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TORIC VARIETIES WHOSE CANONICAL DIVISORS
ARE DIVISIBLE BY THEIR DIMENSIONS
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Abstract
We totally classify the projective toric varieties whosenecaical divisors are di-
visible by their dimensions. In Appendix, we show that Reitiric Mori theory im-
plies Mabuchi’'s characterization of the projective spaaetdoic varieties.

1. Introduction

In [5, Section 6], Akio Hattori and Mikiya Masuda determineck thtructures of
n-dimensionalnon-singular completaoric varieties whose first Chern classes are di-
visible by n or n + 1 as applications of their theory. Their results are aovait

Theorem 1.1 (cf. [5, Corollaries 6.4, 6.8]). Let M be a complete non-singular
toric variety of dimensiom.
(A) If c1(M) is divisible byn + 1, then M is isomorphic to the projective spa@® as
a toric variety.
(B) If ¢1(M) is divisible byn, then M is isomorphic to an(n — 1)-dimensional pro-
jective space bundle ovét! as a toric variety
For the more precise statementee[5, Corollaries 6.6, 6.8].

These results seem to be toric geometric analogues of Kebagahiai's theo-
rems (see [6]). In [6], they characterizeddimensional Fano manifolds whose first
Chern classes are divisible by or n + 1. Before we state the main theorem of this
paper, let us recall the following theorem, which is a direohsequence of the main
theorem of [1].

Theorem 1.2. Let X be an n-dimensional projective toric variety and B =
>_;d;B; a Q-divisor on X, where B; is a torus invariant prime divisor an@ < d; <
1 for every j. Assume thaky + B is Q-Cartier, not nef and —(Kx + B) = ND for
some Cartier divisorD on X, where N is a positive rational numberThen [1, The-
orem 0.1]implies N < n + 1. Furthermore N =n +1if and only if X >~ P", B =0,
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276 O. FuJino

and Ox(D) =~ Op:(1). More generally N > n implies thatx ~P", } .d; < 1, and
Ox(D) =~ Op(1).

Obviously, Theorem 1.2 is much stronger than Theorem 1.1f¢Aprojectivetoric
varieties. Note that we do not assume thatis non-singularin Theorem 1.2. Unfor-
tunately, we need therojectivity assumption for our proof since it depends on the
toric Mori theory. In this short paper, we try to generalizeedrem 1.1 (B) forpro-
jective toric varieties without any assumptions about singuksitiThe next theorem is
the main theorem of this paper.

Theorem 1.3. Let X be ann-dimensionalprojecitve toric variety such thatKy
is Q-Cartier. Assume thalky = nD for some Cartier divisorD on X. Then we can
determine the structure ok. More preciselyif X is non-singular then X has aP"*-
bundle structure oveP!. If X is singular, then X is P(1,1,2, ..., 2) or the toric va-
riety constructed inTheorem 3.4.For the more precise statementee Theorems 3.2
and 3.4 below

This paper is not self-contained. It heavily relies on myvpes paper: [1]. As
we said before, we need thaojectivity assumption for our proof since it depends
on the toric Mori theory. | do not know if our results are true mot without this
assumption. In general, iX is non-projective, then the Kleiman-Mori coreE(X)
may have little information (see [2], [3], and [9]). After lirculated the preliminary
version of this paper, Akio Hattori obtained Theorem 3.2obefor Q-factorial com-
plete (not necessarily projective) toric varieties on a slightlyonger assumption that
—Kx ~ nD. His proof depends on the theory of orbifold elliptic gendrar the de-
tails, see [4, Corollary 5.9]. Finally, in Appendix, we shdkat Reid’s toric Mori the-
ory implies Mabuchi’'s characterization of the projectiveasp for toric varieties (see
Theorem 4.1). We freely use the notation in [1]. We will workeo an algebraically
closed fieldk throughout this note.

We summarize the contents of this paper. In Section 2, westigate Q-factorial
toric Fano varieties withp = 1 that have long extremal rays. It is a generalization of
[1, Proposition 2.9]. Section 3 is the main part of this papéere, we classify the
toric varieties whose canonical divisors are divisible it dimensions. Section 4
is an appendix, where we treat Mabuchi’s characterizatiothefprojective space for
toric varieties.

NOTATION. The symbol= denotes the numerical equivalence fQ-Cartier
divisors.

2. Q-factorial toric Fano varieties with p =1

We use the same notation as in [1, 2.8]. The following prdpmsiis a key result
in this note. It is a slight generalization of [1, Propositi@.9]. We recommend the
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reader to see [1, Section 2] before reading this section.

Proposition 2.1. Let X be ann-dimensionalQ-factorial toric Fano variety with
Picard number onelf X 2 P" and —Ky - V(u.,) > n for every pair (I, m), then
X ~P1,1,2...,2).

Proof. It is obvious that > 2. By the assumption, we have

1 i MUt (4 1)
ai| ———>n
ap+1 i=1 mult (Uk)

_KX : V(Mk.n+l) =

for 1 <k <n. Thus

n+l

(I’l + 1)an+1 > Zai >
i=1

mult (O'k)
— - Nda,
mult (uien)
for every k. Since

mult (o%)
mult (ieyn+1)

we have mult§,) = mult(u, ,+1) for every k. This implies thata, divides a,+1
for all k.

G Z>0’

Clam1l. ai=ay=1,a3=-+ =a,1=2.

Proof of Claim 1. Ifa; = a,+1, thenay = a, = --- = a,+1 = 1 since we assumed
ay < -+- < ays1. This and—Kx - V() = n for every (, m) imply that X ~ P". See
the proof of [1, Proposition 2.9]. Thus, we hawe # a,+;. It follows from this fact
that a, # a,+1 sincev; is primitive and)_; a;v; = 0. In this case,

1 n+l
—Kx - V(irne1) = <Zai) >n

ap+1 i=1
impliesay =a; =1, ag =--- = a,+1 = 2. We note that
a; 1
S —
ap+1 2
fori =12 anda; <a,+1 for 3<i <n. O

Claim 2. mult(o1) = mult(ez) = 1, that is o1 and o, are non-singular cones
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Proof of Claim 2. It is sufficient to prove mudt() = 1. We note that mul(; ;) =
mult(e1) for 3 < I < n+ 1 and v, is primitive imply that all the lattice points
included in

n+l
{Ztivi

i=2

Ofl‘ifl}CNR

are vertices. Thus, mult() = 1. ]
Therefore, {vq, vy, ..., v,+1} Spans the latticeN ~ Z". Thus, we obtainX ~
P(1,1,2,2,...,2), a weighted projective space. L]

REMARK 2.2. LetX ~ P(1,1,2,2,---,2). Then it is not difficult to see that
V(v;) is a torus invariant Cartier divisor ankly ~ —nV(v;) for 3<i <n+1.

3. Main Theorems

In this section, we classify the structures of tQeGorenstein projective toric vari-
eties X with —Kx = nD. Before we go to the classification, let us note the following
lemma. The proof is easy.

Lemma 3.1 (Numerical equivalence an@-linear equivalence).Let X be a pro-
jective toric variety andD a Cartier divisor onX. ThenD =0 if and only if D ~ 0.
Let D; and D, be Q-Cartier divisors onX. ThenD; = D, if and only if D; ~qg D5.

First, we decide the structures &f under the assumption th& is Q-factorial
and —Ky = nD, wheren =dimX > 2.

Theorem 3.2 (Q-factorial case). Let X be a Q-factorial projective toric variety
with dimX =n > 2. Let D be a Cartier divisor onX. If —Kx = nD, then the one of
the following holds
(1) X =Pp(O(q1)®O(q2)D- - -DO(g,)) such thatd "', g; = 2. In this case Ox (D) ~
Op(1), where Op(1) is the tautological line bundle oPp:(O(q1)®O(q2)®- - -DO(gy))-
Note thatX is non-singular andp(X) = 2.

2) X ~¥P(1,1,2,2,...,2), and D is a torus invariant prime Cartier divisor orX,
seeRemark 2.2 Note thatX is singular andp(X) = 1.

Proof. SinceKy is not nef, there exists & x-negative extremal rag. Its length
is obviously > n. This means that-Ky - C > n for every integral curveC such that
[C]l € R. SO, =0 or 1 in the proof of the theorem in [1] (see [1, p.558-55])8 =
1, then it can be checked easily that 0 (see [1, p.558]). In this case, there exists a
contractiong: X — P! such that the general fibers aP&~. Therefore,F - D"~ =1
for any fiber F since ¢ is flat. Thus, every fiber is reduced and isomorphidPto?.
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So, we obtainX >~ Pp:1(O(q1)BO(q2)®- - -®O(g,)). We can assume thatd > ¢; <n
without loss of generality. Sinc®(Kx) ~ ¢*Op (Y g; — 2)(—n) and —Kx = nD,
we have)  ¢; = 2. Therefore,Ox(Kx) ~ Op(—n). We finish the proof wherg = 1.
When g = 0, it is obvious thate = 0 and p(X) = 1. Then this case follows from
Proposition 2.1. ]

REMARK 3.3. TakeX =Pp(O & --® O & O(2)), which is a special case of (1)
in Theorem 3.2. Then, the Picard numhetX) = 2. So, NE(X) has two rays. One
ray R corresponds to th&"-bundle structureXx — P!. Another rayQ corresponds
to the contractiory := ¢yp: X — P(1,1,2,...,2). We note thatkx is ¢-numerically
trivial and thaty contracts a divisoP! x P" 2 ~ Ppu(O @ ---® O) C X. Thus,¢p is a
crepant resolution oP(1, 1,2, ..., 2).

Next, we investigate the structures &f when X is not Q-factorial and—Kyx =
nD. In the following theorem, it is obvious that > 3. It is because every toric sur-
face isQ-factorial.

Theorem 3.4 (non<Q-factorial case). Let X be a non§-factorial projective toric
variety withdim X =n > 3. Assume thaX is Q-Gorenstein and—-Ky = nD for some
Cartier divisor onX. We putY = Pu(O®---dOdO(1)dO(1)). ThenX is the target
space of the flopping contractiop: ¥ — X. Note thate contractsP! x P"—3 ~
Pp(O -0 0) CPu(Od---O & O(1)d O(1)). In this case p(X) =1 and X is
Gorenstein

Proof. We take a small projective tori@-factorialization f: ¥ — X (see [1,
Corollary 5.9]). SinceY is Q-factorial, Ky = nf*D, and p(Y) > 2, we haveY =~
Pp1(O(q1) ® O(g2) & - - - ® O(q,,)) with > g; = 2. Sincep(Y) =2, NE(Y) has two rays
R and Q. One rayR corresponds to th&"~!-bundle structure¥ — P. Another ray
Q corresponds to the flopping contractign= ¢, : ¥ — X. Note thatQ is spanned
by one of the section§’; := Pp:(O(g;)) C Y for 1 <i < n. It is because all extremal
rays are spanned by torus invariant curves. We can assumeitha g, < --- < ¢,
without loss of generality. Sinc®_ ¢; = 2, we haveg; < 0. Note thatKy - R < 0 and
Kx-C; = —ng;. If g1 <0, thenQ is spanned by somé€;, with Kx - C;, = —ng;, > 0.
It is becauseNV E(Y) is spanned byR and Q and Kx - R < 0. Sincegy is a flopping

contraction, we obtairy; > 0. Therefore, 41, g2, ---,¢4,) =(0,0,...,0,1,1) (see also

Remark 3.3). It is not difficult to see that the target spacehef flopping contraction

¢o: Y — X has the desired properties. ]
4. Appendix

In this section, we show that Mabuchi’s characterization & projective space
for toric varieties (cf. [7, Theorem 4.1]) easily followsofn [8]. We can skip Step 2
in the proof of [7, Theorem 4.1] by applying [8, (2.10) Coesalf].
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Theorem 4.1 (cf. [7, Theorem 4.1]). Let V be ann-dimensional complete non-
singular toric variety Assume that the normal bundle of each torus invariant diviso
is ample ThenV >~ P".

Proof. We note thatV is projective since it has ample line bundles. Letbe
the fan corresponding t&. Take an extremal rayR of NE(V). Let C be a torus
invariant integral curve such that the numerical equivederlass ofC is in R. Let
(v1,...,v,-1) € A be the  — 1)-dimensional cone corresponding ¢ Take twon-
dimensional conesuvy, ..., v,_1,v,) and (vq,..., v,_1, v,+1) from A. Thus we have

:?;11 a;v; + v, +v,_1 = 0. Note thatV is non-singular. We puD; := V(v;) for every
i. Since Op,(D;) is ample, we obtain that; = D1--- D;—1 - D? - Dj41--- D,—1 > 0 for

everyi. Thus, n-dimensional conesvi, ..., v;_1, Vi+1, .-+, Uy, Uys1) € A for 1 <i <
n —1 (see [8, (2.10) Corollary]). Therefore; = 1 for all i since V is non-singular.
So, we obtain that ~ P". ]

The following corollary is obvious by Theorem 4.1.

Corollary 4.2. Let V be ann-dimensional complete non-singular toric variety
ThenV ~ P" if and only if the tangent bundl&y, is ample
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