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Abstract

The notion of F-Yang-Mills connections gives a generalization of Yang-Mills connections,
p-Yang-Mills connections and exponential Yang-Mills connections. Here, F' is a strictly in-
creasing C>-function. In this paper, we study an instability for F-Yang-Mills connections on
principal fiber bundles over irreducible symmetric R-spaces. In classical Yang-Mills theory,
Simons showed that the non-existence theorem for non-flat, weakly stable Yang-Mills con-
nections over the standard sphere with dimension more than four. Recently, a Simons type
instability theorem for F-Yang-Mills connections over the standard sphere was given by Baba-
Shintani. The purpose of this paper is to prove that the converse of this theorem does not hold
in general. In fact, we give a concrete example of F-Yang-Mills instable, irreducible symmet-
ric R-spaces except for the standard sphere. For this, we first give a sufficient condition for
an irreducible symmetric R-space to be F-Yang-Mills instable. Next, by classifying the irre-
ducible symmetric R-spaces satisfying this condition, we find that the standard sphere and the
Cayley projective plane are only such irreducible symmetric R-spaces. In particular, the Cayley
projective plane is F-Yang-Mills instable.

1. Introduction

In this paper, we will consider F-Yang-Mills connections, which are known as a gener-
alization of Yang-Mills connections, p-Yang-Mills connections ([4]) and exponential Yang-
Mills connections ([14]). Here, F is a strictly increasing C2-function defined on the interval
[0,7),0 < T < co. An F-Yang-Mills connection is defined by a critical point of the F-Yang-
Mills functional defined on the space of connections for a principal fiber bundle over a Rie-
mannian manifold. The study of such connections has progressed by extending the results
on the usual Yang-Mills connections such as instability theorems (Simons [17], Kobayashi-
Ohnita-Takeuchi [13]) and some types of vanishing theorems (Bourguignon-Lawson [3],
Kobayashi-Ohnita-Takeuchi [13]).

Now, we explain the study of the instability for F'-Yang-Mills connections. We first recall
the instability theorem for Yang-Mills connections over standard spheres due to Simons

([17D).

Theorem 1.1 ([17], see also [3] for the proof). For n > 4, any non-flat, Yang-Mills
connection over the standard sphere S" is instable.

In other words, this result gives the non-existence theorem for non-flat, weakly stable
Yang-Mills connections over the standard sphere S" with n > 4. On the other hand, self-
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dual connections and anti-self-dual connections provide us with weakly stable Yang-Mills
connections over the 4-sphere S*. Bourguignon-Lawson [3, Theorem B] proved that in the
case when the structure group is a specific unitary group, any weakly stable Yang-Mills
connection over $* is either self-dual or anti-self-dual.

After Simons, Baba-Shintani ([1]) gave a Simons type instability theorem for F-Yang-
Mills connections on the standard sphere S”. In the process, they introduced the notion of
a degree for the differential F’ (Definition 3.1), which we write dr.. Roughly speaking,
dp: represents the rate of increase of the ratio of F” and F”’. They also clarified that the
finiteness of dp: is necessary for deriving the Simons type instability theorem for F-Yang-
Mills connections. Then, Theorem 1.1 is naturally generalized as follows.

Theorem 1.2 ([1, Corollary 4.12]). For n > 4dp + 4, any non-flat, F-Yang-Mills connec-
tion over S" is instable.

Our motivation for studying F-Yang-Mills connections and their instabilities comes from
the topology of closed Riemannian manifolds. A characteristic class of a principal fiber
bundle P represents elements in the cohomology groups H**(M) for the base space M of P
by means of the curvatures of connections. Kobayashi-Ohnita-Takeuchi ([13, (2.17) Theo-
rem]) proved that if any non-flat, Yang-Mills connection on P is instable for any principal
fiber bundle P over a compact Riemannian manifold M, then the second Betti number of M
vanishes. Indeed, by representing the first Chern class of a principal U(1)-bundle in terms
of the curvature of a Yang-Mills connection, the instability of the Yang-Mills connection
plays an important role in their proof. We expect to obtain similar results for the topological
vanishing theorem by extending the class of connections from Yang-Mills connections to
F-Yang-Mills connections. It is a fundamental problem to characterize the standard sphere
in terms of appropriate F'-Yang-Mills connections.

Our concern is to study a connected, closed Riemannian manifold M such that for every
principal fiber bundle over M, any non-flat F-Yang-Mills connection over M is instable. We
call this property the F-Yang-Mills instability (Definition 3.2), which is a generalization of
the Yang-Mills instability due to Kobayashi-Ohnita-Takeuchi ([13, p. 165]). By Theorem
1.2, the standard sphere §" is F-Yang-Mills instable if dpr < (n — 4)/4. We will classify F-
Yang-Mills instable Riemannian manifolds. In the case when F(¢) = ¢, Kobayashi-Ohnita-
Takeuchi gave an example of a Yang-Mills instable Riemannian manifold which is not the
standard sphere by studying the Yang-Mills instability of isotropy irreducible Riemannian
symmetric spaces of compact type ([13, (7.11) Theorem]). In fact, they gave a sufficient
condition for M to be Yang-Mills instable ([13, (7.10) Theorem]) and classified such M
([13, (7.11) Theorem]).

For further progress, we will study a generalization of the results in [13] from Yang-Mills
connections to F-Yang-Mills connections. After Kobayashi-Ohnita-Takeuchi, an extension
of [13, (7.10) Theorem] was studied by Kawagoe [11] for p-Yang-Mills connections, and
by Shintani [16] for F-Yang-Mills connections. However, in both extensions, the result
corresponding to Theorem [13, (7.11) Theorem] is an open problem.

In this paper, we find an irreducible symmetric R-space which is F-Yang-Mills instable.
For this, we first give a sufficient condition for an irreducible symmetric R-space to be F-
Yang-Mills instable (Theorem 4.2). Here, we note that an irreducible symmetric R-space is a
kind of a (not necessarily isotropy irreducible) Riemannian symmetric space of compact type
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and has a nice geometrical characterization as explained later. Based on the classification of
irreducible symmetric R-spaces, we obtain the following theorem in terms of Theorem 4.2
and the characterization.

Theorem 1.3 (Corollary 4.15). Let F : [0,T) — R be a strictly increasing C*-function
with 0 < dp < 1/6. Then, the Cayley projective plane F,/Spin(9) is F-Yang-Mills instable.

We emphasize that the irreducible symmetric R-spaces satisfying the sufficient condition
given in Theorem 4.2 are only the standard sphere as in Theorem 1.2 and the Cayley pro-
jective plane (Theorem 4.14). On the other hand, we can verify that the other irreducible
symmetric R-spaces do not satisfy the sufficient condition by using Lemma 4.3.

The organization of this paper is as follows: In Section 2, we review the basics of F-
Yang-Mills connections, which are related to the present paper. We recall the definition
of the F-Yang-Mills functional (Definition 2.1) and its Euler-Lagrange equation (Corol-
lary 2.2). Furthermore, we give the second variation formula for the functional (Theorem
2.3). We also recall the notions of F-harmonic forms (Definition 2.2) and their index forms
(Definition 2.4), which were introduced in [1]. In Section 3, we study the instability of F-
Yang-Mills connections over submanifolds. In Subsection 3.1, we follow the method given
in [1] for the determination of the instability of F-Yang-Mills connections over submani-
folds of Euclidean spaces. Our argument is based on Proposition 3.3. The inequality (3.4) in
this proposition gives a sufficient condition for an F-Yang-Mills connection to be instable,
which yields Theorem 1.2 (Corollary 3.4). Motivated by Theorem 1.2, we introduce the
notion of F-Yang-Mills instability for connected, closed Riemannian manifolds (Definition
3.2). In Subsection 3.2, we study the F-Yang-Mills instability of minimal submanifolds M
of the standard sphere S. The above method can be applied to this study. We give a sufficient
condition for M to be an F-Yang-Mills instable (Theorem 3.7), which gives a reformulation
of [16]. Our result is an extension of Kobayashi-Ohnita-Takeuchi’s one [13, (6.9) Theorem]
and Kawagoe’s one [11, Corollary 6.2] to an F-Yang-Mills version. Here, we note that our
sufficient condition (3.11) in Theorem 3.7 is described by not only intrinsic curvatures of
M, but also the extrinsic curvature y of M C S defined in Definition 3.3. However, it is
difficult to determine the exact value of y in general. In Section 4, we utilize a nice geo-
metrical characterization of irreducible symmetric R-spaces to overcome this difficulty. We
first review Takeuchi-Kobayashi’s result ([20]), which states that any irreducible symmetric
R-space can be immersed into a specified standard sphere as a minimal submanifold. Next,
we apply Theorem 3.7 to irreducible symmetric R-spaces M (Theorem 4.2). We observe that
Theorem 4.2 is an extension of [13, (7.10) Theorem] and [11, Corollary 6.2] to F'-Yang-Mills
version in the case when M is isotropy irreducible (Example 4.1). Using a similar argument,
it can be verified that Theorem 4.2 coincides with [16, Theorem 25]. Based on the fact that
any irreducible symmetric R-space can be realized as an orbit of the isotropy representation
of some Riemannian symmetric space L/K of noncompact type, we can give a formula for
determining 7y for each orbit of this representation (Proposition 4.8). This formula is derived
by means of the polarity of the isotropy representation ([5]) and the restricted root system
of L/K. Finally, based on the classification due to Kobayashi-Nagano [12], we determine
whether each irreducible symmetric R-spaces satisfies the sufficient condition given in The-
orem 4.2 or not (Theorem 4.14). As a corollary of Theorem 4.14, we have Theorem 1.3
(Corollary 4.15). We give a brief review of the restricted root system of L/K in Appendix A.
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2. Preliminaries

2.1. Principal fiber bundles and connections. Let M be an n-dimensional, connected,
closed Riemannian manifold and G be a compact Lie group with Lie algebra g. Letzr: P —
M be a principal fiber bundle over M with structure group G. We denote by r : P X G — P,
(g, p) = r(g,p) = ry(p) the right action of G on P. We write the adjoint representation of
G as Ad : G — GL(g). A g-valued differential 1-form A on P is called a connection or
a connection 1-form, if it satisfies the following two conditions: (1) A is of type Ad, i.e.,
r,A = Ad(g~")A holds for all g € G; (2) A(X*) = X for all X € g, where X* denotes the
fundamental vector field on P associated with X. A g-valued differential k-form w on P
is said to be horizontal if for any p € P, w,(Xj,...,Xi) = 0 holds whenever at least one
of the tangent vectors X; € T,P is vertical (dr,(X;) = 0). We denote by Q’; d,hor(P’ g) the
vector space of horizontal g-valued k-forms of type Ad on P. For any two connections A, A’,
the difference A — A’ is in Q}\ ahor(P:9). Conversely, it is verified that A + « gives another
connection on P for all a € Q/L dJwr(lt’, g) ([7, Proposition 5.13.2, 1]). Hence the set 6p of
connections on P becomes an affine space over the vector space Q/lx ahor(P>9). The kernel of
a connection A determines a horizontal, right-invariant distribution on P, which we write H.
We denote by 73, : TP — H the natural projection. The curvature 2-form R* of A is defined
by RA(X1, X») = dA(m3 (X)), m3¢(X,)) for tangent vectors X, X, of P. Then R” is an element
of QZA dhor (P> 8). Tt is known that the distribution H is integrable if and only if R* vanishes.
A connection is said to be flat, if its curvature 2-form vanishes.

We make use of a different description of connections on P. Denote by gp = P Xaq g
the adjoint bundle of P, that is, the associated vector bundle of P with Ad : G — GL(qg). It
follows from [7, Theorem 5.13.4] that Q’j\ der(P, @) is canonically isomorphic with the vector
space Q(gp) = T(A*T*M ® gp) of k-forms on M with values in gp. Any connection on P
corresponds to a connection on gp, i.e., a covariant derivative V : I'(gp) — Q'(gp). We also
write its curvature 2-form as R". It is shown that the curvature RY of V on gp is in Q%(gp)
(cf. [7, Proposition 5.13.2, 2]). In what follows, we identify € with the set of connections
on gp, which is an affine space over the vector space Q!(gp).

We give a fiber metric on gp which is compatible with connections on gp. Such a fiber
metric is induced from an Ad(G)-invariant inner product (-, -) on g (cf. [7, Proposition 5.9.7]).
In addition, (-, -) also induces a pointwise inner product on the vector space QX(gp), which is

denoted by the same symbol (-, -). We set ||¢]|> = (¢, ¢) for ¢ € Q¥(ap). Here, we write (¢, /)

(¢, € Q%(gp)) by means of their components. We take an orthonormal basis (ey, . . ., e,) of
the tangent space T, M (x € M) and denote by (', ...,6") its dual basis. If we write
1 . . 1 . .
Y= E Z ‘peil """ eikgll /\.../\glk’ - E Z wen ..... eik@'l /\.../\glk’

then we obtain
1
<(70’ w) = E Z <‘10€,'| ..... €,’k’ '708,‘1 ..... e,‘k> .
I]yeey ik

By integrating the pointwise inner product over M, we get an inner product on Q¥(gp) as
follows:
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(.0) = fM o, i€ o).

where dv denotes the Riemannian volume form on M.

For any connection V on gp, the covariant exterior derivative d¥ : Qfgp) — Ql(gp)
is defined in the natural manner (cf. [7, Definition 5.12.3]). Then it is well-known that the
curvature 2-form RV satisfies d"RY = 0, which is called the Bianchi identity. In general,
d" o d¥ does not vanish. It is verified that if V is flat, then d¥ o d¥ = 0 holds. This is an
alternative interpretation of flat connections. We denote by ¢" the formal adjoint operator of
dY, thatis, 6" : QF(gp) — Q5 1(gp) is defined by (dVy, ¢) = (¥, 6V ¢) for y € Q" (gp) and
¢ € QF(gp). Hodge-Laplacian is defined by AY = 6Y 0d" +d" 06", which gives a differential
operator on Qk(gp). A gp-valued form ¢ is called a harmonic form, if A¥¢ = 0 holds. It is
verified that AV = 0 is equivalent to V¢ = 0 and 6" ¢ = 0.

A Yang-Mills connection V is defined as a critical point of the Yang-Mills functional

1
Yl - Cp—>R;, Vi Ef IRV |PPdv .
M

It is shown that its Euler-Lagrange equation is give by 6"R" = 0. This equation is called
the Yang-Mills equation. The Bianchi identity and the Yang-Mills equation imply that the
curvature 2-form of any Yang-Mills connection becomes a harmonic form.

2.2. F-Yang-Mills connections and the first variational formula. In this subsection,
we first recall the notion of F-Yang-Mills connections, which is an extension of Yang-Mills
connections (Definition 2.1). Second, we recall the notion of F-harmonic forms (Definition
2.2). This notion is an extension of harmonic forms.

Let0 <7 <ooand F : [0,T) — R be a strictly increasing C2-function.

DeriNiTiON 2.1. The F-Yang-Mills functional %4 - : €p — R is defined by

1
2r() = [ FGIRPrdo.
w2
A connection V on gp is called an F-Yang-Mills connection, if V is a critical point of %4 .

Then, its curvature 2-form is also called the F-Yang-Mills field of V.

For example, if we take F(f) = t, then the corresponding F-Yang-Mills functional co-
incides with the usual Yang-Mills functional #.#. Furthermore, we recall two types of
F-Yang-Mills connections as follows.

ExampLe 2.1. (1) Let p > 2. If we put F,(1) = (1/p)(2t)?/?, then the F,-Yang-Mills
functional coincides with the p-Yang-Mills functional (cf. [4]). A critical point of the p-
Yang-Mills functional is called a p-Yang-Mills connection. It is clear that, for p = 2, a
2-Yang-Mills connection is the usual Yang-Mills one. (2) If we put F.(f) = ¢, then the
F.-Yang-Mills functional coincides with the exponential Yang-Mills functional (cf. [14]). A
critical point of the exponential Yang-Mills functional is called an exponential Yang-Mills
connection.

F-Yang-Mills connections are obtained by solving the Euler-Lagrange equation for
% . Here, we recall its first variation formula as follows.
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Proposition 2.1 ([6, Lemma 3.1], [10, (11)]). Let V' (|t] < &) be a C®-curve in €p with
VO = V. If we put

V' e Ql(gp),
=0

then we have

& wanw = f ST CIRTPRY), a)do.
=0 M 2

From this proposition, we get:

Corollary 2.2. A connection V is an F-Yang-Mills connection if and only if V satisfies
1
2.1 S (F'(GIRVIMR™) = 0.

We call the equation (2.1) the F-Yang-Mills equation. Clearly, if we take F(¢) = t, then
(2.1) becomes the usual Yang-Mills equation.

Motivated by the F-Yang-Mills equation, Baba-Shintani ([1]) introduced the notion of
F-harmonic forms for gp-valued forms as follows.

DeriniTion 2.2 ([1, Definition 3.5]). A gp-valued form ¢ is said to be F-harmonic, if ¢
satisfies the following two equations:

1
(2.2) d"p=0, 5V(F’(§II90II2)90) =0.

For simplicity, ¢ is said to be p-harmonic, if ¢ is F,-harmonic, where the function F, is
defined in Example 2.1, (1). Then the corresponding second equation (2.2) is rewritten as
¥ (llgll"~2¢) = 0.

We note that the curvature 2-form R of an F-Yang-Mills connection V is F-harmonic.

2.3. Instability and the second variational formula. We first recall the notion of a weak
stability of an F-Yang-Mills connection.

DermniTion 2.3. An F-Yang-Mills connection V is said to be weakly stable, if the follow-
ing inequality holds for any a € Q'(gp):

d—2 Y r(V)>0, a= i v
dtz =0 F - ’ - dt t=0 ’

An F-Yang-Mills connection is said to be instable, if it is not weakly stable.

For the study of the instability of F-Yang-Mills connections, we give the second varia-
tional formula for the F-Yang-Mills functional. For the preparation, we recall the definition
of the (first order) Weitzenbock curvature RY : Ql(gp) — Q!(gp) for a connection V as
follows:

RV(@) = Y[R}, a/l0', Qo)
ij

where a and RY are locally expressed as
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. 1 o
_ nJ vV _ = VJj i
a= E a0/, R =3 E.le-H NG .
J i
We set

[ A1:Q%ap) x Q' (gp) = Q%sp); [ ABlxy = [ax,Br] — [ay, Bx] .

By the adjoint invariance of (-, -), we have:

RV (@), @) = (@ Aal,R"), acQl(gp).

In order to describe the second variational formula for the F-Yang-Mills functional, we
recall the definition of the index form for an F-harmonic 2-form as follows.

DerNTION 2.4 ([1, Definition 3.8]). The index form of an F-harmonic 2-form ¢ € Q?(gp)
is defined by

1 1
@3 = [ PGl [ PGP 0" @.a) + ldalf ) do,
M M
for any a € Q'(gp).

Then we have the second variational formula as follows.

Theorem 2.3 ([1, Proposition 3.7]). Let V be an F-Yang-Mills connection and V' (|t| < €)
be a C®-curve in €p with V° = V. Then we have:
d2

ﬁ o @///F(Vt) = Igv(@),
1=

d
where a = —
tl=0

An alternative expression of the second variation formula is found in [10, (20)]. The
difference between them is the integrand of the second term of I (@) defined in (2.3) with
¢ = RY. Our formula is more appropriate to determine the instability of an F-Yang-Mills
connection.

For the curvature 2-form R¥ € Q2?(gp) of a weakly stable F-Yang-Mills connection V,
Theorem 2.3 yields Igxv(e) > 0 for any a € Q'(gp).

By using the second variational formula, we can verify that any flat connection is weakly
stable. Indeed, if V is a flat connection, then we have (RV(a), @) = 0, from which, for any
a € Ql(gp), we obtain

dZ
ﬁ t=0

where V' is a C*-curve in €p with V* = V and & = (d/d1)|,=V".

DM (V) = f FOlld%alP >0,

M

3. Instability of F-Yang-Mills connections over submanifolds

In this section, we study the instability of F-Yang-Mills connections over submanifolds.
In Subsection 3.1, we review the result of [1] for the instability of an F-Yang-Mills connec-
tion over a connected, closed Riemannian manifold isometrically immersed in a Euclidean
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space. We briefly give the derivation of the Simons type instability theorem stated in The-
orem 1.2 (Corollary 3.4). Then, motivated by this corollary, we introduce the notion of
an F-Yang-Mills instability for a connected, closed Riemannian manifold (Definition 3.2).
This notion is a natural extension of the Yang-Mills instability due to Kobayashi-Ohnita-
Takeuchi ([13]). In Subsection 3.2, we rewrite the result of [16] in terms of our notion of the
F-Yang-Mills instability (Theorem 3.7). This theorem is a natural extension of Kobayashi-
Ohnita-Takeuchi’s result [13, (6.9) Theorem] to an F-Yang-Mills version.

3.1. Submanifolds of Euclidean spaces. Let M be an n-dimensional, connected, closed
Riemannian manifold and P be a principal fiber bundle over M with structure group G.
Suppose that M is isometrically immersed in an N-dimensional Euclidean space (R, (-, -))
with n < N. We shall make use of the following convention on the ranges of indices:

1<A,B,C<N, 1<ijkilm<n, n+1<u<N.

Let (ey,...,e,) be an orthonormal basis of the tangent space T,M (x € M). We denote
by T+ M the normal space of the submanifold M c R" and by h the second fundamental
form of M c RVN. Let (e,41,...,ey) be an orthonormal basis of T-M. Let h‘l.lj denote the
component of A(e;, e;) = 3, h’l.’j .. We denote by H = }; h(e;, e;) the mean curvature vector
of M c RN, We set H* = (3, h(e;, e)), ey) = Zihﬁ.. Let (Eq,..., Ey) denote the canonical
basis of RY. We denote by V, the tangent component of E4 with respect to the orthogonal
decomposition RN = T.M @ T+M.Forye Q2(ap), Ly, gives an element of Q'(gp), where
¢ denotes the interior product of M.
The following lemma is fundamental in our argument.

Lemma 3.1. Let V be an F-Yang-Mills connection and ¢ = R denote the curvature
2-form of V. If the inequality

3.1) D Ly, <0
A

holds, then V is instable.

Proof. We prove this lemma by contraposition. For a weakly stable F-Yang-Mills con-
nection V, we have I,(ty,¢) > 0 for each A, from which 4 I,(tv,¢) > 0 holds. ]

Our concern is to find a sufficient condition for the inequality (3.1). For this, we shall
calculate the summation } 4 I (ty,¢). Let (9], ...,0") be the dual basis of (ey,...,ey,).
Kobayashi-Ohnita-Takeuchi ([13, (4.36)]) introduced R(¢, ¢) and Ric(e, ¢) for ¢ € Q*(gp)
as follows: If we write ¢ = (1/2) 3, ; ¢;;6" A 6/, then

R(p, ) = Z Rijlij, o), Ric(e, @) = Z Rix6 ji{pij> 1) »
ikl ikl
where R; i, and R are the components of the Riemann curvature R and the Ricci curvature
Ric on M, respectively, that is, R(ey, e))e; = Z,-R;klei = i Rijue; and Ry = X Ryyi. By
definition, R(p, ¢) and Ric(y, ¢) are independent of the choice of (ey,...,e,). They ([13,
(4.36)]) also introduced H(p, ¢) by
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H(g, @)= D > H'Wy6ipijs ou)

iLjkl p

In addition, for the study of the instability of F'-Yang-Mills connections, we make use of the
following quantity ([1, Definition 4.2]):

hi(p.¢) = D (@0, Hip.9) = > Wydilpij, ou).
T ikl
It is verified that H(y,¢) and h;(y, ¢) are independent of the choice of (ey,...,e,) and
(en+1,--.,ey). Furthermore, for each u, the component h‘]‘ (¢, @) of hi(p,p) is also inde-
pendent of the choice of (ey,...,e,). Here, we note that the original definition of R(¢p, ¢),

Ric(ep, ) and H(yp, ¢) are defined by means of the inner product (-, -) instead of (-, -).
Under the above setting, we have the following proposition.

Proposition 3.2 ([1, Theorem 4.3]). For any F-harmonic 2-form ¢ € Q2(ap), we have:
144 1
(32) D I,e) = f F' G llglP) i (¢, ¢), (g, 9))dv
A M 2

1
" fM F 5 llelP) (H(p, 9) ~ 2Ric(g, 0) + Rg, 9} dv.

In order to evaluate the relation between F’(|l¢|[>/2) and F”(|l¢|*/2) in (3.2), Baba-
Shintani ([1]) introduced the notion of a degree for F” as follows.

DErinition 3.1 ([1, Definition 4.2]). Let 0 < T < co and F : [0,T) — R be a strictly
increasing C2-function defined on [0, T). The degree of F’ is defined by

do = su tF"” (1)
"l F@)

which may take infinite values.
For example, if we take F(f) = t, then we have dr- = 0. For the functions F, (p > 2) and

F, defined in Example 2.1, we have dp; = (p —2)/2 and df, = .
Following the argument in [1, Subsection 4.2], we set B(p, ¢) for ¢ € Q*(gp) as follows:

2
B3 Blo.g) = drdhi(e.9) hile, ) + “A- (Hp. ) ~ Ric(y. 0) + R, )

Then, Proposition 3.2 yields the following result.

Proposition 3.3 ([1, Theorem 4.10]). Let M be a connected, closed Riemannian manifold
isometrically immersed in RN. Assume that the degree dp is finite. Then, for any non-zero
F-harmonic form ¢ € Q2(gp), if the inequality

(3.4) B(p,¢) <0
holds, then Y 5 I,(ty,¢) < 0 holds.

In the case when M is the n-dimensional standard sphere S"(r) = {x € R™! | ||x]| = r} of
radius r about the origin, we have B(g, @) = (1/r*)(4dp + 4 — n)|l¢||*. Hence, Proposition
3.3 and Lemma 3.1 imply the following corollary.
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Corollary 3.4 ([1, Corollary 4.12]). If the inequality
(3.5) n>4dp +4
holds, then any non-flat, F-Yang-Mils connection over S"(r) is instable.

This corollary is an extension of the instability theorems of Yang-Mills connections (Si-
mons [17]) and p-Yang-Mills connections (Chen-Zhou [4, Corollary 4.2]). On the other
hand, we can find some observations of the instability of F-Yang-Mills connections with
dp = oo (for example, see [1, Propositions 4.13 and 4.14]).

As shown in Corollary 3.4, the inequality (3.5) is independent of the choice of non-flat,
F-Yang-Mills connections over the standard sphere $”(r). Motivated by such a property of
S"(r), we introduce the following notion.

DeriniTion 3.2. A connected, closed Riemannian manifold M is said to be F-Yang-Mills
instable, if for any principal fiber bundle P over M, any non-flat, F-Yang-Mills connection
on gp over M is instable. For simplicity, M is said to be p-Yang-Mills instable, if M is
F,-Yang-Mills instable, where the function F, is defined in Example 2.1, (1).

This notion is an extension of the Yang-Mills instability in the sense of Kobayashi-Ohnita-
Takeuchi ([13, p. 165]). Corollary 3.4 means that $"(r) satisfying (3.5) is F-Yang-Mills
instable. Our concern is the converse of Corollary 3.4, namely, whether an F-Yang-Mills in-
stable, connected, closed Riemannian manifold is isomorphic to the standard sphere in some
way. The aim of this paper is to give F-Yang-Mills instable, connected, closed Riemannian
manifolds except for the standard sphere.

3.2. Minimal submanifolds of standard spheres. In this subsection, we give a sufficient
condition for a connected, closed minimal submanifold of the standard sphere to be F-Yang-
Mills instable.

Let M be a connected, closed Riemannian manifold isometrically immersed in RY. Sup-
pose that M is a minimal submanifold of S¥~!(r). For any F-harmonic form ¢ € Q*(gp),
we will rewrite the inequality (3.4) by means of some kinds of curvatures of M. For this
purpose, we first evaluate R(¢p, ¢) and Ric(g, ¢) by means of [13, (6.9) Theorem]. Let o be
the Riemann curvature operator of M and p be the Ricci curvature operator of M. Here, for
each x € M, the two operators oy : A>(T M) — A*(T M) and p, : TM — T M are given
as follows:

(O XANY),ZAW)=(RX, )W, Z), {(po:«X),Y)=Ric(X,Y),

where the inner product (-, -) on AT M)is (X ANY,ZAW) = (X, ZXY,W) — (X, WXY, Z)
for tangent vectors X, Y, Z, W of M. Then we have (0 (X AY),ZAW) =(XAY,0.(Z AW))
and (p.(X), Y) = (X, p.(Y)), so that o, and p, are diagonalizable over R. We denote by s,
the maximum eigenvalue of o, and by ¢, the minimum eigenvalue of p,. We set

s=supsy, c=infc,.
xeM xeM

Then the following lemma holds.

Lemma 3.5 ([13, (6.7), (6.8)]). For any ¢ € Q*(ap), we have R(p, ) < 4s|loll> and
Ric(p, @) > 2cllgl.
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Next, we calculate H(y, ¢) by means of the minimality of M c SV=!(r). Let (ey,...,e,)
be an orthonormal basis of T.M (x € M) and (e,1,...,en_1,eyn) be an orthonormal basis
of the normal space T; M in RY such that ey is inward normal to S¥~'(r). Then we have
hg’. = (1/r)d;j, from which H" = n/r holds. In addition, by the minimality of M in S¥~!(r),

we have H* =0foru=n+1,...,N — 1. Hence we obtain

n 2n
3.6 H(p, ) = —0ik0 ji{@ij» = = lell* .
(3.6) (.9) i;l 3001 pua) = Il

We will evaluate
N-1
(3.7) (hi(p, @) (e, 0) = D (@, @) + 10 (6, 0)

u=n+1

by means of the principal curvatures of M ¢ S¥~!(r). Let & denote the second fundamental
form of M < SV !(r) and Ag denote the shape operator of M c SV~!(r) associated to ¢ €
T+M. The relation (h(X, Y), &) = (Ag(X), Yy holds for X, Y € T,M and & € T M. In order to
calculate the first term of the right hand side of (3.7), we introduce the following nonnegative
constant vy.

DeriniTION 3.3. We set

y=supyy, vyx=sup{llAgl|&eTiM, |I€]l =1},
xeM

where ||Asc|| denotes the spectral norm of Af.

By definition, for each & € T:-M with ||€|| = 1, the following inequality holds:
(3.8) il <Al <y, 1<i<n,
where A¢ 1, ..., A, are the eigenvalues of Af. Then we have the following lemma.

Lemma 3.6. For any ¢ € Q*(gp), we have:

1
(hi (¢, 9), ki (¢, 9)) < 4{<N —n—1)y"+ 72} llell* .
Proof. A direct calculation shows

1 2
(3.9) W (e, 0) = D ~0udikeijs ou) = =gl
Lﬂhlr r

Foreachuy =n+1,...,N — 1, we take an orthonormal basis (u(l"), e, uﬁf‘)) of T.M which

Wy

diagonalizes A,,, namely, A, u; e.ilty”, where A, ;’s are the eigenvalues of A. Then we

get (ﬁ(u?‘), u]((”)), €,) = Ae,i0ik- As mentioned before, h’f (¢, ¢) is independent of the choice

of orthonormal bases of 7 .M. Hence h’l‘ (¢, ) is calculated by means of (u(l”), cee, u,({')) as
follows:
Hi(p,¢) = Z(il(ul@, M,@)J,;)(ME”), u;”)(sﬁugn,ujqn,wuzn,%w) = Z ﬂe“,,(t,oul@’uim,gouiun’u;ﬂ)).
ikl ij

In addition, by (3.8), we obtain
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(3.10) it 91 <y D 00 i i) = 2
i.j
Substituting (3.9) and (3.10) into (3.7), we have the assertion. m]
From the above argument, we obtain the following theorem, which is a reformulation of

[16, Theorem 25] in terms of the notion of the F-Yang-Mills instability.

Theorem 3.7. Let M be an n-dimensional, connected, closed, immersed minimal sub-
manifold of SN~'(r). Suppose that dp: is nonnegative. Then, if the inequality

I
3.1 4dp/{(N—n—1)y2+—2}+%—2c+2s<0
r r

holds, then we have ), 1,(ty,¢) < O for all non-zero F-harmonic forms ¢ € Q%(gp). In
particular, (3.11) implies that M is F-Yang-Mills instable.

Proof. It follows from Lemma 3.5 and (3.6) that the following inequality holds:
H(g.¢) = 2Riclg.9) + R(g.9) < 2(%5 = 20+ 2s) Il
We also have:
dp(hi(¢. ), hi(p, @) < 4dp {(N —n=1y"+ rlz} lell*

Here, we have used that dy is nonnegative. Substituting the above two inequalities into
(3.3), we get:

B(p, @) < lgll*,

1
Ad {(N—n— 1)y* + —2}+ —”2 —2c+2s
r I

from which the assumption (3.11) yields B(g, ¢) < 0. Thus, by Proposition 3.3, we have the
assertion. m]

Our concern is to find a connected, closed, minimal submanifold satisfying (3.11). In
fact, we give such a submanifold in the next section.

Theorem 3.7 is an extension of Kobayashi-Ohnita-Takeuchi’s result [13, (6.9) Theorem]
for harmonic forms to F-harmonic forms. Applying Theorem 3.7 to the function F' = F),
defined in Example 2.1, (1), the inequality (3.11) is rewritten as follows:

1
(3.12) 2(p—2){(N—n—1)y2+—2}+32—2c+2s<o.
I T

This inequality gives a sufficient condition for a connected, closed, minimal submanifold of
SN=1(r) to be p-Yang-Mills instable. We find an alternative formula for this due to Kawagoe
[11, Theorem 6.1]. There is a slight difference between them in the definition of y. When
we are concerned with the upper bound on p for (3.12), our result gives a refinement of [11,
Theorem 6.1].
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4. Instability of F-Yang-Mills connections over irreducible symmetric R-spaces

In this section, we give an irreducible symmetric R-space which is F-Yang-Mills instable
in the sense of Definition 3.2. In Subsection 4.1, we first recall the basics of the canonical
imbedding f of an irreducible symmetric R-space M. Due to Takeuchi-Kobayashi ([20]),
the image f(M) becomes a minimal submanifold of a specified standard sphere (Proposition
4.1). Next, we rewrite (3.11) as (4.2) by applying Theorem 3.7 to irreducible symmetric
R-spaces (Theorem 4.1). In Subsection 4.2, we classify irreducible symmetric R-spaces
satisfying (4.2) (Theorem 4.14). Then we find that the Cayley projective plane is F-Yang-
Mills instable (Corollary 4.15), which gives our proof of Theorem 1.3 stated in Introduction.

4.1. A sufficient condition for the F-Yang-Mills instability. Let L be a connected,
semisimple Lie group with trivial center and U be a parabolic subgroup of L. The ho-
mogeneous space M = L/U is called an R-space. Let [ and u be the Lie algebras of L and
U, respectively. Then there exists a hyperbolic element J of [ (that is, ad(J) € End(l) is
diagonalizable over R) satisfying 1 = 3 ;. [, where the summation ranges over all the non-
negative eigenvalues A of ad(J) and I*(c I) denotes the eigenspace of ad(J) associated to A.
It is shown that there exists a maximal compact subgroup K of L such that J is orthogonal
to the Lie algebra f of K with respect to the Killing form (-, -); of I. Then the homogeneous
space L/K becomes a Riemannian symmetric space of noncompact type in a natural manner.
We have the Cartan decomposition of [ associated to f, which we write | = @ p. Here, p is
the orthogonal complement of t in [ with respect to (-, -);. In particular, J is in p. We denote
by Ad; : L — GL(I) the adjoint representation of L. Since we have Ad;(k)p C p for all
k € K, Ad; induces the adjoint representation of K on p, which we write Ad : K — GL(p).
This representation is orthogonal with respect to the inner product defined by the restriction
of (-,) to p X p. Geometrically, the space p is canonically isomorphic to the tangent space
at the origin eK of L/K. Under this identification, Ad is equivalent to the isotropy represen-
tation of L/K. It is known that K acts transitively on M (cf. [20, Proposition 2.1]), so that M
is expressed as M = K/K;, where K; = {k € K | Ad(k)J = J}. In particular, M is compact.
From this expression, we have the K-equivariant map from M = K/K; to p as follows:

f(kK;) = Ad(k)J (k€ K).

This map f is called the canonical imbedding of M. Then M is diffeomorphic to the
Ad(K)-orbit through J, which we write Ad(K)J. Now, M is called a symmetric R-space,
if M = K/K; becomes a symmetric space. A symmetric R-space M = L/U is said to be
irreducible, if L is simple. The classification of symmetric R-spaces reduces to irreducible
ones, which was classified by Kobayashi-Nagano (see [12, p. 895 for classical cases, p. 906
for exceptional cases]. We also find a complete list in [15, p. 41]). From the classification,
we observe that an irreducible symmetric R-space is not necessarily isotropy irreducible.
Following Takeuchi-Kobayashi ([20]), we give a K-invariant Riemannian metric on M =
K/K; as follows: Since —(:,); gives a positive definite inner product on {, the Lie algebra
t; of K; has the orthogonal complement in t with respect to this inner product, which we
write m = (f;)*. Under the canonical identification of m with T,M (0 = eK}), the adjoint
action of K; on m is equivalent to the isotropy representation of K; on 7,M. Furthermore,
by means of this identification, the restriction of —(-, -); to m X m gives a K -invariant inner
product on T,M, which induces a K-invariant Riemannian metric on M = K/Kj in a natural
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manner. Then it is shown that the canonical imbedding f : M — p is isometric. We write
the Riemannian metric on M as the same symbol (-, -) if there is no confusion. In addition,
Kobayashi-Takeuchi proved the following proposition.

Proposition 4.1 ([20, Theorem 4.2]). Let M be an irreducible symmetric R-space. We
set n = dim(M) and N = dim(p). Let S = SV~! (m) denote the hypersphere of radius \V2n
centered at the origin in p. Then, the image f(M) of the canonical imbedding is a minimal
submanifold of S.

By this proposition it makes sense to determine whether irreducible symmetric R-spaces
satisfy the inequality (3.11) stated in Theorem 3.7. By means of Proposition 4.1, Theorem
3.7 is rewritten as follows.

Theorem 4.2. Let M = K/K; be an irreducible symmetric R-space associated with a
Riemannian symmetric space L/ K of noncompact type. We set

1 1
4.1 B,=4dF,{(N—n—1)yz+—}+——2c+2s.
2n 2

Suppose that dg: is nonnegative. If the inequality
4.2) B; <0
holds, then M is F-Yang-Mills instable.

ExampLE 4.1. We give some observations. (1) If we take F () = t, then dr- = 0 holds, so
that the inequality (4.2) is rewritten as

1
4.3) §—2c+2s<0.

In the case when M is isotropy irreducible, Ohnita [15, Theorem 7] proved that the canonical
imbedding is equivalent to the first standard imbedding in the sense of Takahashi [18]. Then,
the inequality (4.3) coincides with the inequality stated in [13, (7.10) Theorem]. This means
that our inequality (4.2) is an extension of [13, (7.10) Theorem] to an F-Yang-Mills version.
We note that the inequality (4.3) is described by means of intrinsic curvatures of M only.

(2) If we take F = F), (p > 2) defined in Example 2.1, (1), then the inequality (4.2) is
rewritten as

1) 1
2(p—2){(N—n—1)72+—2}+§—2c+2s<0.
I

In the case when M is isotropy irreducible, we find an alternative formula for this due to
Kawagoe [11, Corollary 6.2]. The difference between them is the same as explained as
before. However, [11] did not exhibit concrete examples satisfying the inequality stated in
[11, Corollary 6.2].

Under the setting of Theorem 4.2, the first term of the definition (4.1) of B, is nonneg-
ative. The following lemma shows that (4.3) gives a necessary condition for an irreducible
symmetric R-space to satisfy (4.2).
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Lemma 4.3. Fix an irreducible symmetric R-space M = K/K;. Let F; (i = 1,2) be a
strictly increasing C*-function with 0 < dp; < co. We use the symbol B, F, instead of By in
order to emphasize the dependence on F;. Then, dp; < dFé vields Bjr, < BjF,. In particular,
By, <O0yields Bjr, <O.

Kobayashi-Ohnita-Takeuchi [13, (7.11) Theorem] classified isotropy irreducible
Riemannian symmetric spaces of compact type satisfying (4.3). This implies that the only
isotropy irreducible, irreducible symmetric R-spaces satisfying (4.3) are S" (n > 4) and
F4/Spin(9). Thus, we will determine whether S” (n > 4), F4/Spin(9) and irreducible sym-
metric R-spaces which are not isotropy irreducible satisfy the inequality (4.2). For this
purpose, we need to determine the value of the constant B for these spaces.

4.2. Determination of the sufficient condition. Let M = K/K; be an irreducible sym-
metric R-space and f : M — p denote the canonical imbedding. The determination of the
constant B; is reduced to those of the constants N, n, ¢, s and y. Here, the dimensions of
isotropy irreducible Riemannian symmetric spaces are well-known (cf. [8, Table V]), so that
we can easily obtain the values of N and n from the isotropy irreducible decomposition of
M. In what follows, we focus our attention on the calculation of ¢, s and 7.

4.2.1. Determination of the constants c and s. The Ricci curvatures of irreducible sym-
metric R-spaces M are determined by Takeuchi ([19, Section 3]). In fact, he determined the
Einstein constants of each factor for the locally isometric decomposition of M. From his
result we immediately obtain the value of c¢. On the other hand, Kobayashi-Ohnita-Takeuchi
([13, Table, p. 187]) showed the positive eigenvalues of the Riemann curvature operator for
isotropy irreducible Riemannian symmetric spaces with respect to the normal homogeneous
Riemannian metric (-, -)’. In particular, they determined the maximum eigenvalue s” of the
Riemann curvature operator of M with respect to (-,-)’. We note that if there exists v > 0
satistfying (-, )y = v(-, -); on T x{, then we have s = vs’. Hence, by applying their result to our
setting, we can obtain the value of s for each irreducible symmetric R-space with respect to
¢, ).

Lemma 4.4. In the case when M = §", we have ¢ = (n — 1)/2n and s = 1/2n.

Proof. Since §" is Einstein, c¢ is equal to its Einstein constant. From [19, p. 309] we
get ¢ = (n — 1)/2n. On the other hand, by [13, Table, p. 187], we get " = 1/2(n — 1) for
S§" =80(n + 1)/SO(n). In addition, by (-, ) = ((n — 1)/n)(-,-); on f X {, we have:

_n—1 1 1
T 2m-0)

Thus we have completed the proof. |

ExampLE 4.2. The standard sphere M = K/K; = S" is an irreducible symmetric R-space
associated with the Riemannian symmetric space L/K = SO(1,n+1)/SO(n + 1) of noncom-
pact type. Then we have N = n + 1, from which we need not to determine vy in order to
obtain Bj. In addition, by Lemma 4.4, we have B; = (—n + 4dp + 4)/2n. It follows from
Theorem 4.2 that S” is F-Yang-Mills instable if n > 4dp + 4. This inequality coincides with
(3.5) given in Corollary 3.4.
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The following lemma is shown by a similar way to Lemma 4.4. We omit the details for
its proof.

Lemma 4.5. In the case when M = F4/Spin(9), we have ¢ = 3/8 and s = 1/12.

Proposition 4.6. Let M be an irreducible symmetric R-spaces which is not isotropy irre-
ducible. Then, M does not satisfy the inequality (4.2).

Proof. By the assumption of this proposition M is locally isometric to S' x M’ for some
compact connected Einstein symmetric space M’ or to SP~! x §9~! for some p, ¢ with p < g.
In the former case, we have ¢ = 0, from which the following holds:

1 1
5—2C+2S=§+2S>0.

In the latter case, we have ¢ = (p—2)/2(p+q—2) (cf. [19, p. 309, (8)]) and s = 1/2(p+q—2)
(cf. [13, Table, p. 187]). Hence we have

1 - 4
S eq2s=17PTR )
2 2p+q-2)
From the above argument M does not satisfy (4.3). From this, the assertion holds. |

The remaining task is to obtain the upper bound of dr for M = F,/Spin(9) to satisfy the
inequality (4.2). For this, we need to obtain the value of y for the submanifold f(M) C S.

4.2.2. Determination of the constants y and B, for F,/Spin(9). We first give a method
to determine the value of y for a general irreducible symmetric R-space which is realized as
the orbit through J € p under the adjoint representation Ad : K — GL(p). We note that Ad
is a polar representation (cf. [5]). Indeed, any maximal abelian subspace of p gives a section
of Ad (cf. [2, Theorem 3.2.13]). This fact enables us to construct a method to determine
the constant y. Namely, our method is based on restricted root system theory associated to
L/K with respect to a maximal abelian subspace of p (see, Appendix A for a brief review of
restricted root systems). As shown later in Proposition 4.8, we will derive a formula for y
by means of the restricted root system.

Let a be a maximal abelian subspace of p, and a* denote its dual space. We denote by
2(c a* —{0}) the restricted root system of L/K with respect to a. Without loss of generality,
we may assume that J is an element of a, since Ad(k)a (k € K) gives another maximal
abelian subspace of p and the following relation holds:

p = U Ad(k)a.

keK

We describe the restricted root space decomposition of t and p for X as follows: We set
fh={Xet|[H,X]=0, H€ a}and, foreach 1 € X,

t,={(Xet|[H[HX]] = AH)X, HEa},
p,={Xev|[HI[HX]] =AH?X, Hea}.

Then we have
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where X7 is the set of positive restricted roots of £ with respect to some ordering. From the
above, the tangent space 7;(Ad(K)J) of the orbit Ad(K)J is decomposed into

T/AAK)D) =[LJ1= > P
A€+ A(J)#0
We also have:
TrAAK) = (J*nwe > w,
A€+ A(J)=0
where JA-Na={Xe€a|{(/,X)=0}. Wesetp; ={Xep|[X,J]]=0and; =, ®p, =

{X € 1| [X,J] = 0}. Then |; is a subalgebra of [ and (I, f;) gives an orthogonal symmetric
Lie algebra. Since a gives a section of Ad(K)-action on p;, we get:

Py = U Ad(k)a.

kEKJ

This implies that T} (Ad(K)J) has the following expression:

THAAKH) = | ] Add* N o).
kekK;
Hence, for any normal vector & € le(Ad(K)J), there exists k € K, satisfying Ad(k)¢ €
J* N a, from which we have A; = Ad(k)"'AaqueAd(k). This means that the principal

curvatures of A; coincides with those of Aaqqe (including their multiplicities). For A € £*
with A(J) # 0 and € € J* N a, we get the following (cf. [2, Example 3.4]):

A9,

A§|p/l = _/1(])1

dy, -

From the above argument, we conclude:

Lemma 4.7. For any normal vector & € T}(Ad(K)J), there exists k € K; with Ad(k)¢ €
H* N a and the spectrum norm ||Af|| is expressed as follows:

e A(Ad(k
|Agll = max{’—%” A€ A) # O} .

By this lemma, we give our formula for determining y = y; as follows.

Proposition 4.8. Under the above setting, we obtain:

4
A(J)

Next, we describe {1 € £* | A(J) # 0} and J* N a by means of a fundamental system
of X as a root system. Let A = {4;,...,4,} (r = rank(X)) be the fundamental system of X
associated with £* and {H', ..., H"}(C a) denote the dual basis of A. We write the highest
root of ¥ associated with A as A. For a general element J of a, if A(J) = 1 holds, then the
R-space K/K; becomes a symmetric R-space. This implies that, if we express A as

y:max{’— Hﬂeziw);eo,geﬁna, ||§||=1}.

A=mdy+ -+ md, (my,....m, € Zs),

then, for some i with m; = 1 (if there exists), K/Kpgi is a symmetric R-space. Conversely,
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any irreducible symmetric R-space is constructed in such a way. Hence, without loss of
generality, we may choose J = H' with m; = 1. From this, we can obtain {1 € * | A(J) # 0}
by using the following lemma.

Lemma 4.9. Let J = H withm; = 1, and 1 € * be a positive restricted root. We write
A=LA +---+ 1A, for somely,... 1, € Zsg. Then, Aisin{d € X" | AJ) # 0} if and only if
l; = 1 holds.

Proof. This lemma immediately follows from A(J) = [; < m; = 1. O

Corollary 4.10. Let J = H! withm; = 1. For any A € £+ with A(J) # 0, we have A(J) = 1.
For each A € X, we define the restricted root vector H, € a as follows:
AH)=(H),Hy, Hea.
It is shown that {H, | 1 € A} gives a basis of a. Then, we have the following lemma.
Lemma 4.11. Let J = H'. Then J* N a has the following description:

Jlmaz{ Z I

k=1, k#i

& eR, 1 SkSr,kii}.
Furthermore, by means of {(H', ... ,H"}, & = Dkt ki ExH), is expressed as follows:

£=>EH, &= 3 &(Hi,Hy).

=1 k=1, k#i

Proof. Let & = 3 _, éH,, € a. If we denote by C the Cartan matrix of X as a root system,
that is,

2(Hy, Hy,)
C= (Ckl)lgk,lsr = (M) >
1<k I<r

(Hy, Hy,)
then we have
< /l]’H/lk [ -1 t te—1 -
J, ; Cu(C = o =& .
(J,é) = kEI lfk (Ho, Hoy i = § fk[E a( )1) k§:1 Eron = &

From this, we have the assertion. O

We are ready to determine the constant y for M = F4/Spin(9).
Lemma 4.12. In the case when M = F4/Spin(9), we have y = 1/4\/6.

Proof. We give a realization of M = F4/Spin(9) as an orbit of the isotropy representation
of the Riemannian symmetric space L/ K = Eg% / F4 of noncompact type. The restricted root
system X of L/K is of type A,. If A = {4, 4>} is a fundamental system of Z, then the highest
root A of ¥ associated with A is expressed by A = A, + 1. Then we have K/K; = F,4/Spin(9)
with J = H'. From Lemma 4.9, we get {A € =* | A(J) # 0} = {1}, 4; + A>}. Here, it is shown
that, for any A € ¥, the length ||H,|| is given as follows (see, Appendix A for the proof):

(4.4) IHall =

1
26
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In addition, since the angle between H,, and H,, is equal to 27/3, we have:

1/24  -1/48 )

((Hao Ha)) <2 = ( ~1/48 1/24

By Lemma 4.11, any vector ¢ = &Hy, € J& N ais rewritten as ¢ = & H' + &H? with
& = —£/48 and & = £,/24. Then we obtain ||£]| = (1/2V6)|&| and

’_Al@/nflb &1 ‘_(/11+/12)(§/||§||) _E+&H ]
a1 lEl ave’ (Ui + A2)(J) el 4ave

Thus, we have the assertion from Proposition 4.8. m|

We obtain the constant B; for M = F4/Spin(9) by means Lemmas 4.5 and 4.12. Namely,
we have the following proposition.

dpr 1
Proposition 4.13. In the case when M = F4/Spin(9), we have B; = TF "

From the above argument, we conclude:

Theorem 4.14. The standard sphere §" withQ < dp, < (n—4)/4 and the Cayley projective
space Fyq/Spin(9) with 0 < dp < 1/6 satisfy the inequality (4.2). Furthermore, they are the
only irreducible symmetric R-spaces satisfying this inequality.

From Theorems 4.2 and 4.14 we get the following corollary.

Corollary 4.15 (Theorem 1.3). Let F : [0,T) — R be a strictly increasing C>-function
with 0 < dp < 1/6. Then, the Cayley projective plane F,/Spin(9) is F-Yang-Mills instable.

ExampLe 4.3. Applying Corollary 4.15 to the function F = F, defined in Example 2.1,
(1), the Cayley projective plane F4/Spin(9) is p-Yang-Mills instable for2 < p <2 +1/3.

Appendix A Riemannian symmetric spaces of noncompact type and their restricted
root systems

Let L/K be a Riemannian symmetric space of noncompact type. Here, K is a maximal
compact subgroup of L. Then there exists an involution of L satisfying Lg C K c LY, where
LY denotes the fixed-point subgroup of 6 in L, and Lg denotes its identity component. We
write the Lie algebras of L and K as | and {, respectively. The differentiation of 6 at the
identity element in L gives a Cartan involution of I, which we write the same symbol 6.
Then we have f = I?. Let [ = @ p be the Cartan decomposition of [ associated with f, where
p = [7% Let a be a maximal abelian subspace of p and X denote the restricted root system of
L/K with respect to a. The restriction of the Killing form of [ to ax a gives a positive definite
inner product on a, which we write (-, -). For A € Z, we denote by H, € a the restricted root
vector of 4, thatis, A(H) = (H,, H) for H € a. Under the above setting, we give a method to
determine the length ||H,|| = V{(H,, H)) of H; (A € ) and prove the equality (4.4).

We first describe T by means of the root system of the complexification I of I. Let ) be a
Cartan subalgebra of [ containing a. Then ) is f-invariant, from which we have ) = (hnf)da.
We define the real vector space hr by b = V=1 (hnH@a(c H°). It is shown the the restriction
of the Killing form of I€ to bg X bg gives a positive definite inner product on bhg, which we
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write the same symbol (-, -) if there is no confusion. We denote by 3(c bz — {0}) the root
system of 1€ with respect to He. If we put So={ael|a(H) =0,H € a}, then the following
relation holds:

Z={a/|a'a/€i—io}.

Next, we give a formula to obtain the length ||H,|| of 4 € X by means of the lengths of
root vectors for . Here, the root vector H, € by for @ € ¥ is defined by

a'(H):<H(Z’H>’ HEbR,

which is well-defined since « takes real values on hr. We set o = —6° ., Which gives a
permutation on Y. We have o-(H,) = Hy ) fora € . For any A € X there exists a € -3
satisfying A = a|,. Then the vector H, for A € X coincides with the a-component of H, € bp.
Namely, we have H, = (1/2)(H, + Hya)), from which we get the following lemma.

Lemma A.1l. Ler 1 € X and « € £ — 3o with A = al,. Then we have:
1
(Al) ”H/l”2 = 5 {(Hou Ha> + <Ha> Ha’(a/)>} .
The following relation is useful to determine H ) in (A.1):
(A.2) Hpy=Hy+H, ((nel,l+nel).
We are ready to prove (4.4).

Proof of (4.4). Let L/K = E;*/F4. We write the root system of I = ¢f as £ = Eg.
We can determine the action of o on X in terms of Satake diagram ([8, p. 532, TABLE
VI]). Indeed, there exists a fundamental system A = {ay,...,as) of T such that, for each
i=1,...,6,0(x) is given by

ola) =a) +ar +2a3 + 2a4 + a5, o(ag) = ar + a3 + 2a4 + 2a5 + a5,

and o(a;) = —«; (i = 2,3,4,5). We note that o is normal to «; (j = 2,4,5,6). The length
[|H,l| (1 € £ = Ay) is independent of the choice of A. It is sufficient to show the length of
[[H4, |l with A; = a4, is equal to 1/2\/6. From Lemma A.1 and (A.2), we get:

1
H 1 = (Hay» Hoy ) + (Ho» Hoy) = 57
Here, in the last equality, we have used the result of Yokota ([21, p. 82]) for the length of the
root vector H,, (i = 1,3). Hence we have completed the proof. ]
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