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Abstract
The notion of F-Yang-Mills connections gives a generalization of Yang-Mills connections,

p-Yang-Mills connections and exponential Yang-Mills connections. Here, F is a strictly in-
creasing C2-function. In this paper, we study an instability for F-Yang-Mills connections on
principal fiber bundles over irreducible symmetric R-spaces. In classical Yang-Mills theory,
Simons showed that the non-existence theorem for non-flat, weakly stable Yang-Mills con-
nections over the standard sphere with dimension more than four. Recently, a Simons type
instability theorem for F-Yang-Mills connections over the standard sphere was given by Baba-
Shintani. The purpose of this paper is to prove that the converse of this theorem does not hold
in general. In fact, we give a concrete example of F-Yang-Mills instable, irreducible symmet-
ric R-spaces except for the standard sphere. For this, we first give a sufficient condition for
an irreducible symmetric R-space to be F-Yang-Mills instable. Next, by classifying the irre-
ducible symmetric R-spaces satisfying this condition, we find that the standard sphere and the
Cayley projective plane are only such irreducible symmetric R-spaces. In particular, the Cayley
projective plane is F-Yang-Mills instable.

1. Introduction

1. Introduction
In this paper, we will consider F-Yang-Mills connections, which are known as a gener-

alization of Yang-Mills connections, p-Yang-Mills connections ([4]) and exponential Yang-
Mills connections ([14]). Here, F is a strictly increasing C2-function defined on the interval
[0, T ), 0 < T ≤ ∞. An F-Yang-Mills connection is defined by a critical point of the F-Yang-
Mills functional defined on the space of connections for a principal fiber bundle over a Rie-
mannian manifold. The study of such connections has progressed by extending the results
on the usual Yang-Mills connections such as instability theorems (Simons [17], Kobayashi-
Ohnita-Takeuchi [13]) and some types of vanishing theorems (Bourguignon-Lawson [3],
Kobayashi-Ohnita-Takeuchi [13])．

Now, we explain the study of the instability for F-Yang-Mills connections. We first recall
the instability theorem for Yang-Mills connections over standard spheres due to Simons
([17]).

Theorem 1.1 ([17], see also [3] for the proof). For n > 4, any non-flat, Yang-Mills
connection over the standard sphere Sn is instable.

In other words, this result gives the non-existence theorem for non-flat, weakly stable
Yang-Mills connections over the standard sphere Sn with n > 4. On the other hand, self-
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dual connections and anti-self-dual connections provide us with weakly stable Yang-Mills
connections over the 4-sphere S4. Bourguignon-Lawson [3, Theorem B] proved that in the
case when the structure group is a specific unitary group, any weakly stable Yang-Mills
connection over S4 is either self-dual or anti-self-dual.

After Simons, Baba-Shintani ([1]) gave a Simons type instability theorem for F-Yang-
Mills connections on the standard sphere Sn. In the process, they introduced the notion of
a degree for the differential F′ (Definition 3.1), which we write dF′ . Roughly speaking,
dF′ represents the rate of increase of the ratio of F′ and F′′. They also clarified that the
finiteness of dF′ is necessary for deriving the Simons type instability theorem for F-Yang-
Mills connections. Then, Theorem 1.1 is naturally generalized as follows.

Theorem 1.2 ([1, Corollary 4.12]). For n > 4dF′ + 4, any non-flat, F-Yang-Mills connec-
tion over Sn is instable.

Our motivation for studying F-Yang-Mills connections and their instabilities comes from
the topology of closed Riemannian manifolds. A characteristic class of a principal fiber
bundle P represents elements in the cohomology groups H2k(M) for the base space M of P
by means of the curvatures of connections. Kobayashi-Ohnita-Takeuchi ([13, (2.17) Theo-
rem]) proved that if any non-flat, Yang-Mills connection on P is instable for any principal
fiber bundle P over a compact Riemannian manifold M, then the second Betti number of M
vanishes. Indeed, by representing the first Chern class of a principal U(1)-bundle in terms
of the curvature of a Yang-Mills connection, the instability of the Yang-Mills connection
plays an important role in their proof. We expect to obtain similar results for the topological
vanishing theorem by extending the class of connections from Yang-Mills connections to
F-Yang-Mills connections. It is a fundamental problem to characterize the standard sphere
in terms of appropriate F-Yang-Mills connections.

Our concern is to study a connected, closed Riemannian manifold M such that for every
principal fiber bundle over M, any non-flat F-Yang-Mills connection over M is instable. We
call this property the F-Yang-Mills instability (Definition 3.2), which is a generalization of
the Yang-Mills instability due to Kobayashi-Ohnita-Takeuchi ([13, p. 165]). By Theorem
1.2, the standard sphere Sn is F-Yang-Mills instable if dF′ < (n − 4)/4. We will classify F-
Yang-Mills instable Riemannian manifolds. In the case when F(t) = t, Kobayashi-Ohnita-
Takeuchi gave an example of a Yang-Mills instable Riemannian manifold which is not the
standard sphere by studying the Yang-Mills instability of isotropy irreducible Riemannian
symmetric spaces of compact type ([13, (7.11) Theorem]). In fact, they gave a sufficient
condition for M to be Yang-Mills instable ([13, (7.10) Theorem]) and classified such M
([13, (7.11) Theorem]).

For further progress, we will study a generalization of the results in [13] from Yang-Mills
connections to F-Yang-Mills connections. After Kobayashi-Ohnita-Takeuchi, an extension
of [13, (7.10) Theorem] was studied by Kawagoe [11] for p-Yang-Mills connections, and
by Shintani [16] for F-Yang-Mills connections. However, in both extensions, the result
corresponding to Theorem [13, (7.11) Theorem] is an open problem.

In this paper, we find an irreducible symmetric R-space which is F-Yang-Mills instable.
For this, we first give a sufficient condition for an irreducible symmetric R-space to be F-
Yang-Mills instable (Theorem 4.2). Here, we note that an irreducible symmetric R-space is a
kind of a (not necessarily isotropy irreducible) Riemannian symmetric space of compact type
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and has a nice geometrical characterization as explained later. Based on the classification of
irreducible symmetric R-spaces, we obtain the following theorem in terms of Theorem 4.2
and the characterization.

Theorem 1.3 (Corollary 4.15). Let F : [0, T ) → R be a strictly increasing C2-function
with 0 ≤ dF′ < 1/6. Then, the Cayley projective plane F4/Spin(9) is F-Yang-Mills instable.

We emphasize that the irreducible symmetric R-spaces satisfying the sufficient condition
given in Theorem 4.2 are only the standard sphere as in Theorem 1.2 and the Cayley pro-
jective plane (Theorem 4.14). On the other hand, we can verify that the other irreducible
symmetric R-spaces do not satisfy the sufficient condition by using Lemma 4.3.

The organization of this paper is as follows: In Section 2, we review the basics of F-
Yang-Mills connections, which are related to the present paper. We recall the definition
of the F-Yang-Mills functional (Definition 2.1) and its Euler-Lagrange equation (Corol-
lary 2.2). Furthermore, we give the second variation formula for the functional (Theorem
2.3). We also recall the notions of F-harmonic forms (Definition 2.2) and their index forms
(Definition 2.4), which were introduced in [1]. In Section 3, we study the instability of F-
Yang-Mills connections over submanifolds. In Subsection 3.1, we follow the method given
in [1] for the determination of the instability of F-Yang-Mills connections over submani-
folds of Euclidean spaces. Our argument is based on Proposition 3.3. The inequality (3.4) in
this proposition gives a sufficient condition for an F-Yang-Mills connection to be instable,
which yields Theorem 1.2 (Corollary 3.4). Motivated by Theorem 1.2, we introduce the
notion of F-Yang-Mills instability for connected, closed Riemannian manifolds (Definition
3.2). In Subsection 3.2, we study the F-Yang-Mills instability of minimal submanifolds M
of the standard sphere S. The above method can be applied to this study. We give a sufficient
condition for M to be an F-Yang-Mills instable (Theorem 3.7), which gives a reformulation
of [16]. Our result is an extension of Kobayashi-Ohnita-Takeuchi’s one [13, (6.9) Theorem]
and Kawagoe’s one [11, Corollary 6.2] to an F-Yang-Mills version. Here, we note that our
sufficient condition (3.11) in Theorem 3.7 is described by not only intrinsic curvatures of
M, but also the extrinsic curvature γ of M ⊂ S defined in Definition 3.3. However, it is
difficult to determine the exact value of γ in general. In Section 4, we utilize a nice geo-
metrical characterization of irreducible symmetric R-spaces to overcome this difficulty. We
first review Takeuchi-Kobayashi’s result ([20]), which states that any irreducible symmetric
R-space can be immersed into a specified standard sphere as a minimal submanifold. Next,
we apply Theorem 3.7 to irreducible symmetric R-spaces M (Theorem 4.2). We observe that
Theorem 4.2 is an extension of [13, (7.10) Theorem] and [11, Corollary 6.2] to F-Yang-Mills
version in the case when M is isotropy irreducible (Example 4.1). Using a similar argument,
it can be verified that Theorem 4.2 coincides with [16, Theorem 25]. Based on the fact that
any irreducible symmetric R-space can be realized as an orbit of the isotropy representation
of some Riemannian symmetric space L/K of noncompact type, we can give a formula for
determining γ for each orbit of this representation (Proposition 4.8). This formula is derived
by means of the polarity of the isotropy representation ([5]) and the restricted root system
of L/K. Finally, based on the classification due to Kobayashi-Nagano [12], we determine
whether each irreducible symmetric R-spaces satisfies the sufficient condition given in The-
orem 4.2 or not (Theorem 4.14). As a corollary of Theorem 4.14, we have Theorem 1.3
(Corollary 4.15). We give a brief review of the restricted root system of L/K in Appendix A.
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2. Preliminaries

2. Preliminaries2.1. Principal fiber bundles and connections.
2.1. Principal fiber bundles and connections. Let M be an n-dimensional, connected,

closed Riemannian manifold and G be a compact Lie group with Lie algebra g. Let π : P→
M be a principal fiber bundle over M with structure group G. We denote by r : P ×G → P,
(g, p) �→ r(g, p) = rg(p) the right action of G on P. We write the adjoint representation of
G as Ad : G → GL(g). A g-valued differential 1-form A on P is called a connection or
a connection 1-form, if it satisfies the following two conditions: (1) A is of type Ad, i.e.,
r∗gA = Ad(g−1)A holds for all g ∈ G; (2) A(X∗) = X for all X ∈ g, where X∗ denotes the
fundamental vector field on P associated with X. A g-valued differential k-form ω on P
is said to be horizontal if for any p ∈ P, ωp(X1, . . . , Xk) = 0 holds whenever at least one
of the tangent vectors Xi ∈ TpP is vertical (dπp(Xi) = 0). We denote by Ωk

Ad,hor(P, g) the
vector space of horizontal g-valued k-forms of type Ad on P. For any two connections A, A′,
the difference A − A′ is in Ω1

Ad,hor(P, g). Conversely, it is verified that A + α gives another
connection on P for all α ∈ Ω1

Ad,hor(P, g) ([7, Proposition 5.13.2, 1]). Hence the set CP of
connections on P becomes an affine space over the vector space Ω1

Ad,hor(P, g). The kernel of
a connection A determines a horizontal, right-invariant distribution on P, which we write .
We denote by π : T P→  the natural projection. The curvature 2-form RA of A is defined
by RA(X1, X2) = dA(π(X1), π(X2)) for tangent vectors X1, X2 of P. Then RA is an element
of Ω2

Ad,hor(P, g). It is known that the distribution  is integrable if and only if RA vanishes.
A connection is said to be flat, if its curvature 2-form vanishes.

We make use of a different description of connections on P. Denote by gP = P ×Ad g

the adjoint bundle of P, that is, the associated vector bundle of P with Ad : G → GL(g). It
follows from [7, Theorem 5.13.4] thatΩk

Ad,hor(P, g) is canonically isomorphic with the vector
space Ωk(gP) = Γ(ΛkT ∗M ⊗ gP) of k-forms on M with values in gP. Any connection on P
corresponds to a connection on gP, i.e., a covariant derivative ∇ : Γ(gP) → Ω1(gP). We also
write its curvature 2-form as R∇. It is shown that the curvature R∇ of ∇ on gP is in Ω2(gP)
(cf. [7, Proposition 5.13.2, 2]). In what follows, we identify CP with the set of connections
on gP, which is an affine space over the vector space Ω1(gP).

We give a fiber metric on gP which is compatible with connections on gP. Such a fiber
metric is induced from an Ad(G)-invariant inner product 〈·, ·〉 on g (cf. [7, Proposition 5.9.7]).
In addition, 〈·, ·〉 also induces a pointwise inner product on the vector space Ωk(gP), which is
denoted by the same symbol 〈·, ·〉. We set ‖ϕ‖2 = 〈ϕ, ϕ〉 for ϕ ∈ Ωk(gP). Here, we write 〈ϕ, ψ〉
(ϕ, ψ ∈ Ωk(gP)) by means of their components. We take an orthonormal basis (e1, . . . , en) of
the tangent space TxM (x ∈ M) and denote by (θ1, . . . , θn) its dual basis. If we write

ϕ =
1
k!

∑
i1,...,ik

ϕei1 ,...,eik
θi1 ∧ · · · ∧ θik , ψ =

1
k!

∑
i1,...,ik

ψei1 ,...,eik
θi1 ∧ · · · ∧ θik ,

then we obtain

〈ϕ, ψ〉 = 1
k!

∑
i1,...,ik

〈ϕei1 ,...,eik
, ψei1 ,...,eik

〉 .

By integrating the pointwise inner product over M, we get an inner product on Ωk(gP) as
follows:
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(ϕ, ψ) =
∫

M
〈ϕ, ψ〉dv, ϕ, ψ ∈ Ωk(gP) ,

where dv denotes the Riemannian volume form on M.
For any connection ∇ on gP, the covariant exterior derivative d∇ : Ωk(gP) → Ωk+1(gP)

is defined in the natural manner (cf. [7, Definition 5.12.3]). Then it is well-known that the
curvature 2-form R∇ satisfies d∇R∇ = 0, which is called the Bianchi identity. In general,
d∇ ◦ d∇ does not vanish. It is verified that if ∇ is flat, then d∇ ◦ d∇ = 0 holds. This is an
alternative interpretation of flat connections. We denote by δ∇ the formal adjoint operator of
d∇, that is, δ∇ : Ωk(gP) → Ωk−1(gP) is defined by (d∇ψ, ϕ) = (ψ, δ∇ϕ) for ψ ∈ Ωk−1(gP) and
ϕ ∈ Ωk(gP). Hodge-Laplacian is defined by Δ∇ = δ∇ ◦d∇+d∇ ◦δ∇, which gives a differential
operator on Ωk(gP). A gP-valued form ϕ is called a harmonic form, if Δ∇ϕ = 0 holds. It is
verified that Δ∇ϕ = 0 is equivalent to d∇ϕ = 0 and δ∇ϕ = 0.

A Yang-Mills connection ∇ is defined as a critical point of the Yang-Mills functional

YM : CP → R; ∇ �→ 1
2

∫
M
‖R∇‖2dv .

It is shown that its Euler-Lagrange equation is give by δ∇R∇ = 0. This equation is called
the Yang-Mills equation. The Bianchi identity and the Yang-Mills equation imply that the
curvature 2-form of any Yang-Mills connection becomes a harmonic form.

2.2. F-Yang-Mills connections and the first variational formula.
2.2. F-Yang-Mills connections and the first variational formula. In this subsection,

we first recall the notion of F-Yang-Mills connections, which is an extension of Yang-Mills
connections (Definition 2.1). Second, we recall the notion of F-harmonic forms (Definition
2.2). This notion is an extension of harmonic forms.

Let 0 < T ≤ ∞ and F : [0, T )→ R be a strictly increasing C2-function.

Definition 2.1. The F-Yang-Mills functional YM F : CP → R is defined by

YM F(∇) =
∫

M
F(

1
2
‖R∇‖2)dv .

A connection ∇ on gP is called an F-Yang-Mills connection, if ∇ is a critical point of YM F .
Then, its curvature 2-form is also called the F-Yang-Mills field of ∇.

For example, if we take F(t) = t, then the corresponding F-Yang-Mills functional co-
incides with the usual Yang-Mills functional YM . Furthermore, we recall two types of
F-Yang-Mills connections as follows.

Example 2.1. (1) Let p ≥ 2. If we put Fp(t) = (1/p)(2t)p/2, then the Fp-Yang-Mills
functional coincides with the p-Yang-Mills functional (cf. [4]). A critical point of the p-
Yang-Mills functional is called a p-Yang-Mills connection. It is clear that, for p = 2, a
2-Yang-Mills connection is the usual Yang-Mills one. (2) If we put Fe(t) = et, then the
Fe-Yang-Mills functional coincides with the exponential Yang-Mills functional (cf. [14]). A
critical point of the exponential Yang-Mills functional is called an exponential Yang-Mills
connection.

F-Yang-Mills connections are obtained by solving the Euler-Lagrange equation for
YM F . Here, we recall its first variation formula as follows.
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Proposition 2.1 ([6, Lemma 3.1], [10, (11)]). Let ∇t (|t| < ε) be a C∞-curve in CP with
∇0 = ∇. If we put

α =
d
dt

∣∣∣∣∣
t=0
∇t ∈ Ω1(gP) ,

then we have
d
dt

∣∣∣∣∣
t=0

YM F(∇t) =
∫

M
〈δ∇(F′(

1
2
‖R∇‖2)R∇), α〉dv .

From this proposition, we get:

Corollary 2.2. A connection ∇ is an F-Yang-Mills connection if and only if ∇ satisfies

(2.1) δ∇(F′(
1
2
‖R∇‖2)R∇) = 0 .

We call the equation (2.1) the F-Yang-Mills equation. Clearly, if we take F(t) = t, then
(2.1) becomes the usual Yang-Mills equation.

Motivated by the F-Yang-Mills equation, Baba-Shintani ([1]) introduced the notion of
F-harmonic forms for gP-valued forms as follows.

Definition 2.2 ([1, Definition 3.5]). A gP-valued form ϕ is said to be F-harmonic, if ϕ
satisfies the following two equations:

(2.2) d∇ϕ = 0 , δ∇(F′(
1
2
‖ϕ‖2)ϕ) = 0 .

For simplicity, ϕ is said to be p-harmonic, if ϕ is Fp-harmonic, where the function Fp is
defined in Example 2.1, (1). Then the corresponding second equation (2.2) is rewritten as
δ∇(‖ϕ‖p−2ϕ) = 0.

We note that the curvature 2-form R∇ of an F-Yang-Mills connection ∇ is F-harmonic.

2.3. Instability and the second variational formula.
2.3. Instability and the second variational formula. We first recall the notion of a weak

stability of an F-Yang-Mills connection.

Definition 2.3. An F-Yang-Mills connection ∇ is said to be weakly stable, if the follow-
ing inequality holds for any α ∈ Ω1(gP):

d2

dt2

∣∣∣∣∣
t=0

YM F(∇t) ≥ 0 , α =
d
dt

∣∣∣∣∣
t=0
∇t .

An F-Yang-Mills connection is said to be instable, if it is not weakly stable.

For the study of the instability of F-Yang-Mills connections, we give the second varia-
tional formula for the F-Yang-Mills functional. For the preparation, we recall the definition
of the (first order) Weitzenböck curvature R∇ : Ω1(gP) → Ω1(gP) for a connection ∇ as
follows:

R∇(α) =
∑
i, j

[R∇ji, α j]θi , α ∈ Ω1(gP) ,

where α and R∇ are locally expressed as
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α =
∑

j

α jθ
j , R∇ =

1
2

∑
j,i

R∇jiθ
j ∧ θi .

We set

[· ∧ ·] : Ω1(gP) ×Ω1(gP)→ Ω2(gP) ; [α ∧ β]X,Y = [αX , βY] − [αY , βX] .

By the adjoint invariance of 〈·, ·〉, we have:

〈R∇(α), α〉 = 〈[α ∧ α],R∇〉, α ∈ Ω1(gP) .

In order to describe the second variational formula for the F-Yang-Mills functional, we
recall the definition of the index form for an F-harmonic 2-form as follows.

Definition 2.4 ([1, Definition 3.8]). The index form of an F-harmonic 2-form ϕ ∈ Ω2(gP)
is defined by

(2.3) Iϕ(α) =
∫

M
F′′(

1
2
‖ϕ‖2)〈d∇α, ϕ〉2dv +

∫
M

F′(
1
2
‖ϕ‖2)

{
〈R∇(α), α〉 + ‖d∇α‖2

}
dv ,

for any α ∈ Ω1(gP).

Then we have the second variational formula as follows.

Theorem 2.3 ([1, Proposition 3.7]). Let ∇ be an F-Yang-Mills connection and ∇t (|t| < ε)
be a C∞-curve in CP with ∇0 = ∇. Then we have:

d2

dt2

∣∣∣∣∣
t=0

YM F(∇t) = IR∇(α) ,

where α =
d
dt

∣∣∣∣∣
t=0
∇t.

An alternative expression of the second variation formula is found in [10, (20)]. The
difference between them is the integrand of the second term of Iϕ(α) defined in (2.3) with
ϕ = R∇. Our formula is more appropriate to determine the instability of an F-Yang-Mills
connection.

For the curvature 2-form R∇ ∈ Ω2(gP) of a weakly stable F-Yang-Mills connection ∇,
Theorem 2.3 yields IR∇(α) ≥ 0 for any α ∈ Ω1(gP).

By using the second variational formula, we can verify that any flat connection is weakly
stable. Indeed, if ∇ is a flat connection, then we have 〈R∇(α), α〉 = 0, from which, for any
α ∈ Ω1(gP), we obtain

d2

dt2

∣∣∣∣∣
t=0

YM F(∇t) =
∫

M
F′(0)‖d∇α‖2 ≥ 0 ,

where ∇t is a C∞-curve in CP with ∇0 = ∇ and α = (d/dt)|t=0∇t.

3. Instability of F-Yang-Mills connections over submanifolds

3. Instability of F-Yang-Mills connections over submanifolds
In this section, we study the instability of F-Yang-Mills connections over submanifolds.

In Subsection 3.1, we review the result of [1] for the instability of an F-Yang-Mills connec-
tion over a connected, closed Riemannian manifold isometrically immersed in a Euclidean
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space. We briefly give the derivation of the Simons type instability theorem stated in The-
orem 1.2 (Corollary 3.4). Then, motivated by this corollary, we introduce the notion of
an F-Yang-Mills instability for a connected, closed Riemannian manifold (Definition 3.2).
This notion is a natural extension of the Yang-Mills instability due to Kobayashi-Ohnita-
Takeuchi ([13]). In Subsection 3.2, we rewrite the result of [16] in terms of our notion of the
F-Yang-Mills instability (Theorem 3.7). This theorem is a natural extension of Kobayashi-
Ohnita-Takeuchi’s result [13, (6.9) Theorem] to an F-Yang-Mills version.

3.1. Submanifolds of Euclidean spaces.
3.1. Submanifolds of Euclidean spaces. Let M be an n-dimensional, connected, closed

Riemannian manifold and P be a principal fiber bundle over M with structure group G.
Suppose that M is isometrically immersed in an N-dimensional Euclidean space (RN , 〈·, ·〉)
with n < N. We shall make use of the following convention on the ranges of indices:

1 ≤ A, B,C ≤ N , 1 ≤ i, j, k, l,m ≤ n , n + 1 ≤ μ ≤ N .

Let (e1, . . . , en) be an orthonormal basis of the tangent space TxM (x ∈ M). We denote
by T⊥x M the normal space of the submanifold M ⊂ RN and by h the second fundamental
form of M ⊂ RN . Let (en+1, . . . , eN) be an orthonormal basis of T⊥x M. Let hμi j denote the
component of h(ei, e j) =

∑
μ hμi jeμ. We denote by H =

∑
i h(ei, ei) the mean curvature vector

of M ⊂ RN . We set Hμ = 〈∑i h(ei, ei), eμ〉 = ∑
i hμii. Let (E1, . . . , EN) denote the canonical

basis of RN . We denote by VA the tangent component of EA with respect to the orthogonal
decomposition RN = TxM ⊕ T⊥x M. For ϕ ∈ Ω2(gP), ιVAϕ gives an element of Ω1(gP), where
ι denotes the interior product of M.

The following lemma is fundamental in our argument.

Lemma 3.1. Let ∇ be an F-Yang-Mills connection and ϕ = R∇ denote the curvature
2-form of ∇. If the inequality

(3.1)
∑

A

Iϕ(ιVAϕ) < 0

holds, then ∇ is instable.

Proof. We prove this lemma by contraposition. For a weakly stable F-Yang-Mills con-
nection ∇, we have Iϕ(ιVAϕ) ≥ 0 for each A, from which

∑
A Iϕ(ιVAϕ) ≥ 0 holds. �

Our concern is to find a sufficient condition for the inequality (3.1). For this, we shall
calculate the summation

∑
A Iϕ(ιVAϕ). Let (θ1, . . . , θn) be the dual basis of (e1, . . . , en).

Kobayashi-Ohnita-Takeuchi ([13, (4.36)]) introduced R(ϕ, ϕ) and Ric(ϕ, ϕ) for ϕ ∈ Ω2(gP)
as follows: If we write ϕ = (1/2)

∑
i, j ϕi jθ

i ∧ θ j, then

R(ϕ, ϕ) =
∑
i, j,k,l

Ri jkl〈ϕi j, ϕkl〉 , Ric(ϕ, ϕ) =
∑
i, j,k,l

Rikδ jl〈ϕi j, ϕkl〉 ,

where Ri jkl and Rik are the components of the Riemann curvature R and the Ricci curvature
Ric on M, respectively, that is, R(ek, el)e j =

∑
i Ri

jklei =
∑

i Ri jklei and Rik =
∑

l Rlkli. By
definition, R(ϕ, ϕ) and Ric(ϕ, ϕ) are independent of the choice of (e1, . . . , en). They ([13,
(4.36)]) also introduced H(ϕ, ϕ) by
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H(ϕ, ϕ) =
∑
i, j,k,l

∑
μ

Hμhμikδ jl〈ϕi j, ϕkl〉 .

In addition, for the study of the instability of F-Yang-Mills connections, we make use of the
following quantity ([1, Definition 4.2]):

h1(ϕ, ϕ) =
∑
μ

hμ1(ϕ, ϕ)eμ , hμ1(ϕ, ϕ) =
∑
i, j,k,l

hμikδ jl〈ϕi j, ϕkl〉 .

It is verified that H(ϕ, ϕ) and h1(ϕ, ϕ) are independent of the choice of (e1, . . . , en) and
(en+1, . . . , eN). Furthermore, for each μ, the component hμ1(ϕ, ϕ) of h1(ϕ, ϕ) is also inde-
pendent of the choice of (e1, . . . , en). Here, we note that the original definition of R(ϕ, ϕ),
Ric(ϕ, ϕ) and H(ϕ, ϕ) are defined by means of the inner product (·, ·) instead of 〈·, ·〉.

Under the above setting, we have the following proposition.

Proposition 3.2 ([1, Theorem 4.3]). For any F-harmonic 2-form ϕ ∈ Ω2(gP), we have:

(3.2)
∑

A

Iϕ(ιVAϕ) =
∫

M
F′′(

1
2
‖ϕ‖2)〈h1(ϕ, ϕ), h1(ϕ, ϕ)〉dv

+

∫
M

F′(
1
2
‖ϕ‖2) {H(ϕ, ϕ) − 2Ric(ϕ, ϕ) + R(ϕ, ϕ)} dv .

In order to evaluate the relation between F′(‖ϕ‖2/2) and F′′(‖ϕ‖2/2) in (3.2), Baba-
Shintani ([1]) introduced the notion of a degree for F′ as follows.

Definition 3.1 ([1, Definition 4.2]). Let 0 < T ≤ ∞ and F : [0, T ) → R be a strictly
increasing C2-function defined on [0, T ). The degree of F′ is defined by

dF′ = sup
0<t<T

tF′′(t)
F′(t)

,

which may take infinite values.

For example, if we take F(t) = t, then we have dF′ = 0. For the functions Fp (p ≥ 2) and
Fe defined in Example 2.1, we have dF′p = (p − 2)/2 and dF′e = ∞.

Following the argument in [1, Subsection 4.2], we set B(ϕ, ϕ) for ϕ ∈ Ω2(gP) as follows:

(3.3) B(ϕ, ϕ) = dF′ 〈h1(ϕ, ϕ), h1(ϕ, ϕ)〉 + ‖ϕ‖
2

2
{H(ϕ, ϕ) − 2Ric(ϕ, ϕ) + R(ϕ, ϕ)} .

Then, Proposition 3.2 yields the following result.

Proposition 3.3 ([1, Theorem 4.10]). Let M be a connected, closed Riemannian manifold
isometrically immersed in RN. Assume that the degree dF′ is finite. Then, for any non-zero
F-harmonic form ϕ ∈ Ω2(gP), if the inequality

(3.4) B(ϕ, ϕ) < 0

holds, then
∑

A Iϕ(ιVAϕ) < 0 holds.

In the case when M is the n-dimensional standard sphere Sn(r) = {x ∈ Rn+1 | ‖x‖ = r} of
radius r about the origin, we have B(ϕ, ϕ) = (1/r2)(4dF′ + 4 − n)‖ϕ‖4. Hence, Proposition
3.3 and Lemma 3.1 imply the following corollary.
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Corollary 3.4 ([1, Corollary 4.12]). If the inequality

(3.5) n > 4dF′ + 4

holds, then any non-flat, F-Yang-Mils connection over Sn(r) is instable.

This corollary is an extension of the instability theorems of Yang-Mills connections (Si-
mons [17]) and p-Yang-Mills connections (Chen-Zhou [4, Corollary 4.2]). On the other
hand, we can find some observations of the instability of F-Yang-Mills connections with
dF′ = ∞ (for example, see [1, Propositions 4.13 and 4.14]).

As shown in Corollary 3.4, the inequality (3.5) is independent of the choice of non-flat,
F-Yang-Mills connections over the standard sphere Sn(r). Motivated by such a property of
Sn(r), we introduce the following notion.

Definition 3.2. A connected, closed Riemannian manifold M is said to be F-Yang-Mills
instable, if for any principal fiber bundle P over M, any non-flat, F-Yang-Mills connection
on gP over M is instable. For simplicity, M is said to be p-Yang-Mills instable, if M is
Fp-Yang-Mills instable, where the function Fp is defined in Example 2.1, (1).

This notion is an extension of the Yang-Mills instability in the sense of Kobayashi-Ohnita-
Takeuchi ([13, p. 165]). Corollary 3.4 means that Sn(r) satisfying (3.5) is F-Yang-Mills
instable. Our concern is the converse of Corollary 3.4, namely, whether an F-Yang-Mills in-
stable, connected, closed Riemannian manifold is isomorphic to the standard sphere in some
way. The aim of this paper is to give F-Yang-Mills instable, connected, closed Riemannian
manifolds except for the standard sphere.

3.2. Minimal submanifolds of standard spheres.
3.2. Minimal submanifolds of standard spheres. In this subsection, we give a sufficient

condition for a connected, closed minimal submanifold of the standard sphere to be F-Yang-
Mills instable.

Let M be a connected, closed Riemannian manifold isometrically immersed in RN . Sup-
pose that M is a minimal submanifold of SN−1(r). For any F-harmonic form ϕ ∈ Ω2(gP),
we will rewrite the inequality (3.4) by means of some kinds of curvatures of M. For this
purpose, we first evaluate R(ϕ, ϕ) and Ric(ϕ, ϕ) by means of [13, (6.9) Theorem]. Let σ be
the Riemann curvature operator of M and ρ be the Ricci curvature operator of M. Here, for
each x ∈ M, the two operators σx : Λ2(TxM) → Λ2(TxM) and ρx : TxM → TxM are given
as follows:

〈σx(X ∧ Y), Z ∧W〉 = 〈R(X, Y)W, Z〉 , 〈ρx(X), Y〉 = Ric(X, Y) ,

where the inner product 〈·, ·〉 on Λ2(TxM) is 〈X ∧ Y, Z ∧ W〉 = 〈X, Z〉〈Y,W〉 − 〈X,W〉〈Y,Z〉
for tangent vectors X, Y, Z,W of M. Then we have 〈σx(X ∧ Y), Z ∧W〉 = 〈X ∧ Y, σx(Z ∧W)〉
and 〈ρx(X), Y〉 = 〈X, ρx(Y)〉, so that σx and ρx are diagonalizable over R. We denote by sx

the maximum eigenvalue of σx and by cx the minimum eigenvalue of ρx. We set

s = sup
x∈M

sx , c = inf
x∈M

cx .

Then the following lemma holds.

Lemma 3.5 ([13, (6.7), (6.8)]). For any ϕ ∈ Ω2(gP), we have R(ϕ, ϕ) ≤ 4s‖ϕ‖2 and
Ric(ϕ, ϕ) ≥ 2c‖ϕ‖2.
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Next, we calculate H(ϕ, ϕ) by means of the minimality of M ⊂ SN−1(r). Let (e1, . . . , en)
be an orthonormal basis of TxM (x ∈ M) and (en+1, . . . , eN−1, eN) be an orthonormal basis
of the normal space T⊥x M in RN such that eN is inward normal to SN−1(r). Then we have
hN

i j = (1/r)δi j, from which HN = n/r holds. In addition, by the minimality of M in SN−1(r),
we have Hμ = 0 for μ = n + 1, . . . ,N − 1. Hence we obtain

(3.6) H(ϕ, ϕ) =
∑
i, j,k,l

n
r2 δikδ jl〈ϕi j, ϕkl〉 = 2n

r2 ‖ϕ‖2 .

We will evaluate

(3.7) 〈h1(ϕ, ϕ), h1(ϕ, ϕ)〉 =
N−1∑
μ=n+1

|hμ1(ϕ, ϕ)|2 + |hN
1 (ϕ, ϕ)|2 ,

by means of the principal curvatures of M ⊂ SN−1(r). Let h̃ denote the second fundamental
form of M ⊂ SN−1(r) and Ãξ denote the shape operator of M ⊂ SN−1(r) associated to ξ ∈
T̃⊥x M. The relation 〈h̃(X, Y), ξ〉 = 〈Ãξ(X), Y〉 holds for X, Y ∈ TxM and ξ ∈ T̃⊥x M. In order to
calculate the first term of the right hand side of (3.7), we introduce the following nonnegative
constant γ.

Definition 3.3. We set

γ = sup
x∈M

γx , γx = sup{‖Ãξ‖ | ξ ∈ T̃⊥x M, ‖ξ‖ = 1} ,

where ‖Ãξ‖ denotes the spectral norm of Ãξ.

By definition, for each ξ ∈ T̃⊥x M with ‖ξ‖ = 1, the following inequality holds:

(3.8) |λξ,i| ≤ ‖Ãξ‖ ≤ γ , 1 ≤ i ≤ n ,

where λξ,1, . . . , λξ,n are the eigenvalues of Ãξ. Then we have the following lemma.

Lemma 3.6. For any ϕ ∈ Ω2(gP), we have:

〈h1(ϕ, ϕ), h1(ϕ, ϕ)〉 ≤ 4
{

(N − n − 1)γ2 +
1
r2

}
‖ϕ‖4 .

Proof. A direct calculation shows

(3.9) hN
1 (ϕ, ϕ) =

∑
i, j,k,l

1
r
δikδ jl〈ϕi j, ϕkl〉 = 2

r
‖ϕ‖2 .

For each μ = n + 1, . . . ,N − 1, we take an orthonormal basis (u(μ)
1 , . . . , u(μ)

n ) of TxM which
diagonalizes Ãeμ , namely, Ãeμu

(μ)
i = λeμ,iu

(μ)
i , where λeμ,i’s are the eigenvalues of Ãξ. Then we

get 〈h̃(u(μ)
i , u(μ)

k ), eμ〉 = λeμ,iδik. As mentioned before, hμ1(ϕ, ϕ) is independent of the choice
of orthonormal bases of TxM. Hence hμ1(ϕ, ϕ) is calculated by means of (u(μ)

1 , . . . , u(μ)
n ) as

follows:

hμ1(ϕ, ϕ) =
∑
i, j,k,l

〈h̃(u(μ)
i , u(μ)

k ), eμ〉〈u(μ)
j , u

(μ)
l 〉〈ϕu(μ)

i ,u(μ)
j
, ϕu(μ)

k ,u(μ)
l
〉 =

∑
i, j

λeμ,i〈ϕu(μ)
i ,u(μ)

j
, ϕu(μ)

i ,u(μ)
j
〉 .

In addition, by (3.8), we obtain
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(3.10) |hμ1(ϕ, ϕ)| ≤ γ
∑
i, j

〈ϕu(μ)
i ,u(μ)

j
, ϕu(μ)

i ,u(μ)
j
〉 = 2γ‖ϕ‖2 .

Substituting (3.9) and (3.10) into (3.7), we have the assertion. �

From the above argument, we obtain the following theorem, which is a reformulation of
[16, Theorem 25] in terms of the notion of the F-Yang-Mills instability.

Theorem 3.7. Let M be an n-dimensional, connected, closed, immersed minimal sub-
manifold of SN−1(r). Suppose that dF′ is nonnegative. Then, if the inequality

(3.11) 4dF′

{
(N − n − 1)γ2 +

1
r2

}
+

n
r2 − 2c + 2s < 0

holds, then we have
∑

A Iϕ(ιVAϕ) < 0 for all non-zero F-harmonic forms ϕ ∈ Ω2(gP). In
particular, (3.11) implies that M is F-Yang-Mills instable.

Proof. It follows from Lemma 3.5 and (3.6) that the following inequality holds:

H(ϕ, ϕ) − 2Ric(ϕ, ϕ) + R(ϕ, ϕ) ≤ 2
( n
r2 − 2c + 2s

)
‖ϕ‖2 .

We also have:

dF′ 〈h1(ϕ, ϕ), h1(ϕ, ϕ)〉 ≤ 4dF′

{
(N − n − 1)γ2 +

1
r2

}
‖ϕ‖4 .

Here, we have used that dF′ is nonnegative. Substituting the above two inequalities into
(3.3), we get:

B(ϕ, ϕ) ≤
[
4dF′

{
(N − n − 1)γ2 +

1
r2

}
+

n
r2 − 2c + 2s

]
‖ϕ‖4 ,

from which the assumption (3.11) yields B(ϕ, ϕ) < 0. Thus, by Proposition 3.3, we have the
assertion. �

Our concern is to find a connected, closed, minimal submanifold satisfying (3.11). In
fact, we give such a submanifold in the next section.

Theorem 3.7 is an extension of Kobayashi-Ohnita-Takeuchi’s result [13, (6.9) Theorem]
for harmonic forms to F-harmonic forms. Applying Theorem 3.7 to the function F = Fp

defined in Example 2.1, (1), the inequality (3.11) is rewritten as follows:

(3.12) 2(p − 2)
{

(N − n − 1)γ2 +
1
r2

}
+

n
r2 − 2c + 2s < 0 .

This inequality gives a sufficient condition for a connected, closed, minimal submanifold of
SN−1(r) to be p-Yang-Mills instable. We find an alternative formula for this due to Kawagoe
[11, Theorem 6.1]. There is a slight difference between them in the definition of γ. When
we are concerned with the upper bound on p for (3.12), our result gives a refinement of [11,
Theorem 6.1].
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4. Instability of F-Yang-Mills connections over irreducible symmetric R-spaces

4. Instability of F-Yang-Mills connections over irreducible symmetric R-spaces
In this section, we give an irreducible symmetric R-space which is F-Yang-Mills instable

in the sense of Definition 3.2. In Subsection 4.1, we first recall the basics of the canonical
imbedding f of an irreducible symmetric R-space M. Due to Takeuchi-Kobayashi ([20]),
the image f (M) becomes a minimal submanifold of a specified standard sphere (Proposition
4.1). Next, we rewrite (3.11) as (4.2) by applying Theorem 3.7 to irreducible symmetric
R-spaces (Theorem 4.1). In Subsection 4.2, we classify irreducible symmetric R-spaces
satisfying (4.2) (Theorem 4.14). Then we find that the Cayley projective plane is F-Yang-
Mills instable (Corollary 4.15), which gives our proof of Theorem 1.3 stated in Introduction.

4.1. A sufficient condition for the F-Yang-Mills instability.
4.1. A sufficient condition for the F-Yang-Mills instability. Let L be a connected,

semisimple Lie group with trivial center and U be a parabolic subgroup of L. The ho-
mogeneous space M = L/U is called an R-space. Let l and u be the Lie algebras of L and
U, respectively. Then there exists a hyperbolic element J of l (that is, ad(J) ∈ End(l) is
diagonalizable over R) satisfying u =

∑
λ≥0 l

λ, where the summation ranges over all the non-
negative eigenvalues λ of ad(J) and lλ(⊂ l) denotes the eigenspace of ad(J) associated to λ.
It is shown that there exists a maximal compact subgroup K of L such that J is orthogonal
to the Lie algebra k of K with respect to the Killing form (·, ·)l of l. Then the homogeneous
space L/K becomes a Riemannian symmetric space of noncompact type in a natural manner.
We have the Cartan decomposition of l associated to k, which we write l = k ⊕ p. Here, p is
the orthogonal complement of k in l with respect to (·, ·)l. In particular, J is in p. We denote
by AdL : L → GL(l) the adjoint representation of L. Since we have AdL(k)p ⊂ p for all
k ∈ K, AdL induces the adjoint representation of K on p, which we write Ad : K → GL(p).
This representation is orthogonal with respect to the inner product defined by the restriction
of (·, ·)l to p × p. Geometrically, the space p is canonically isomorphic to the tangent space
at the origin eK of L/K. Under this identification, Ad is equivalent to the isotropy represen-
tation of L/K. It is known that K acts transitively on M (cf. [20, Proposition 2.1]), so that M
is expressed as M = K/KJ , where KJ = {k ∈ K | Ad(k)J = J}. In particular, M is compact.
From this expression, we have the K-equivariant map from M = K/KJ to p as follows:

f (kKJ) = Ad(k)J (k ∈ K) .

This map f is called the canonical imbedding of M. Then M is diffeomorphic to the
Ad(K)-orbit through J, which we write Ad(K)J. Now, M is called a symmetric R-space,
if M = K/KJ becomes a symmetric space. A symmetric R-space M = L/U is said to be
irreducible, if L is simple. The classification of symmetric R-spaces reduces to irreducible
ones, which was classified by Kobayashi-Nagano (see [12, p. 895 for classical cases, p. 906
for exceptional cases]. We also find a complete list in [15, p. 41]). From the classification,
we observe that an irreducible symmetric R-space is not necessarily isotropy irreducible.

Following Takeuchi-Kobayashi ([20]), we give a K-invariant Riemannian metric on M =
K/KJ as follows: Since −(·, ·)l gives a positive definite inner product on k, the Lie algebra
kJ of KJ has the orthogonal complement in k with respect to this inner product, which we
write m = (kJ)⊥. Under the canonical identification of m with ToM (o = eKJ), the adjoint
action of KJ on m is equivalent to the isotropy representation of KJ on ToM. Furthermore,
by means of this identification, the restriction of −(·, ·)l to m × m gives a KJ-invariant inner
product on ToM, which induces a K-invariant Riemannian metric on M = K/KJ in a natural
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manner. Then it is shown that the canonical imbedding f : M → p is isometric. We write
the Riemannian metric on M as the same symbol 〈·, ·〉 if there is no confusion. In addition,
Kobayashi-Takeuchi proved the following proposition.

Proposition 4.1 ([20, Theorem 4.2]). Let M be an irreducible symmetric R-space. We
set n = dim(M) and N = dim(p). Let S = SN−1(

√
2n) denote the hypersphere of radius

√
2n

centered at the origin in p. Then, the image f (M) of the canonical imbedding is a minimal
submanifold of S.

By this proposition it makes sense to determine whether irreducible symmetric R-spaces
satisfy the inequality (3.11) stated in Theorem 3.7. By means of Proposition 4.1, Theorem
3.7 is rewritten as follows.

Theorem 4.2. Let M = K/KJ be an irreducible symmetric R-space associated with a
Riemannian symmetric space L/K of noncompact type. We set

(4.1) BJ = 4dF′

{
(N − n − 1)γ2 +

1
2n

}
+

1
2
− 2c + 2s .

Suppose that dF′ is nonnegative. If the inequality

(4.2) BJ < 0

holds, then M is F-Yang-Mills instable.

Example 4.1. We give some observations. (1) If we take F(t) = t, then dF′ = 0 holds, so
that the inequality (4.2) is rewritten as

(4.3)
1
2
− 2c + 2s < 0 .

In the case when M is isotropy irreducible, Ohnita [15, Theorem 7] proved that the canonical
imbedding is equivalent to the first standard imbedding in the sense of Takahashi [18]. Then,
the inequality (4.3) coincides with the inequality stated in [13, (7.10) Theorem]. This means
that our inequality (4.2) is an extension of [13, (7.10) Theorem] to an F-Yang-Mills version.
We note that the inequality (4.3) is described by means of intrinsic curvatures of M only.

(2) If we take F = Fp (p ≥ 2) defined in Example 2.1, (1), then the inequality (4.2) is
rewritten as

2(p − 2)
{

(N − n − 1)γ2 +
1
r2

}
+

1
2
− 2c + 2s < 0 .

In the case when M is isotropy irreducible, we find an alternative formula for this due to
Kawagoe [11, Corollary 6.2]. The difference between them is the same as explained as
before. However, [11] did not exhibit concrete examples satisfying the inequality stated in
[11, Corollary 6.2].

Under the setting of Theorem 4.2, the first term of the definition (4.1) of BJ is nonneg-
ative. The following lemma shows that (4.3) gives a necessary condition for an irreducible
symmetric R-space to satisfy (4.2).
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Lemma 4.3. Fix an irreducible symmetric R-space M = K/KJ. Let Fi (i = 1, 2) be a
strictly increasing C2-function with 0 ≤ dF′i < ∞. We use the symbol BJ,Fi instead of BJ in
order to emphasize the dependence on Fi. Then, dF′1 ≤ dF′2 yields BJ,F1 ≤ BJ,F2 . In particular,
BJ,F2 < 0 yields BJ,F1 < 0.

Kobayashi-Ohnita-Takeuchi [13, (7.11) Theorem] classified isotropy irreducible
Riemannian symmetric spaces of compact type satisfying (4.3). This implies that the only
isotropy irreducible, irreducible symmetric R-spaces satisfying (4.3) are Sn (n > 4) and
F4/Spin(9). Thus, we will determine whether Sn (n > 4), F4/Spin(9) and irreducible sym-
metric R-spaces which are not isotropy irreducible satisfy the inequality (4.2). For this
purpose, we need to determine the value of the constant BJ for these spaces.

4.2. Determination of the sufficient condition.
4.2. Determination of the sufficient condition. Let M = K/KJ be an irreducible sym-

metric R-space and f : M → p denote the canonical imbedding. The determination of the
constant BJ is reduced to those of the constants N, n, c, s and γ. Here, the dimensions of
isotropy irreducible Riemannian symmetric spaces are well-known (cf. [8, Table V]), so that
we can easily obtain the values of N and n from the isotropy irreducible decomposition of
M. In what follows, we focus our attention on the calculation of c, s and γ.

4.2.1. Determination of the constants c and s.
4.2.1. Determination of the constants c and s. The Ricci curvatures of irreducible sym-

metric R-spaces M are determined by Takeuchi ([19, Section 3]). In fact, he determined the
Einstein constants of each factor for the locally isometric decomposition of M. From his
result we immediately obtain the value of c. On the other hand, Kobayashi-Ohnita-Takeuchi
([13, Table, p. 187]) showed the positive eigenvalues of the Riemann curvature operator for
isotropy irreducible Riemannian symmetric spaces with respect to the normal homogeneous
Riemannian metric 〈·, ·〉′. In particular, they determined the maximum eigenvalue s′ of the
Riemann curvature operator of M with respect to 〈·, ·〉′. We note that if there exists ν > 0
satisfying (·, ·)k = ν(·, ·)l on k× k, then we have s = νs′. Hence, by applying their result to our
setting, we can obtain the value of s for each irreducible symmetric R-space with respect to
〈·, ·〉.

Lemma 4.4. In the case when M = Sn, we have c = (n − 1)/2n and s = 1/2n.

Proof. Since Sn is Einstein, c is equal to its Einstein constant. From [19, p. 309] we
get c = (n − 1)/2n. On the other hand, by [13, Table, p. 187], we get s′ = 1/2(n − 1) for
Sn = SO(n + 1)/SO(n). In addition, by (·, ·)k = ((n − 1)/n)(·, ·)l on k × k, we have:

s =
n − 1

n
· 1

2(n − 1)
=

1
2n

.

Thus we have completed the proof. �

Example 4.2. The standard sphere M = K/KJ = Sn is an irreducible symmetric R-space
associated with the Riemannian symmetric space L/K = SO(1, n+1)/SO(n+1) of noncom-
pact type. Then we have N = n + 1, from which we need not to determine γ in order to
obtain BJ . In addition, by Lemma 4.4, we have BJ = (−n + 4dF′ + 4)/2n. It follows from
Theorem 4.2 that Sn is F-Yang-Mills instable if n > 4dF′ + 4. This inequality coincides with
(3.5) given in Corollary 3.4.
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The following lemma is shown by a similar way to Lemma 4.4. We omit the details for
its proof.

Lemma 4.5. In the case when M = F4/Spin(9), we have c = 3/8 and s = 1/12.

Proposition 4.6. Let M be an irreducible symmetric R-spaces which is not isotropy irre-
ducible. Then, M does not satisfy the inequality (4.2).

Proof. By the assumption of this proposition M is locally isometric to S1 × M′ for some
compact connected Einstein symmetric space M′ or to Sp−1 × Sq−1 for some p, q with p ≤ q.
In the former case, we have c = 0, from which the following holds:

1
2
− 2c + 2s =

1
2
+ 2s > 0 .

In the latter case, we have c = (p−2)/2(p+q−2) (cf. [19, p. 309, (8)]) and s = 1/2(p+q−2)
(cf. [13, Table, p. 187]). Hence we have

1
2
− 2c + 2s =

q − p + 4
2(p + q − 2)

> 0 .

From the above argument M does not satisfy (4.3). From this, the assertion holds. �

The remaining task is to obtain the upper bound of dF′ for M = F4/Spin(9) to satisfy the
inequality (4.2). For this, we need to obtain the value of γ for the submanifold f (M) ⊂ S.

4.2.2. Determination of the constants γ and BJ for F4/Spin(9).
4.2.2. Determination of the constants γ and BJ for F4/Spin(9). We first give a method

to determine the value of γ for a general irreducible symmetric R-space which is realized as
the orbit through J ∈ p under the adjoint representation Ad : K → GL(p). We note that Ad
is a polar representation (cf. [5]). Indeed, any maximal abelian subspace of p gives a section
of Ad (cf. [2, Theorem 3.2.13]). This fact enables us to construct a method to determine
the constant γ. Namely, our method is based on restricted root system theory associated to
L/K with respect to a maximal abelian subspace of p (see, Appendix A for a brief review of
restricted root systems). As shown later in Proposition 4.8, we will derive a formula for γ
by means of the restricted root system.

Let a be a maximal abelian subspace of p, and a∗ denote its dual space. We denote by
Σ(⊂ a∗ − {0}) the restricted root system of L/K with respect to a. Without loss of generality,
we may assume that J is an element of a, since Ad(k)a (k ∈ K) gives another maximal
abelian subspace of p and the following relation holds:

p =
⋃
k∈K

Ad(k)a .

We describe the restricted root space decomposition of k and p for Σ as follows: We set
k0 = {X ∈ k | [H, X] = 0, H ∈ a} and, for each λ ∈ Σ,

kλ = {X ∈ k | [H, [H, X]] = λ(H)2X, H ∈ a} ,
pλ = {X ∈ p | [H, [H, X]] = λ(H)2X, H ∈ a} .

Then we have

k = k0 ⊕
∑
λ∈Σ+
kλ , p = a ⊕

∑
λ∈Σ+
pλ,
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where Σ+ is the set of positive restricted roots of Σ with respect to some ordering. From the
above, the tangent space TJ(Ad(K)J) of the orbit Ad(K)J is decomposed into

TJ(Ad(K)J) = [k, J] =
∑

λ∈Σ+; λ(J)�0

pλ .

We also have:

T̃⊥J (Ad(K)J) = (J⊥ ∩ a) ⊕
∑

λ∈Σ+; λ(J)=0

pλ ,

where J⊥ ∩ a = {X ∈ a | 〈J, X〉 = 0}. We set pJ = {X ∈ p | [X, J] = 0} and lJ = kJ ⊕ pJ =

{X ∈ l | [X, J] = 0}. Then lJ is a subalgebra of l and (lJ , kJ) gives an orthogonal symmetric
Lie algebra. Since a gives a section of Ad(KJ)-action on pJ , we get:

pJ =
⋃
k∈KJ

Ad(k)a .

This implies that T̃⊥J (Ad(K)J) has the following expression:

T̃⊥J (Ad(K)H) =
⋃
k∈KJ

Ad(k)(J⊥ ∩ a) .

Hence, for any normal vector ξ ∈ T̃⊥J (Ad(K)J), there exists k ∈ KJ satisfying Ad(k)ξ ∈
J⊥ ∩ a, from which we have Ãξ = Ad(k)−1ÃAd(k)ξAd(k). This means that the principal
curvatures of Ãξ coincides with those of ÃAd(k)ξ (including their multiplicities). For λ ∈ Σ+
with λ(J) � 0 and ξ ∈ J⊥ ∩ a, we get the following (cf. [2, Example 3.4]):

Ãξ |pλ = −
λ(ξ)
λ(J)

idpλ .

From the above argument, we conclude:

Lemma 4.7. For any normal vector ξ ∈ T̃⊥J (Ad(K)J), there exists k ∈ KJ with Ad(k)ξ ∈
H⊥ ∩ a and the spectrum norm ‖Ãξ‖ is expressed as follows:

‖Ãξ‖ = max
{∣∣∣∣∣−λ(Ad(k)ξ)

λ(J)

∣∣∣∣∣
∣∣∣∣∣ λ ∈ Σ+, λ(J) � 0

}
.

By this lemma, we give our formula for determining γ = γJ as follows.

Proposition 4.8. Under the above setting, we obtain:

γ = max
{∣∣∣∣∣−λ(ξ)

λ(J)

∣∣∣∣∣
∣∣∣∣∣ λ ∈ Σ+, λ(J) � 0, ξ ∈ J⊥ ∩ a, ‖ξ‖ = 1

}
.

Next, we describe {λ ∈ Σ+ | λ(J) � 0} and J⊥ ∩ a by means of a fundamental system
of Σ as a root system. Let Λ = {λ1, . . . , λr} (r = rank(Σ)) be the fundamental system of Σ
associated with Σ+ and {H1, . . . ,Hr}(⊂ a) denote the dual basis of Λ. We write the highest
root of Σ associated with Λ as λ̃. For a general element J of a, if λ̃(J) = 1 holds, then the
R-space K/KJ becomes a symmetric R-space. This implies that, if we express λ̃ as

λ̃ = m1λ1 + · · · + mrλr (m1, . . . ,mr ∈ Z>0) ,

then, for some i with mi = 1 (if there exists), K/KHi is a symmetric R-space. Conversely,
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any irreducible symmetric R-space is constructed in such a way. Hence, without loss of
generality, we may choose J = Hi with mi = 1. From this, we can obtain {λ ∈ Σ+ | λ(J) � 0}
by using the following lemma.

Lemma 4.9. Let J = Hi with mi = 1, and λ ∈ Σ+ be a positive restricted root. We write
λ = l1λ1 + · · · + lrλr for some l1, . . . , lr ∈ Z≥0. Then, λ is in {λ ∈ Σ+ | λ(J) � 0} if and only if
li = 1 holds.

Proof. This lemma immediately follows from λ(J) = li ≤ mi = 1. �

Corollary 4.10. Let J = Hi with mi = 1. For any λ ∈ Σ+ with λ(J) � 0, we have λ(J) = 1.

For each λ ∈ Σ, we define the restricted root vector Hλ ∈ a as follows:

λ(H) = 〈Hλ,H〉 , H ∈ a .
It is shown that {Hλ | λ ∈ Λ} gives a basis of a. Then, we have the following lemma.

Lemma 4.11. Let J = Hi. Then J⊥ ∩ a has the following description:

J⊥ ∩ a =
⎧⎪⎪⎨⎪⎪⎩

r∑
k=1, k�i

ξkHλk

∣∣∣∣∣∣∣ ξk ∈ R, 1 ≤ k ≤ r, k � i

⎫⎪⎪⎬⎪⎪⎭ .

Furthermore, by means of {H1, . . . ,Hr}, ξ = ∑r
k=1, k�i ξkHλk is expressed as follows:

ξ =

r∑
l=1

ξ̃lHl, ξ̃l =

r∑
k=1, k�i

ξk〈Hλl ,Hλk〉 .

Proof. Let ξ =
∑r

k=1 ξkHλk ∈ a. If we denote by C the Cartan matrix of Σ as a root system,
that is,

C = (Ckl)1≤k,l≤r =

(
2〈Hλl ,Hλk〉
〈Hλl ,Hλl〉

)
1≤k,l≤r

,

then we have

〈J, ξ〉 =
r∑

k,l=1

ξk
2〈Hλl ,Hλk〉
〈Hλl ,Hλl〉

(tC−1)li =

r∑
k=1

ξk

⎛⎜⎜⎜⎜⎜⎝
r∑

l=1

tCkl(tC−1)li

⎞⎟⎟⎟⎟⎟⎠ =
r∑

k=1

ξkδki = ξi .

From this, we have the assertion. �

We are ready to determine the constant γ for M = F4/Spin(9).

Lemma 4.12. In the case when M = F4/Spin(9), we have γ = 1/4
√

6.

Proof. We give a realization of M = F4/Spin(9) as an orbit of the isotropy representation
of the Riemannian symmetric space L/K = E−26

6 /F4 of noncompact type. The restricted root
system Σ of L/K is of type A2. If Λ = {λ1, λ2} is a fundamental system of Σ, then the highest
root λ̃ of Σ associated with Λ is expressed by λ̃ = λ1+λ2. Then we have K/KJ = F4/Spin(9)
with J = H1. From Lemma 4.9, we get {λ ∈ Σ+ | λ(J) � 0} = {λ1, λ1 + λ2}. Here, it is shown
that, for any λ ∈ Σ+, the length ‖Hλ‖ is given as follows (see, Appendix A for the proof):

(4.4) ‖Hλ‖ = 1

2
√

6
.
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In addition, since the angle between Hλ1 and Hλ2 is equal to 2π/3, we have:

(〈Hλk ,Hλl〉
)
1≤k,l≤2 =

(
1/24 −1/48
−1/48 1/24

)
.

By Lemma 4.11, any vector ξ = ξ2Hλ2 ∈ J⊥ ∩ a is rewritten as ξ = ξ̃1H1 + ξ̃2H2 with
ξ̃1 = −ξ2/48 and ξ̃2 = ξ2/24. Then we obtain ‖ξ‖ = (1/2

√
6)|ξ2| and∣∣∣∣∣−λ1(ξ/‖ξ‖)

λ1(J)

∣∣∣∣∣ = |ξ̃1|
‖ξ‖ =

1

4
√

6
,

∣∣∣∣∣− (λ1 + λ2)(ξ/‖ξ‖)
(λ1 + λ2)(J)

∣∣∣∣∣ = |ξ̃1 + ξ̃2|
‖ξ‖ =

1

4
√

6
.

Thus, we have the assertion from Proposition 4.8. �

We obtain the constant BJ for M = F4/Spin(9) by means Lemmas 4.5 and 4.12. Namely,
we have the following proposition.

Proposition 4.13. In the case when M = F4/Spin(9), we have BJ =
dF′

2
− 1

12
.

From the above argument, we conclude:

Theorem 4.14. The standard sphere Sn with 0 ≤ dF′ < (n−4)/4 and the Cayley projective
space F4/Spin(9) with 0 ≤ dF′ < 1/6 satisfy the inequality (4.2). Furthermore, they are the
only irreducible symmetric R-spaces satisfying this inequality.

From Theorems 4.2 and 4.14 we get the following corollary.

Corollary 4.15 (Theorem 1.3). Let F : [0, T ) → R be a strictly increasing C2-function
with 0 ≤ dF′ < 1/6. Then, the Cayley projective plane F4/Spin(9) is F-Yang-Mills instable.

Example 4.3. Applying Corollary 4.15 to the function F = Fp defined in Example 2.1,
(1), the Cayley projective plane F4/Spin(9) is p-Yang-Mills instable for 2 ≤ p < 2 + 1/3.

Appendix A Riemannian symmetric spaces of noncompact type and their restricted
root systems

Appendix A. Riemannian symmetric spaces of noncompact type and their restricted
root systems

Let L/K be a Riemannian symmetric space of noncompact type. Here, K is a maximal
compact subgroup of L. Then there exists an involution of L satisfying Lθ0 ⊂ K ⊂ Lθ, where
Lθ denotes the fixed-point subgroup of θ in L, and Lθ0 denotes its identity component. We
write the Lie algebras of L and K as l and k, respectively. The differentiation of θ at the
identity element in L gives a Cartan involution of l, which we write the same symbol θ.
Then we have k = lθ. Let l = k ⊕ p be the Cartan decomposition of l associated with k, where
p = l−θ. Let a be a maximal abelian subspace of p and Σ denote the restricted root system of
L/K with respect to a. The restriction of the Killing form of l to a×a gives a positive definite
inner product on a, which we write 〈·, ·〉. For λ ∈ Σ, we denote by Hλ ∈ a the restricted root
vector of λ, that is, λ(H) = 〈Hλ,H〉 for H ∈ a. Under the above setting, we give a method to
determine the length ‖Hλ‖ =

√〈Hλ,Hλ〉 of Hλ (λ ∈ Σ) and prove the equality (4.4).
We first describe Σ by means of the root system of the complexification lC of l. Let h be a

Cartan subalgebra of l containing a. Then h is θ-invariant, from which we have h = (h∩k)⊕a.
We define the real vector space hR by hR =

√−1(h∩k)⊕a(⊂ hC). It is shown the the restriction
of the Killing form of lC to hR × hR gives a positive definite inner product on hR, which we
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write the same symbol 〈·, ·〉 if there is no confusion. We denote by Σ̃(⊂ h∗
R
− {0}) the root

system of lC with respect to hC. If we put Σ̃0 = {α ∈ Σ̃ | α(H) = 0 ,H ∈ a}, then the following
relation holds:

Σ =
{
α|a

∣∣∣α ∈ Σ̃ − Σ̃0

}
.

Next, we give a formula to obtain the length ‖Hλ‖ of λ ∈ Σ by means of the lengths of
root vectors for Σ̃. Here, the root vector Hα ∈ hR for α ∈ Σ̃ is defined by

α(H) = 〈Hα,H〉 , H ∈ hR,
which is well-defined since α takes real values on hR. We set σ = −θC|hR , which gives a
permutation on Σ̃. We have σ(Hα) = Hσ(α) for α ∈ Σ̃. For any λ ∈ Σ there exists α ∈ Σ̃ − Σ̃0

satisfying λ = α|a. Then the vector Hλ for λ ∈ Σ coincides with the a-component of Hα ∈ hR.
Namely, we have Hλ = (1/2)(Hα + Hσ(α)), from which we get the following lemma.

Lemma A.1. Let λ ∈ Σ and α ∈ Σ̃ − Σ̃0 with λ = α|a. Then we have:

(A.1) ‖Hλ‖2 = 1
2

{〈Hα,Hα〉 + 〈Hα,Hσ(α)〉} .
The following relation is useful to determine Hσ(α) in (A.1):

(A.2) Hζ+η = Hζ + Hη (ζ, η ∈ Σ̃ , ζ + η ∈ Σ̃) .

We are ready to prove (4.4).

Proof of (4.4). Let L/K = E−26
6 /F4. We write the root system of lC = eC6 as Σ̃ = E6.

We can determine the action of σ on Σ̃ in terms of Satake diagram ([8, p. 532, TABLE
VI]). Indeed, there exists a fundamental system Λ̃ = {α1, . . . , α6} of Σ̃ such that, for each
i = 1, . . . , 6, σ(αi) is given by

σ(α1) = α1 + α2 + 2α3 + 2α4 + α5 , σ(α6) = α2 + α3 + 2α4 + 2α5 + α6 ,

and σ(αi) = −αi (i = 2, 3, 4, 5). We note that α1 is normal to α j ( j = 2, 4, 5, 6). The length
‖Hλ‖ (λ ∈ Σ = A2) is independent of the choice of λ. It is sufficient to show the length of
‖Hλ1‖ with λ1 = α1|a is equal to 1/2

√
6. From Lemma A.1 and (A.2), we get:

‖Hλ1‖2 = 〈Hα1 ,Hα1〉 + 〈Hα1 ,Hα3〉 =
1

24
.

Here, in the last equality, we have used the result of Yokota ([21, p. 82]) for the length of the
root vector Hαi (i = 1, 3). Hence we have completed the proof. �
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