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In this paper, some results of Galois theory for commutative rings without
idempotents developed by Chase, Harrison and Rosenberg in [1], are generalized
to non-commutative rings that verify a certain condition. Some proofs are similar
to those appearing in [1].

The author wishes to thank Prof. O. Villamayor for his important sugges-
tions. Some ideas here belong to a not yet published work by O. Villamayor
and D. Zelinsky.

The final form of this paper was written while the author was under
a fellowship granted by Consejo Nacional de Investigaciones Cientificas y
Técnicas.

1. Introduction

In this section, the previous definitions, already known, are remembered.
As usual, all rings have units, all modules are unitary and ring homomorphisms
carry the unit into the unit.

Let S be a ring, G a finite group of automorphisms of S and R=S¢, the fixed
subring. We say that S is a Galois extension of R with group G, if there exist
elements x;, y; (i=1,2,--+, ) in S, such that:

2 %,0(y:) = 81,05 forall oG

We indicate with D=D(S, G) the crossed product of S with basis (%,)ecc
and with #r the trace map, that is to say, the map of S into R defined by tr(x)

= > o(x).

ocEG

S* shall denote the S structure as a right module, on the ring mentioned in
each case.

The application d:D—Homg(S", S°), defined by d(s-u,)(x)=so(x), for
each s, x in S and each o in G, is a ring homomorphism and two-sided S-
homomorphism.

As in [1], E designates the set of all functions of G into S. 'Then E'is a ring
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and a two-sided S-module in an obvious way. In addition, E is a direct sum
of the S-submodules S-v,(c €G), where v,: G— S is defined by v,(7)=3, ..

If M is a left D-module and M€ is the R-submodule, the elements of which
are me M such that u,-m=m, oG, the map w: SQM¢— M defined by
w(s@m)=s-m, is an S-homomorphism.

If h: SQrS—E is defined by A(s®t)(c)=s-o(t), then A is a two-sided
S-homomorphism, that is an S® ;S°-homomorphism (S° indicates the opposite
ring of S and Z the ring of rational integers).

The definition of separable extension is the same as in [2], that is as follows:

Let T'— A be a ring homomorphism (frequently the inclusion). Then A
is a two-sided T'-module and the abelian group A®rA is a two-sided A-
module. Therefore AQrA is a left A®,A’-module with product defined by:

xRV’ EARQN, uRQUVEARQA, (*RQR)°)-(#Qv) = xuQvy .

The multiplication AQrA— A is a AQ zA-homomorphism. We say that
A is separable on T" if there exists a A® zA’-homomorphism A — A®pAsuch that
the composition A - A® A — A is the identity in A.

This is equivalent to the existence of elements x;, y; (i=1,2,--,m) in A
such that 37 x;+ y;,=1 and 3] x-x,Qy,= 3] ;Qy; %, V2 EA, in AQrA.

2. Galois extensions

The conditions of the following proposition are those given by Chase, Harri-
son and Rosenberg for the commutative case in the theorem 1.3 of [1].

The proof is a trivial extension of it, so we shall omit it. The equivalence
between (a) and (b) has been proved by T. Kanzaki for the non-commutative
rings in [3].

Proposition 2.1. If S is a ring, G a finite group of automorphisms of S
and R=S¢, the following statements are equivalent:

(a) S is a Galois extension of R with group G.

(b) S s finitely generated and projective as right R-module and d: D —
Homg(S", S°) is an isomorphism. '

(¢) If M is a left D-module, w: S® xMC¢— M is an isomorphism.

(d) h:SQrS—E is an isomorphism.

On the other hand, Hirata and Sugano in [2] (prop. 3.3.), prove that if
S is a Galois extension of R with group G, S is R-separable.

We shall consider here a case where the converse holds. Let p: S®,S°
— S be the multiplication. We say that S verifies (H) if:

2€S®28°, wR@R)=pEF*)=>p)=0 or u)=1.
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Equivalently, S verifies (H) if for every finite family x;, y; in S:
,-2]3 XpoXjo Yoy =21 %;0y; => 2 %;09;, =0 or ‘Z X0y, =1.

If S verifies (H), it has no idempotents other than 0 and 1. If .S is commu-
tative, (H) holds if and only if S has no non trivial idempotents, because y is a
ring homomorphism in this case.

An example, given below, shows that there exist non commutative rings
verifying (H).

Theorem 2.2. Let S be a ring that verifies (H), G a finite group of auto-
morphisms of S and R=SC¢. Then S is a Galois extension of R with group G, if
and only if S is R-separable.

Proof. If S is R-separable, there exist x;, y; in S such that:
2%y, =1 and 3 x-x,Qy; = 2 x,Qyiex, WxES, in SRS .

Applying to the last relation the composition ®-(1®0c), where @: SQrS
— S is the multiplication, we obtain

(1) %23 x;0(y:) = 2 x;0(y;)o(x), forallxeSand ceC.

Let e,=>) x;®0(y;)’ES®zS°’. Using (1) it is easy to prove that u(e,)
=u(e?). If Z x;0(y:)=1, o(x)=2] x;0(y;) o(x)=x 2 x;0(y;)=x« by (1)
Therefore 33 x;0(y;)= u(e,)=5, ..

3. Galois theorem.

A part of the following proposition is the proposition 3.4 of [2]. The re-
mainder one is an immediate generalization of that of the theorem 2.2 of [1].

Proposition 3.1. Let S be a Galois extension of R with group G, H a
subgroup of G and T=S*". Then S is a Galois extension of T with group H and
H is the set of all elements of G leaving T pointwise fixed.

Let us suppose that tr(S)=R. Then T is R-separable and if H is normal in
G, T is a Galois extension of R with groug G/H.

The above assumption on S enable us to prove the reciprocal theorem just

by using the same technique employed by Chase, Harrison and Rosenberg (see
2.2 of [1]).

Proposition 3.2. Let S be a Galois extension of R with group G. Let
us suppose that S verifies (H) and tr(S)=R. If T is a subring of S that contains
R and it is R-separable, then there exists a subgroup H of G such that T=S*¥,
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Proof. Let H be the set of the elements of G such that its restriction to
T is the identity, and 3>} x;Qy,ET®gT the element that satisfies the condition

of separability. A similar reasoning to that of Theorem 2.2 allows us to conclude
that:

1 ifeesH
(2) S(y) = |

0 ifedH

As in [1] we define an action of G on E by o(v)(1)=2(7, o) for c€G,
TG, veE. Then E¥ is the set of the elements of E, which are constant on
each right coset of H in G. Since S is projective as right R-module and
h: SQ gS—E is an isomorphism, we have the injections S® T — S®S¥
—S®pS=E, where the image of S®rS¥ is contained in E¥. Now we shall
show that S®,;T—E¥ is onto. Let v&E¥ and J be a family of indices
such that (o;);c; contains one element, and only one, of each right coset of H
in G. We write 2= Zrz v(0;)o;(%,)Ry;,ESRRT. By using (2) it is easy

€T i

to obtain A(2)(o,)=9v(s,) for all ke ]. Since h(z) and v are constant on each
right coset, it follows that A(z)=v. Then S®zT=S®rS¥ and by applying
tr®1 we obtain 7=S#. This completes the proof.

The two above propositions give the following version of the Galois
theorem:

Theorem 3.3. Let S be a Galois extension of R with group G. If S verifies
(H) and tr(S)=R, there is a one to one correspondence between subgroups of G and
subrings of S that contain R and are R-separables, such that the subgroup H cor-
responds to the subring T if and only if T=S*¥.

4. An example

Let 4 be a commutative ring of characteristic 2 which has no non trivial
idempotents; A[X, Y] the non-commutative ring of polynomials; I the two-sided
ideal of A[X, Y] generated by {X?, Y?, XYX, YXY}. We write A[X, Y]/
=A[u, v]=S, where u and v denote the classes of X and Y in the quotient,
respectively.

Since S is a free A-module with basis {1, u, v, uv, vu}, the equation y(2)
=pu(2’) for z&S®,S° is translated into a system of equations, which shows
that p(2)=0 or p(2)=1 (we omitt here the resolution of this system but we
want to emphasize that the assumption on the characteristic of S reduces the
system). Therefore S verifies (H)™.

(*) At the moment, the author is able to prove that every graded ring A= (—E A; where

i=0

A, has no non trivial idempotents and it is contained in the center of A4, verifies condition (H).
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Now let 4 be a Galois extension of B with group G (4 as before). Itis clear
that S=A[u, v]=AR z,Z,[u, v] where Z,=Z|2Z. Therefore G is agroup of
automorphisms of S (looking to each o as o®1) and the fixed subring is
R=B®z,Z,[u, v]=Blu, v].

If a;, b; are the elements of A such that 3’ a,0(b;)=3, ,, then a;®1, ;R 1,
satisfy the same relation. Hence it follows that S is a Galois extension of R with
group G.

Besides, by [1], there exists c&.S such that #r(c)=1. Then c®]1 satisfies
the same relation in S, and hence tr: S— R is onto.

The theorem 3.3 shows that every subring of S that contains R and is
separable on R, is of the form C[u, v]=C®z,Z,[u, v], where C is a subring of
A, which is B-separable.

5. Endomorphisms, automorphisms and homomorphisms

An automorphism o of S is called outer if xo(s)=s-x, Ms€S= x=0.

Proposition 5.1. Let S be a Galois extension of R with group G. We suppose
that every non outer R-automorphism of S is in G. Then G is the group of all
R-automorphisms of S.

Proof. Let x;, y; be the elements of S such that 3 x;0(y;)=8, ,. The
proof of Proposition 3.3 of [2] shows that the element >3 x;Qy; € SQ S satisfies

the condition of separability. From relation (1) of Proposition 2.2 it follows
that 33 x,7(y;)=0 for every outer R-automorphism of S.

Now let p be an R-automorphism of S which does not belong to G. We
have that A(3] x;Qp(y;:))=2] $;,, With s,=2>] x,0p(y;)ES. As op is not in
G for each o G, it must be outer, hence s,=0. Therefore >3 x;®@p(y;)=0 and
applying 1®p™" we obtain 3 x;®y;=0, which contradicts 33 x;-y;=1.

If we denote by s the application of S into .S, defined by x+-sx, for each
s€ S, we have that s&e Homg (S°, S°).

Let S be a Galois extension of R with group G. The isomorphism d: D —
Homy, (S, S7) allows us to write azg s,+a, for every a e Homyg, (S°, S°), where

s, o is the composition in Homg (S°, S°).
Similarly, if s& S we denote by s° the map x+—xs. Then s"&Homy, ('S, °S)

and s’eHomg (S°, S7) if and only if s is in the centralizer of R in S. Ifs& S
and o« €Homg (S, S°), with s*-« we denote the composition in Homy (S, S).

Lemma 5.2. Let S be a Galois extension of R with group G and o= 3 s+
cEGF
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oc&Homg (S°, S°). Then a is a ring homomorphism if and only if s+ a=s,-a for
every o in G and ngg: .

Proof. From the following equivalences it follows trivially:

a(x-y) = a(x)-a(y), xS, ¥yeS, ifand only if

D s.a(x)a(y) =2 [ 2] s,0(x)]s5,7(y), MxeS, ¥yeS, if and only if
ceq TEG 0EG

”E s,o(x)u, =T§; [és,a(x)] Sl

The following theorem is a generalization of Corollary 3.3 of [1].

Theorem 5.3. Let S be a Galois extension of R with group G and ac= Zﬂsa- o

eHomg (S°, S°). If x;,y; (=1,2,--,n) are the elements of S such that
2 x%,0(9:)=8; ; and if e,= 2 a(x;)Ro(y;)' ESR2S’, then s,=ple,). Further-

more if ot is a ring homomorphism each s, is in the centralizer of R in S, u(e,)= u(e?),
wlegre)=0 if o7 and 3 ule,)=1.
cEG

If S verifies (H), G is the set of all endomorphisms of the ring S which are R-
homomorphisms.

Finally, if each s, is in the center of S and o is a ring homomorphism, (s,),cc
is a family of pairwise orthogonal idempotents with sum one.

Proof. Since from the relation 3 x;0(y;)=38, , it follows that 33 7(x;)a(y;)
=3, , we have:

/"(eo') = Z a(xi)a(yi) = 'ZT§ STT(xi)U()’i) :TEZG sﬂaf,u- =S¢ -

If o is a ring endomorphism, from lemma 5.2 we obtain that each s, commu-
tes with R and

(3) S ules) = 1.
Besides:
plese;) = ; a(x;)a(x;)(y;)o(y:) = Z a(x;)s.0(y;) = 8 23 7(%:) ()
= ,Ul(e'r)°8¢r,‘r .

If S verifies (H) and « is a ring endomorphism of .S which is an R-homomor-
phism, u(e;) is 0 or 1. From (3) at least one of the s, has to be equal to one. If
for o7, s,=s,=1 we have:

0=pule,-e)= 2} a(x;)s,0(y;)=1. Therefore a=p for some p=G.
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Finally, if each s, is in the center of S, from the latter lemma we obtain:

s,o(x)=s,a(x)= 2 5,5,7(x), VxS, VoG, hence s,-5,=5,6,,,
TEG

which completes the proof.

The following corollary may be obtain as a particular case of Theorem 4.1
of [4]. _
As a consequence of the former proposition we have:

Corollary 5.4. Let S be a Galois extension of R with group G and
a=Ys,cocHomg (S°, S") a ring homomorphism. If G is a group of outer auto-

CEG
morphisms, (s,),ec 5 a family of pairwise orthogonal central idempotents with

sum one. If furthermore the center of S has no non trivial idempotents, G is the
set of all ring endormorphisms of S, which are R-homomorphisms.

Proof. Itis clear that G is a group of outer automorphisms if and only if,
for every o in G, o1,
J. = {x=Sxo(s) = sx, Ms€S} =0.

Miyashita has observed in [4] that this is true if and only if S is outer G-
Galois on R, that is if the centralizer of R in S is the center of S. The above
theorem shows that, under these conditions, each s, is in the center of S and
then, the last part of the same theorem completes the proof.

The following result is an immediate generalization of Theorem 3.4 of [1].

Proposition 5.5. Let S and S’ be rings, G a finite group of automorphisms
of Sand S', f: S— S’ a ring homomorphism which is a G-homomorphism. If S
is a Galots extension of R with group G, S’ is a Galois extension of S'¢ with group
G. If furthermore S'°=R and f is a right R-homomorphism, then f is an
isomorphism.

Proof. If x;, y; are in S and satisfy >3 x;0(y,)=39, ,, then f(x;), f(y:)
satisfy the same relation in S’. To prove the second part, it is enough to
define f:8'—S by f'(x)= 2] x;-tr(f(y:)-x"), ¥x'€S’. Then, it is easy
to check that f' is the inverse of f.

Corollary 5.6. Let S and S’ be rings such that SC S’. Let us suppose that
G is a finite group of automorphisms of S’, whose restriction is a group of

automorphisms of S isomorphic to G and let R=S'¢. Then if S is a Galois ex-
tension of R with group G, S=S".

Proof. It is enough to consider the inclusion S—.S’ and to apply the
latter theorem.
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Corollary 5.7. Let S be a ring, C its center, G a finite group of automor-

phisms of S such that G restricted to C is isomorphic to itself and let us suppose
that C is a Galois extension of C° with group G. Then S C if and only if S
is commutative.

(1]
(2]

[3]
(4]

Proof. If S6cC then S®=C€ and from the latter corollary S=C.
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