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Abstract
We define compatibility between Jacobi structures and pseudo-Riemannian cometrics on Ja-

cobi algebroids. This notion is a generalization of the compatibility between Poisson structures
and pseudo-Riemannian cometrics on manifolds, which was defined by Boucetta [4]. We show
that the compatibility with a cometric is “preserved” by the Poissonization of a Jacobi structure.
Furthermore, we prove that for a contact pseudo-metric structure on a manifold, satisfying the
compatibility condition is equivalent to being a Sasakian pseudo-metric structure.

1. Introduction

1. Introduction
Jacobi manifolds were introduced by Lichnerowicz and Kirillov independently as a gen-

eralization of Poisson manifolds. A Jacobi manifold is also a generalization of a contact
manifold. The Poissonization of a Jacobi structure on a manifold M is an operation which
gives a Poisson structure on the manifold M × R. The obtained Poisson structure on M × R
is also called the Poissonization of a given Jacobi structure on M. It is known that the Pois-
sonization gives a one-to-one correspondence between Jacobi structures on a manifold M
and homogeneous Poisson structures on M × R. In particular, for a contact manifold, the
Poissonization is an equivalent operation to the symplectization of a given contact mani-
fold. The Poissonization plays a central role in the study of Jacobi manifolds since Poisson
manifolds are less complicated in various aspects than Jacobi manifolds. Notice that the
Poissonization extends to a Jacobi structure on a Jacobi algebroid, which is a generalization
of a Jacobi structure on a manifold.

In this paper, we call a non-degenarate (resp. positive definite) fiber metric g on a vector
bundle A a pseudo-Riemannian (resp. Riemannian) metric on A. Boucetta [4] defined com-
patibility between Poisson structures and pseudo-Riemannian cometrics on manifolds, i.e.,
pseudo-Riemannian metrics on the cotangent bundle, by using an affine connection on the
cotangent bundle. He showed that if a non-degenerate Poisson structure has a compatible
cometric, the corresponding symplectic form is a Kähler form. Due to this result, a Poisson
structure with a compatible cometric is considered as a generalization of a Kähler structure.
The compatibility between Poisson structures and cometrics have been extensively studied.
For instance, the case for the Lie-Poisson structure on the dual space of a Lie algebra is
studied in [5] [7].
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In this paper, we define compatibility between a Jacobi structure π and a pseudo-
Riemannian cometric g∗ on a Jacobi algebroid (A, φ0). This notion is a generalization of
the compatibility between a Poisson structure and a pseudo-Riemannian cometric on a man-
ifold.

Definition 1.1. Let (A, φ0) be a Jacobi algebroid over M, π a 2-section on (A, φ0) and g∗

a pseudo-Riemannian metric on A∗. The pair (π, g∗) is said to be compatible on (A, φ0) if

(Dπ,φ0
α π)(β, γ) = −1

2
((X0 ⊗ π)(β, γ, α) + (X0 ⊗ π)(γ, α, β)
+ g∗(α, β)π((g∗)�−1(X0), γ)

− g∗(α, γ)π((g∗)�−1(X0), β)),

where Dπ,φ0 is the Levi-Civita connection of g∗ on the skew algebroid A∗π,φ0
induced by π and

X0 := −π�φ0 in Γ(A).

Compatibility between a Jacobi structure (Λ, E) and a pseudo-Riemannian metric g on a
manifold M was already defined in [1]. However that is different from the definition in this
paper. In their definition, the compatibility of (Λ, E, g) is defined by using the cotangent
bundle T ∗M with a skew algebroid structure associated with a Jacobi structure (Λ, E) and
pseudo-Riemannian metric g. Meanwhile, applying our definition to the case on a manifold,
the compatibility of ((Λ, E), g∗), where g∗ is a pseudo-Riemannian cometric on M, is de-
scribed by using the Whitney sum T ∗M ⊕R := T ∗M ⊕ (M ×R) of the cotangent bundle and
the trivial line bundle with the standard Lie and Jacobi algebroid structure.

In [2], the authors generalized compatibility between a Jacobi structure (Λ, E) and a
pseudo-Riemannian metric g on a manifold M to that on an arbitrary Lie algebroid
(A, ρA, [·, ·]A). Compare their definition with Definition 1.1.

Definition 1.2 ([2]). Let A = (A, ρA, [·, ·]A) be a skew algebroid over M, Λ a 2-section on
A, E a section on A and g a pseudo-Riemannian metric on A. Set g∗(α, β) := 〈g�−1(α), β〉 for
any α and β in Γ(A∗). The triple (Λ, E, g) is said to be compatible on A if

(DαΛ)(β, γ) =
1
2

((E ⊗ Λ)(β, γ, α) + (E ⊗ Λ)(γ, α, β)

+ g∗(α, β)Λ((g∗)�−1(E), γ)

− g∗(α, γ)Λ((g∗)�−1(E), β)),

where D is the Levi-Civita connection of g∗ on the skew algebroid (A∗, ρ(Λ,E), [·, ·]g(Λ,E)). Here
ρ(Λ,E)(α) := ρA(Λ�α+〈α, E〉) and [α, β]g(Λ,E) := [α, β]Λ+〈α, E〉(

∮
β − β)−〈β, E〉(


α − α)−

Λ(α, β)(g(E, E)g�E − g�Λ�g�E)) for any α and β in Γ(A∗).

In [2], the authors proved that a locally conformal symplectic structure equipped with a
compatible Riemannian metric becomes a locally conformal Kähler structure. Furthermore,
they also proved that a contact structure η in Ω1(M) equipped with a compatible Riemann-
ian metric becomes a 1/2-Kenmotsu structure. However, the 1-form η of a 1/2-Kenmotsu
structure is a closed form while a contact structure η satisfies dη � 0. Hence it implies that
a contact structure does not have compatible Riemannian metrics in the sense of [1] [2].
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We propose another definition of compatibility between Jacobi structures and pseudo-
Riemannian metrics. In terms of the Poissonization of a Jacobi structure, it is more natural
to consider our definition than theirs. In fact, we show that the compatibility with a cometric
is “preserved” under the Poissonization of a Jacobi structure. Furthermore, we prove that
for a contact pseudo-metric structure on a manifold, satisfying the compatibility condition
is equivalent to being a Sasakian pseudo-metric structure. Therefore, a Jacobi structure with
a compatible cometric is considered as a generalization of a Sasakian structure.

This paper is organized as follows. In Section 2, we review the definitions of several
notions such as Lie algebroids, Poisson structures, Jacobi algebroids and Jacobi structures.
In addition, we explain the Poissonization of a Jacobi structure. In Section 3, we recall
the compatibility between Poisson structures and pseudo-Riemannian cometrics defined by
Boucetta [4]. After that, as a generalization of that notion, we define compatibility between
Jacobi structures and pseudo-Riemannian cometrics on Jacobi algebroids. We show that the
compatibility with a cometric is “preserved” under the Poissonization of a Jacobi structure.
At the end, we state that a Sasakian pseudo-metric structure is regarded as a special case of
a Jacobi structure with a compatible cometric.

2. Preliminaries

2. Preliminaries
In this section, we recall the definitions and properties of Lie algebroids, Poisson struc-

tures, Jacobi algebroids and Jacobi structures. See [8] for details on Jacobi algebroids and
Jacobi structures.

2.1. Lie algebroids and Poisson structures.
2.1. Lie algebroids and Poisson structures. A skew algebroid over a manifold M is a

vector bundle A → M equipped with a skew symmetric R-bilinear map [·, ·]A : Γ(A) ×
Γ(A) → Γ(A), called the bracket, and a bundle map ρA : A → T M over M, called the
anchor, satisfying the following condition: for any X, Y in Γ(A) and f in C∞(M),

[X, f Y]A = f [X, Y]A + (ρA(X) f )Y,

where we denote the map Γ(A) → Γ(T M) = X(M) induced by the anchor, the same symbol
ρA. A Lie algebroid over a manifold M is a skew algebroid (A, [·, ·]A, ρA) such that the
bracket satisfies the Jacobi identity, i.e., [·, ·]A is a Lie bracket on Γ(A). For any Lie algebroid
(A, [·, ·]A, ρA) over M, it follows that for any X and Y in Γ(A),

ρA([X, Y]A) = [ρA(X), ρA(Y)],

where the bracket on the right hand side is the usual Lie bracket on X(M).

Example 2.1. For any manifold M, the tangent bundle (T M, [·, ·], idT M) is a Lie algebroid
over M, where [·, ·] is the usual Lie bracket on the vector fields X(M) = Γ(T M).

Let (A, [·, ·]A, ρA) be a skew algebroid over M. The Schouten bracket on Γ(Λ∗A) is defined
similarly to the Schouten bracket [·, ·] on the multivector fields X∗(M). That is, the Schouten
bracket [·, ·]A : Γ(ΛkA) × Γ(ΛlA) → Γ(Λk+l−1A) is defined as the unique extension of the
bracket [·, ·]A on Γ(A) such that

[ f , g]A = 0;
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[X, f ]A = ρA(X) f ;

[X, Y]A is the bracket on Γ(A);

[D1,D2 ∧ D3]A = [D1,D2]A ∧ D3 + (−1)(a1+1)a2 D2 ∧ [D1,D3]A;

[D1,D2]A = −(−1)(a1−1)(a2−1)[D2,D1]A

for any f , g in C∞(M), X, Y in Γ(A), Di in Γ(Λai A). The differential of the skew algebroid A
is an operator dA : Γ(ΛkA∗)→ Γ(Λk+1A∗) defined by for any ω in Γ(ΛkA∗) and X0, . . . , Xk in
Γ(A),

(dAω)(X0, . . . , Xk) =
k∑

i=0

(−1)iρA(Xi)(ω(X0, . . . , X̂i, . . . , Xk))(1)

+
∑
i< j

(−1)i+ jω([Xi, Xj]A, X0, . . . , X̂i, . . . , X̂ j, . . . , Xk).

If (A, [·, ·]A, ρA) is a Lie algebroid, d2
A = 0 holds. For any X in Γ(A), the Lie derivative

A
X : Γ(ΛkA∗) → Γ(ΛkA∗) is defined by the Cartan formula A

X := dAιX + ιXdA and A
X are

extended on Γ(Λ∗A) in the same way as the usual Lie derivative X respectively. Then it
follows that A

XD = [X,D]A for any D in Γ(Λ∗A). We call a dA-closed 2-cosection ω, i.e.,
dAω = 0, a presymplectic structure on (A, [·, ·]A, ρA). A presymplectic structure ω is called a
symplectic structure if ω is non-degenerate.

Remark 2.2. In the definition of the Schouten bracket, some authors use a condition

[D1,D2]A = (−1)a1a2 [D2,D1]A(2)

for any Di in Γ(Λai A) instead of the condition [D1,D2]A = −(−1)(a1−1)(a2−1) [D2,D1]A.

Example 2.3. Let A be a vector bundle over a manifold M and set A ⊕R := A ⊕ (M × R).
Then the sections Γ(Λk(A⊕R)) and Γ(Λk(A⊕R)∗) can be identified with Γ(ΛkA)×Γ(Λk−1A)
and Γ(ΛkA∗) × Γ(Λk−1A∗) as follows:

(P,Q)((α1, f1), . . . , (αk, fk)) = P(α1, . . . , αk) +
∑

i

(−1)i+1 fiQ(α1, . . . , α̂i, . . . , αk),(3)

(α, β)((X1, f1), . . . , (Xk, fk)) = α(X1, . . . , Xk) +
∑

i

(−1)i+1 fiβ(X1, . . . , X̂i, . . . , Xk)(4)

for any (P,Q) in Γ(ΛkA)×Γ(Λk−1A), (α, β) in Γ(ΛkA∗)×Γ(Λk−1A∗), (αi, fi) in Γ(A∗)×C∞(M)
and (Xi, fi) in Γ(A) × C∞(M). Moreover under the identifications, the exterior products are
given by

(P1,Q1) ∧ (P2,Q2) = (P1 ∧ P2,Q1 ∧ P2 + (−1)a1 P1 ∧ Q2),

(α1, β1) ∧ (α2, β2) = (α1 ∧ α2, β1 ∧ α2 + (−1)a1α1 ∧ β2)

for any (Pi,Qi) in Γ(Λai A) × Γ(Λai−1A) and (αi, βi) in Γ(Λai A∗) × Γ(Λai−1A∗). Now, assume
that A is a skew (resp. Lie) algebroid over M. Then (A ⊕ R, [·, ·]A⊕R, ρA ◦ pr1) is also a skew
(resp. Lie) algebroid over M, where the bracket [·, ·]A⊕R is defined by

[(X, f ), (Y, g)]A⊕R := ([X, Y]A, ρA(X)g − ρA(Y) f ),(5)
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and the map pr1 : A ⊕ R → A is the canonical projection to the first factor. In this case, the
differential dA⊕R of the skew (resp. Lie) algebroid A ⊕ R and the Schouten bracket [·, ·]A⊕R
are given by

dA⊕R(α, β) = (dAα,−dAβ),

[(P1,Q1), (P2,Q2)]A⊕R = ([P1, P2]A, (−1)k+1[P1,Q2]A − [Q1, P2]A)

for any (α, β) in Γ(ΛkA∗) × Γ(Λk−1A∗) and (Pi,Qi) in Γ(ΛkA) × Γ(Λk−1A).

A Poisson structure on a skew (resp. Lie) algebroid A over a manifold M is a 2-section π
in Γ(Λ2A) satisfying [π, π]A = 0. For any 2-section π in Γ(Λ2A), we define a skew-symmetric
bilinear bracket [·, ·]π on Γ(A∗) by for any ξ, η in Γ(A∗),

[ξ, η]π := A
π�ξ
η − A

π�η
ξ − dA〈π�ξ, η〉,(6)

where a bundle map π� : A∗ → A over M is defined by 〈π�ξ, η〉 := π(ξ, η). Then a triple
(A∗, [·, ·]π, ρπ), where ρπ := ρA ◦ π�, is a skew algebroid. We denote (A∗, [·, ·]π, ρπ) by A∗π and
the differential of A∗π by dπ. Then dπD = [π,D]A holds for any D in Γ(Λ∗A). Moreover it
follows that

1
2

[π, π]A(ξ, η, ·) = [π�ξ, π�η]A − π�[ξ, η]π.(7)

In the case that (A, [·, ·]A, ρA) is a Lie algebroid, a skew algebroid A∗π is a Lie algebroid if and
only if π is Poisson.

It is well known that there exists a one-to-one correspondence between symplectic struc-
tures and non-degenerate Poisson structures on a skew algebroid (A, [·, ·]A, ρA). In fact, for
a non-degenerate Poisson structure π, a 2-cosection ωπ characterized by ω�π = −(π�)−1 is
symplectic, where for any 2-cosection Ω, a bundle map Ω� : A → A∗ over M is defined by
〈Ω�X, Y〉 := Ω(X, Y) for any X and Y in Γ(A).

2.2. Jacobi algebroids and Jacobi structures.
2.2. Jacobi algebroids and Jacobi structures. A pair (A, φ0) is a Jacobi algebroid over

a manifold M if A = (A, [·, ·]A, ρA) is a Lie algebroid over M and φ0 in Γ(A∗) is dA-closed,
that is, dAφ0 = 0.

Example 2.4. For any Lie algebroid A over M, we set φ0 := 0. Then (A, φ0) is a Jacobi al-
gebroid. We call φ0 the trivial Jacobi algebroid structure on A. Therefore any Lie algebroid
is a Jacobi algebroid.

Example 2.5. For a Lie algebroid A⊕R in Example 2.3, we set φ0 := (0, 1) in Γ(A∗ ⊕R) =
Γ(A∗) ×C∞(M). Then (A ⊕ R, φ0) is a Jacobi algebroid.

For a Jacobi algebroid (A, φ0), there is the φ0-Schouten bracket [·, ·]A,φ0 on Γ(Λ∗A) given
by

[D1,D2]A,φ0 := [D1,D2]A + (a1 − 1)D1 ∧ ιφ0 D2 − (−1)a1+1(a2 − 1)ιφ0 D1 ∧ D2(8)

for any Di in Γ(Λai A), where [·, ·]A is the Schouten bracket of the Lie algebroid A. The
φ0-differential dA,φ0 and the φ0-Lie derivative 

A,φ0
X are defined by

dA,φ0ω := dAω + φ0 ∧ ω, 
A,φ0
X := ιX ◦ dA,φ0 + dA,φ0 ◦ ιX
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for any ω in Γ(Λ∗A∗) and X in Γ(A).
We notice that

(dA,φ0ω)(X0, . . . , Xk)

=
∑

i

(−1)i+1ρA,φ0 (Xi)ω(X0, . . . , X̂i, . . . , Xk)

+
∑
i< j

(−1)i+ jω([Xi, Xj]A, X0, . . . , X̂i, . . . , X̂ j, . . . , Xk)

for any ω in Γ(ΛkA∗) and Xi in Γ(A), and that


A,φ0
X ω = A

Xω + 〈φ0, X〉ω
for any ω in Γ(Λ∗A∗) and X in Γ(A). Here ρA,φ0 (X) f := ρA(X) f + 〈φ0, X〉 f for any X in Γ(A)
and f in C∞(M). We call a dA,φ0 -closed 2-cosection ω, i.e., dA,φ0ω = 0, a φ0-presymplectic
structure on (A, φ0). A φ0-presymplectic structure ω is called a φ0-symplectic structure if ω
is non-degenerate.

Remark 2.6. In the case using the condition (2) in the definition of the Schouten bracket
[·, ·]A, the φ0-Schouten bracket [·, ·]A,φ0 is given by

[D1,D2]A,φ0 := [D1,D2]A + (−1)a1+1(a1 − 1)D1 ∧ ιφ0 D2 − (a2 − 1)ιφ0 D1 ∧ D2

instead of (8).

Example 2.7. We consider a Jacobi algebroid (A, φ0) over M, where A := T M ⊕ R and
φ0 := (0, 1) in Ω1(M) × C∞(M). Then any ω in Ω2(M) × Ω1(M) can be written as ω =
(α, β) (α ∈ Ω2(M), β ∈ Ω1(M)). Since

dA,φ0ω = dT M⊕R,(0,1)(α, β) = (dα, α − dβ),

ω is (0, 1)-presymplectic on (T M ⊕ R, (0, 1)) if and only if ω = (dβ, β) (β ∈ Ω1(M)). More-
over setting dim M = 2n+1, we see that a (0, 1)-presymplectic strucutre ω is non-degenerate
if and only if β ∧ (dβ)n � 0, that is, β is a contact structure on M. Therefore a (0, 1)-
symplectic structure on (T M ⊕ R, (0, 1)) is just a contact structure on M.

A Jacobi structure on a Jacobi algebroid (A, φ0) is a 2-section π in Γ(Λ2A) satisfying the
condition

(9) [π, π]A,φ0 = 0.

For any 2-section π on (A, φ0), we define a skew-symmetric bilinear bracket [·, ·]π,φ0 on Γ(A∗)
by for any ξ, η in Γ(A∗),

[ξ, η]π,φ0 := 
A,φ0

π�ξ
η − A,φ0

π�η
ξ − dA,φ0〈π�ξ, η〉.(10)

Then a triple (A∗, [·, ·]π,φ0 , ρπ), where ρπ := ρA ◦ π�, is a skew algebroid. Moreover it follows
that

1
2

[π, π]A,φ0 (ξ, η, ·) = [π�ξ, π�η]A − π�[ξ, η]π,φ0 .(11)

Then A∗π,φ0
:= (A∗, [·, ·]π,φ0 , ρπ) is a Lie algebroid over M if and only if π is Jacobi. Fur-
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thermore, in the case that π is Jacobi, a pair (A∗π,φ0
, X0) is a Jacobi algebroid over M, where

X0 := −π�φ0 in Γ(A). We call it the Jacobi algebroid induced by a Jacobi structure π on
(A, φ0).

Example 2.8 (Poisson structures). For any Lie algebroid A equipped with the trivial
Jacobi algebroid structure 0, it follows that [·, ·]A,0 = [·, ·]A. Hence Jacobi structures on
(A, 0) are just Poisson structures on A. In this case, the Lie algebroid A∗π,0 induced by a Jacobi
structure π on (A, 0) coincides with the Lie algebroid A∗π induced by a Poisson structure π on
A.

Example 2.9. Let A be a Lie algebroid over M, Λ a 2-section on A and E a section on A
satisfying

[Λ,Λ]A = 2E ∧ Λ, [E,Λ]A = 0.

Then a pair (Λ, E) in Γ(Λ2A) ⊕ Γ(A) � Γ(Λ2(A ⊕ R)) is a Jacobi structure on a Jacobi
algebroid (A⊕R, (0, 1)), i.e., it satisfies [(Λ, E), (Λ, E)]A⊕R,(0,1) = 0. When (Λ, E) is a Jacobi
structure on (T M⊕R, (0, 1)), we call it a Jacobi structure on M and a triple (M,Λ, E) a Jacobi
manifold. If π is a Poisson structure on A, Then (π, 0) is a Jacobi structure on (A⊕R, (0, 1)).

It is well known that there exists a one-to-one correspondence between φ0-symplectic
structures on (A, φ0) and non-degenerate Jacobi structures on (A, φ0). In fact, for a non-
degenerate Jacobi structure π on (A, φ0), a 2-cosection ωπ characterized by ω�π = −(π�)−1 is
φ0-symplectic on (A, φ0). In particular, there exists a one-to-one correspondence between
contact structures on M and non-degenerate Jacobi structures on M. If η is contact on M,
then (Λ, E) is Jacobi on M, where

Λ(α, β) := (dη)((η�)−1(α), (η�)−1(β)) (α, β ∈ Ω1(M)),

E := ξ.

Here η� : X(M)→ Ω1(M) is a linear isomorphism given by

η�(X) := ιXdη + 〈η, X〉η (X ∈ X(M))

and ξ in X(M) is the Reeb vector field of η.
Let (A, φ0) be a Jacobi algebroid over M. We set Ã := A × R. Then Ã is a vector bundle

over M × R. The sections Γ(Ã) can be identified with the set of time-dependent sections of
A. Here a time-dependent section on A means a section on A with a parameter t, where t
is a coordinate of R. Under this identification, we can define two Lie algebroid structures
([·, ·]̂φ0

A , ρ̂
φ0
A ) and ([·, ·]̄φ0

A , ρ̄
φ0
A ) on Ã, where for any X̃ and Ỹ in Γ(Ã),

[X̃, Ỹ ]̂
φ0

A := e−t
(
[X̃, Ỹ]A + 〈φ0, X̃〉

(
∂Ỹ
∂t
− Ỹ

)
− 〈φ0, Ỹ〉

(
∂X̃
∂t
− X̃

))
,(12)

ρ̂
φ0
A (X̃) := e−t

(
ρA(X̃) + 〈φ0, X̃〉 ∂

∂t

)
,(13)

[X̃, Ỹ ]̄φ0
A := [X̃, Ỹ]A + 〈φ0, X̃〉∂Ỹ

∂t
− 〈φ0, Ỹ〉∂X̃

∂t
,(14)
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ρ̄
φ0
A (X̃) := ρA(X̃) + 〈φ0, X̃〉 ∂

∂t
.(15)

Conversely, for a Lie algebroid A over M and a section φ0 on A, if the triple (Ã, [·, ·]̂φ0

A , ρ̂
φ0
A )

(resp. (Ã, [·, ·]̄φ0
A , ρ̄

φ0
A )) defined by (12) and (13) (resp. (14) and (15)) is a Lie algebroid over

M×R, then (A, φ0) is a Jacobi algebroid over M, i.e., dAφ0 = 0. A vector bundle Ã equipped
with the Lie algebroid structure ([·, ·]̂φ0

A , ρ̂
φ0
A ) (resp. ([·, ·]̄φ0

A , ρ̄
φ0
A )) is denoted by Ã∧φ0

(resp.

Ã−φ0
). Let d̂φ0

A (resp. d̄φ0
A ) and ̂A

φ0
(resp. A

φ0
) be the differential of Ã∧φ0

(resp. Ã−φ0
) and the

Lie derivative on Ã∧φ0
(resp. Ã−φ0

), respectively. Then for any f̃ in C∞(M × R) and φ̃ in Γ(Ã),
the following formulas hold [8]:

d̂φ0
A f̃ = e−t

(
dA f̃ +

∂ f̃
∂t
φ0

)
, d̂φ0

A φ̃ = e−t
(
dA,φ0 φ̃ + φ0 ∧ ∂φ̃

∂t

)
;(16)

d̄φ0
A f̃ = dA f̃ +

∂ f̃
∂t
φ0, d̄φ0

A φ̃ = dAφ̃ + φ0 ∧ ∂φ̃
∂t
.(17)

Let (A, φ0) be a Jacobi algebroid over M, π a 2-section on A and set π̃ := e−tπ in Γ(Λ2Ã).
Then the following holds:

[π̃, π̃]̄φ0
A = e−2t[π, π]A,φ0 .(18)

Therefore a 2-section π on A is a Jacobi structure on a Jacobi algebroid (A, φ0) over M if and
only if π̃ in Γ(Λ2Ã) is a Poisson structure on a Lie algebroid Ã−φ0

over M × R. The Poisson
structure π̃ on Ã−φ0

is called the Poissonization of π.
In the case of (A, φ0) = (T M ⊕ R, (0, 1)), the Lie algebroid Ã−φ0

is isomorphic to the
standard Lie algebroid T (M × R) over M × R. Then the Poissonization ˜(Λ, E) of a Jacobi
structure (Λ, E) on (T M⊕R, (0, 1)) corresponds to a Poisson structure Π := e−t

(
Λ + ∂

∂t ∧ E
)

on T (M × R). This is just the Poissonizaion of a Jacobi structure on M.

3. Compatibility between Jacobi structures and pseudo-Riemannian cometrics on
Jacobi algebroids

3. Compatibility between Jacobi structures and pseudo-Riemannian cometrics on
Jacobi algebroids

3.1. Compatibility between 2-sections and pseudo-Riemannian cometrics on Lie al-
gebroids.

3.1. Compatibility between 2-sections and pseudo-Riemannian cometrics on Lie al-
gebroids. We call a non-degenarate (resp. positive definite) fiber metric g on a vector bundle
A a pseudo-Riemannian (resp. Riemannian) metric on A. An affine connection on a skew
algebroid (A, [·, ·]A, ρA) over M is an R-bilinear map ∇ : Γ(A) × Γ(A) → Γ(A) satisfying for
any f ∈ C∞(M) and X, Y ∈ Γ(A),

∇ f XY = f∇XY,

∇X f Y = f∇XY + (ρA(X) f )Y.

For any pseudo-Riemannian metric g on A, there exists a unique affine connection ∇ on
(A, [·, ·]A, ρA) which is torsion-free and compatible with g, i.e., it satisfies

∇XY − ∇Y X = [X, Y]A, (torsion-free),

ρA(X)(g(Y, Z)) = g(∇XY, Z) + g(Y,∇XZ) (the compatibility with g)

for any X, Y and Z ∈ Γ(A). The unique affine connection∇ on (A, [·, ·]A, ρA) is called the Levi-
Civita connection of g. As in the case of the usual Levi-Civita connection on a Riemannian
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manifold, the Levi-Civita connection ∇ of g on (A, [·, ·]A, ρA) is characterized by the Koszul
formula:

2g(∇XY, Z) =ρA(X)(g(Y,Z)) + ρA(Y)(g(X, Z)) − ρA(Z)(g(X, Y))

− g([Y, Z]A, X) − g([X, Z]A, Y) + g([X, Y]A, Z).

Definition 3.1. Let (A, [·, ·]A, ρA) be a skew algebroid over M, π a 2-section on A and g∗

a pseudo-Riemannian metric on A∗ (g∗ is called a pseudo-Riemannian cometric on A). The
pair (π, g∗) is said to be compatible on A if

Dππ = 0,

i.e.,

(π�α)(π(β, γ)) = π(Dπαβ, γ) + π(β,D
π
αγ)

for any α, β and γ ∈ Γ(A∗), where Dπ is the Levi-Civita connection of g∗ on the skew
algebroid A∗π.

Proposition 3.2. (A, [·, ·]A, ρA), π and g∗ are same in Definition 3.1. If the pair (π, g∗) is
compatible, then [π, π]A = 0.

This proposition implies that a 2-section π on a skew algebroid A with a compatible
cometric is always a Poisson structure on A.

Definition 3.1 is a natural extension of the following definition of the compatibility be-
tween a Poisson structure on a manifold and a cometric in [5].

Definition 3.3 ([5]). Let (M, π) be a Poisson manifold and g∗ a pseudo-Riemannian met-
ric on T ∗M. The pair (π, g∗) is said to be compatible on M if

Dππ = 0,

where Dπ is the Levi-Civita connection of g∗ on the Lie algebroid (T ∗M)π.

Remark 3.4. If (π, g∗) is compatible on M and π is non-degenerate, then the correspond-
ing symplectic form ω to π is a Kähler form. Hence a Poisson structure with a compatible
cometric is considered as a generalization of a Kähler structure.

3.2. Compatibility between 2-sections and pseudo-Riemannian cometrics on Jacobi
algebroids.

3.2. Compatibility between 2-sections and pseudo-Riemannian cometrics on Jacobi
algebroids. In this subsection, we shall define compatibility between 2-sections and
pseudo-Riemannian cometrics on Jacobi algebroids and investigate their properties. Al-
though Aı̈t Amrane and Zeglaoui [1][2] defined compatibility of Jacobi structures and
pseudo-Riemannian metrics on manifolds, their definition is different from the following
one.

Definition 3.5. Let (A, φ0) be a Jacobi algebroid over M, π a 2-section on (A, φ0) and g∗

a pseudo-Riemannian metric on A∗. The pair (π, g∗) is said to be compatible on (A, φ0) if

(Dπ,φ0
α π)(β, γ) = −1

2
((X0 ⊗ π)(β, γ, α) + (X0 ⊗ π)(γ, α, β)
+ g∗(α, β)π((g∗)�−1(X0), γ) − g∗(α, γ)π((g∗)�−1(X0), β)),
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where Dπ,φ0 is the Levi-Civita connection of g∗ on the skew algebroid A∗π,φ0
induced by π.

Remark 3.6. If φ0 = 0, the above definition is equivalent to the compatibility of (π, g∗)
on a Lie algebroid A (see Definition 3.1).

The following proposition is the analogy of Proposition3.2; that is, a 2-section π on a
Jacobi algebroid (A, φ0) with a compatible cometric on (A, φ0) is always a Jacobi structure
on (A, φ0).

Proposition 3.7. Let (A, φ0) be a Jacobi algebroid over M, π a 2-section on A and g∗ a
pseudo-Riemannian metric on A∗. If a pair (π, g∗) is compatible on (A, φ0), then [π, π]A,φ0 =

0.

Proof. By the definition (8) of φ0-Schouten bracket [·, ·]A,φ0 on Γ(Λ∗A), we have

[π, π]A,φ0 = [π, π]A + π ∧ ιφ0π + ιφ0π ∧ π = dππ + 2π�φ0 ∧ π = dππ − 2X0 ∧ π.(19)

By the fact that for any α and β in Γ(A∗),

[α, β]π,φ0 = [α, β]π + 〈X0, α〉β − 〈X0, β〉α − π(α, β)φ0

and the property that Dπ,φ0 is torsion-free, we obtain for any α, β and γ in Γ(A∗),

(dππ)(α, β, γ) =
∑

Cycl (α,β,γ)

(Dπ,φ0
α π)(β, γ) + 3(X0 ∧ π)(α, β, γ),

where
∑

Cycl (α,β,γ) means the sum of the cyclic permutations of α, β and γ. Therefore by (19),
we compute for any α, β and γ in Γ(A∗),

[π, π]A,φ0 (α, β, γ) = (dππ − 2X0 ∧ π)(α, β, γ)
=

∑
Cycl (α,β,γ)

(Dπ,φ0
α π)(β, γ) + (X0 ∧ π)(α, β, γ)

=
∑

Cycl (α,β,γ)

(
(Dπ,φ0
α π)(β, γ) +

1
2

((X0 ⊗ π)(β, γ, α)

+ (X0 ⊗ π)(γ, α, β) + g∗(α, β)π((g∗)�−1(X0), γ)

− g∗(α, γ)π((g∗)�−1(X0), β))
)
.

Since (π, g∗) is compatible on (A, φ0), the consequence holds. �

The compatibility with a cometric is “preserved” by the Poissonization. To be precise,
the following theorem holds.

Theorem 3.8. Let (A, φ0) be a Jacobi algebroid over M, π ∈ Γ(Λ2A) a Jacobi structure
on (A, φ0) and g∗ a pseudo-Riemannian metric on A∗. For the Poissonization π̃ := e−tπ ∈
Γ(Λ2Ã) of π and a pseudo-Riemannian metric g̃∗ := e−tg∗ on Ã∗, a pair (π, g∗) is compatible
on (A, φ0) if and only if (π̃, g̃∗) is compatible on Ã−φ0

.
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Proof. It is easy to confirm that the Levi-Civita connection D̃ of g̃∗ on (Ã−φ0
)∗π̃ =

(Ã∗, [·, ·]̄φ0
π̃ , ρ̄

φ0
π̃ ), where

[α̃, β̃]̄φ0
π̃ := A

φ0

π̃α̃ β̃ − A
φ0

π̃β̃ α̃ − d̄φ0
A 〈π̃�α̃, β̃〉 (∀α̃, β̃ ∈ Γ(Ã∗)),(20)

ρ̄
φ0
π̃ := ρ̄φ0

A ◦ π̃�(21)

can be written explicitly as follows: for any α̃ and β̃ in Γ(Ã∗),

D̃α̃β̃ = e−t
(
Dπ,φ0
α̃ β̃ + 〈X0, α̃〉

(
∂β̃

∂t
− 1

2
β̃

)
+

1
2
〈X0, β̃〉α̃ − 1

2
g∗(α̃, β̃)(g∗)�−1(X0)

)
.(22)

For any α̃, β̃ and γ̃ in Γ(Ã∗),

(D̃π̃)(α̃, β̃, γ̃) = (D̃α̃π̃)(β̃, γ̃) = ρ̄
φ0
π̃ (α̃)(π̃(β̃, γ̃)) − π̃(D̃α̃β̃, γ̃) − π̃(β̃, D̃α̃γ̃).

Here by using (21) and (22), we have

ρ̄
φ0
π̃ (α̃)(π̃(β̃, γ̃)) = e−2t

(
ρπ(α̃)(π(β̃, γ̃)) − 〈X0, α̃〉π(β̃, γ̃)

+〈X0, α̃〉π
(
∂β̃

∂t
, γ̃

)
+ 〈X0, α̃〉π

(
β̃,
∂γ̃

∂t

))
,

π̃(D̃α̃β̃, γ̃) = e−2t
(
π(Dπ,φ0

α̃ β̃, γ̃) + 〈X0, α̃〉π
(
∂β̃

∂t
, γ̃

)

− 1
2
〈X0, α̃〉π(β̃, γ̃) + 1

2
〈X0, β̃〉π(α̃, γ̃)

−1
2
g∗(α̃, β̃)π((g∗)�−1(X0), γ̃)

)
,

π̃(β̃, D̃α̃γ̃) = e−2t
(
π(β̃,Dπ,φ0

α̃ γ̃) + 〈X0, α̃〉π
(
β̃,
∂γ̃

∂t

)

− 1
2
〈X0, α̃〉π(β̃, γ̃) + 1

2
〈X0, γ̃〉π(β̃, α̃)

−1
2
g∗(α̃, γ̃)π(β̃, (g∗)�−1(X0))

)
.

It thus follows that

(D̃π̃)(α̃, β̃, γ̃) = e−2t
(
ρπ(α̃)(π(β̃, γ̃)) − π(Dπ,φ0

α̃ β̃, γ̃) − π(β̃,Dπ,φ0
α̃ γ̃)

− 1
2
〈X0, β̃〉π(α̃, γ̃) + 1

2
g∗(α̃, β̃)π((g∗)�−1(X0), γ̃)

−1
2
〈X0, γ̃〉π(β̃, α̃) +

1
2
g∗(α̃, γ̃)π(β̃, (g∗)�−1(X0))

)

= e−2t
(
(Dπ,φ0
α̃ π)(β̃, γ̃) +

1
2

(
(X0 ⊗ π)(β̃, γ̃, α̃)

+ (X0 ⊗ π)(γ̃, α̃, β̃) + g∗(α̃, β̃)π((g∗)�−1(X0), γ̃)

−g∗(α̃, γ̃)π((g∗)�−1(X0), β̃)
))
.

By regarding Γ(Ã∗) as the set of curves in Γ(A∗), it follows that the compatibility of (π, g∗)
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is equivalent to the compatibility of (π̃, g̃∗). �

3.3. Contact pseudo-metric structures and Sasakian pseudo-metric structures.
3.3. Contact pseudo-metric structures and Sasakian pseudo-metric structures. In

this subsection, we prove that for a contact pseudo-metric structure on a manifold, satis-
fying the compatibility condition is equivalent to being a Sasakian pseudo-metric structure.
This means that a Jacobi structure with a compatible cometric is considered as a generaliza-
tion of a Sasakian pseudo-metric structure. Before that, we recall the definitions of almost
contact manifolds and Sasakian pseudo-metric manifolds in short. See [6] for details.

An almost contact structure on a (2n + 1)-dimensional manifold M is a triple (φ, ξ, η) of
a (1, 1)-tensor field φ on M, a vector field ξ on M and a 1-form η on M satisfying

φ2 = −id + η ⊗ ξ, 〈η, ξ〉 = 1.

For an almost contact structure (φ, ξ, η) on M2n+1, define an almost complex structure J on
M × R by

J
(
X + f

d
dt

)
= φX + f ξ − 〈η, X〉 d

dt

for any X ∈ X(M × R) tangent to M and f ∈ C∞(M × R), where t is the standard coordinate
on R. An almost contact structure (φ, ξ, η) on M is called normal if this almost complex
structure J on M × R is integrable.

A quadruple (φ, ξ, η, g) of an almost contact structure (φ, ξ, η) on M2n+1 and a pseudo-
Riemannian metric g with signature (p, q) on M is called an almost contact pseudo-metric
structure on M if

g(φX1, φX2) = g(X1, X2) − εη(X1)η(X2)

for any X1, X2 ∈ X(M), where ε := (−1)q. Furthermore, if η is a contact form and it satisfies
for any X1, X2 ∈ X(M)

g(φX1, X2) = (dη)(X1, X2),

then (φ, ξ, η, g) is called a contact pseudo-metric structure on M. In particular, a contact
pseudo-metric structure (φ, ξ, η, g) is called a contact metric structure if g is a Riemannian
metric.

A normal contact pseudo-metric structure is called a Sasakian pseudo-metric structure. In
particular, we call a normal contact metric structure a Sasakian structure simply. It is known
that an almost contact pseudo-metric structure (φ, ξ, η, g) on M is a Sasakian pseudo-metric
structure if and only if

(∇X1φ)X2 = −1
2
g(X1, X2)ξ +

1
2
ε〈η, X2〉X1

for any X1, X2 ∈ X(M). Moreover, for a Sasakian pseudo-metric structure (φ, ξ, η, g) on M,

∇Xξ =
1
2
εφX, ξg = 0

hold for any X ∈ X(M).
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Remark 3.9. In contact geometry, a wedge product (α ∧ β)(X1, . . . , Xk+l) for any
α in Ωk(M), β in Ωl(M) and Xi in X(M) for i = 1, . . . , k + l is often defined as∑
σ∈Sk+l

sgnσα(Xσ(1), . . . , Xσ(k))β(Xσ(k+1), . . . , Xσ(k+l)) multiplied by 1
(k+l)! . However, in this

paper, we adopt that multiplied by 1
k!l! , which is often used in the context of Lie algebroid

theory. These differences cause the various formulas to change slightly. See [3] for the
differences.

Theorem 3.10. Let (M, φ, ξ, η, g) be a contact pseudo-metric manifold and (Λ, E) the
Jacobi structure given by the contact form εη on M. Let G be a pseudo-Riemannian metric
on T M ⊕ R defined by

G((X1, f ), (X2, h)) := g(X1, X2) + ε f h

and G∗ the dual metric of G on T ∗M ⊕R with respect to (Λ, E). Then the pair ((Λ, E),G∗) is
compatible on (T M⊕R, (0, 1)) if and only if (φ, ξ, η, g) is a Sasakian pseudo-metric structure
on M.

Proof. From a direct calculation, the condition that ((Λ, E),G∗) is compatible on (T M ⊕
R, (0, 1)) is described as follows:

εg

(
(∇X1φ)X2 +

1
2
g(X1, X2)ξ − 1

2
ε〈η, X2〉X1, X3

)

+ h2g

(
∇X1ξ −

1
2
εφX1, X3

)
− 1

2
εh3(ξg)(X1, X2) = 0

for any X1, X2, X3 ∈ X(M) and any h2, h3 ∈ C∞(M).
The condition above is actually equivalent to that (φ, ξ, η, g) is a Sasakian pseudo-metric

structure on M. �

Because of Theorem 3.10, a Jacobi structure with a compatible cometric is considered as
a generalization of a Sasakian pseudo-metric structure.

From Theorem 3.8, the condition that ((Λ, E),G∗) is compatible on (T M ⊕ R, (0, 1)) is
equivalent to that the pair (e−tπ, e−tG∗) is compatible on the Lie algebroid T (M × R), where
π ∈ Γ(Λ2(T M⊕R)) is the Jacobi structure on T M⊕R corresponding to (Λ, E). The following
well known fact is recovered from this observation and Theorem 3.10 immediately.

Corollary 3.11. A quadruple (φ, ξ, η, g) is a Sasakian structure on M if and only if
(d(etη), J, etG) is a Kähler structure on M × R.
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