ′ to the max-
imal tree Δ′ . There exists cg′+1(Δ′,Δ), . . . , cg(Δ′,Δ) cycles in Δ that together with c1(Δ′,Δ) =
c1(Δ′), . . . , cg′(Δ′,Δ) = cg′(Δ′) complete a generating set of π1(Δ, vn+1).

Let us denote by ∂U the boundary manifold of the total transform of D in BlP X̄. By
proceeding as in the proof of Theorem 4.1, we have that a presentation for π1(∂U), by using
the maximal tree Δ′,Δ, has generators γ1 = γ1(Δ′,Δ), . . . , γn+1+s0+s1 = γn+1+s0+s1 (Δ′,Δ), c1 =

c1(Δ′,Δ), . . . , cg = cg(Δ′,Δ) and a set of relations

(5) R =

⎧⎪⎪⎨⎪⎪⎩
[γr, γ

sr j

j ], (r, j) ∈ (Δ)
γ
−w′r
r =

∏k′r
m=1 γ

sr jΔ(i,m)

jΔ(r,m) 1 ≤ r ≤ n + 1 + s0 + s1

⎫⎪⎪⎬⎪⎪⎭ ,
where w′r = D′r · D′r, for an irreducible component D′r of π′∗D, we denoted by k′r the number
of points in Sing π′∗D ∩ D′r (see the proof of Proposition 4.9), and

sr j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
c−1

k if (r, j) equals the k-th element in Δ \ Δ′,Δ,
ck if ( j, r) equals the k-th element in Δ \ Δ′,Δ,
1 if (r, j) is an edge of Δ′,Δ.
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Moreover, let ∂U′ denote the boundary manifold of D′ ⊂ BlP X̄. Here, if r � I let us
denote by k′′r the number of points in (Dk ∩ ∑ι�I Dι) \ P or equivalently, in D′k ∩ D′. By
using the maximal tree Δ′ of Δ′ and proceeding as in the proof of Theorem 4.1, we obtain
the following Proposition.

Proposition 4.13. A presentation for π1(∂U′) is given by

〈 γι, ι ∈ J
∣∣∣[γr, γ

sr j

j ], (r, j) ∈ (Δ′)

c1, . . . , cg′
∣∣∣∣∣γ−w′rr =

∏k′′r
m=1 γ

sr jΔ′ (r,m)

jΔ′ (r,m) r ∈ J

〉
,

where J = {1, . . . , n+ 1+ s0} \ I, (Δ′) denotes the set of edges of Δ′, w′r the self-intersection
number of the strict transform D′r of Dr in BlP X̄ and

sr j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
c−1

k if (r, j) equals the k-th element in Δ′ \ Δ′ ,
ck if ( j, r) equals the k-th element in Δ′ \ Δ′ ,
1 if (r, j) is an edge of Δ′ .

For every ι ∈ I, we have that, as D′ι is an exceptional divisor, the following relation is in
R:

(6) γι =

k′ι∏
m=1

γ
sι jΔ′ ,Δ(ι,m)

jΔ′ ,Δ(ι,m) .

Analogously, if p = pι ∈ P, by abuse of notation we will write p = n + 1 + s0 + ι. We
have that if p = Dr ∩ Dj:

(7) γp = γ
spr
r γ

sp j

j .

By using the map i : ∂U → M(A ) = P2 \ A as in 4.2.5, we can express the image of
the cycles i∗(cr) as a word in the letters i∗(γ1), . . . , i∗(γn+1), for r = 1, . . . , g. Let us denote
by δr the word obtained by replacing the letters i∗(γ1), . . . , i∗(γn+1) by γ1, . . . , γn+1 in this
precedent word associated to i∗(cr).

By using δ1, . . . , δg and replacing i∗(γ1), . . . , i∗(γn+1) by γ1, . . . , γn+1, we can express the
words i∗(

∏k′ι
m=1 γ

sι jΔ′ ,Δ(ι,m)

jΔ′ ,Δ(ι,m)) and i∗(γ
spr
r γ

sp j

j ) with ι ∈ I and p ∈ P as words γ(ι), γ(p) ∈ π1(∂U′),
respectively.

Let us denote by R′ the set of relations in the presentation given by Proposition 4.13.

Theorem 4.14. A presentation of π1(M(A , I, P)) is given by

〈c1, . . . , cg′ , γι ι ∈ J | R′, c1δ
−1
1 , . . . , cg′δ−1

g′ ,∪ι∈Iγ(ι),∪p∈Pγ(p)〉,
with J = {1, . . . , n + 1 + s0} \ I.

Proof. Consider the following diagram:

Where the isomorphism in the right of the first row comes from Theorem 4.3 and Propo-
sition 4.10.
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From the rightest column we obtain that

(8) π1(∂U)/〈〈c1δ
−1
1 , . . . , cgδ−1

g , γ(ι), γ(p)〉〉 � π1(M(A , I, P)).

We will see that this presentation is equivalent to

(9) π1(∂U′)/〈〈γ(ι), γ(p), c1 · δ−1
1 , . . . , cg′δ−1

g′ )〉〉.
Indeed, by the choice of the maximal tree Δ′,Δ, there are only four types of relations in R

of the presentation of π1(∂U) involving the cycles cg′ , . . . , cg:
• commutators [γr, γ

srr′
r′ ] with r′ = ι, p,

• those relations as in (6),
• those relations as in (7), and
• relations γ−w

′
r

r =
∏k′r

m=1 γ
sr jΔ′ ,Δ(r,m)

jΔ′ ,Δ(r,m) with (r, ι) or (r, p) an edge in Δ.

By adding the relations c1 = δ1, . . . , cg = δg, we can see these relations as expressed in terms
of γ1, . . . , γn+1+s0 .

Note that the commutator-relation as in the first point above becomes trivial in
π1(∂U)/〈〈c1δ

−1
1 , . . . , cgδ−1

g , γ(ι), γ(p)〉〉.
The relations in the points two and three above, are by construction, equivalent to the

words γ(ι), γ(p).
For the relations as in the fourth point, note that k′′r = k′r − |P ∩ Dr | − {ι ∈ I | Dι∩Dr � ∅}.

�

5. Applications and examples

5. Applications and examples5.1. Preliminary results in homology planes.
5.1. Preliminary results in homology planes. As shown in section 3, the wiring diagram

 of an arrangement A can be used to determine the meridians around the exceptional
divisors Ep, corresponding to a point p ∈ Sing A , in terms of the meridians of the lines in
A .

Here, we apply Theorem 3.12 to obtain presentations for the fundamental group of a very
special type of partial compactifications, which we proceed to describe.

Definition 5.1. A (Q-)homology plane X is an affine smooth complex surface such that
the i-th group of (rational) integer homology (Hi(X,Q)) Hi(X,Z) vanishes for i = 1, . . . , 4.

It was proved in [42] that homology planes are rational. This result also holds for Q-
homology planes, see [43].

Let X be a homology plane. There exists a projective smooth rational surface X̄, a bira-
tional morphism π : X̄ → P2, and a divisor D ⊂ X̄ such that X̄ \ D = X.

A classification of the arrangements of lines A ⊂ P2 such that there exists a pair (X̄, π)
as above and π(D) = A is given in [16]. We call such an arrangement A a linear plane
divisor of the homology plane X. There exists six arrangements of lines L(2), . . . , L(7) and
an infinite family of arrangements L(1, n + 1) which are linear plane divisors, each one for
an infinite family of homology planes [16, Theorem D].

In [21], an algorithm for constructing homology planes out of these arrangements is given.
We describe it briefly.

5.1.1.
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5.1.1. Let A = {L1, . . . , Ln+1} be an arrangement of lines. We denoted by P0 =

{p1, . . . , ps0} ⊂ Sing A the set of points of multiplicity strictly higher than two, by π(0) : X̄ =
BlP0 P

2 → P2 the blow-up map, by Di the strict transform of Li for i = 1, . . . , n + 1 and by
Dn+1+ j the exceptional divisor associated to p j for j = 1, . . . , s0. Let I ⊂ {n+2, . . . , n+1+ s0}
and consider the divisor D′ =

∑n+1+s0
i=1 Di −∑i∈I Di.

Denote by Δ′ the dual graph of D′ and suppose that the number of independent cycles
in Δ′ equals m, this is b1(Δ′) = m. Consider P1 ⊂ Sing D′ a subset of m-points such that
when we remove from Δ′ the edges corresponding to P1 we obtain a maximal tree. Let
π(1) : BlP1 X̄ → X̄ be the blow-up at P1 and denote by D′′ the strict transform of D′ in
BlP1 X̄.

Proposition 5.1 ([21, Proposition 2.1]). The surface BlP1 X̄\D′′ is aQ-homology plane if
and only if the inclusion D′′ ↪→ BlP1 X̄ induces an isomorphism H2(D′′,Q)→ H2(BlP1 X̄,Q).

We obtain that a necessary condition for BlP1 X̄ \ D′′ as above, to be a Q-homology
plane is that the number n + 1 + s0 − |I| of irreducible components in D′′ must be equal to
b2(BlP1 X̄) = dim(H2(BlP1 X̄,Q)) = m + |P0| + 1. It follows that in this case, n = m + |I|. We
will describe when this condition is as well sufficient.

Let λ1, . . . , λn+1 be meridians of the lines L1, . . . , Ln+1 ∈ A , respectively. A basis for
H1(P2 \A ) is given by the homology clases [λ1], . . . , [λn] and they satisfy that

∑n+1
i=1 [λi] = 0.

Given any exceptional divisor Dn+1+ j in X̄ such that the corresponding point p j ∈ P0 satisfies
p j = Lj1 ∩ Lj2 ∩ . . .∩ Ljr , we have that the homology class of a meridian λn+1+ j of Dn+1+ j is
given by [λn+1+ j] = [λ j1 ] + . . . + [λ jr ]. Similarly, for p ∈ P1 such that p = Di ∩ Dj we have
that the homology class of a meridian λp of the exceptional divisor Ep in BlP1 X̄ is given by
[λp] = [λi] + [λ j]. It follows that for every k ∈ I we can express [λn+1+k] =

∑n
r=1 ak,r[λr] and

for p ∈ P1 we have [λp] =
∑n

r=1 ap,r[λr]. Define a matrix M = (aq,r) with q ∈ I ∪ P1.
Now, suppose that a surface X is constructed as in 5.1.1 by choosing I and P1 ⊂ Sing D′

such that X = BlP1 X̄ \ D′′ and that the number of irreducible components in D′′ equals
b2(BlP1 X̄). As n = m + |I|, the matrix M is a square matrix.

Proposition 5.2 ([21, Theorem B]). The surface X is a Q-homology plane if and only if
det M � 0. Moreover, if det M � 0, H1(X,Z) = |det M| and hence it is a homology plane if
and only if |det M| = 1.

The surfaces obtained by the construction given in 5.1.1 are usually only Q-homology
planes. In order to obtain homology planes, further blow-ups are required.

5.1.2.
5.1.2. Consider Di,Dj in X̄ and let p = Di ∩ Dj. Let ai, a j be two coprime positive

integers. There exists a sequence of blow-ups

Blpk−1,...,p X̄
π(k)

i j→ Blpk−2,...,p X̄
π(k−1)

i j→ . . .
π(2)

i j→ Blp X̄
π(1)

i j→ X̄,

where each π(r)
i j is the blow-up of Blpr−1,...,p X̄ at a point pr ∈ Blpr−1,...,p X̄, with pr lying

in the exceptional divisor Er corresponding to π(r−1)
i j and in the singular locus of the total

transform of Di + Dj in Blpr−1,...,p X̄, such that the multiplicity of the exceptional divisor
Ek ∈ Blpk−1,...,p X̄ in (π(k)

i j ◦ · · · ◦ π(1)
i j )∗(Di) and in (π(k)

i j ◦ · · · ◦ π(1)
i j )∗(Dj) is ai, a j, respectively,

see [21, Theorem 4.11]. By [44, Lemma 7.18] the meridian around Ek is given by λai
i λ

a j

j .
See also [22, Appendix]. Moreover, if p = Di ∩ Dj ∈ P1, using this construction we can
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replace the line in the matrix M corresponding to [λi] + [λ j] by ai[λi] + bi[λ j].
Let ep be the edge in the dual graph Δ′ of the divisor D′ corresponding to p. We call

this construction expanding the edge vp. In order to describe the change in the dual graph,
let us denote a continuous fraction by [c1, . . . , cr] defined by [c1] = c1 and [c1, . . . , cr] =
c1 − [c2, . . . , cr]−1. We have that ci ≥ 2. Let

ai + a j

a j
= [c−r, . . . , c−1],

ai + a j

ai
= [cs, . . . , c1].

Suppose that D2
i = bi,D2

j = b j. The edge connecting vi and v j changes as in Fig. 8.

Fig.8. Expanding an edge

This will be abbreviated as in Fig. 9.

Fig.9. Notation for expanding an edge

5.1.3. Absolutely minimal graphs.
5.1.3. Absolutely minimal graphs.

Definition 5.2. Let Δ be a weighted graph. We say that Δ is absolutely minimal if the
weight of every linear or terminal vertex does not exceed −2. See [22, 45].

Definition 5.3. Let (X̄,D) be a pair with X̄ a smooth projective surface and D a simple
normal crossing divisor such that all its irreducible components are rational curves. We say
that (X̄,D) is absolutely minimal if the dual graph Δ of D is absolutely minimal.

Proposition 5.3 ([45]). Let X be a quasi-projective smooth surface and (X̄,D) an abso-
lutely minimal pair such that X̄ \ D = X. Any other absolutely minimal completion of X is
isomorphic to (X̄,D).

5.2. Examples.
5.2. Examples.

5.2.1. The arrangement L(1, n + 1).
5.2.1. The arrangement L(1, n+ 1). For n ∈ N such that n ≥ 3 consider the arrangement

L(1, n + 1) of n + 1 lines where n of them intersect in a point and the other one is in general
position. See Fig. 10a for the representation in the projective plane and Fig. 10b for its
wiring diagram.

A presentation for π1(P2 \ L(1, n + 1)) is given by:

(10) 〈λ1, . . . , λn+1 | λn+1 · · · λ1, [λn, . . . , λ1], [λr, λn+1] r = 1, . . . , n〉.
An expression for the meridian λn+2 around the exceptional divisor Dn+2, obtained by

blowing-up the unique point p of multiplicity n in A , is given by λn+2 = λn · · · λ1. Note that
λn+2 = λ

−1
n+1.

Let π : X̄ = Blp P
2 → P2, D = |π∗A | = ∑n+2

i=1 Di and Δ the dual graph of D. In order to
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Fig.10. The arrangement L(1,5)

obtain a maximal tree of Δ, that give rise to homology planes, we need to remove n−1 edges
from Δ: each one corresponding either to Di ∩Dn+1 or to Di ∩Dn+2 for i = 2, . . . , n. We can
expand these edges as in 5.1.2. In doing so, for every edge that we expand and every pair of
coprime positive integers ai1, ai2 we need to add the relations λai1

i λ±ai2
n+1 to the presentation of

π1(P2 \ L(1, n + 1)).
Using the notation of 5.1.1, as |I| = 0, we have that b1(Δ) = n − 1. In order to obtain that

n = m, we have to blow-up a smooth point in the line D1 (and possibly several times in a
point infinitely near). We have to add the relation λa11

1 .

Proposition 5.4. Let Γ be a group presented by 〈λ1, . . . , λn | λn · · · λ1, λ
ai1
i , i = 1, . . . , n〉.

The fundamental group of any homology plane X arising from the arrangement L(1, n + 1)
as above, admits an exact sequence

1→ N → π1(X)→ Γ→ 1,

with N a cyclic group.

Proof. Note that from the presentation in (10), it follows that λn+1 generates a central
group. Denote by N the image of the cyclic group generated by λn+1. By taking the quotient
of π1(X) by this group we obtain the presentation given by Γ. �

In fact, all the homology planes of logarithmic Kodaira dimension one arise in this way,
see [24, 18] and [20, Chapter 3.4].

Lemma 5.5. The dual graph of the divisor at infinity for a homology plane X arising from
L(1, n + 1) as above, is absolutely minimal and has the first form if k > 1 and the second if
k = 1:

In (A), the square above v1 represents a linear chain of (k − 1)-vertices with weight −2.

These graphs include those corresponding to contractible homology planes arising from
L(1, n + 1) studied in [22].

5.2.2. The arrangement L(2).
5.2.2. The arrangement L(2). The arrangement L(2) is constructed by four lines in gen-

eral position.
The fundamental group π1(P2 \ L(2)) is isomorphic to Z3 and admits the following pre-

sentation 〈
λ1, . . . , λ4 | λ4 · · · λ1 = 1, [λi, λ j] i < j, i = 1, . . . , 3, j = 2, . . . , 4

〉
.
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Fig.11.

Fig.12. The arrangement L(2)

The homology planes arising from this arrangement are treated in [21, 3.16].

5.2.3. The arrangement L(3).
5.2.3. The arrangement L(3). This arrangement is constructed from L(2) by adding a

line L5 passing through two double points of L(2). See Fig. 13a.
The fundamental group π1(P2 \ L(3)) is isomorphic to F2 × F2 and admits the following

presentation that can be read from the wiring diagram 13b:

(11) 〈λ1, . . . , λ5 | [λ5, λ4, λ3], [λ5, λ2, λ1], [λ4, λ1], [λ4, λ2], [λ3, λ1], [λ3, λ2], λ5 · · · λ1〉 .

Fig.13. The arrangement L(3)

Let γ6 and γ7 be meridians around the exceptional divisors D6 and D7, obtained by blow-
ing up L5 ∩ L4 ∩ L3 and L5 ∩ L2 ∩ L1, respectively. Then we have that γ6 = γ5γ4γ3 and
γ7 = γ5γ2γ1.

Denote by f1, f2 the fibrations given by the pencils of lines obtained by blowing up the
points L5 ∩ L4 ∩ L3 and L5 ∩ L2 ∩ L1, respectively. Let X be a homology plane arising
from L(3) as in 5.1.1. Denote by f ′1 , f ′2 the respective fibrations induced in X. The multiple
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fibers of f ′1 , f ′2 induce orbifold structures over P1 that we denote by 1 = 1(P1,D, r1) and
2 = 2(P1,D, r2) with D = 0 + 1 +∞ and r1 = (a1, b1, c1), r2 = (a2, b2, c2) depending on
f ′1 , f ′2.

Proposition 5.6. If X is a homology plane arising from L(3) as in 5.1.1 such that both
π1(1), π1(2) are finite, then π1(X) is also finite. Moreover, if π1(1) = π1(2) = 〈1〉 then
π1(X) = 〈1〉.

Proof. Suppose that π1(1) and π1(2) are finite. Recall that π1(P2 \ L(3)) = F2〈λ1, λ2〉 ×
F2〈λ3, λ4〉. Denote by i : P2 \ L(3) ↪→ X the inclusion and consider H1 := i∗(〈λ1, λ2〉) and
H2 := i∗(〈λ3, λ4〉). We have the following exact sequences induced by f ′1 , f ′2:

1→ H1 → π1(X)→ π1(1)→ 1, 1→ H2 → π1(X)→ π1(2)→ 1.

Consider the subgroup A = H1 ∩ H2, it is normal and has finite index. Moreover, A is
abelian: let x, y ∈ A and write x = w1(i∗(λ1), i∗(λ2)) and y = w2(i∗(λ3), i∗(λ4)) with w1 and
w2 words in the letters i∗(λ1), i∗(λ2) and i∗(λ3), i∗(λ4), respectively. As λ j commutes with λk

for j = 1, 2 and k = 3, 4, we obtain that x commutes with y. The same reasoning shows that
A is central.

Now, as Γ is a perfect group, we have from the universal coefficient theorem that H2(Γ,Z)
� Hom(H2Γ,Z). Then, as Γ is finite, we have that H2(Γ,Z) = H1(Γ,Q/Z). As Γ is perfect, it
operates trivially on Q/Z and therefore H1(Γ,Q/Z) = Hom(Γ,Q/Z) = 0, which shows that
H2(Γ,Z) is a torsion group.

Consider the central extension 1 → A → π1(X) → Γ → 1. Write A � Zn ⊕ Ators and
consider the universal central extension 1 → H2(Γ,Z) → E → Γ → 1. This extension
comes with a map H2(Γ,Z)→ Ators that factors through A. Now, we have that

π1(X) = [E × A]/ΔH2(Γ,Z) � Zn × [E × Ators]/ΔH2(Γ,Z),

but as π1(X) is perfect, we have that n = 0 and therefore A is a torsion group.
Now, if π1(1) = π1(2) = 〈1〉 then H1 = π1(X) = H2 and therefore A = π1(X) is an

abelian group and perfect, hence π1(X) = 〈1〉. �

Let P0 = {L4∩L4∩L3, L5∩L2∩L1} and consider π : X̄ = BlP0 P
2 → P2. Denote by D the

reduced divisor π∗(L(3)) and its dual graph by Δ(3). Note that b1(Δ(3)) = |E| − |V | + 1 = 4.
The maximal trees contained in Δ(3) are encoded by subsets P1 ⊂ Sing D of four elements,
corresponding to independent edges.

Example 5.1. We can consider the homology planes X arising from expandig the edges
corresponding to the double points P1 = {D1 ∩ D3,D1 ∩ D4,D2 ∩ D3,D2 ∩ D4} in L(3).
All the homology planes arising in this way will satisfy that π1(1) = π1(2) = 〈1〉 and by
Proposition 5.6, we have that π1(X) = 〈1〉.

There are indeed an infinite collection of homology planes arising from the maximal
tree associated to these double points P1. They were studied by Zaidenberg in [22]. He
also obtained that an infinite number of these homology planes have logarithmic Kodaira
dimension equal to two.

Now we present examples of homology planes arising from L(3) with infinite fundamen-
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tal group.

Example 5.2. Consider P1 = {D1 ∩ D3,D1 ∩ D4,D2 ∩ D4,D5 ∩ D6}, a presentation for
the fundamental group of any homology plane X arising from this configuration has the
following form:

(12) 〈λ1, . . . , λ5 | λa
1λ

b
3, λ

c
1λ

d
4, λ

e
2λ

f
4 , λ

g
5λ

h
6, [λi, λ j] for i = 1, 2, j = 3, 4〉.

Note that λ5 · λ6 = (λ−1
1 · · · λ−1

4 )(λ−1
1 λ−1

2 ).
The fundamental group of the orbifolds 1,2 over P1 induced by f ′1 and f ′2 have presen-

tations π1(1) = 〈λ3, λ4 | λb
3, λ

gcd(d, f )
4 , (λ4λ3)g〉 and π1(2) = 〈λ1, λ2 | λgcd(a,c)

1 , λe
2, (λ2λ1)g+h〉,

respectively.
By Proposition 5.2, we have that X is a homology plane if the following determinant

equals one:

det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a 0 b 0
c 0 0 d
0 e 0 f

−g − h −g − h −g −g

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= −adeg − bceg + bc fg + bc f h + bdeg + bdeh.

(1) We can choose the values a, . . . , h such that π1(1) and π1(2) are both infinite
hyperbolic triangle groups: Consider b = 3, d = f = 5 and g = 7. As above,
π1(1) = 〈λ3, λ4 | λ3

3, λ
5
4, (λ

−1
3 λ−1

4 )7〉.
There exists indeed solutions for det M = 1 and the above values of b, d, f , g.

For example a = c = 11, e = 14, h = 16. We have that π1(2) = 〈λ1, λ2 |
λ11

1 , λ
14
2 , (λ

−1
1 λ−1

2 )23〉.
A presentation for π1(X) is obtained readily from (12) by replacing the values of

the exponents.
(2) We can choose as well the values a, . . . , h in such a way that π1(1) is finite non-

trivial but π1(2) is infinite: for b = 2, d = f = 3, g = 5 we have that π1(1) =
〈λ3, λ4 | λ2

3, λ
3
4, (λ3λ4)5〉.

In order to obtain a solution for det M = 1 we can choose: a = c = 25, e = 47, h =
63 and therefore π1(2) = 〈λ1, λ2 | λ25

1 , λ
47
2 , (λ1λ2)68〉.

For the proof of the following Lemma, we follow closely the arguments of [22].

Lemma 5.7. The homology planes constructed in this example are of log-general type
and the divisor at infinity has dual graph that are absolutely minimal as in Fig. 14.

Fig.14. Dual graph
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Proof. The squares with Δi, j inside represents a linear chain with vertices of weights at
most −2, therefore the graph are absolutely minimal. By counting the vertices of valence 3,
we can see that this graphs are not equivalent to that of Lemma 5.5.

There are not homology planes X with k̄(X) = −∞ other that C2 [19, Theorem 3.2] and
no homology planes at all with k̄(X) = 0 [20]. As all the homology planes of log-kodaira
dimension equal one can be obtained from L(1, n + 1), we conclude using Proposition 5.3.

�

5.2.4. The arrangement L(4).
5.2.4. The arrangement L(4). We consider the real arrangement L(4) defined by adding

a line L6 to Ceva(2) = {(x : y : z) ∈ P2 | (x2 − y2)(x2 − z2)(y2 − z2) = 0} passing through 2
double points, see Fig. 15.

The fundamental group π1(P2 \ L(4)) admits the following presentation that can be ob-
tained from the wiring diagram in Fig. 15b〈

λ1, . . . , λ7 | [λ7, λ6], [λ7, λ5, λ4], [λ7, λ3], [λ7, λ2, λ1], [λλ4
5 , λ3, λ1], [λ6, λ4, λ1]

[λ6, λ
λ1
3 ], [λ6, λ

λ4
5 , λ

λ1
2 ], [λ4, λ3, λ2], λ7λ6 . . . λ2λ1 = 1

〉
.

Fig.15. L(4)

The expressions for the meridians λ8, . . . , λ13 around the exceptional divisors D8, . . . ,D13,
respectively are:

(13)
λ8 = λ7λ5λ4, λ9 = λ7λ2λ1, λ10 = λ

λ4
5 λ3λ1,

λ11 = λ6λ4λ1, λ12 = λ6λ
λ4
5 λ

λ1
2 , λ13 = λ

λ1
4 λ

λ1
3 λ

λ1
2 .

For the following examples of homology planes we will use the computations appear-
ing in [25] of the first characteristic variety of the arrangements and its associated pencils
of lines. We will use these pencils to construct maps to orbicurves with infinite perfect
fundamental group.

The arrangement L(4) is called the non-Fano plane in [25, Example 10.5]. It has six local
pencils corresponding to the six triple points and three pencils corresponding to (braid)
Ceva(2) subarrangements.

Example 5.3. Consider the pencil Π = C(12|45|36) obtained when we blow-up the singular
points corresponding to (L1∪L2)∩(L4∪L5). Recall that the ordering of the singular points is
given by reading the triple points in the wiring diagram in Fig. 15b from right to left. There-
fore the exceptional divisors corresponding to (L1 ∪ L2) ∩ (L4 ∪ L5) are D10,D11,D12,D13.
These divisors are sections of Π as well as the strict transform D7 of L7.
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With the notation of 5.1.1, let us consider I = {11, 12, 13} and the set of edges to
be expanded P1 = {D1 ∩ D9,D5 ∩ D10,D6 ∩ D7} as in 5.1.2. Consider the meridians
λa

1λ
b
9, (λ

λ4
5 )cλd

10, λ
e
6λ

f
7 of the respective exceptional divisors coming from P1.

The pencil Π induces an orbifold structure  = (P1,D, r) with D = 0 + 1 + ∞ and
r = (2b + a, c, e).

From (13), we have that

det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 0 0
0 1 0 0 1 1
1 0 0 1 0 1
a 0 −b −b −b −b
d 0 d 0 c + d 0
− f − f − f − f − f e − f

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= ace − ac f + 2ade − 2bc f + 4bde,

for M the matrix as in 5.1.1.
By considering the following solution for | det M| = 1: a = 1, b = 2, c = 7, d = 1, e = 2

and f = 1 we obtain that π1() is infinite. We can also obtain the following presentation for
the fundamental group of the homology plane X:

π1(X) = 〈λ2, λ5 | λ4
2 = λ5λ2λ5, λ

7
5 = λ2λ5λ

2
2λ5λ2〉.

Moreover, the image of the fibers of Π in π1(X) is a cyclic group generated by the image of
λ7.

Lemma 5.8. The homology plane X in this example is of log-general type with absolutely
minimal dual graph of the divisor at infinity as follows

Fig.16. Dual graph

Example 5.4. Using again the pencil Π = C(12|45|36), we can construct homology planes
fibered over P1 with general fiber P1 \ {3 − points} as follows: take I = {8, 11, 12} and
P1 = {D1 ∩ D9,D3 ∩ D13,D6 ∩ D7}.

The associated matrix M will have determinant equal to

det M = −ace − ac f + 2ad f + 4bde + 4bd f .

The pencil Π induces a structure of orbifold  = (P1,D, r) with D as before and r =
(a + 2b, gcd(c, e), 2).

If we take c = e, a solution for det M = 1 is given by: a = 1, b = 2, c = e = 9, d =



272 R.A. Aguilar

1, f = 10. Note that the meridians λ7, λ10, λ13 generate the fundamental group of a fiber of
the induced pencil.

The fundamental group π1(X) admits the following presentation〈
λ1, λ6, λ7

∣∣∣∣∣∣
(λ7, λ6) = 1, λ1λ

−1
7 λ6λ

−1
1 λ−1

7 λ1λ7λ
−1
6 λ−1

1 λ7 = 1
λ1λ6λ1λ

−1
7 λ6λ

−1
1 λ−1

6 λ−1
1 λ7λ

−1
6 = 1

λ7λ
−1
6 λ−1

1 λ7λ
−1
6 λ2

1λ7λ
−1
6 λ−1

1 λ−1
6 λ7λ1 = 1

λ1λ7λ
−1
1 λ6λ

−1
7 λ1λ

−1
6 λ−1

1 λ−1
6 λ7λ

−1
1 λ6λ

−1
7 λ1 = 1, λ7

6λ7λ6λ
9
7λ6 = 1

(λ6λ
−1
7 )6λ1λ6λ

−1
7 λ1λ

−1
7 λ−1

1 λ7λ
−1
6 λ−1

1 (λ6λ
−1
7 )2λ1λ

−1
7 λ−2

1 λ7λ
−1
6 λ−1

1 = 1

〉
.

In π1(X) the element λ10 equals λ1λ
−1
7 λ6λ1λ6λ

−1
7 and λ13 equals λ−1

6 λ−1
1 λ7λ

−1
6 λ−1

7 λ−1
1 .

Fig.17. Dual graph

Remark 5.9. We can use the two other pencils Π2 = C(15|24|67) and Π3 = C(14|37|25) to
obtain similar groups.

5.2.5. The arrangement L(5).
5.2.5. The arrangement L(5). The arrangement L(5) is the first of two arrangements of

9 lines with 6 double points, 6 triple points and 2 quadruple points, see Fig. 18a.
The fundamental group π1(P2 \ L(5)) admits the following presentation that is obtained

using the wiring diagram in Fig. 18b〈
λ1, . . . , λ9

∣∣∣∣∣∣
[λ9, λ8, λ7, λ6], [λ9, λ5, λ4], [λ9, λ3, λ2, λ1], [λ4, λ

λ7λ6
8 ], [λλ7λ6

8 , λλ4
5 , λ1],

[λλ6
7 , λ4, λ1], [λ6, λ1], [λλ7λ6

8 , λλ1
2 ], [λλ6

7 , λ
λ4λ1
5 , λλ1

2 ], [λ6, λ
λ1
4 , λ

λ1
2 ],

[λλ7λ6
8 , λλ2λ1

3 ], [λγ6
7 , γ

γ2γ1
3 ], [γ6, γ

λ4λ2λ1
5 , λλ2λ1

3 ], [λ4, λ3]

〉
.

Fig.18. The arrangement L(5)

The expressions for the meridians around the exceptional divisors are given as follows:
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λ10 = λ9λ8λ7λ6, λ11 = λ9λ5λ4, λ12 = λ9λ3λ2λ1

λ13 = λ
λ7λ6
8 λλ4

5 λ1, λ14 = λ
λ6
7 λ4λ1,

λ15 = λ
λ6
7 λ

λ4λ1
5 λλ1

2 , λ16 = λ6λ
λ1
4 λ

λ1
2 , λ17 = λ6λ

λ4λ2λ1
5 λλ2λ1

3 .

Example 5.5. The arrangement L(5) admits as a subarrangement the so-called deleted
B3-arrangement [25, Example 10.6] that is obtained from Fig. 18a by removing the dashed
line. The deleted B3-arrangement has a special pencil Π that is induced by the positive
dimensional component of its characteristic variety that does not passes through the origin,
see [25, Example 10.6] and references there-in. We will use this pencil in order to construct
homology planes with infinite fundamental group.

The deleted B3 arrangement is obtained from an arrangement of nine lines called B3 that
admits the structure of a (3, 4)-multinet (see [46, Example 3.6, Figure 1b]) by deleting a line
of weight two. The pencil Π is obtained by restricting that coming from B3. The line that
we are removing from B3 will have multiplicity two in the associated pencil.

Take I = {10, 12, 13, 14, 15, 16} and P1 = {D3 ∩ D4,D5 ∩ D11}. Denote by Π the pencil
described above. It will have as sections D3 and D11. The pencil Π induces the following
orbifold structure on  = (P1,D, r) with D = 0 + 1 +∞ and r = (c, 2, b).

It can be seen that the determinant of the matrix M constructed as in 5.1.1 equals −2ac +
3bc + 6bd.

By choosing the weights a = 7, b = 3, c = 7, d = 2 we obtain a homology plane X with
the following presentation for π1(X):

〈λ3, λ4, λ5 | (λ3, λ4), (λ5λ4)2 = (λ4λ5)2, λ3λ5λ3λ
−1
5 λ4λ5λ3λ4λ5, λ

4
3λ4λ

3
3λ

2
4, (λ

3
5λ4λ5λ4)2λ3

5〉.
Note that if λ3 = 1 we obtain the presentation of π1() a hyperbolic triangle group with
weights (2, 3, 7).

The dual graph of the divisor at infinity is absolutely minimal, see Fig. 19. It is also not
equivalent to the graphs of Lemma 5.5 and therefore the homology plane X is of general
type.

Fig.19. Dual graph

Remark 5.10. By modifying the maximal tree in Example 5.5 and using again the pen-
cil induced by the deleted B3-arrangement we can obtain homology planes from L(6) that
admits a fibration with general fiber P1 \ {3 − points} and inducing a surjective map to an
infinite fundamental group of an orbicurve. This is similar to the construction in Example
5.4. The presentation of the fundamental group is complicated and we omit it.
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Fig.20. Wiring Diagram L(6)

5.2.6. The arrangement L(6).
5.2.6. The arrangement L(6). The arrangement L(6) is the second arrangement of nine

lines with six double points, six triples and two quadruple points. It is the only arrangement
in the list of [16] that is not defined over the reals, see Fig. 21.

Fig.21. L(6) in the projective plane

A presentation for π1(P2 \ L(6)) can be obtained from the wiring diagram from Fig. 20.
Using again this diagram we can obtain the expressions for the meridians around the

exceptional divisors D10,D11, . . . ,D17. We present here the expression of the first four, the
rest can be more easily computed by using a computer (Magma):

λ10 := λ9λ8λ7λ6 λ11 := λλ5
9 λ4λ3 λ12 := λ2λ

λ2
5 λ

λ5λ2
9

λ13 := λ
λ8λ7λ6λ

λ5λ2
9

6 λλ9λ3λ2
5 λ

λ4λ3λ
λ5
9

3 . . .
.

Example 5.6. Several homology planes arise from this arrangement as follows: let I =
{10, 12, 13, 14, 16, 17} and M(L(6), I) = X̄ \ D′. It is not difficult to see that the dual graph
of D′ has two independent cycles. We can cut these cycles by expanding the edges cor-
responding to P1 = {D2 ∩ D7,D4 ∩ D11}. In homology, this expansion can be written as
a[λ2] + b[λ7] = 0 and c[λ4] + d[λ11] = 0. By letting the matrix M be as in 5.1.1, we ob-
tain that det M = −2ac + 3ad + 9bd. Thus, several homology planes can arise from this
configuration.

Using Magma, the presentation of π1(P2 \ L(6)) and the expressions for the meridians
around exceptional divisor obtained by the wiring diagram of L(6), we can obtain the fol-
lowing presentation for π1(M(L(6), I)).

π1(M(L(6), I)) � 〈λ5, λ6 | λ6λ
−1
5 λ6 = λ

−1
5 (λ2

6)λ1 , λ6λ
−1
5 λ6λ5 = (λ2

6)λ
−1
5 〉.

For several values of a, b, c, d such that det M = 1 (for example a = 2, b = 3, c = 8, d = 1),
we have checked using Magma that the associated homology planes are in fact contractible.

The dual graph of the divisor associated to the homology plane obtained with a = 2, b =
3, c = 8, d = 1 is presented in Fig. 22. Note that this graph is absolutely minimal and not
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equivalent to those of Lemma 5.5, neither to those obtained by Zaidenberg [22].

Fig.22. Dual graph

We have obtained no homology plane with infinite fundamental group from this arrange-
ment.

5.2.7. The arrangement L(7).
5.2.7. The arrangement L(7). The arrangement L(7) consists of ten lines with 8 double

points, 7 triple points, one quadruple and one quintuple point. See Fig. 23a.

Fig.23. The arrangement L(7)

The fundamental group π1(P2 \ L(7)) admits the following presentation (omitting redun-
dant relations) obtained using the wiring diagram 23b:〈

λ1, . . . , λ9

∣∣∣∣∣∣
[λλ6λ5

7 , λ1], [λλ5
6 , λ1], [λλ8

9 , λ5, λ1], [λ8, λ1],
[λλ6λ5

7 , λλ1
2 ], [λλ8

9 , λ
λ5
6 , λ

λ1
2 ], [λ8, λ

λ1
5 , λ

λ1
2 ]

[λλ8
9 , λ

λ6λ5
7 , λλ2λ1

3 ], [λ8, λ
λ5λ

λ1
2

6 , λλ2λ1
3 ], [λ5, λ3],

[λλ8
9 , λ

λ3λ2λ1
4 ], [λ8, λ

λ6λ5λ
λ2λ1
3

7 , λλ3λ2λ1
4 ],

[λλ5λ
−1
1

6 , λ4], [λ5, λ4]

〉
.

For the meridians we have:

λ11 = λ10λ9λ8, λ12 = λ10λ7λ6λ5, λ13 = λ10λ4λ3λ2λ1,

λ14 = λ
λ8
9 λ5λ1, λ15 = λ

λ8
9 λ

λ5
6 λ

λ1
2 λ16 = λ8λ

λ1
5 λ

λ1
2

λ17 = λ
λ8
9 λ

λ6λ5
7 λλ2λ1

3 λ18 = λ8λ
λ5λ

λ1
2

6 λλ2λ1
3 λ19 = λ8λ

λ6λ5λ
λ2λ1
3

7 λλ3λ2λ1
4

.
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Let P0 ⊂ Sing L(7) be the points of multiplicity equal or higher than three. Consider
π(0) : X̄ = BlP0 P

2 → P2 and denote by D the reduced total transform of L(7) by π(0). Let us
denote by Δ the dual graph of D.

Lemma 5.11. There exists a unique subgraph Δ′ ⊂ Δ obtained by removing vertices
corresponding to exceptional divisors of D and their adjacent edges, such that we can obtain
from Δ′ maximal trees  corresponding to homology planes associated to L(7) only by
expanding some vertices of Δ′.

Proof. Let us first construct Δ′. Remove from Δ all the vertices corresponding to excep-
tional divisors in D but v11 corresponding to D11 (note that otherwise the vertex correspond-
ing to D10 would be disconnected). We denote this new subgraph by Δ′.

Note that Δ′ has only one cycle. It has eleven edges: eight corresponding to the double
points of L(7) and three coming from D11, and eleven vertices: ten coming from the lines
in L(7) plus D11. We have then that H1(Δ) = e − v + 1 = 1. We will see later that we can
actually have homology planes from this dual graph.

Now, if we connect v10 either with D12 or D13 instead of D11 note that e − v + 1 > 1, so
no homology planes can rise from this graph.

Now, note that if we plug another vertex v corresponding to a triple point with edges
e1, e2, e3, we have that 3 = 2 + H1(Δ′) = H1(Δ ∪ {v, e1, e2, e3}) and by 5.1.1, no homology
planes can arise from this graph only by expanding vertices of Δ ∪ {v, e1, e2, e3}. �

Example 5.7. If we let I = {12, 13, 14, 15, 16, 17, 18, 19} we have that

(14) π1(M(L(7), I)) =
〈
λ3, λ8 | λ8λ3λ

−1
8 λ3λ8λ

−1
3 , λ8λ3λ

−1
8 λ−1

3 λ−1
8 λ−1

3 λ8λ3

〉
.

Denote by ϕ : π1(P2 \ L(7))→ π1(M(L(7)), I) the quotient map. We have that

(15) ϕ(λ9) = λ2
3λ8λ3λ8λ

2
3λ8λ

−2
3 λ−1

8 , ϕ(λ11) = (λ2
3λ8λ3λ8λ

2
3λ8λ

−2
3 )2.

Let us compute first the determinant of the matrix M(i, j) having as the first eight rows
the coefficients ak,r in [λ10+k] =

∑9
r=1 a10+k,r for k = 2, 3, 4, 5, 6, 7, 8, 9, and for the ninth row

the expression for expanding an edge (i, j) of Δ′:

e1,8 : a[λ1] + b[λ8] det M(1, 8) = −3a − b
e1,6 : a[λ1] + b[λ6] det M(1, 6) = −3a
e4,6 : a[λ4] + b[λ6] det M(4, 6) = 3a
e4,9 : a[λ4] + b[λ9] det M(4, 9) = 3a + b
e8,11 : a[λ8] − b[

∑7
r=1 λr] det M(8, 11) = −a

e9,11 : a[λ9] − b[
∑7

r=1 λr] det M(9, 11) = a

.

Therefore, only from the last two rows homology planes can arise. By using the expressions
in (14), (15) and Magma we can show that for a = 1 and low values of b (b ≤ 1000) we have
that π1(X) is trivial.

The graph obtained from Δ′ by expanding the edge e8,11 is shown in Fig. 24. Note that it
is absolutely minimal and not equivalent to those of Lemma 5.5 neither to those of [22].
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Fig.24. Dual graph
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[5] V. Florens, B. Guerville-Ballé and M.A. Marco-Buzunariz: On complex line arrangements and their bound-
ary manifolds, Math. Proc. Camb. Philos. Soc., 159 (2)189–205, 2015.

[6] R.A. Aguilar: The fundamental group of partial compactifications of the complement of a real line arrange-
ment, Topology Appl., 283, 107388, 19, 2020.

[7] J.R. Fowler: Rational Homology Disk Smoothing Components of Weighted Homogeneous Surface Singu-
larities, PhD thesis, University of North Carolina at Chapel Hill, 2013.

[8] J. Wahl: Complex surface singularities with rational homology disk smoothings, Trends Math., 259–287,
2021.

[9] E.A. Bartolo and J. Wahl: Fundamental group of rational homology disk smoothings of surface singulari-
ties, J. Singul., 24, 126–144, 2022.

[10] P. Eyssidieux: Orbifold Kähler groups and the Shafarevich conjecture for Hirzebruch’s covering surfaces
with equal weights, Asian J. Math., 22 (2) 317–332, 2018.
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