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Abstract

Following our previous work, we develop an algorithm to compute a presentation of the funda-
mental group of certain partial compactifications of the complement of a complex arrangement
of lines in the projective plane. It applies, in particular, to homology planes arising from ar-
rangements of lines. In certain cases, the presentation is trivial, and we can obtain infinite new
exotic algebraic and analytic structures on C" for n > 3. We also find the first examples of
homology planes of log-general type with an infinite fundamental group. The infiniteness can
be obtained geometrically by orbifold morphisms to orbicurves.

1. Introduction

The computation of the fundamental group of smooth quasi-projective complex varieties
is in general a difficult task. There exist, however, certain classes of these type of varieties
where specific methods have been developed in order to obtain at least, a presentation for
these groups. For example, for the complement P? \ .7 of an arrangement of lines .27 in P?,
a presentation for 71 (P2 \ &) is obtained in [1], [2], [3], [4], [5].

In [6], by modifying the method in [2], we have developed a method to obtain a presenta-
tion for the fundamental group of certain partial compactifications of the complement P?\ .o/
of an arrangement of lines .7 C P? under the hypothesis that the lines in <7 are defined by
real linear forms.

The purpose of this note is to generalize our method in two directions:

e to admit a general arrangement .7 C P? defined by complex linear forms, and
e to admit a more general class M (.7, I, P) of partial compactifications of P?\ .o7. See
2.3.1 for a precise definition.

In particular, some of these partial compactifications give rise to homology planes, see
below. It also contains some partial compactifications constructed by Fowler in the study of
rational homology disks in [7], see also [8, 9].

We proceed in two different ways: firstly, following [3] and [4], whose work generalize
[2] to complex arrangements, we define a wiring diagram W that encodes some over or
under-crossing of the lines in &7 arising by the complex nature of the forms defining them.
The graph W encodes enough information to obtain a presentation of 7;(M(<7, I, P)).
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Theorem 1.1. A presentation for mi(M(<7, 1, P)) can be obtained from W. The set of
generators are in correspondence with the set of lines in </ and the set of relations has two
types of them:

e those relations R, coming from a singular point p of </. These relations already
appeared in a presentation of 1 (M(<)), and

e for each element t either in I or in P, a relation R, which is a product of conjugates
of some generators depending on t.

As in [6], a main step in the proof of Theorem 1.1 consists in the explicit computation of
an expression for the meridians around certain exceptional divisors, obtained by blowing-up
&/ in some singular points, in terms of the generators. We also obtain in Theorem 3.17,
similar to loc. cit., a presentation for the fundamental group of an orbifold whose moduli
space Blp, P? is a blow-up of P? at some singular points Py of the arrangement .27 and the
non-trivial isotropy groups lie in a divisor D contained in the total transform of <7 in Blp, P2.
This is motivated by the Shafarevich conjecture of the Hirzebruch covering surfaces with
different weights. For the explicit relation and for the equal weights case see [10].

Secondly, let U denote a closed regular tubular neighborhood of <7 in P?. We call 0U
the boundary manifold of 7. In [5], a presentation for 7;(M(/)) is obtained from a pre-
sentation of 7;(0U) by studying the map 7;(0U) — m;(M(</)) induced by the inclusion
0U — M(<7). For the homological version see [11].

It turns out that their methods can also be applied to determine a presentation for the
fundamental group of some partial compactifications M(<7, I, P). However, in order to study
the boundary manifolds U of strict transforms D of .7 in some birational model of P?, we
start from a different presentation for the boundary manifold OU of <7 than that used in [5].

Indeed, when D = )’ D; is a connected, simple normal crossing divisor such that 7;(D)
is trivial, Mumford gave a presentation for 711(0Up) in [12]. This, together with the graph-
manifold structure in the sense of Waldhausen [13], permitted Westlund to give a presen-
tation of m1(AU) in [14] (see also [15]). Here, by a choice of a surface birational to P?
where the strict transform of .o satisfies the hypothesis for the presentation of Mumford,
we obtain the same presentation of Westlund. See Theorem 4.1. Following this construc-
tion, we are able to give a presentation for the fundamental group of a boundary manifold
dUp of a divisor D lying in a surface X obtained by successive blows-up of P? such that
M(</,1,P)=X\D.

We obtain in Theorem 4.3 a presentation for 7;(M(<7)) by studying the map i, : 7;(0U)
— m(M(47)). Moreover, as the construction for 771 (OU) depends of several choices, we can
make them in such a way that the image under i of the meridians of the lines in <7 lying in
0U, whose homotopy class are part of the generators of 7;(dU), lie in the same homotopy
class as the meridians constructed for Theorem 1.1. From this, we do not only obtain that the
presentation of Theorems 4.3 and 1.1 are equivalent, but that the image of the set of relation
in the presentation of m1(M(.27)) coincides with the relations as in Theorem 1.1. From this,
we can obtain a presentation for partial compactifications 1 (M(<7, I, P), see Theorem 4.14.

The presentation of Theorem 1.1 applies in particular for homology planes, affine smooth
surfaces with trivial reduced integral homology, arising from arrangement of lines. To the
knowledge of the author, no general algorithm for computing a presentation for their funda-
mental groups were known.
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The arrangements of lines giving rise to homology planes were classified by T. Tom Dieck
and T. Petri, see [16, 17, 18] . There exists one infinite family L(1, n+1) and six arrangement
L(2), ..., L(7) of at most ten lines.

As in algebraic surfaces, the study of homology planes is usually divided by its log-
Kodaira dimension: the only homology plane X with k(X) = —co satisfies X = C? [19,
Theorem 3.2], there are no homology planes with k(X) = 0 and all the homology planes
with k(X) = 1 can be obtained from L(1,7n + 1), see [20].

For homology planes X with k(X) = 2, Tom Dieck and Petri gave examples arising from
L(2) in [21] as well as a general algorithm to obtain homology planes out of arrangement
of lines. As the fundamental group 7;(P? \ L(2)) is abelian, all homology planes arising
from L(2) are contractible. In [22], Zaidenberg gave a countable number of contractible
homology planes arising from the arrangement L(3). By using the algebraic, respectively
analytic, cancellation theorem of litaka-Fujita [23], respectively Zaidenberg [22], we obtain
the following corollary.

Corollary 1.2. There exists new infinite algebraic and analytic exotic structures on C"
forn > 3.

Homology planes of log-Kodaira dimension one were classified in [24], see also [20].
Among them, there are homology planes with an infinite fundamental group. In fact, they
admit an orbifold morphism to an orbicurve with coarse space P' and isotropy at n > 3
points. However, to the knowledge of the author, no homology plane of log-general type
with infinite fundamental group were known.

Corollary 1.3. There exists infinite examples of homology planes of log-general type with
an infinite fundamental group.

These homology planes arise as in [21]. The infinitude was obtained at first, using the
presentation of Theorem 1.1, but the nature of the groups suggested the following more
geometric construction: using certain pencils of lines associated to the (sub)-arrangements
L(3), L(4), L(5), as presented by Suciu in [25], we can construct homology planes X having a
fibration that induces a surjective homomorphism to the fundamental group of an orbicurve
which is infinite. In fact, all homology planes with infinite fundamental group that we obtain
are of this form.

For the nature of the group m(X) for a homology plane X, it is superperfect, we believe
that our examples are a good testing ground for the following question:

QuesTioN 1. Can these morphisms to orbicurves be characterized in terms of the jumping
loci of the cohomology in a representation variety R(m;(X), G) for some non-abelian group
G?

Note that the classical setting of Arapura in [26], or its extension to the orbifold setting
[27], gives no information as 71 (X) is perfect. Other groups different to C* are needed, see
[28], [29].

We present examples of homology planes, where the image of the fundamental group of
a general fiber is a quotient of Z, see examples 5.3, 5.5 and others, where it is a quotient
of the free group in two generators F = 7 (P! \ {3 — points}), see examples 5.2, 5.4. This
motivates the following question:
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QuesTioN 2. Let X be a homology plane with infinite fundamental group. Does m1(X)
always admit an infinite quotient isomorphic to the fundamental group of an orbicurve?

This is the case for the homology planes X with k(X) = 1, see [20]. Adapting these
arguments, we show in Proposition 5.6, that this is also the case for the homology planes
arising from L(3).

Finally, by using again Theorem 1.1, we give examples of contractible homology planes
arising from L(6) and L(7). Following the arguments of Zaidenberg in [22], we can show
that these examples are not isomorphic to those obtained from L(1,n + 1) and L(3). These
arguments also show that these homology planes are of log-general type.

It would be interesting to have a classification of the fundamental groups of Q-homology
planes. The conjectural classification of Q-homology planes in [30] would definitely be
helpful. The questions about fundamental groups and topology of Q-homology planes can
also be asked for singular Q-homology planes with smooth locus not of general type by using
the work [31, 32, 33]. On the other hand, rational homology balls are of special interest in
low-dimensional topology, see [34, 35]., it would be interesting to use the techniques of
this area to study homology planes. Some connections of algebraic geometry and low-
dimensional topology were studied in [36].

2. Preliminaries

2.1. Notations. We will denote by P? the complex projective plane.

Let o = {Ly,..., Ly} be an arrangement of n + 1 lines in P%. The complement of the
arrangement will be sometimes denoted by M(7) := P? \ <.

Let X be a complex manifold, for p € X we denote by r : Bl, X — X the blow up of X
at p. If D c X is a divisor, we denote by |D| the reduced divisor with the same support as D
and by Sing D the set of singular points of D.

We will denote by a® = b~'ab if a,b € G with G a group. If a € G and b € Z, we denote
as well by a” the b-power of a.

2.2. Meridians. Let X be a complex manifold and H C X a hypersurface. Let p € H
be a smooth point and A a disc cutting transversaly H at p. A loop y in (X \ H) freely
homotopic to the boundary of A with the natural orientation is called a meridian.

The following proposition is well-known, for a proof see [37].

Proposition 2.1. Let X be a complex manifold and D = Y, D; a divisor such that each
irreducible reduced component |D;| of D is smooth. Let y; be a meridian of |D;|, then every
other meridian of |D;| is a conjugate of y; in 71(X \ D) and the kernel of the map m1(X\ D) —
m1(X) is the normal subgroup generated by the meridians of its irreducible components.

2.3. Dual graph of a divisor and partial compactifications of its complement. Let X
be a projective smooth surface and let D = Zﬁ\; , Di € X be areduced simple normal crossing
divisor with the D; being the irreducible components of D and denote by w; = D; - D; the
self-intersection number of D;. Let A be the unoriented graph, where the vertices V(A) :=
{v1,...,vy} are in correspondence with the irreducible components D; of D and the edges
E(A) correspond with the intersection of the irreducible components of D, this is, there is an
unoriented edge joining v; and v; for each point in D; N D;. Denote by X := X \ D.
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We want to define some partial compactifications of X. The idea goes as follows: we
choose a subset of irreducible components of D indexed by / which are not to be removed
from X, we then select a subset P of points in Sing }.;;; D; to be blown-up and remove the
strict transform of 3;,; D; in Blp X.

More precisely, let I C {1,...,N}, P = {p1,...,ps} C Sing(};e; D;) and denote by
7 : Blp X — X the composite of the blow-ups at the points in P. Denote by n*D = Zﬁ\:“ D
the total transform of the divisor D in Blp X, suppose that fori = 1,..., N, we have that D;

is a strict transform of D; and for j = 1,..., s, the D;V ,j are exceptional divisors. Define
the divisor
D/(I,P) = "D — Z D, - Z D
i€l N<j

Note that Blp X \ 7*D — X'(I,P) := Blp X \ D’(I,P). By restricting 7, we obtain an
isomorphism Blp X \ 7*D = X. We call X'(I, P) a partial compactification of X = X \ D.
By Proposition 2.1, the induced homomorphism 71 (X) — 71(X’(P, I)) is surjective.

We comment on the effects of this construction in the dual graph. Denote by A’(/, P) the
dual graph of D’(/, P). It is obtained from A by deleting the following vertices and edges:
for the set I, we have a subset V(1) C V(A) of vertices corresponding to the lines D; fori € I,
remove these vertices from A, together with all edges in £(A) having an endpoint in V(I).
We also remove the edges corresponding to P: let p; € P, there exists ji, j» € {1,...,N}
such that p; = D; ND;,. In the dual graph of 7D the edge corresponding to p; in A has been
divided in two, with a vertex in between corresponding to the exceptional divisor coming
from p;.

2.3.1. Partial compactifications for an arrangement of lines. We can carry the above
construction for a divisor D C X coming from an arrangement of lines ./ = {L;,...,L,.1} C
P2. In fact, this will be the only case we will be interested in.

Let o/ C P? be an arrangement of lines. Denote by Py := {py,...,ps,} C Sing.o/ the
points with multiplicity strictly bigger than 2. Define 7 : X := Blp, P> — P? and denote by
D=|r"d| = Z;’:f“” D; the reduced total transform of .7 in X. Note that D is simple normal
crossing. For a divisor D where the irreducible components are smooth rational curves, the
set of edges £(A) of the dual graph A can be described as £(A) = {(i, j) € {1,...,n+1+ sol |
D;ND; # @,i < j} once the irreducible components of D are numbered. We assume that D;
is the strict transform of L;.

Let/ c{l,....N =n+1+so}and P = {p],...,p},} C Sing Yy D;. Consider n" :
BlpX — X and let D" = 7*(D) = Yie; D] — Yn<; D;. as above. We write M(</,1,P) :=
X'(I,P) = Blp X \ D’ for a partial compactification of the complement of an arrangement
M) =P\ &.

We can iterate this construction in the following way; consider a sequence of blow-ups:

_ gD e _ a0 _ 2O

_ a® b
pX—>Blp_, . p X = ...>Blp X - X - P

.....

.........

denoting the blow-up of Blp,_, . p, X at P;. We can suppose that the irreducible components
of the reduced divisor
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<7 ||+ Pol 7 |+|Pol+...+1Pyl
D i=|@® o on®ye|= 3D+ Y Di+.+ DD,
1 <7 [ |+|Pol+...+|Pi-1

where |P| denotes the cardinality of the set P, are ordered in such a way that 7¥ o - .. o 7%
contracts the curves D with i > |&/| + ...+ |Py| for [ = 1,...,k. Let I C {1,...,|</| +

.....

compactification of M(<f).

Lemma 2.2. Let (X', D) be a smooth projective surface such that
(1) the divisor D' is a simple normal crossing divisor,

(2) there is a birational morphism X’ ﬂ X,
(3) we have that y*D > D/,

then there exists an iterated partial compactification (X", D"") and a proper birational mor-
phism X’ Y X" such that W")'D” > D and m\ (X’ \D"") — m(X’\D') is an isomorphism.

Here we will restrict the study to M(<7, I, P) unless otherwise stated. The results are
easily generalized to the above more general setting of iterated partial compactifications.

ReMARK 2.3. We have that (X’ \ D’) is a quotient group of (M (2/)) by Proposition
2.1.

2.4. Boundary manifolds. Let X be a projective smooth surface and D = Zle D;cX
be a connected divisor. We can construct a regular tubular neighborhood U of D in X which
comes with a surjective continuous retraction ¢ : U — D such that ¢|p = idp. The boundary
oU of U is an oriented, connected, closed 3-manifold (see [12]). We call the 3-manifold 0U
the boundary manifold of D and denote by  : 0U — D the restriction of ¢ to dU.

Suppose now that (X, D) is simple normal crossing and assume that:

e the divisor D is connected,

o the irreducible components D; of D are rational curves ,

e the dual graph of D has no cycles, in particular #D; N D; = O or 1 if i # j. This dual
graph is a tree that we denote by 7.

For such a pair, a presentation of 71 (0U) is given in [12, p. 235] (See also [38]). As we shall
need the notations, let us describe it.

Fix a base point Q; € D; \ Uy, Dy, in every rational curve i = 1,..., k. Denote by P; the
unique point in D;ND,,, if any. Select a simple contractible oriented curve /; C D; containing
Q; and passing through every point P € D; as in Fig. 1a and denote by [ = Ul; ¢ D. We
can construct a continuous map 4 : [ — dU such that y o h|;, = id;, and h(;) N h(l,) # @ if
P:m :D,‘ﬂDm:liﬂlm * D.

It is easy to see that [/ is a homeomorphic image of a tree and deformation retracts to a
point.

Label the points P; € D; by the order they intersect /; as P, ..., Py,, see Fig. la.
Denote by ¢; : dU; — D; the boundary manifold of D;. Let D} = D; \ UﬁizlA(P,-m) with
A(P;y) a small open disk around P;, in D;. Define U := 1//1." (D;). We may suppose that
oUNaoU; = dU:.

We may also assume that Q; € D;. Define another contractible path /! C D: as follows:
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(A) Mumford generators (B) Paths in Dy

Fig.1. Generators

join every two connected components of /; N D} touching the boundary of a disk dA(P;,),
by the segment of JA(P;,,) that connects these two points when traveled in the natural ori-
entation, see Fig. 1b. We assume /; and A(P;,) intersect transversally at two points for all
m = 1,...,](,'— 1.

Consider the circle dA(P;,,) traveled in the natural orientation and connect it to Q; via a
segment of /. We obtain a path g € m (D, Q;), form = 1,...,k; see Fig. 1b. Note that
B ---,B;kl_ = lin (D).

We can construct continuous maps 4; : Uﬁizlﬁ;m — OU? such that y; o hilﬁ;m = id,g;m for
every i = 1,...,k. Let h;(Q;) be a base point in U, denote by y;, = h;(3,,) and let y; be a
fiber S! at Q; of AU I traveled in the natural orientation.

By using the long homotopy sequence of a fiber bundle, Mumford obtained the following
presentation in [12]. See also [38].

Lemma 2.4 ([12, pp. 236-237]). The fundamental group of AU’ is given by the following
presentation

(1) <7’,,1,,7,,k‘,7,, [y:m$y:]m: la’kl’y:_w’ =7;17,,k‘>

with w; = D; - D; the self-intersection number of D;.

RemARK 2.5. Note that AU is non canonically homeomorphic to the trivial bundle § ! xD7,
but the image of the paths y; are not longer identified with a path freely homotopic to one
of the form {point} X A(P;, ). In fact, we need to twist this image by a multiple of y; for it
to be of such form. See [12, p. 235].

Now, to globalize this construction to U, we can use h(l) C dU as a skeleton to define
paths generating m;(0U). Let y; be the loop based at h(Q;) constructed as follows. Join
h(Q1) to h(Q;) by a segment A of h(l), follow y; and come back by A7, Then it is homotopic
to the canonical representative of y; in 1(QU; U h(l), h(Q1)) using the natural isomorphism
m (U U WD), h(Q1)) — m1(0U}, Q;) thus obtained. Define similarly vy;, for 1 < m < k;.
Then y;,, = ¥}, (im for some injective map m — jr(i,m) from {1,...,k;} to {1,... k}.

By gluing the AU together and by using van Kampen theorem, Mumford obtained the
following presentation for 7} (OU).
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Theorem 2.6 ([12]). With the notations and assumptions as above, a presentation for
m1(0U) is given by:

ki
is Vipmls m=1,... ki, y;" = l_[)’j,(i,m),l <i< k>,

m=1

m(0U) = <7’1,...,)’k

where w; = D; - D;, [a,b] = aba™'b™!, a° = 1, the identity of the group.

3. Wiring diagrams and a first presentation of the fundamental group of a partial
compactification

We will describe the construction of a diagram permitting to express some meridians
around different points in the lines of <7, lying in a pencil of lines passing through a base
point R € P? \ o7, in terms of a fixed set of meridians lying in a fixed fiber of the pencil.

As an application we obtain a first presentation for the fundamental group of a partial
compactification M(</, I, P). To do that we will use a modification of the presentation of
the fundamental group of M(</) given in [3] and [4].

This diagram will also carry the information to compute the image of the cycles in the
boundary manifolds of <7 into M(.</). This will be done in Section 4.

3.1. Wiring diagram associated to a complex arrangement. Consider an arrangement
of lines .o/ in P2. Let us fix a base point R € P?\ 7 and denote by nz : BlzgP?> — P?
the blow-up at R. Let f : BlzgP?> — P! be the morphism defined by the pencil of lines
passing through R. In what follows, we assume that we have chosen R in such a way that
flsing.# : Sing &/ — P! is injective.

Let « € P!, consider a simple piece-wise linear path 8 : ([0, 1],0) — (P!, %) starting at *
and passing through every point f(p) for all p € Sing <7, being locally linear around these
points.

By abuse of notation let us denote by .27 the union of the lines of arrangement in P2

Derinrion 3.1. The wiring diagram of <7 with respectto Bis W = e0.(# N f~ (B(1)))
c BIgP2. The i-wire W; is L; N W. Here, we view 7, L; as subvarieties of Blg P? since
R¢ <.

By the choice of 3, as it passes through the points f(p) for p € Sing <7, we have that
Sing ./ C W.

Lemma 3.1. Every wire is a piece-wise linear simple curve.

Proof. As no line in .7 passes through R, every L; € .o/ induces a section of Blz P> — P!
which is in fact an isomorphism. By the choice of S the result follows. m|

3.1.1. Planar representation of the wiring diagram. By considering the pullback
B*(W) and a trivialization 8" Blz P?> = [0, 1] x P', we can view 8"(W) as a closed graph
embedded in [0, 1] x P!. Sometimes we will continuing writing W for 8*(W). Moreover we
can remove the exceptional divisor nlgl(R) from [0, 1] x P! and we can view W as a closed
graph embedded in [0, 1] X C via a piece-wise linear isomorphism.

There exists a complex coordinate z in C such that the projection (p : [0,1] X C —
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[0, 11X R, (¢,z) + (t, R(2))) is generic, in the sense that the extra crossings in p(W) arise as
transversal intersection of only two wires p(W;) and p(W;) for certain ¢ € [0, 1] and wires
W;, Wy that do not intersect in f~'(B(¢)). We call these crossings virtual vertices. We obtain
a planar diagram which can be represented as in the Fig. 2.

We assume that the order of the lines Ly, ..., L, is such that, at the very right of the planar
representation of W, the wire W is at the bottom of W, above it is the wire W, and then W3,
continuing in this way until W,.

DeriNTioN 3.2, Consider coordinates (7, x, y) in R®. We say that a wire W; passes above
Wy atapoint ¢’ € [0, 1]if (¢, x,y;) € Wi, (¢, x,yx) € Wy and y; < yi.

In order to distinguish the virtual vertices arising in the projection we mark the projection
p(Wy) N p(Wy) to indicate if the wires over or under crossed in S*W as in Fig. 5. We call
the first a positive braiding (or positive virtual vertex) and the second a negative braiding (or
negative virtual vertex).

ReMark 3.2. As in the [4], we read the wiring diagram from right to left.

W1 W5
Wo >< \/7 Wy

Fig.2. Wiring Diagram

ExampLE 3.1. Let (z; : 2> : z3) be homogeneous coordinates of P?. Consider the arrange-
ment consisting of two transverse pairs of parallel lines in C> = P? \ {z3 = 0}, defined by the
equation (zo — 21)(z2 — 21 + 23)(z2 + 21)(22 + 21 — 23)73 = 0. The wiring diagram associated to
this arrangement is shown in Fig. 2. There are no virtual vertices since the arrangement is
real and S is a real segment.

RemARk 3.3. When no under or overcrossing is marked in a wiring diagram W, it co-
incides with the notion of wiring diagram in [39]. They are in correspondence with ar-
rangement of “pseudo-lines”, in particular there exists a wiring diagram of 9 wires that does
not comes from an arrangement of lines (the so called non-Pappus arrangement, see [39,
Proposition 8.3.1]), however for 8-wires or less they are in correspondence with the real
arrangement of lines [39, Thm 6.3.1].

3.2. Using the diagram to obtain presentations.

3.2.1. Algorithm for computing a presentation of the fundamental group of M(<7).
We will use the following well-known Lemma.

Lemma 3.4. Let Z C X be an algebraic subvariety of an algebraic smooth surface X. Fix
a point R € X \ Z. Denote by ng : Blg X — X, then n1(X \ Z) = m(Blg X \ n,2).



242 R.A. AGuiLAR

This allow us to compute 71 (M (7)) in the total space of the fiber bundle f:BlgP? = P
We will find suitable subspaces of the total space of this fiber bundle to apply the van-
Kampen Theorem.

Let W c Blg P? be a wiring diagram. Let 8*(W) c [0, 1]xP' be as in 3.1.1. Every vertical
line # x P! in [0, 1] x P! corresponds to the fiber f~'(3(1)). Recall that if p € f~'(B(t,)) for
p € Sing &/ and t,, € [0, 1], then no other point in Sing .o/ lies in the same fiber. Suppose
that there are s points 7, , .. ., t,, corresponding to py,..., p,in Sing .<7.

By fixing a planar representation p(8*(W)) of f*(W) as in 3.1.1, some under or over-
crossing can arise. As the projection is generic, they correspond to a finite number 7/, ..., 1,
of elements of [0, 1] distinct from the 7,, .

Order the set {t,,,...,1,,,1],...,1,} by increasing order and relabel them by 7, for k =
1,...,v+s. Let B, ¢ P' be a neighborhood of 3(t,) homeomorphic to a disk in C such
that BN B; = @ if [k — j| > 1 and B, N By, is homeomorphic to a disk. Consider M, :=
(B c Blg(P?) fork = 1,...,v + s and denote by M, (/) := M, \ M, N Rl .

Lemma 3.5. We have that
T M ()N M (D))= F,fork=1,...,v+s—1,
with F, the free group in n generators.

Proof. First note that as B, N B.,; € P!\ {f(p) | p € Sing .o/} we have that M,(2/) N
M1(7) = f~1 (B« N Bys1) is the restriction of a fiber bundle to a contractible base. The
fundamental group of any fiber in B, N By, is a free group in n generators. |

Proposition 3.6. We have that

(M) = m (M () ﬂl(Ml(ﬂfTﬂMz(W)) ﬂn(Mm-n(;)ﬂMm(d))

Proof. By Lemma 3.4, we have that the morphism Blg P? \ mpd — M() = P2\ of
induces an isomorphism in the fundamental groups.

Denote the restriction of f to Blg P*\mp.e/ by f : Blg P2\npe/ — P'. Let oo € P'\U'H{ B,
and note that f~!(P'\{co}) is the complement in Bl P*\ 7}« of a smooth irreducible divisor
D, that is the restriction to Blg P? \ny/ of the strict transform of a line in PP? passing through
R.

By Proposition 2.1, we have that

m (Bl P? \ mpe/) = m (£ B\ {oo))) (¥,

where yp_ is a meridian around D...

Note that, as R € P? \ &/, we have that 7' (R) C BlgP? \ %/ and its restriction to
F~1(P"\{oo}) is isomorphic to C. The meridian vp., can be chosen to lie inside this restriction
and therefore yp_ = 1. We obtain that 7r;(f~'(P' \ {o0})) = m;(M()).

Observe that UE:; M,(<7) has the same homotopy as (Blz P?\ .27) \ f~!(c0). We conclude
by successive applications of the van-Kampen Theorem: by construction By N\ By, = @, we

obtain that 711 (U M (7)) is isomorphic to

k=1

1 (My ().
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j+1

AL

(&) T in F71(B(0x)) () T in f~(B(0nt1)) -

Fig.3. Geometric generating set in different fibers

m(Mi()) *

ce * T (My45()). O
i (M(/ )Mo (<)) 11 (My 51 ()M, 5())

We want to compute now 71(M, (<)) for k = 1,...,v + s and the morphisms of amal-
gamation 1 (M (<)) « mi(M () N M 1(F)) = n1(M1(27)). In fact, if no point of
Sing o7 lies in M, (<) we will have that m(M,(<7)) = F,. However, some conjugations
may arise in the meridians due to braiding of the wires in W.

We have to distinguish 3 cases depending in the nature of M,: M, contains a point of
Sing 7, it contains a positive braiding of W or it contains a negative braiding.

Let 6, < ¢, be sufficiently close so that 5(6,) € B, N B,—; and denote by x(lk), e x;’fl the
set of points in the planar representation p(8*(W)) of the wiring diagram W labeled from
bottom to top corresponding to the points in =1 (8(6,)) N 7.

DerNtTION 3.3. A geometric generating set T®W = {/1(1'(),...,/1;'21} of the group

m(F1BO) \ (F1BO)) N ). ) with g, = 7 (R) N F~1(B(6,)) is the datum of A\,
/11(1’21 meridians around x(l'(), £ respectively, all of them based at g, such that /11(1’21 e
A\ is nullhomotopic in £~ (B(6)) \ (x%, ..., x%} = P!\ {(n + 1) - points}.

S+l
> n+l

()

n+1

REMARK 3.7. A geometric generating set I'® = (A9, ...
r® =%, A0 of m(C\ {2, x), g

} induces a geometric base

We consider here the geometric generating set I® = {1%,... 2% } as in Fig. 3a. As

7r1(7r1;1(R)) is trivial, we can fix a point g € nl‘el(R) as a global base point for all the geometric
generating set I'® with k = 1,...,v + s by joining g to ¢ by a simple path in 7' (R).

We describe how the meridians change when we move the generators of I'¥ to the fiber
£ (B(Os1)) and express them in the generators [« see Fig. 3b. We record as well the
relations arising in between.

Suppose that p € Sing.Z N M,, and let I'®¥ be as above. Denote by j the first index of
the meridians of I'¥ corresponding to a line passing through p, and by m the last. We have
that /l,(f“) = /ljf) for k < jand k > m as we can deform continuously /lgc’() to /lfjﬂ) having the
same homotopy type in (M, ().

Let R, = [AW, 2% ..., /IE.K)] denote the set of equations of the form AW L w0

m-1’ m—1

oW =
J
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/lffk()m)/lg()m_l) e /lff()i), where o varies in the set of cyclic permutations in m — j + 1 elements.
a; d
ba/ | | c
| |
cba : p ‘ b
debe | a
| |
T(s+1) ()

Fig.4. Actual vertex

Lemma 3.8. Let p € Sing &/ N M,. Then m{(M, (<), q,) is generated by the elements of
I'® and TD together with the relations R,, /12@1) = /l,(f) fork < jorm<k A% ... /I(IK) =1

n+1
and

A = 2,

(%)

(k+1) _ () 4;
Aoy = Ay
Q0D Q@ P
m=2 = Tj+2 ’

205D = gl
J m

(see Fig. 3 and Fig. 4.)

Proof. Let V,, be a neighborhood around p homeomorphic to a product B, X D with D
a disk not intersecting Ly € &/ with k < jor k > m. The local fundamental 7{(V,, \ <)
equals the fundamental group of the link associated to the singularity p which is a Hopf link
of m — j+ 1 circles (see [40, Lemma 5.75]).

For the complement M, (<) \ V,, we have (M (/) \ V),) = F,_¢u—j) and if V’ is a small
neighborhood of V), we have that as V,,\ <7 retracts to dV), \ &7 then mi (M (/)\V,)NV’) =
m1(V, \ &). By van-Kampen we obtain the relation /lfl’fl e /l(lk) =1. m]

Lemma 3.9. Suppose that there is a positive braiding of the wires j and j+ 1 in M, (7).
Then the group n\(M (<), q,) admits the presentation

n+1° Jj+1 j+1 j+1

</l(lk)’ - .,/I(K) /15.K+]),/1(K+l) | /1(1(+1) — /IE'K),/I(J'K-H) _ /1(K) ,13K)>.

(See Fig. 5a.)

Proof. As in lemma 3.8, we have that we can deform A;{K“) to /l,((’() fork<jorj+1<k
without changing the homotopy type.
The result follows from the Wirtinger presentation of a braid interchanging the j and the
j + 1 wire: consider the meridians /IE.K),/l(j'fl in f7'(8(6,+1)) as in Fig. 3b. Note that in
71 (f 1 (B(6es1)), Ges1) these meridians satisfy the relations:
%D

k+1) _ () (k+1) _ &) Y1 _ ) 4
/lj+1 - /lj ’ /lj _/1j+1 ' _/lj+1 i
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(r) N5
Ajt1

(A) Positive braiding (B) Negative braiding
Fig.5. Braiding in W
This can be seen directly from Fig. 3b (cf. [40, Lemmas 5.73, 5.74]). O

Lemma 3.10. Suppose that there is a negative braiding in M, (<), then the group
(M (), q.) admits the presentation

n+1’ j+1 j+1

w !
(k) (k) (k+1)  H(k+1) (k+1) _ (K)/l'ﬂ «k+1) _ )
</11 T S Sl I S L —/lj+1>.

(See Fig. 5b.)

We can summarize the information carried by a wiring diagram W and the changes in the
geometric sets '™ as they cross a vertex in W as follows.

For every ¢, € {11, ..., t,+,} there exists a crossing p, in the planar representation of W, let
% = {c®(1) < ... < 0™ (n + 1)} be an ordered set, with o a permutation of {1,...,n +
1} such that the k-th element o (k) records the position of the wire Waw ) in the fiber
F71(B(6,)), when W is read from bottom to top, with 6, as in Definition 3.3. This is, xl({") €
Wyw fork =1,...,n+ 1. Note that o'V = id.

The order in T1™ records the local position of the wires of W in f~'(8(6,)), while the
order {1, ...,n+ 1} induced from the order of the lines in <7 is a global order. For a wire W;
of W, we write ® ™' (k) to indicate that the wire W is in the ® ™' (k) position in the fiber
F(B0).

Consider the free group F ’(1'21 generated by the meridians in T® and let 7 : {1,...,n +
1} — Fi'i)l defined as follows:

Suppose that the crossing p, corresponding to 7, satisfies p, = Wywjy N Wow(jrry N ... N
WO-(K)(m), then

e fork=1,...,,m+1,...,n+1,
™) =3 o ®
/lk_l---/lj for j < k <m,

if ¢, is an actual vertex,

fork=1,....j,j+2,...,n+1
(K) _ e 9 ’_]’_] ’ 9 )
! (")—{w fork=j+1,

if 7, is a positive virtual vertex, and

7®(k) = e</<) 1 f0fk=1-,---,]'—1,j+1,...,n+1,
()™ for k = j,

+

if 7, is a negative virtual vertex.



246 R.A. AGuiLAR

Thus, Lemmas 3.8, 3.9 and 3.10 imply the following proposition.

Proposition 3.11. Let W = {/l(l’(),...,/l;’fl},l“(’(“) = {/l(l'(“),...,/lif”)} be geometric

+1

generating set as in 3.2.1 and suppose that p, € M,. Then we have that in n\(M (<), q,):

(k+1) _ ()7 ® (k) _
/10'“*1)_1(0'(“)(/()) - (/lk ) for k=1,...,n+1,

or equivalently,
k+1) _ ) 70 (a0 (@ * D (k) _
= (/l(rm"((r(@(k))) ( ) fork=1,...,n+1.

Note that if p, = Wywj) N ... N Wawn we have that

k fork=1,...,j—1l,m+1,....,n+1,
m—t fork=j+cand¢=0,...,m—j.

O_(K+l)_1(O_(K)(k)) - {

As the fundamental group of M(«) is generated by the meridians around each line, we
fix the geometric generating set 'V = {/1(11), A = A ) © M().

n+1

Theorem 3.12. Let o = {Ly,...,L,11} be a complex arrangement of lines in P? and let
I'D be a geometric generating set as above. A presentation for the fundamental group of
M() is given by

ﬂ](M(JZ{),Q) = </ll’---’/ln+]

URK,/ln+] "'/11>,
K

with R, as Lemma 3.8 and each k corresponding to a point p, € Sing <7 .

REMARK 3.13. The relations R, are expressed in terms of the geometric generating set ')
by substituting /ll(('() by a conjugate of /lffl()K) ® by elements of ') by repeated applications of
Proposition 3.11.

Proof. From Proposition 3.6 we know that 7| (M (7)) = w1 (M (&7))*f, - - =xp, 11 (M,45(7)).
Now, the groups 7r;(M,(<7)) are presented in generators I'® and I'“*D, and relations which
are words in these letters (see Lemmas 3.8, 3.9, 3.10). The geometric generating set I'® is
chosen in such a way that it lies in a fiber over a point of B,_; N B,, and therefore, we can
assume that the amalgamation 71 (M,_1 (7)) *r, 71 (M,(.<7)) permits to see ['® in M,(.2/) and
M,_1(2f) simultaneously.

Note that A%V ... /l;'(“) =W /IEK), hence /lfl'fll) .. /1(1K+1) = /151'21
1,...,v+s—1.

The relations in 711 (M,(<7)) when there is a positive or virtual vertex in M,(<7), can be
omitted in the presentation of 7 (M(.27)) by writing every meridian of T**! in terms of I'®
as in Lemmas 3.9, 3.10.

When there is an actual vertex in M, (<), the relation R, = [/lﬁ,'i), AW

m—1°"

() —
- A, for every k =

o /15.’()] will ap-
pear in the presentation of (M (<)). This relation can be expressed in terms of I'" in a re-
cursive way, by expressing I'® in terms of ['*~1 by using the amalgamation of 7, (M,_; (<))
and 71 (M, (7)) over B,_1 N B, and the presentation of M,_;(/) given by proposition 3.11.
More precisely, we have that

T(1>(U<~)(k)).7<2>(g(2)*1 ((Tm(k))...r(x—l)((T«—lrl (Uu)(k)))

(k) fork=1,...,n+1,

W _
AW =2



ARRANGEMENTS, HOMOLOGY PLANES AND FUNDAMENTAL GROUPS 247

-1 . . .
and every 7" (0'(’) (a'(K)(k))) can be expressed in terms of I'") in a recursive way for r =
1,...,i—1. O

3.2.2. Algorithm for determining the presentation for a partial compactification
M(</, 1, P). Let W be a wiring diagram and (A, ..., A1 | UgRg, Ay -+ - A1) @ presentation
of m1(M(2/)) as in Theorem 3.12.

Consider a partial compactification M(<7, I, P) of P2\ & asin 2.3.1. Here, we let Py =
{p1,....ps,} C Sing &/ denote the points of multiplicity strictly bigger than two, consider
n: X = Blp, P — P? and denote by D = Z?:ll”o D;=n*a/. Select I C {1,...,n+ 1+ s}
and P = {p},...,p,} C Sing Y4 D;. Consider another blow-up " : Blp X — X and
write 7/°D = Y0 D7 Define D' = /(D) — Yie; D} = Sisni145, D) and M(7, 1, P) =
Blp, X\ D'.

From Proposition 2.1, we have that a presentation for the fundamental group
m(M(4, 1, P)) can be obtained from (A1, ..., A,41 | UeRi, Ayrq - - - A1) by adding as relations
certain words A(D;) representing some meridians around the irreducible components D’ with
eitheri € I or n + so + 1 < i. In order to do so, we have to distinguish four cases for these
irreducible components D! of 7" D:

(1) D! is the strict transform of a line in .27. In this case i <n + 1.

(2) D; is the strict transform of an exceptional divisor D; in X.Inthiscasen+ 1 <i <
n+1+sp.

(3) Dy, is an exceptional divisor coming from a double point p in Sing 7.

(4) D, is an exceptional divisor obtained by blowing-up a point p = D, N Dy with
r<n+landn+1<k<n+1+s.

For the lines as in (1) we let A(D}) = 4.

For the lines as in (2), suppose that D; C X is an exceptional divisor coming from a
point p € Sing </ and suppose that p € M,, this is, t, is the k-element in the ordered set of
vertices t, ..., t,, of a planar representation of W as in 3.2.1. In other words 7, = 1, € [0, 1]
satisfies B(t,) = f(p) and consider I'® = {/l(lk) yens ,/11(1'21} the geometric generating set of
F1BB))\ (x(l’(), e, xﬁfjl) C M,(</) and suppose that p = Wy jy N Wizt N .. 0 Wawm
with the local index IT® = {c®(1) < ... < ®(n + 1)} as in 3.2.1. Associate to D; and to

its strict transform D/, the word A(D;) = A(D}) = A% /15;)_1 e ﬁ;’fl : /IE.K).

Lemma 3.14. Let D! be a line as in (2). Then A(D;) = /1,(,';) . /lis)_l .- -/15.'1)1 . /l(].'() represents

a meridian around D;, and by pull-back, also around D;.
Proof. Lety : U — D and ¢; : U; — D; be the boundary manifolds of D and D; in
X, respectively. Note that we can use the meridians /15.'(), .. ,/lﬁ,f) to give a presentation of
m(0U™), with U? = U NOU; as in 2.4, as follows: the projection n(dU;) to P? can be seen
as the boundary of a 4-real ball B, centered at p. There exists R, € dB), such that for each
Jj <k < mtheloop a; := /lff) is homotopic to a product azlkz with
e The loop ay, starting at R, lying completely in dB,, and surrounding the line Lw ).
e The loop ay, is a simple path connecting R, and the point R € P? \ &7
By pulling-back the meridians «;,, ..., @,, to X we can see them as lying in U. By con-
struction of the geometric generating set I'¥), the product @, - - - @, is homotopic to a path
encircling the lines Lywj), ..., Lywon and therefore the projection ¢; (@, --- ;) = e in
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(D}, ¢i(R,)). We can construct a continuous map /4; : Ukmzjgb,-(akl) - UZLJ.a/k1 such that
hi(y(ay,)) = ay, and therefore the loops «,, ..., a,, together with a fiber a; of OU; gener-
ate the group m1(4U}) as in Lemma 2.4. Moreover, as D; - D; = —1, we have the relation
@ = @, -+, inm(OU],R)).

By construction of ', we have that every two ay, and ay, with j < k,k' < m are
homotopic. Therefore, by connecting «; to R via a,, we obtain the relation a/?j2 =AW... /15.'()
in 7 (P?\ ).

By pulling-back a/i.)[j2 to Blp, we obtain that it is homotopic to a meridian around D!. O

For the lines D/, as in (3), suppose that p = D, N Dy with r,k < n+ 1. Consider the unique
index 1 < k < v+ ssuch that p € M, and let T® = {/l(l’(), e, /lf,l’fl} be a geometric generating
set of (M (27)). We denote

7y . ) (x)
AD,) = /lcrw‘(r)/lcr«r‘(k)'
Recall that o'(")_l(r) and O'(K)_l(k) record the local position of the wires W,., Wy, respectively,
in the local order of the wires of W in f~1(8(6,)) given by II¥) = {c®(1) < ... < c®(n+1)}.

Finally, let D), be as in (4) with p € P. We have that p = D, N Dy with r < n+ 1 and
Dy an exceptional divisor coming from a point p(k) € Py. Let us suppose that p(k) € M,.
Denote by T'® = {A(IK), . ,/11(1’21} C M, (&) the geometric generating set as above. We can
suppose that p(k) = Wowy N ... N Wowgn. Asn+1 <k <n+ 1+ sy, we can consider the
word A(Dy) = A% .. -/IS.K) as in Lemma 3.14 above.

Lemma 3.15. A meridian of D), is given by A(D),) = A9 A(Dy). Moreover, A

@) a®7(r)
commutes with A(Dy).

Proof. Recall that by construction, /l('?)fl( : is the meridian of L, lying in the geometric
o (r

generating set [,
Let ¢p, : dUp, — Dy be the boundary manifold of Dy in X. For k' = j,...,m, let us
decompose the loops ap = /lfc’f) in two parts @y, @y, as in the proof of the Lemma 3.14, such

.
that oy is homotopic to a/k,k *. The proof of the same Lemma and 2.4 give us that
1
mOUp, Ri) = s ooy @y @i | L, el = @, -+~ @)

for a point Ry € dU), and ay a fiber of U}, . We can globalize the relations in this pre-
ayr

sentation by considering ak,k ? and obtain that A(D;) commutes with /15{',() fork’ = j,...,m,in
1

particular as D, intersect Dy, we have that /l('?)_l( : commutes with A(Dy).
o'k r

Furthermore, the point R; can be chosen to lie in the boundary B, of a ball B, C X
around p. Let Yo, oUu D, = D; be the boundary manifold of D; in Blp X and Aj, A, a pair
of disks about the points D}, N Dj and D), N\ D;, respectively. Denote 6U2‘);) = wl‘)i (D,\ (AU
A»)). By working in local coordinates, it can be seen that ay, « and a fiber a, of 0U D,
at Ry generate the group 7 (0U; ;7) and that

o),

[k, @pl, (@1, @pls >

* —
7(0Up,) = <“k’a"(“”<’>l’“” ap=a-a

o
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by Lemma 2.4 and because D), - D), = —1. O

Theorem 3.16. Let o/ C P? be an arrangement of lines, W a wiring diagram and
M(/, 1, P) a partial compactification. Then

R At -0, a0, awp), > :
k

m(M(<,1,P),q) = </ll, e Apg
i€l peP

is a presentation for the fundamental group of the partial compactification.

Proof. We only have to justify the expression for those meridians around lines as in (1)
and (3). For the meridians of lines as in (2) and (4), the expression A(D}) and /l(D;,) is
explained by Lemmas 3.14 and 3.15, respectively. We will conclude by Proposition 2.1.

For the meridians around lines as in (1), it is immediate by the biholomorphism property
of the blow-up outside the exceptional divisor.

Consider a line D; as in (3) and suppose that it comes from a point p = D, N D; with
r,k < n+ 1. Note that there is essentially no difference with a line as in (2) besides the
change of local indexation to a global one, and therefore, we can proceed as in the proof of
Lemma 3.14 to obtain that ’lf,?xrl(r)/l:()w(k) is homotopic to a fiber of U} connected to the

global base point R. m|

AsD = Zfi | Di is a simple normal crossing divisor with N = n + 1 + 59, we can consider
an orbifold structure in (Blp, P2, D) (see [10] for the notation) by choosing weights r =
(r1,...,ry) € N* U {+oo})V.

Theorem 3.17. Let o/ be a complex arrangement of lines, W a wiring diagram and
consider the weights r of D as above. The fundamental group m(X(Blp, P2, D,r)) of the
orbifold X(Blp, P2, D, r) admits the following presentation:

N
R A -+ 4, Ua<Di>’f>,
k i=1

where the relation A(D;)" is omitted if r; = +oo.

</lla""/ln+]

4. Boundary Manifolds methods

In this Section we use the results of Mumford as stated in 2.4 in order to study the funda-
mental group of the boundary manifold U of an arrangement of lines 7.

The notion of wiring diagram defined in the previous section will play an important role,
a presentation of 7 (M(</, I, P)) will be obtained as a quotient of the presentation of 77, (0U)
and compared with Theorem 3.16.

4.1. Boundary manifold of an arrangement of lines.

4.1.1. Fundamental group of the boundary manifold of an arrangement of lines. Let
o/ ={Ly,...,Ly} C P? be an arrangement of lines and denote by 7 : X — P? the blow-up
of the projective plane at the sy points of Sing ./ of multiplicity equal or higher than 3 as in
2.3.1. Recall that D = |n*D| = ?:1‘“’“ D; is the reduced total transform of %7 in X and let
Y : 0U — D be its boundary manifold.

Using the description of Mumford (Theorem 2.6) and that of a weighted graph, Westlund
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gave a presentation of the fundamental group 7;(0U) of AU [14] (see also [15]). Let us
describe this presentation.

Denote by A the dual graph of D and by &£ the set of edges of A as in 2.3 above. As-
sociate to each vertex v; a weight w; corresponding with the self-intersection number of the
associated line D; in X.

Let 7 be a maximal tree of A (a subgraph of A containing no cycles and all the vertices
of A) and denote by C = A\ 7. Note that g = |C| = b;(A) equals the number of independent
cycles in A.

The edges in C correspond to g points {py,..., p,} in Sing D. Let us denote by )

Bl,,...», X — X the blow-up at these points. Denote by D’ = Z;’:ISO” Dj the strict transform

.....

dual graph of D’ is a tree that can be identified with 7 by removing from A the edges in C.
In particular, D’ and U’ are connected. Let V(D) = D’ + ZZ:] E be the total transform
of D with Ey, ..., E; exceptional divisors.

Now, if (i, j) € C corresponds to the point p; for some 1 < k < g, there exists an

.....

D;, D; of D, respectively such that £y N D} # @, E; N Df/. # @ and D; N D; = pi. Denote its
boundary manifold by ¥, : 0Ug, — Ei, ) : OU! — D;,w} : GU;. - D;.
Select a base point Q; € D! \ (U#iD; U UZzlEk) as in 2.4 and a simple curve /; C D;

containing Q; and every intersection of the form:

(1) D:n D;., with (i, j) an edge in T,

(2) D} N Ey, with E; coming from a point p; corresponding to an edge (i, j) in C.
Let us label these points by the order they intersect /; as Pji,..., P,-k;. Note that for every
P, there corresponds a unique edge (7, ja(i,m)) in A. This defines an injective function

m = ja(i,m) from {1,... .k} to{l,...,n+ so + 1}.
We also label only the points as in (1) by the order they intersect /; as P;,,..., P} and
define a function m +— jr(i,m) from {1,...,k}to{l,...,n+ 59+ 1} asin 2.4.

Let/ =Ul, c D" and i’ : | — dU’ be a continuous function such that ¥’ o h’ = id,. For
an exceptional divisor E; corresponding to an edge (i, j) in C, we let [, C E; be a simple
path connecting E N D} to Ex N D’ and hg, : lg, — 0Ug, such that g, o hg, = idy,,
he, (Ig) "R () # @ and hg, (Ig,) N A (1;) # @. This create a cycle ¢ = ¢;; in the boundary
manifold of 7(V"(D), which we orient passing first by /’(1;), following hg, (Iz,) and coming
back by /’(l;). We denote by y1, ..., Vn+1+s, the meridians around D/,..., D!

ni14s, Obtained
as in 2.4 using A’ (0).

Theorem 4.1 (Westlund). A presentation for 71(0U) is given by

Sij PR
Yis-oos Yursort (Vi VS (i.peé&
T (6U) = —w; k; SijpGiam) .
ClyensCy Y; :Hm=17jA(Ai,m) 1<i<n+sy+1

where
¢ if (i, )) equals the k-th element in C,
Sij =1 ¢k if (j, 1) equals the k-th element in C,
1 if (i, j) is an edge of T .
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Proof. From Theorem 2.6 we know that

ki
m(0U") = <71, e Vet |[[Vis ViramI M = 1,0 ki, = l_[74/'n,~,m>>,
m=1

.....

that (i,/) is an edge of 7 if and only if [ = jr(i,m) for some m € {1,...,k;} and therefore
the set of relations A = {[y;,, vj,iml | m = 1,...,ki,i = 1,...,n + so + 1} is the same as
B = {[yi, v | (i,]) an edge of T'}.

Let E; be an exceptional divisor corresponding to an edge (i, j) in C as above. We can
remove two disks A} € D/, A, C D;. in D’ around the points ExND; and E;ND’;, respectively,
and obtain a pair of torus 77, T;. as boundary from U’ = '~}(D’ \ AL UA)). Let y(Ev)), vi
and y(Ek);., , be generators of 1(7}) and 7r1(T]/.) with y(Ey)], y(Ek);. constructed from 0A],
OA), as in 2.4. We obtain the following presentation for 71(0U"°):

A, lyis YEQ L Ly v(E)']

-w, ki ..
, Y =H=y-(1’)f0rl¢l,],
Yis-- -')’n+so+1’7(Ek)i, V(Ek)} l—w[ _ =t 2T ,
Yi = Viran YER, Y jrtik)»
—w

Y =Yg YED ) Yk

where the products in the lowest row of the relations are taken in such a way that
L= yi(yj) - iy(E)) - - - ¢ilyy,) holds in my(D;" \ Ay) and similarly 1 = ;(y})---

l//j()/(Ek)}) . ‘/’j(?’}kj) in m(D;.* \ Ap) for generators y,,y.,,. .. ,y;kr generators of 1(0U™)
forr =1, jasin2.4.

Let E; denote the submanifold of Ej obtained by removing another pair of disks A, Ay
of E} about the points E; N D} and Ej; N D;. as in 2.4. Write BU;}k for wgkl (E;). Note that
the boundary of oU Ek consists also of a pair of torus 7;,T; corresponding to A; and A,

respectively. Let y;, y(Ey) and y;, Y(Ey) be generators of 711(T;) and 7{(T;), respectively. By
(1), we have that 7, (U, ) = (Y(Ex), ;.7 | IY(E, vi], IVEQ, Vi v(E) = vy)) = (v, 7 |
[yl v/]) = 7Z? because E - E; = —1.

We can glue U to dU, by first gluing 7’ to T} by a longitude-to-meridian orientation-
preserving attaching map f, and similarly T'; to ij by a map g.

First, by the van Kampen Theorem we obtain that y; = y and y(Ey) = y(Ey).. Then, from
HNN extension we gety; = c,:ly’.ck and y(Ek);. = c,:ly(Ek)ck.

J
We obtain the following presentation of 711(dU" Uy, AUy ) by replacing y; = v, y} =

;! ;! ’ c;! ’ 1 .
vy (ED =iy VED; = vy y(ED; = vy interms of yi, ¥, ¢k

;! . .
iy L vy with D e T
’yl_wl = Hl:’llzl ')/jr(l,m) for [ * i, j,
Yoo Vneso+1 Ck| —uy 1
Yi = Y@y Yy
_w'

j = . CECEEY Ck se e e .
yj = Yirgy YiYi 7]T(j.k,->

Ck
i Yirary

Note that the row of the relations corresponding to i can be simplified to

—(w/+1) ;!

(2) Y; =YirGn - ij U yj’f(i.k,-)’
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as y; commutes with every y; ¢m. A similar simplification can be made for the relation
corresponding to j.

We repeat the above process for every E, with k = 1,...,g. After this, the order for the
product as in (2), is given by the function m — ja(i,m) and the conjugations s;; as in the
statement of the Theorem. We get that yl._(w; kD ngl j;’fl(n:; Note that k! — k; equals
the number of points in {py, ..., p,} N D;, and therefore w + (k] — k;) = w;.

This gives a presentation for the fundamental group of the boundary manifold of the total
transform of D, which is homeomorphic to dU. O

A central computation in our work is the expression of the meridians around the excep-
tional divisors Dy.2, ..., Dyygp1 In D = Z?:]SOH D; in terms of meridians of the lines in 7.
As a partial result we obtain an expression in the following corollary. The cycles ¢, will be

expressed in terms of meridians of the lines in 4.2.

Corollary 4.2. Forr=n+2,...,n+ sy + 1, we have that in 7;(0U),

c,;l if (r, j) equals the k-th element in C,

k;
Yy = l_l Y I\ ith s, i =19 ¢k If(j,r)equals the k-th element in C,
m=1

Ja(r.m)

1 if (r, j) isan edge in T .
Proof. It follows from the relation y,"" = HZ:I y;A’(Al(m; in the presentation of m,(0U)
in Theorem 4.1, the fact that w, = —1 because D, is an exceptional divisor and hence
ja(r,m)yef{l,...,n+ 1} O

4.1.2. Choice of a maximal tree. In what follows, we will define a maximal tree 7~ of
the dual graph A of D as defined in [15, Section 3.3].

In the arrangement </ = {Ly,..., L,.1}, we will fix the line L, as the line at infinity,
recall that we denote by D; the strict transform by L; fori <n+1in D = Y. D; C X.

Consider the following subset of edges £’ C £ which defines a maximal tree 7' C A of
the dual graph A of D:

(1) Let (,n+1),(n+1,)) € & if D,yy N D; # @. This is, all the edges having as an
endpoint the vertex corresponding to D, .
(2) Let (i, j) € & if n+ 1 < j(D; is an exceptional divisor) with either
® DN Dy =@andi=min{/| D; N D; # @}. Note that D; comes from a point
in Sing o7 \ Ly, or
e DN D, # @and D; N D; # @. The line D; is the strict transform of a line
L; intersecting L, in a point p of multiplicity > 2 and D); is the exceptional
curve obtained by blowing-up p.
Note that £ \ £’ consists either:
e of edges corresponding to double points L; N L; with i, j <n + 1, or
eifp="L;N...NL;,withi; <...<i;<n+1,2 </ and E; denotes the exceptional
divisor obtained by blowing up at p, of edges of the form (i,, j) withr =2,..., 1
Let us consider the presentation of 71 (0U) as in Theorem 4.1. If (i, j) equals the k-th element
in A\ 77 as in the first point above, we denote the cycle ¢x by ¢; ;. Recall that if i < j, we
pass first through A’(l;) and then through A’(/;).
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For the cycles created by the edges in the second point, let us suppose that the irreducible
component of D are ordered in such a way that D,,,; N D; # @ for j = n+2,...,s and
D, .ND,=ofork>s".

For s’ <t <n+ 1+ 59, we have that, as D, is an exceptional divisor, 1 < ja(¢t,m) < n for
l<m<kl,andy " = HIZ:l ij(AL“n;)) holds as in Theorem 4.1. Note that if (ja(¢, m), ¢) equals
the k-th element in A \ 7', we have that s,,(.m = cx. In this case, we denote ¢ by ¢, m),-
As 7" is a maximal tree, the edges corresponding to (ja(¢,m), ) for 1 < m < kI, give rise to
k! — 1 independent cycles ¢, m), in A.

Using the tree 7 and corollary 4.2, we can express the meridian around an exceptional
divisor in terms of the meridians of the lines and the cycles ¢y ¢

(3) _ A Ciahe Ciade o Cjak))

’
Yo=Y Yised " Vistky  fOrS <esnt 140

with ¢j,.n, = 1if r = min{ja(e,m) |m =1,...,k}.

4.2. From a presentation for the boundary manifold of an arrangement of lines to
a presentation of its complement. Let <7 C P? be an arrangement of lines and AU its
boundary manifold. We identify U with the boundary manifold of the total transform D of
7 inm: X — P2, the blow-up of P? at the points of Sing .7 of multiplicity higher than two.
Denote by i : U < P?\ &/ the inclusion map and by i, : 7;(0U) — 7 (P?\ <) the induced
homomorphism.

Consider the presentations (y1,...,¥nt1,C1,...,¢4 | R) of m1(0U) with R’ the set of
relations as in Theorem 4.1 and (A, ..., Apsi | URK, Ayt - - - A1) of 1 (P?\ &) as in Theorem
3.12.

Recall that the construction of the meridian y; around the irreducible component D; of
D = ZZ:”" Dy depends on a choice of a maximal tree 7 of the dual graph A of D, con-
tractible paths /; C Dy, and a section i : [ = Ul — 0U, see 2.4. We choose the maximal
tree 7’ constructed at 4.1.2. For p = L, N...NL, € Sing.@/ \ L,,;, we have a unique cycle
Cpp if r =2 and r — 1 cycles if r > 2, in this case let us denote by D, the corresponding
exceptional divisor in X, therefore we have the cycles ¢;,, ..., ¢;,,. See 4.1.2.

Consider a wiring diagram W of ./ as in 3.1. There exists k € N* such that p € M,.
Consider the geometric generating set rw = {/l(lk), e, /lﬁlk)l }. Recall that, as in Remark 3.13,

+

there exists a word f(ik) in /lﬁl), el /1511:1 (see also 4.2.2), such that
(k)
er<)K>—1(j) = /15-1)5’ forj=1,...,n+1.

The main objective of this subsection is to prove the following theorem.

Theorem 4.3. The paths i, . .., 145, the map h : | — U and the wiring diagram YW
of </ can be chosen in such a way that
(1) The generator i of m(0U) lies in the same homotopy class as Ay in P> \ < for
k=1,...,n+ 1.
) Ifp=L,N...NL, €Sings/ \ L,y and p € M, as above, then
e if r =2, the cycle c;, ,, is homotopic in P> \ < to fg'?(f,g’?)‘l, and
e if r > 2, the cycle c,,, is homotopic to ,(7':) ,(7'f)_1,f0r a=2,...,r.
By the point (1), we can also consider each f,(;;) asaword inyi,...,¥np:1-
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(3) pr = Lm Nn...N Lm (S Slng% \ L}’H-l: denote by R/(p) the set Ofrela[ions:
° {6511,77257(7'?(57';))_1} ifr=2,or
o« (L E9ENY T la=2,.. 1 ifr>2
We have that (y1,...,Yns15C1-->Cq | R, Upesing o, R'(P)) and (A1, ..., Ay |

URy, Aps1 - - - A1) are Tietze-equivalent presentations of m(P?\ ).

By using a different presentation of 11 (0U) and different techniques, the image of the gen-
erators of 71(0U) under the map i, was computed in [5] (see Proposition 2.13 and Theorem
4.5 of loc. cit.). The proof of Theorem 4.3 is inspired by the ideas of [5].

4.2.1. Constructing equivalent generators. Let us choose the point R € P?\ o7 close to
L,+1, consider the blow-up 7z : Blg P> — P? and denote by f : BlgP> — P! the associated
pencil as in 3.1.

Let 8 : [0,1] — P! be as in 3.1 such that it passes first through the projection of the
points Sing.«Z N L, to P! via f. Take its associated wiring diagram W corresponding to
the arrangement .7 and fix a planar representation p(8*W) as in 3.1.1.

Let us order the representation of all the singular points Sing ./ = {p1, ..., ps} in p(B*W)

together with the virtual vertices {p}, ..., p,} € p(8*W), by the order they are crossed by the
fiber p(B*W)|; with ¢ increasing in [0, 1], and let 74, ..., %, € (0, 1) be such that either an
actual or a virtual vertex lies in p(8*(W))|,, forall k = 1,..., s+ v. By abuse of notation we

will also denote by #, the crossings in p(8*W) at the fiber p(5*(W))l, and we will write W
for p(8*W). Let T® = {/lgk), . ,/l;':)l} be the geometric generating set defined in 3.2.1, for
k=1,...,5s+v.

Recall that we have assumed that the order of the lines L, ..., L, is such that, at the very
right of the planar representation of W, the wire W is at the bottom of W, above it is the
wire W, and then W3, continuing in this way until W,,.

For an irreducible component Dy of D C X, denote its boundary manifold by ¢ : U, —
Dy, and recall that we can consider ;l/klgU; 20U, = 0Ur N U — Dy (see 2.4). A set of
generators for 1 (AU;) was constructed by fixing a base point Oy € Dy, simple paths [, C Dy
from which we obtain paths [, c Dj (see Fig. 1) and & : Uly — U as in 2.4. The generators
Y15+ -»Yn+1+s Were constructed by joining the different generators of 71 (dU}) to a common
base point Q via the contractible path A(Ul;) in oU.

Recall that the first n + 1 irreducible components Dy, ..., D,,; of D correspond to the
lines Ly,..., L,.1, respectively and that, as in the end of 4.1.1, there exists s’ such that for
j=n+2,...,5, wehave that D,,; N D; # @ and for j > s’, we have D,,,; N D; = @.

Lemma4.4. Fork=n+1,...,5, we can choose l,’( C Dy, a continuous map h;{ : ll’( —
0U; and a base point Q € h,1(,,) for the fundamental group n1(0U) in such a way that
i.(yy) lies in the same homotopy class as /lgl)for r=1,...,n+1.

Proof. We begin by defining those [, for k = n +2,...,s". Essentially, we arrange the
choices in an appropriate way to obtain the stated in the lemma.

More precisely, let D; be an exceptional divisor corresponding to a point p = p(k) €
Sing &7 N L, with multiplicity higher or equal to three. Suppose that p = L;NLj,; N...N
Ly N L, N L,y (which can be written in this way by the order of the lines chosen above).
Consider the boundary manifold ¢ : U, — Dy in X. We will also write dU » for the image
n(0Uy) c P? under the map 7 : X — P2. For r = j,...,m, each meridian /151) (see Fig. 3a)
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is homotopic to a meridian /l;(l) (see Fig. 6) that can be decomposed in the following way:
PIASES Apdy, /l[‘,l with A,, € dU, a meridian of L, based at a point g, € 0U, and A, a path
connecting R and ¢,,.

We can further decompose each 4,, as the boundary of a disk A around a pointin L, and a
path 4,, connecting the point g, to dA. Define the path /; in D; as the projection ;bk(u’r":j/lrz).

We define /’ll[; such that l’ll[l/( o lﬁklulrﬂ:j,lrz = idlUT:/’lrz .
)\ (1)
(1)

X

W
A

Fig.6. Decomposing a meridian

Note that, up to a slight change in R, the paths 1, are homotopic to paths A}, lying in
8Un*+1‘

Now, let p = L; N L, be a double point in Sing &/ N L,,;. The meridian /15.]) can be
decomposed as /l;. <0A; - /l;.", with dA; a fiber of GU;. and /l;. cou;,,
and finishing at point g; € GU;T nou:,,.

Finally, for k = n + 1 we define [; € Dy as the image of ([0, 1]) under the section of
the pencil f : Blg P> — P! with range D;. By construction ; passes over all the points in
Sing & N Ly.1. We let Al;,,, be a continuous function such that Y1l ¢,..) © Ali,., = idy,,,,
hly,,,(In+1) is a simple path passing through each g; with L; N L, a double point, touching
each A,+1),(p) for each point p € Sing &/ N L,,; of multiplicity greater or equal to two, and
such that each 4, - 4;, is homotopic to a segment of Al;,,, (/,11).

By the construction of the maximal tree 7, these paths are sufficient to construct ; for

a path starting at R

n+1

j=1,...,n+ 1 and by construction, they lie in the same homotopy class as /l(jl). O

Corollary 4.5. The morphism i, : n11(0U) — n,(P* \ &) is surjective.

Proof. The group P\ &) is generated by the elements rao = {/lgl), .. ,/l(l) }, as
L(yr) = /l,((l) fork=1,...,n+ 1 the result follows. O

Suppose that p € M, N (Sing </ \ L,,) is of multiplicity higher or equal to three and that
P = Lywjy N Lowieny N ... N Lywy. Denote by i, : U, — E, the boundary manifold of
the exceptional divisor E, C X obtained by blowing-up p. We select I, € E} in a similar
way as in the proof of the precedent Lemma for a point of multiplicity higher than two
lying in L,,;: decompose each 7(].K), e ,7,(,';) into a path /l;'() connecting R ¢ P? and a point
qp € OU,, and 1, with r € {j,...,m} based at g, and generating m(0U3) as in Fig. 6.
Decompose further 1, into a boundary of a disk dA, around a point of the line Ly
and a path 2,,* connecting g, and dA,. We take I/, = y,(U4,,"’) and define Al; such that
/’l|l;7 o WPlul,-z(” = id|U/lr2<K>.

For every k = 1,...,n, we define [y C Dy as the image of 5([0, 1]) under the section of
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@)D

Fig.7. A meridian follows another boundary manifold

f : Blg P> — P! that has as range Dy. We define h|;, such that it is continuous, l/’k|h|,k apohy, =
idy,, hy (I;) intersects UAE’;) in a point if p € M, N (Sing o/ N L;) with the notations as in the
paragraph above, h, (Ix) N hy, () # @ if Ly N Ly # @ is a double point and A, (Ix) is not
homotopic to a multiple of a fiber S' of AU;.

4.2.2. Expressing the cycles in terms of the meridians. Let #, € W be an actual vertex
and suppose that 7, = W,, N W,, n...N W, with the global order of the wires of W such
thatn; < m <...<n, <n+ 1. By definition of the maximal tree 7, to each 1, witha > 1,
corresponds a cycle ¢, ,, which is a generator of 711(9U), see 4.1.2. This cycle is constructed
by connecting hl, (1) - hl,ﬂ(l;n) “ hly, (I, to R if r > 2 and by connecting hl,, (1) - hl,,(1;,) to
Rifr=2.

For every k < 1, consider the geometric generating set ¥ = {/l(l'(), cees /lﬁl'fl} asin 3.2.1

and recall the construction of the functions 7 : {1,...,n + 1} — F;’:r)l as defined before
Proposition 3.11. For 1 < a < r, denote by

0 € =) 7@ (0@ o)) 7 (4 ).

Proposition 4.6. Let 1 < a < r. The image of the cycle ¢, ,, under the map i. equals
&l ifr=2or&lEN " ifr>2
We consider the points 6, < t, very close to t, as before Definition 3.3.

Lemma 4.7. Let T® = (/l(lK), . ,/15:21) be a generating set as above. Then, for ¢ =
1,...,n+ 1 we have that (/lfk))é/? h is homotopic to a meridian of Lyw, at the point xfk) =
BB N Ly, constructed by:
(1) following hl,, (I,,) until f~'(B(6,)),
(2) then joining it to a circle in f~1(8(6y)) about xf'(), and
(3) coming back via hl, (1,,).

See Fig. 7.

(k)
Proof. Note that if () = 1, and as A% = /l‘f,f;‘, by successive applications of Proposi-

1
tion 3.11, we can choose a meridian in the homotopy class of (/lf'())‘ffm) = A, that satisfies
the properties stated in the Lemma (see Fig. 3b).
Now, if (1) # n,, we proceed by induction. Lett; = W;N W, N...NW,, and consider

1 1 . .
§®:TWW>={”$4~%? ifng €4j+1,....m),

1 ifn,¢{j+1,...,m}.
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By construction, for k € {j + 1, ..., m} the product /121) . /15.1) is freely homotopic to a circle

containing the points xi.l), e, x,(cl).

Now, note that the paths in ') are homotopic to paths in the fiber f~'(3(6,)) as in Fig.
3b. Such representative of the homotopy class of A can be seen as lying in the boundary
manifold oU; .

-1
By considering (/152))55,? we obtain a path as in Fig. 7 if 7V(57,) # 1. This meridian can
be decomposed as stated.

For a general T**D_ note that as £

D = 9. 20 (1,)) and by repeating the above

K -1 K -1 .o g
procedure, we can decompose (A*V)™ @ (1) a5 a meridian of Ly, that follows I

between f~'(B(6,)) and f'(B(6,+1)) (see Fig. 7). By applying induction, we obtain that
k+1)~1
(/lf”l))fim " can be decomposed as stated in the lemma. m]

Proof of Proposition 4.6. Note that we have that

_ _1-1
() _ T(l)(na) . ,T(n 1)(0.(77 1] (112))

Na —
. EEERC
SR G OP) RN ] G RUB] R UMY

by using §(';) = ,(7':71) = (O'(K‘l)_l(na))) fork =2,...,m.

-1~
§7ia

Now, if 7®(c® ' (,)) # 1, it is homotopic to a path in 7~'(8(6,)) encircling the points

X9 %% andby applying Lemma 4.7 to each factor of 70 (c® ' (3,)) = A% ..
J o (174) a® (Ma)

/15.") we obtain that 7¥(c® " (5,)) can be decomposed in three parts as in Lemma 4.7.

Recall that we have constructed the /,, C D,,, from a section of the map f. By the choice
of hl,,, we can suppose that h,,, C £71Blo, 1) N ou,,.

By considering Y = f~1(B([0, 1]))\7r,‘?l (R) C Blg P?, we can see the cycles ¢rn, CYC R3.
Moreover, we can choose coordinates in R? and define that hl,, (1,,) passes above Al (I;) (or
hl; (L) passes below Al;, (L)) in some fiber f~'(B(0)) with 6 € [1, — &, 1, + &] with & > 0
sufficiently small, if the wires W, N W; # 0 in a planar representation of the fiber F1B))
and o~ (n,) < 7 ® ' (k).

We can see then (‘r(")(a'(K)(na)))‘f;?_1 as a path encircling the lines L; corresponding to
those Al; (k) passing below Al;, (1,,) in some fiber f~'(5'(¢")) with ¢ € [t, — &,1, + €]. By
construction, §,(]Z) is homotopic to a path encircling all the lines L; such that 4|, (/) lies below
hy, (1,;,) at some point in ([0, 2,]).

Therefore, we can decompose ff,'j) in three parts:

(1) The first path starting at Q € h(l,+1) and following A(l,,) until f~'(8(6,)). Then,

(2) a simple path starting at i(l,,) N f~1(8(6,)), lying completely in f~'(5(6,)) and fin-
ishing at f~'(B(6,)) N nz' (R), and

(3) a path connecting ﬂ]_el(R) N f‘l(B(H,])) toQ C HIEI(R).

By decomposing in a similar fashion f('f), it follows that the cycle ¢;, ;, 1 homotopic in

P2\ o to &P(EP) " if r = 2 and to £7 (€)1 if r > 2. O
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4.2.3. Expressing the relations in terms of the generators. Foreveryr=n+2,...,n+
so + 1, we let R). be the subset of the set of relations R’ of the presentation of 7;(dU) as in
Theorem 4.1 such that

K
R = {lye vy = | |y 1 Ger) € €),
m=1

with

¢! if (k, r) equals the (-th element in C,

Sk =14 €, if (r, k) equals the ¢-th element in C,
1 if (k, r) is an edge of 7.

Proposition 4.8. Consider an exceptional divisor E, = D, C X coming from a singular
point t, € Sing o/ N M, of multiplicity higher or equal to 3. The image of the set of relations
R as above, under the map i, equals the set of relations R, = [/lfﬁf), s /15.'()] as in Lemma
3.8.

Proof. Let t, = Wawjy N Wawgsry N ... N W, with the local order given by nw =
{c®1) < ... <c®m+1)}. Asw, = —1 and by the local order of the wires we have that

_ Co ) (m e Co®)(j), K Co(k).1x R |
Yr =Ygwim Yo ((jf.;‘ , that [y, v, 1 and that coww, = €, wg-

Let us omit the superscript 4, = AV for the elements in I,
By considering the image under i, of the elements in R, we have by Lemma 4.4 and by
Proposition 4.6 that

(K) (0~ () RN ol g0 po” 1
l' ( ) _ ’zr(K)(m)’L /lfo(’()(ﬁr])fl f (‘()(j)f’ [i ( ) (K)(k)é:l ]
«Vr) = Awm) sy Towgy o WY Apwg

with ¢ = min{c®@(j),c( + 1),...,0c®(m))}.
(K) (k)

. . rr(“)(k) . 0 _ fo'(")(m)
The commutators can also be written as [z*(y,) /lgm (k)] . Butas i (y,)* = /IU(K) T
§(K)

é;(»() E(K)
K (j+1) (K)(]) . . U,(K)(k ) (m)
o) (j+1)/l iy Ve have that the relations [z*(y,) /l o) (k>] can be condensed as [4 7, T
(K) (%)
AU AN

ow(jsy Aoy

3.12 for the point 7, as in Lemma 3.8, recall that we have the equality /l(K) =A ((})(‘]3 By

replacing it in the commutators above, the result follows. m|

Now, if R, = [A%, ..., AW

e /15.’()] denotes the relation given in Theorem

Proposition 4.9. Forr =1,...,n+ 1, we have the equality
Loy ny,;’fﬁ’,;’; = Yurl V1

in (P> \ &) with s, j as above.

Proof. Fix L, € «7. Let {p1, ..., pp} C Sing.e/ N L, be the singular points of the arrange-
ment lying in L,. Note that b = k.. Indeed, we can find a partition AU B = {1,...,k}, with
A a set indexing the double points of Sing ./ N L,, and B indexing the points of multiplicity
strictly bigger than two. Let 7 : X — P? be the blow-up of P? at the points of Sing .7 of mul-
tiplicity strictly bigger than two and let D, denote the strict transform of L, in X. We have
that A also indexes all the strict transforms of lines in .27 which have no empty intersection
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with D,, and B the exceptional divisors of X crossing D,. It is clear then that b = k..

It follows that y;,(.» is a meridian of an irreducible component Dj, .,y of D = n*D
form = 1,..., k. Recall that y, commutes with ”AW") and note that the self-intersection
number w, of D,is 1 —|B|.

Let us study the geometric meaning of the product y,‘ly;A’(Ar(m; with m € B. Let us write
t = ja(r,m), denote by D, = D, the exceptional divisor that y;, (. surrounds, and let
D,,...,D, be the irreducibles components of D = n*.¢7 that intersect D, ordered in such a
way that, if we denote by v, the meridians around D,; used for the presentation of 71(9U),
v, "= yfl“‘ . -y[sk“k holds. As D, is an exceptional divisor, we have that w, = —1. By Theorem
4.1, we have that [y,, 7,1 for j = 1,....k = k(0).

Replacing the expression 7y, as above in [yt,yf;”' ], we can show that these commutators
relations are equivalent to

N A =
where o runs over the cyclic permutations of the elements {¢;,...,¢}. Hence there exists

some cyclic permutation o’ such that 0’(1;) = r because D, intersects D,y = D,. Note

1 -1

that s, = s5,' = 5.}, and hence y,'y)" = (yo_”(f‘;)) . U‘f’(["w)vn represents a loop which

surrounds the lines Ly(,,), . . . , Ly(,) following ;. by construction of the cycle s,,.
le(r m)
Ja(r.m)

Srj A (rm) .
o = y]A(rm) ifmeA,
" e yj”(Ar(:n'"; if m € B,

Now, the product y," Hm Y can be written as y, ]_[I;;:l T, with

by commuting y, with ;' "A(’"’) Note that, for T, with m € A, the path Y, is a meridian
around the other line that 1ntersects D, in the double point corresponding to m € A. Hence,
by the precedent paragraph, vy, H]:n;=1 T, is a product of the meridians of all the lines in .«
ordered in the way they intersect L,.

Now by choosing a line L sufficiently close to L, we have that the product
Y Hm . y]A’(Ar(m)) is a path encircling L \ (L N <) and therefore it is equivalent to A, - - - A;
in m(P* \ ). o

4.2.4. End of proof of the Theorem 4.3. The point (1) of the Theorem is obtained by
Lemma 4.4.

The point (2) follows from Proposition 4.8.

For the point (3), recall that R” denotes the set of relations for the presentation of 7;(0U)
as in Theorem 4.1. Using the notation of 4.2.3 we have that

R'\UR; = l_[)’j;’fr(;;n)), [y, v 1|r=1,...,n+ 1,D, N D, € Sing.oZ \ Py ¢,
this is, Dy N D, is a double point.

By Proposition 4.9, we have that i.(y," H jA’(Ar(m; )= Apsr ... A4

By proceeding as in Proposition 4.8, it can be seen that for a double point p, = Dy N D,,
the relation [y, y,*] correspond to the relation R, as in Theorem 3.12.

Hence, in (y1,...,¥ns1,C15 ..., ¢4 | R', Upesing o7\L,., R’ (p)) the set of relations R’ is equiv-
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alent to the set of relations UR, U {A,,41 - - - 41}. This concludes the proof of Theorem 4.3.

4.2.5. Independence of the maximal tree. Let D = ZZSHO D be the total transform of

the arrangement .7 in X and denote by A the dual graph of D as above.

Let 7 c A be an arbitrary maximal tree and denote by G(7) = {y1(T), ..., Yn+1+5,(T),
ci(T),- -+ ,cy(T)}, the set of generators of 711(AU) as in Theorem 4.1. Recall that these are
constructed using 7. Denote by R(7) the set of relations given in the same Theorem.

Consider also the maximal tree 7’ defined as in 4.1.2 and denote by yi, ..., Vnii+s)>
c1,. .., ¢y the generators of ;(0U) as in Theorem 4.3 and by R the set of relations.

Consider the inclusion i : AU < P? \ &/ and fix i.(y)) = Al oo W Ynrtesy) = Ansles,
as a set of generators for m;(P? \ &) with TV = {A;,..., 4,41} as in Theorem 4.3. For
t=1,...,n+ 1+ 59, we have that i,(y,(7)) and A, are meridians of the same smooth curve
D,, therefore, we can express i.(y,(T)) as a conjugate of A, by elements in Ay,...,A,,;. We
let 8, denote the word in 7 (P? \ &) representing i.(c,) in the letters Ay, ..., A1+, and by
0, the same word in the letters yy, ..., ¥,+1+5, as in Theorem 4.3.

Reciprocally, by fixing i,(y1(T)), ..., i(¥ns1+5(T)) as generators of m(P? \ <), we
can express 4, as a conjugate of i.(y,(7)) by elements in i,.(y;(7)), ..., i(Yn+1+5, (7)) for
t = 1,...,n+ 1. The image i.(c, (7)) of the cycle ¢,(7) can be expressed in terms of
V1T, oy is (Y145 (T)) for ¢ = 1,...,g9. We let 6,(T) be this expression when it is
written in terms of y1(7), ..., ¥n+145,(7 ) such that 6,(7) € (G(T) | R(T)).

Proposition 4.10. A presentation of n,(P* \ /) can be obtained as follows:
1B\ ) = (G(T) | RT),er(T) - 61(T) ™o seg(T) - 6,(T)7H.

Proof. The presentations (G(7) | R(T)) and (y1,. .., ¥n+i+5Cl>---,Cq | R) of m(OU) as
in Theorem 4.1 can also be obtained as graphs of groups (see [41]). These graphs of groups
are constructed over A as follows: the vertices groups are given as in Lemma 2.4, the edges
groups are Z2. To each tree of A there correspond a presentation and the presentations are
Tietze-equivalent.

Let us fix v, the vertex corresponding to D, as a base point for 7;(A) and c,..., ¢,
a generating set. Every cycle ¢,(T) € m(A,v,41) can be expressed as ¢,(7) = ¢3¢y,
where ¢, € {ci,...,cg} withm = 1,...,r,and ¢ = 1,...,9. Therefore i.(c,(T)) =

i.(c,1) - i(cy,) = 0,1 -+ O, Let us show that

CL(T) . 6[(7)_1 =Cq- .Ctrl(s, -1 . '6;1_1 c <<Cl . 6:1_1’ . ’cg ) 6;_1>>‘

L,

Note that

y —1 y =100 y =1 —1
(C116L1 )(CL26[2 )= CL1C12612 6L1 >

(c”é:l_l) .. (Cmé:rl_l)df”_]."611_1 =c, "‘Cur5:rt_1 ...521‘1‘
In a similar way we can prove that ¢, - (5[_1 e Uci(T) -6\ (T)7L,. cong(T) - 69(7)‘1)).
This proves that the presentations (G(T) | R(T),ci(T)51(T)™ L, -+, cy(T)6,(T))™"), and
V15 os YnelesprCls-- o5 Cg | R, 615/171, R c95;71> are equivalent. We conclude by Theorem
4.3. |
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4.3. Boundary manifold of a partial compactification. Here we will present another
presentation for the fundamental group of certain partial compactifications M (<7, 1, P),
where M(<7,1, P) is as in 2.3.1, but the lines of D indexed by I correspond only to ex-
ceptional divisors, thisis, I/ C {n +2,...,n+ 1 + so}.

4.3.1. Inclusion of the boundary of a partial compactification. Let us recall the nota-
tion of section 2.3.1.

Let <7 C P? be an arrangement of lines and X the blow-up at the points Py = {p1,..., Dso)
of Sing .¢# with multiplicity strictly higher than two and let D = ZZ:%“‘) Dy, be the reduced
total transform of .7 in X.

Here, we suppose that I C {n+2,...,n+1+so}and let P = {p},..., p} } C Sing }q; Dy.
Denote by 7’ : Blp X — X the blow-up map and the dual graph of [7”*D| by A. Note that in
the previous section A denoted instead the dual graph of D. Consider the divisor D’ C Blp X
as in 2.3.1 and denote by A’ the dual graph of D’. Recall that A’ is obtained from A by
removing some vertices and the corresponding adjacent edges.

In 2.3.1 we defined the partial compactification M(<7, I, P) of M(<7/) as Blp X \ D’.

Let us assume that D’ is connected, which is equivalent to A’ being connected. Therefore,
there exists a maximal tree 7o- C A’. Note that every cycle in A’ can be seen as a cycle in A.

Lemma 4.11. Any maximal tree Ty can be completed to a maximal tree Ty  in A.

Proof. Let {vy, ..., v} be the vertices of A which are to be removed along with its adjacent
edges in order to obtain A’.

Asl c {n+2,....,n+1+ 50} and P C Sing ), ¢; D,, we have that all the vertices in
{v1,..., v} correspond to exceptional divisors in Blp X, therefore there is no edge connecting
v, and v; for ¢ # j and to complete 7 to a maximal tree of A it suffices to take no matter
what edge connecting a vertex in 7o and v, for ¢ = 1,.. ., k because no cycle will be created
in this way. O

Corollary 4.12. Let g denote the number of independent cycles in A. Let ¢1(Ty), ...,
¢y (Tn) be independent cycles in A" each one formed by adjoining one edge in A’ to the max-
imal tree Ty:. There exists ¢y 1(Tarp)s - . ., ¢g(Tar a) cycles in A that together with ¢(Ty a) =
c1(Tar)s .. ey (Tarn) = ¢y (Tar) complete a generating set of (A, v,41).

Let us denote by AU the boundary manifold of the total transform of D in Blp X. By
proceeding as in the proof of Theorem 4.1, we have that a presentation for 71 (0U), by using

the maximal tree Tx A, has generators y; = Y1(Tar ), -+ s Vnstasors) = Vnrtasors;(Taa),c1 =
c1(Tarn), - .-, ¢g = cg(Ta 4) and a set of relations

[yrs )’;rj], (r, j) € E(A)
(5 R= A Kk, Srjp )

Ve = ey Vil ST <n+1l+s0+ s

where w,. = D). - D;, for an irreducible component D;. of n’*D, we denoted by ;. the number
of points in Sing 7D N D). (see the proof of Proposition 4.9), and

c,;l if (r, j) equals the k-th element in A \ Ty a,

srj =19 cx if (j,r)equals the k-th element in A\ Ty 4,
1 if (r, j) is an edge of Ty .
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Moreover, let U’ denote the boundary manifold of D’ ¢ Blp X. Here, if r ¢ I let us
denote by k;’ the number of points in (Dy N },¢; D,) \ P or equivalently, in D; N D’. By
using the maximal tree 7o, of A’ and proceeding as in the proof of Theorem 4.1, we obtain
the following Proposition.

Proposition 4.13. A presentation for 71(0U’) is given by
< Yo ted |lyny)l, (r, j) € E(A) >

—w’, k:f Srjar (rim)
CloeenCy |yr =TI, 7inA(r,m) relJ
where J ={1,...,n+ 1+ s} \ I, E(A") denotes the set of edges of A’, w,. the self-intersection
number of the strict transform D). of D, in Blp X and

¢! if(r, ) equals the k-th element in A’ \ Ty,
srj=1 ¢k if (j,r) equals the k-th element in A"\ Ty,
1 if (r, j) is an edge of Ty.

For every ¢ € I, we have that, as D) is an exceptional divisor, the following relation is in
R:
K
_ Sle/’A(l.m)
(©6) vo= | 1y
m=1
Analogously, if p = p, € P, by abuse of notation we will write p = n+ 1 + 59 +¢. We
have thatif p = D, N D;:

9 Y =¥

By using the map i : U — M(</) = P?\ &/ as in 4.2.5, we can express the image of
the cycles i.(c,) as a word in the letters i.(y1), ..., i.(ya41), for r = 1,...,g. Let us denote
by ¢, the word obtained by replacing the letters i.(y1),. .., (¥n+1) BY Y15 .., ¥us1 in this
precedent word associated to i.(c;).

By using 61, ...,04 and replacing i.(y1),...,ix(¥nr1) DY ¥1,. .., ¥Yus1, We can express the
words i,([T%_, yjﬁ;’};-@""nj;) and i,(y,"y") with ¢ € I and p € P as words (1), y(p) € m(3U"),
respectively.

Let us denote by R’ the set of relations in the presentation given by Proposition 4.13.

Theorem 4.14. A presentation of mi(M(</, 1, P)) is given by
(Cloe.scq,y LteJ| R,,Cl(SIl, .. .,cgf(S;,l, UerY (1), UpepY(P))s
withJ=1{1,...,n+ 1+ sp}\ I
Proof. Consider the following diagram:

1(OU) —— (M () +—— m1(0U)/((e16] %, cob7 1))

| |

m(OU") —— m(M(, 1, P)) «—=— m(M())/((ix (), ix (9p)))-

Where the isomorphism in the right of the first row comes from Theorem 4.3 and Propo-
sition 4.10.
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From the rightest column we obtain that

(®) T @OU)[(eib1, ., b, v, ¥(p)) = m(M(H, 1, P)).

We will see that this presentation is equivalent to

©) T OU) [y @, ¥(p)cr - 675 cg6 ).

Indeed, by the choice of the maximal tree T a, there are only four types of relations in R
of the presentation of 11 (AU) involving the cycles ¢y, ..., cy:
e commutators [y,,y." ] with ' = ¢, p,
e those relations as in (6),
e those relations as in (7), and

. —w’ ! Srjne alrm . .
e relations y,"" = Hl;;zl yjA',AA'(Ar( m)) with (r,¢) or (r, p) an edge in A.
By adding the relations ¢; = 6y,...,c, = §,, we can see these relations as expressed in terms

0f’)’17~--,'}’n+l+s0~
Note that the commutator-relation as in the first point above becomes trivial in

mOU) /(167" .., g0, v, ¥(P))).
The relations in the points two and three above, are by construction, equivalent to the
words (1), (p).
For the relations as in the fourth point, note thatk,’ = k. —|PND,|—{c € I | D,ND, # @}.
O

5. Applications and examples

5.1. Preliminary results in homology planes. As shown in section 3, the wiring diagram
W of an arrangement </ can be used to determine the meridians around the exceptional
divisors E,, corresponding to a point p € Sing <7, in terms of the meridians of the lines in
o .

Here, we apply Theorem 3.12 to obtain presentations for the fundamental group of a very
special type of partial compactifications, which we proceed to describe.

DermniTION 5.1, A (Q-)homology plane X is an affine smooth complex surface such that
the i-th group of (rational) integer homology (H;(X, Q)) H;(X,Z) vanishes fori =1,...,4.

It was proved in [42] that homology planes are rational. This result also holds for Q-
homology planes, see [43].

Let X be a homology plane. There exists a projective smooth rational surface X, a bira-
tional morphism 7 : X — P?, and a divisor D c X such that X \ D = X.

A classification of the arrangements of lines .«# C P? such that there exists a pair (X, 7r)
as above and (D) = .o is given in [16]. We call such an arrangement <7 a linear plane
divisor of the homology plane X. There exists six arrangements of lines L(2), ..., L(7) and
an infinite family of arrangements L(1,n + 1) which are linear plane divisors, each one for
an infinite family of homology planes [16, Theorem D].

In [21], an algorithm for constructing homology planes out of these arrangements is given.
We describe it briefly.
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51.1. Let o = {Ly,...,L,+1} be an arrangement of lines. We denoted by Py =
{P1>- .., Ps,} C Sing <7 the set of points of multiplicity strictly higher than two, by 79 : X =
Blp, P? — P? the blow-up map, by D; the strict transform of L; fori = 1,...,n + 1 and by
D, 1. the exceptional divisor associated to p; for j = 1,...,s0. Let/ C {n+2,...,n+1+s0}
and consider the divisor D’ = Z?:l“‘“’ D, - >. D

Denote by A’ the dual graph of D’ and suppose that the number of independent cycles
in A’ equals m, this is b1(A’) = m. Consider P; C Sing D’ a subset of m-points such that
when we remove from A’ the edges corresponding to P; we obtain a maximal tree. Let
Y . Blp, X — X be the blow-up at P; and denote by D" the strict transform of D’ in
Blp, X.

Proposition 5.1 ([21, Proposition 2.1]). The surface Blp, X\ D" is a Q-homology plane if
and only if the inclusion D" — Blp, X induces an isomorphism Hy(D",Q) — H>(Blp, X, Q).

We obtain that a necessary condition for Blp, X \ D as above, to be a Q-homology
plane is that the number n + 1 + 59 — |/| of irreducible components in D"’ must be equal to
by(Blp, X) = dim(Hy(Blp, X, Q)) = m + |Py| + 1. It follows that in this case, n = m + |I|. We
will describe when this condition is as well sufficient.

Let Ay,..., 4,41 be meridians of the lines Li,...,L,;; € <, respectively. A basis for
H\(P*\ &) is given by the homology clases [4;], ..., [1,] and they satisfy that Z?jll [4]=0.
Given any exceptional divisor D, 14, in X such that the corresponding point p; € Py satisfies
pj=L; NnL;N...NL;,wehave that the homology class of a meridian A,,,1; of D,41.; is
given by [A,414;] = [4, ]+ ... +[4;]. Similarly, for p € P; such that p = D; " D; we have
that the homology class of a meridian 1, of the exceptional divisor E, in Blp, X is given by
[4,] = [4;] + [4;]. It follows that for every k € I we can express [Ay+14+k] = X/ ax[4,] and
for p € Py we have [4,] = X\"_, a,,[4,]. Define a matrix M = (a,,) withg € I U Py.

Now, suppose that a surface X is constructed as in 5.1.1 by choosing / and P; C Sing D’
such that X = Blp, X \ D” and that the number of irreducible components in D" equals
by(Blp, X). As n = m + |1, the matrix M is a square matrix.

Proposition 5.2 ([21, Theorem B]). The surface X is a Q-homology plane if and only if
det M # 0. Moreover, if det M # 0, H|(X,Z) = |det M| and hence it is a homology plane if
and only if |det M| = 1.

The surfaces obtained by the construction given in 5.1.1 are usually only Q-homology
planes. In order to obtain homology planes, further blow-ups are required.

5.1.2. Consider D;,D; in Xandlet p = D;ND ;. Let a;,a; be two coprime positive
integers. There exists a sequence of blow-ups

e Ak 0

- i - i 71[' - 7T§{) -
Bl, .., X = Bl X5 ... 5BLX->X,

Pk—15++45 Pk=25+02P

where each 7\”) is the blow-up of Bl,
ij r

,,,,,,,,,

=1 and in the singular locus of the total

in the exceptional divisor E, corresponding to ;.
J

ey

Ek (S Blpk-l,
see [21, Theorem 4.11]. By [44, Lemma 7.18] the meridian around E; is given by /l?"/lj'f .
See also [22, Appendix]. Moreover, if p = D; N D; € Py, using this construction we can

s,
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replace the line in the matrix M corresponding to [A;] + [4;] by a;[4;] + b;[4;].
Let ¢, be the edge in the dual graph A" of the divisor D’ corresponding to p. We call
this construction expanding the edge v,. In order to describe the change in the dual graph,

let us denote a continuous fraction by [cy,...,c,] defined by [c¢;] = ¢, and [cy,...,c,] =
c1 —[ca,...,c, 17" We have that ¢; > 2. Let
a; + aj a; + aj
= [C—r,---’c—l]’ = [CS"“acl]'
aj ai

Suppose that D2 bi, D2 b;. The edge connecting v; and v; changes as in Fig. 8.

by —c_,+1 —C_p41 bj —ecs+1

Fig.8. Expanding an edge
This will be abbreviated as in Fig. 9.

Aa; . a; Q N4 v’
i@ w aj,aj j

Fig.9. Notation for expanding an edge

5.1.3. Absolutely minimal graphs.

DEriniTiON 5.2. Let A be a weighted graph. We say that A is absolutely minimal if the
weight of every linear or terminal vertex does not exceed —2. See [22, 45].

DerNiTioN 5.3. Let (X, D) be a pair with X a smooth projective surface and D a simple
normal crossing divisor such that all its irreducible components are rational curves. We say
that (X, D) is absolutely minimal if the dual graph A of D is absolutely minimal.

Proposition 5.3 ([45]). Let X be a quasi-projective smooth surface and (X, D) an abso-
Iutely minimal pair such that X \ D = X. Any other absolutely minimal completion of X is
isomorphic to (X, D).

5.2. Examples.

5.2.1. The arrangement L(1,n+ 1). For n € N such that n > 3 consider the arrangement
L(1,n+ 1) of n + 1 lines where n of them intersect in a point and the other one is in general
position. See Fig. 10a for the representation in the projective plane and Fig. 10b for its
wiring diagram.

A presentation for ;(P? \ L(1,n + 1)) is given by:

(10) </ll9"~’/ln+l | /er-l ' “/11’[/14%“"11]7 [/lra/ln+1] r= 1,...,7’1).

An expression for the meridian A,,, around the exceptional divisor D,.,, obtained by
blowing-up the unique point p of multiplicity n in <7, is given by 4,40 = 4,,- - - 4;. Note that
Ani2 = /lr:+1

Letn: X =Bl,P> > P2, D =|n"d/| = Z"”D and A the dual graph of D. In order to
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W1 Wn+1
W2 Wn
Lois Wn—l Wn—l
" Wn, W2
Ly "Ly Lp-1 \Ln Wn+1 Wi
(A) L(1,5) in the projective plane (B) Wiring Diagram L(1,5)

Fig.10. The arrangement L(1,5)

obtain a maximal tree of A, that give rise to homology planes, we need to remove n—1 edges
from A: each one corresponding either to D; N D, orto D; N D,,, fori =2,...,n. We can
expand these edges as in 5.1.2. In doing so, for every edge that we expand and every pair of
coprime positive integers a;;, a;, we need to add the relations /lf“/lflf'f to the presentation of
m(P2\ L(1,n + 1)).

Using the notation of 5.1.1, as || = 0, we have that b;(A) = n — 1. In order to obtain that
n = m, we have to blow-up a smooth point in the line D; (and possibly several times in a

point infinitely near). We have to add the relation A{".

Proposition 5.4. Let I be a group presented by {(A1,...,4, | 4, A4, /l?”,i =1,...,n).
The fundamental group of any homology plane X arising from the arrangement L(1,n + 1)
as above, admits an exact sequence

l>N->m(X)->T—->1,
with N a cyclic group.

Proof. Note that from the presentation in (10), it follows that 4, generates a central
group. Denote by N the image of the cyclic group generated by 4,,1. By taking the quotient
of m1(X) by this group we obtain the presentation given by I'. O

In fact, all the homology planes of logarithmic Kodaira dimension one arise in this way,
see [24, 18] and [20, Chapter 3.4].

Lemma 5.5. The dual graph of the divisor at infinity for a homology plane X arising from
L(1,n + 1) as above, is absolutely minimal and has the first form if k > 1 and the second if
k=1:

In (A), the square above v| represents a linear chain of (k — 1)-vertices with weight —2.

These graphs include those corresponding to contractible homology planes arising from
L(1,n + 1) studied in [22].

5.2.2. The arrangement L(2). The arrangement L(2) is constructed by four lines in gen-
eral position.

The fundamental group 7;(P? \ L(2)) is isomorphic to Z* and admits the following pre-
sentation

(oA A = LA i< jii=1,....3,j=2,...,4).
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’
A“Sl 1232

(A) Dual graph of homology planes from  (B) Second type of dual graph of homol-

L(1) ogy planes from L(1)
Fig.11.
W1 W4
W2 W3
Ly W3 Wa
Lo L Wy Wi
(A) L(2) in the projective plane (B) Wiring Diagram L(2)

Fig.12. The arrangement L(2)

The homology planes arising from this arrangement are treated in [21, 3.16].

5.2.3. The arrangement L(3). This arrangement is constructed from L(2) by adding a
line Ls passing through two double points of L(2). See Fig. 13a.

The fundamental group 7r;(P? \ L(3)) is isomorphic to F, x F, and admits the following
presentation that can be read from the wiring diagram 13b:

(11)  (A,.... A5 | [A5, A, A3), [As, Ao, A4, [Aas 4] [Aa, A2, [A3, 4], [A3, Aol As -+ - Ay ).

W1 \ / W5

Ls Ws X Wy
i j—X—XW/JL W,

Ly Wy Wy

YLy Ls Wy /\ Wi

(A) L(3) in the projective plane (B) Wiring Diagram L(3)
Fig.13. The arrangement L(3)

Let y6 and y; be meridians around the exceptional divisors D¢ and D7, obtained by blow-
ingup Ls N Ly N Ly and Ls N L N Ly, respectively. Then we have that yg = ysy4y3 and
Y1 =75v2Y1-

Denote by f1, f> the fibrations given by the pencils of lines obtained by blowing up the
points Ls N Ly N Ly and Ls N L, N Ly, respectively. Let X be a homology plane arising
from L(3) as in 5.1.1. Denote by f{, f; the respective fibrations induced in X. The multiple
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fibers of f], f; induce orbifold structures over P! that we denote by X = &) (P!, D, r)) and
Xg = XQ(PI,D, l’2) with D = 0+ 1 + oo and ry = (Cll, b], Cl), rp = (az, bz, 62) depending on
S /s

Proposition 5.6. If X is a homology plane arising from L(3) as in 5.1.1 such that both
(X)), 11 (Xy) are finite, then m1(X) is also finite. Moreover, if m (X)) = n1(X,) = (1) then
(X)) = (1).

Proof. Suppose that 1(X}) and 7;(X’) are finite. Recall that m1(P?\ L(3)) = Fa(A;, ) X
F2{13, 14). Denote by i : P? \ L(3) < X the inclusion and consider H; := i,({11, A,)) and
H» :=i.({13, 44)). We have the following exact sequences induced by f], f7:

1->H »mX) > m(X)—>1, 1> H, - mX)—> m(X) - 1.

Consider the subgroup A = H; N H», it is normal and has finite index. Moreover, A is
abelian: let x,y € A and write x = w(i.(41), (1)) and y = w,(i.(13), i.(14)) with w; and
wy words in the letters i,(41), i.(A2) and i,(43), i.(44), respectively. As A; commutes with A
for j = 1,2 and k = 3,4, we obtain that x commutes with y. The same reasoning shows that
A is central.

Now, as I'is a perfect group, we have from the universal coefficient theorem that H 2T, 2Z)
= Hom(H,I', Z). Then, as I"is finite, we have that H*(T',Z) = H'(T', Q/Z). As T is perfect, it
operates trivially on Q/Z and therefore H'(I', Q/Z) = Hom(I', Q/Z) = 0, which shows that
H,(I',Z) is a torsion group.

Consider the central extension 1 - A —» m(X) > I' - 1. Write A = Z" & Aos and
consider the universal central extension 1 — H,(I',Z) - E — I' — 1. This extension
comes with a map H,(I',Z) — Ay that factors through A. Now, we have that

m(X) = [E X Al/AHy (T, Z) = Z" X [E X Aors]/ AH> (T, Z),

but as 71 (X) is perfect, we have that n = 0 and therefore A is a torsion group.
Now, if 71(X;) = m11(X,) = (1) then H; = m(X) = H, and therefore A = m1(X) is an
abelian group and perfect, hence m(X) = (1). ]

Let Py = {LyNLyN L3, LsNLyN L} and consider 7 : X = Blp, P> — P2, Denote by D the
reduced divisor 7%(L(3)) and its dual graph by A(3). Note that b;(A(3)) = |[E| - |V|+ 1 = 4.
The maximal trees contained in A(3) are encoded by subsets P; C Sing D of four elements,
corresponding to independent edges.

ExampLE 5.1. We can consider the homology planes X arising from expandig the edges
corresponding to the double points Py = {D; N D3, D; N D4, Dy N D3, Dy N Dy} in L(3).
All the homology planes arising in this way will satisfy that (X)) = m(X>) = (1) and by
Proposition 5.6, we have that m;(X) = (1).

There are indeed an infinite collection of homology planes arising from the maximal
tree associated to these double points P;. They were studied by Zaidenberg in [22]. He
also obtained that an infinite number of these homology planes have logarithmic Kodaira
dimension equal to two.

Now we present examples of homology planes arising from L(3) with infinite fundamen-
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Exampie 5.2. Consider P; = {Dy N D3, D; N Dy, Dy N D4, Ds N Dg}, a presentation for
the fundamental group of any homology plane X arising from this configuration has the
following form:

(12) sy A5 | 828, 2528, 2520, A0, [, A)) for i = 1,2, j = 3,4).

Note that s - A6 = (47" - ;H(AT'A4Y).

The fundamental group of the orbifolds X, X, over P! induced by Jf{ and f] have presen-
tations 71y (Xy) = (A3, A | A4, A5, (A43)9) and 71 (X) = (A1, Ay | 4744, 25, (A21)7*1),
respectively.

By Proposition 5.2, we have that X is a homology plane if the following determinant
equals one:

a 0O b O

det c 0 0 d|_ —adeg — beeg + befg + befh + bdeg + bdeh.
0 e 0 f
-g—-h —-g—-h —-g -g

(1) We can choose the values a,...,h such that 7;(X;) and m;(X,) are both infinite
hyperbolic triangle groups: Consider b = 3,d = f = 5and g = 7. As above,
(X)) = (A3, A4 | 3,5, (43140,

There exists indeed solutions for det M = 1 and the above values of b,d, f,g.
For example a = ¢ = 1l,e = 14,h = 16. We have that m;(X;) = (1,4, |
/1}1,/1;4’(/1;1/151)23)

A presentation for m;(X) is obtained readily from (12) by replacing the values of
the exponents.

(2) We can choose as well the values a, ..., & in such a way that 7;(&X) is finite non-
trivial but 71(X>) is infinite: for b = 2,d = f = 3,9 = 5 we have that 71(X;) =
(A3, 4 | 33, 3, (A324)°).

In order to obtain a solution for det M = 1 we can choose: a = c =25,¢e =47, h =
63 and therefore 1 (X2) = (A1, A2 | 47°, 237, (41.0,)%8).

For the proof of the following Lemma, we follow closely the arguments of [22].

Lemma 5.7. The homology planes constructed in this example are of log-general type
and the divisor at infinity has dual graph that are absolutely minimal as in Fig. 14.

Fig.14. Dual graph
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Proof. The squares with A, ; inside represents a linear chain with vertices of weights at
most —2, therefore the graph are absolutely minimal. By counting the vertices of valence 3,
we can see that this graphs are not equivalent to that of Lemma 5.5.

There are not homology planes X with k(X) = —oco other that C? [19, Theorem 3.2] and
no homology planes at all with k(X) = 0 [20]. As all the homology planes of log-kodaira
dimension equal one can be obtained from L(1,n + 1), we conclude using Proposition 5.3.

O

5.2.4. The arrangement L(4). We consider the real arrangement L(4) defined by adding
aline Lg to Ceva(2) = {(x : y : 2) € P? | (x* — y)(x* — 22)(y* — 7%) = 0} passing through 2
double points, see Fig. 15.

The fundamental group 7r;(P? \ L(4)) admits the following presentation that can be ob-
tained from the wiring diagram in Fig. 15b

</11 1| [A7, 6], [A7, s, A4], [A7, A3), [A7, Ao, 41, [434, A3, 441, [, Aa, 4] >
T 6, A5 [Aes AR A0, [ A3, o], A dg L Apdy = 1
W1 \/ W7
W — V£ W
Ly W3 W5
Le W4 W4
Ly Ws W3
{ We W
b2 L3 b Wr /\ Wi
(A) L(4) in the projective plane (B) Wiring Diagram L(4)
Fig.15. L(4)
The expressions for the meridians Ag, . .., 413 around the exceptional divisors Ds, . .., D3,

respectively are:

Ay = Ldsds,  do =11, Ayp = A2,

13
(13) At = Aeadr, i = A8, A3 = A4

For the following examples of homology planes we will use the computations appear-
ing in [25] of the first characteristic variety of the arrangements and its associated pencils
of lines. We will use these pencils to construct maps to orbicurves with infinite perfect
fundamental group.

The arrangement L(4) is called the non-Fano plane in [25, Example 10.5]. It has six local
pencils corresponding to the six triple points and three pencils corresponding to (braid)
Ceva(2) subarrangements.

ExampLE 5.3. Consider the pencil IT = C(124536) obtained when we blow-up the singular
points corresponding to (L; UL;)N (L4 ULs). Recall that the ordering of the singular points is
given by reading the triple points in the wiring diagram in Fig. 15b from right to left. There-
fore the exceptional divisors corresponding to (L; U Ly) N (Ly U Ls) are Dyg, D11, D12, D13.
These divisors are sections of IT as well as the strict transform D7 of L7.
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With the notation of 5.1.1, let us consider I = {11,12,13} and the set of edges to
be expanded P; = {D; N Dg,Ds N Dy, Dg N D7} as in 5.1.2. Consider the meridians
2428, (/lg“)“/l‘fo, Ag/léf of the respective exceptional divisors coming from P;.

The pencil IT induces an orbifold structure X = X(P',D,r) with D = 0 + 1 + co and
r=02b+a,c,e).

From (13), we have that

0o 1 1 1 0 0
0 1 0 O 1 1
1 0 0 1 0 1

det\ 0 b —p  p |TceTacst 2ade — 2bcf + 4bde,
d 0 d 0 c+d 0
-f =f -f -f —f e-f

for M the matrix as in 5.1.1.

By considering the following solution for [detM| = 1: a = 1,b =2,c =7,d =1,e =2
and f = 1 we obtain that 711(X) is infinite. We can also obtain the following presentation for
the fundamental group of the homology plane X:

m(X) = (Ao, As | 5 = AsAads, AL = 1 As325.00).

Moreover, the image of the fibers of I in ;(X) is a cyclic group generated by the image of
A7.

Lemma 5.8. The homology plane X in this example is of log-general type with absolutely
minimal dual graph of the divisor at infinity as follows

Fig.16. Dual graph

ExampLE 5.4. Using again the pencil IT = C(j2u45)36), we can construct homology planes
fibered over P' with general fiber P\ {3 - points} as follows: take I = {8,11,12} and
P, ={D; N Dy, D3N Dy3,Dg N D7}.

The associated matrix M will have determinant equal to

det M = —ace — acf + 2adf + 4bde + 4bdf.

The pencil II induces a structure of orbifold X = X (P!, D, r) with D as before and r =
(a +2b, gcd(c, e),2).
If we take ¢ = e, a solution for det M = 1 is given by: a = 1,b = 2,c = e = 9,d =
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1, f = 10. Note that the meridians A7, 419, 413 generate the fundamental group of a fiber of
the induced pencil.
The fundamental group m;(X) admits the following presentation

(A7, 26) = 1, 445" 26471 0201 A7 A7 = 1
LA A5 A6 AT A AT A7 = 1
A1, A6, A7| LA AT A AR A AT A gy = 1
LA A A7 AT A 747 26451 Ay = 1, A A7260506 = 1
(A6A7 N0 A6 AT AT 45 A7 (A6 A7) 2 00 A5 A2 40450 A = 1

In 711 (X) the element A, equals 415" 26414645 and A3 equals Ag' A 74,1 45147

Fig.17. Dual graph

Remark 5.9. We can use the two other pencils II, = C(jspas7) and I3 = Cap7ps) to
obtain similar groups.

5.2.5. The arrangement L(5). The arrangement L(5) is the first of two arrangements of
9 lines with 6 double points, 6 triple points and 2 quadruple points, see Fig. 18a.

The fundamental group 7r;(P? \ L(5)) admits the following presentation that is obtained
using the wiring diagram in Fig. 18b

[0, A5, A7, A1, [A9, As, Aal, [Ao, A3, Ao, A, [, A1, [57%, A%, A4,

At Ado| [, Agy A1, [A6, 11, [, A5, [5°, A8, 41, [A6, A3, 4511,

[, A L L 73 1 [ves v 1, A8, (A4, A3

/ W1 W9

/ ! W2 Wg

Ly /) Lo W Y X\/ Wr
7 W4 W6

Lg Ly A A\ A A\ W5

Wi
/ %6 %4
Lo 7 3
7L T W W
L3 Ls Lg W9 W1
(A) L(5) in the projective plane (B) Wiring Diagram L(5)

Fig.18. The arrangement L(5)

The expressions for the meridians around the exceptional divisors are given as follows:
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Ao = AgAgdrds, A11 = Agdsds, A1p = Agdzdrdy
Az = 47028, da = A0,
Ais = XPABNNT, Aie = Aoy 43!, Ay = Ao AL 1AM,

ExampLE 5.5. The arrangement L(5) admits as a subarrangement the so-called deleted
Bs-arrangement [25, Example 10.6] that is obtained from Fig. 18a by removing the dashed
line. The deleted Bs-arrangement has a special pencil II that is induced by the positive
dimensional component of its characteristic variety that does not passes through the origin,
see [25, Example 10.6] and references there-in. We will use this pencil in order to construct
homology planes with infinite fundamental group.

The deleted B; arrangement is obtained from an arrangement of nine lines called Bs that
admits the structure of a (3, 4)-multinet (see [46, Example 3.6, Figure 1b]) by deleting a line
of weight two. The pencil II is obtained by restricting that coming from Bs. The line that
we are removing from Bs will have multiplicity two in the associated pencil.

Take I = {10,12,13,14,15,16} and P; = {D3 N D4, Ds N Dy;}. Denote by II the pencil
described above. It will have as sections D3 and D;. The pencil II induces the following
orbifold structure on X = X(P!, D, r) with D =0+ 1 + coand r = (¢, 2, b).

It can be seen that the determinant of the matrix M constructed as in 5.1.1 equals —2ac +
3bc + 6bd.

By choosing the weights a = 7,b = 3,¢ = 7,d = 2 we obtain a homology plane X with
the following presentation for 7;(X):

(A3, A4, A5 | (A3, A4), (A54a)* = (A4d5)*, B3 A5 4305 Aads A Aads, A3, (A3 AadsAa)* A2).
Note that if 43 = 1 we obtain the presentation of m;(&X’) a hyperbolic triangle group with
weights (2,3,7).

The dual graph of the divisor at infinity is absolutely minimal, see Fig. 19. It is also not
equivalent to the graphs of Lemma 5.5 and therefore the homology plane X is of general

type.

Fig.19. Dual graph

Remark 5.10. By modifying the maximal tree in Example 5.5 and using again the pen-
cil induced by the deleted Bs-arrangement we can obtain homology planes from L(6) that
admits a fibration with general fiber P! \ {3 — points} and inducing a surjective map to an
infinite fundamental group of an orbicurve. This is similar to the construction in Example
5.4. The presentation of the fundamental group is complicated and we omit it.
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Fig.20. Wiring Diagram L(6)

5.2.6. The arrangement L(6). The arrangement L(6) is the second arrangement of nine
lines with six double points, six triples and two quadruple points. It is the only arrangement
in the list of [16] that is not defined over the reals, see Fig. 21.

Lz , L3
L7

HL4 Ls L1
Fig.21. L(6) in the projective plane

A presentation for (P \ L(6)) can be obtained from the wiring diagram from Fig. 20.

Using again this diagram we can obtain the expressions for the meridians around the
exceptional divisors Do, D11, ..., D17. We present here the expression of the first four, the
rest can be more easily computed by using a computer (Magma):

Aig := Ao s g At = AP0y Aip 1= AL
A5 A
iy 1= AT ot plati '

ExampLE 5.6. Several homology planes arise from this arrangement as follows: let [ =
{10,12,13,14, 16,17} and M(L(6),1) = X \ D’. It is not difficult to see that the dual graph
of D’ has two independent cycles. We can cut these cycles by expanding the edges cor-
responding to P; = {D, N D7, D4 N Dy;}. In homology, this expansion can be written as
alAd2] + b[A7] = 0 and c[A4] + d[411] = 0. By letting the matrix M be as in 5.1.1, we ob-
tain that det M = —2ac + 3ad + 9bd. Thus, several homology planes can arise from this
configuration.

Using Magma, the presentation of mr;(P? \ L(6)) and the expressions for the meridians
around exceptional divisor obtained by the wiring diagram of L(6), we can obtain the fol-
lowing presentation for 71 (M(L(6), I)).

ﬂ-l(M(L(6)9 I)) = </159/16 | /16/lg1/l6 = Agl(/lé)/ll,/]ﬂﬂgl/’@/ls = (/lé)/l;]>

For several values of a, b, ¢, d such thatdet M = 1 (forexamplea =2,b = 3,c = 8,d = 1),
we have checked using Magma that the associated homology planes are in fact contractible.
The dual graph of the divisor associated to the homology plane obtained with a = 2,b =
3,c = 8,d = 1is presented in Fig. 22. Note that this graph is absolutely minimal and not



ARRANGEMENTS, HOMOLOGY PLANES AND FUNDAMENTAL GROUPS 275

equivalent to those of Lemma 5.5, neither to those obtained by Zaidenberg [22].

Fig.22. Dual graph

We have obtained no homology plane with infinite fundamental group from this arrange-
ment.

5.2.7. The arrangement L(7). The arrangement L(7) consists of ten lines with 8 double
points, 7 triple points, one quadruple and one quintuple point. See Fig. 23a.

L3

Lo

SotubtiE o

ASAARSIASISASISES

A, —— i

(A) L(7) in the projective plane (B) Wiring Diagram L(7)

I \ a
L7 Lg Lg

5
Lo N

Fig.23. The arrangement L.(7)

The fundamental group m; (P2 \ (7)) admits the following presentation (omitting redun-
dant relations) obtained using the wiring diagram 23b:

[, 01 (A8, 40, LA, A5, A4, [As, A4,

[A2%, A0, a8, A%, 0, [4s. PRIy
A5y

Al Ao| LA, 55, 221, [, A, 4321, s, 23],
) /1,1211
(A8, AN s, 4570, a0,

AsA;!
(A7, 4], [As, A4

For the meridians we have:
A1 = Ajododsg, A2 = A1od7d6ds, A1z = A1pAad3 Ay,
Aia = A8 A5y, Ais = QPAL Agg = LA

Qs 4 A6ds 342 A58 1,1 262552 100
A7 = AFAPPATT Ay = A7 AT Ao = gy AP
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Let Py c Sing L(7) be the points of multiplicity equal or higher than three. Consider
79 : X = Blp, P> — P? and denote by D the reduced total transform of L(7) by 7% Let us
denote by A the dual graph of D.

Lemma 5.11. There exists a unique subgraph A’ C A obtained by removing vertices
corresponding to exceptional divisors of D and their adjacent edges, such that we can obtain
from A maximal trees T corresponding to homology planes associated to L(7) only by
expanding some vertices of A'.

Proof. Let us first construct A’. Remove from A all the vertices corresponding to excep-
tional divisors in D but v corresponding to Dj; (note that otherwise the vertex correspond-
ing to D1y would be disconnected). We denote this new subgraph by A’.

Note that A’ has only one cycle. It has eleven edges: eight corresponding to the double
points of L(7) and three coming from D;;, and eleven vertices: ten coming from the lines
in L(7) plus D;;. We have then that H(A) = e—v+ 1 = 1. We will see later that we can
actually have homology planes from this dual graph.

Now, if we connect vy either with Dy, or D;3 instead of D; note thate —v+ 1 > 1, so
no homology planes can rise from this graph.

Now, note that if we plug another vertex v corresponding to a triple point with edges
ey, er,e3, we have that 3 = 2 + H{(A") = H{(A U {v, e}, €2, e3}) and by 5.1.1, no homology
planes can arise from this graph only by expanding vertices of A U {v, e1, €2, €3}. m|

ExampLE 5.7. If welet I = {12,13,14,15,16,17,18, 19} we have that
(14) T (M(L(T), D) = (A5, s | As A5 32505, As s A A5 A5 45 s 3
Denote by ¢ : ;(P? \ L(7)) — n1(M(L(7)), ) the quotient map. We have that
(15) O(dg) = BAs B85 (i) = (sl ds3A5457).

Let us compute first the determinant of the matrix M(i, j) having as the first eight rows
the coeflicients a; , in [Aj04+x] = Z?zl ajo+k, fork =2,3,4,5,6,7,8,9, and for the ninth row
the expression for expanding an edge (i, j) of A”:

e1g : ald1] + b[Ag] detM(1,8) =-3a—-b
ers s ald] + blAs] det M(1,6) = —3a
es6 - alds] + bl A] det M(4,6) = 3a

€49 : alAs] + b[A9] detM(4,9) =3a+b

esa1:aldg] —b[Y_, 4] detM(8,11) = —a
eoqr :alde] —b[Y]_, 4] detM(9,11)=a

Therefore, only from the last two rows homology planes can arise. By using the expressions
in (14), (15) and Magma we can show that for a = 1 and low values of b (b < 1000) we have
that 7r;(X) is trivial.

The graph obtained from A’ by expanding the edge eg ;; is shown in Fig. 24. Note that it
is absolutely minimal and not equivalent to those of Lemma 5.5 neither to those of [22].
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Fig.24. Dual graph
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