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研究課題名 時系列解析を用いたフィギュアスケートジャンプの分析システムの開発 

研究成果の概要 

研究目的、研究計画、研究方法、研究経過、研究成果等について記述すること。必要に応じて用

紙を追加してもよい。（先行する研究を引用する場合は、「阪大生のためのアカデミックライティ

ング入門」に従い、盗作剽窃にならないように引用部分を明示し文末に参考文献リストをつける

こと。） 

1 研究目的 

 本研究の目的は、フィギュアスケートのジャンプ動作を時系列データとして解析し、その精度を定

量的に評価する学習モデルを構築することである。フィギュアスケートのジャンプは、回転数が増加

するにつれて高度なバランスとタイミング調整が求められる複雑な技術であり、プロの選手にとって

も安定して精度の高いジャンプを跳ぶことは困難である。また、フィギュアスケートの試合において、

技の出来栄えを評価する「GOE（Grade of Execution）」の採点基準には「踏み切りから着氷までの身体

の姿勢が非常に良い」といった曖昧な表現が多く、他の競技と比較して審査員の主観に影響されやす

いという特徴がある。 

このような状況において、練習で自身のジャンプの問題点を効率的に修正する手法や、試合で審査

員の主観に依存しない客観的な評価指標があれば、選手にとって有益であると考えられる。本研究で

は、ジャンプ動作データを用いたモデル構築を通じて、選手の練習効率の向上と競技における公平な

評価を実現するための手法開発を目指す。 

 

2 研究方法 

2-1 データの収集 

 研究において、氷上でのジャンプ動作のデータを収集することが理想だが、リンクの使用条件や撮

影制約により困難である。そのため、スケート選手が日常的な練習として行う陸上回転ジャンプを対

象データとした。そしてデータ収集には大阪大学大学院人間科学研究科、生物人類学研究分野の設備

である三次元動作解析システムを用いた。また、本実験では、大阪大学体育会フィギュアスケート部

に所属する 3 級取得者 1 名を被験者とし、ジャンプの種類はシングルアクセルジャンプ（1 回転半）

に限定して解析を行った。ジャンプ動作の全身の特徴を詳細に捉えるため、被験者の全身にマーカー

を装着し、ジャンプ動作を行った際のマーカーごとの動作データを取得した。適切なマーカー配置お

よび実験方法の改良を目的として、事前にプレテストを 1 回実施した。その後、本計測を 1回行い、
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データ解析には本計測で得られたデータのみを使用した。 

 三次元動作解析装置は図 1 の赤丸で囲んだ 8 つの赤外線カメ

ラから成り、そのカメラによってマーカーの動きを捉えることが

できる。そして本実験で用いるソフトウェアとして、高精度なモ

ーションキャプチャデータの取得・処理・管理を可能にするプラ

ットフォームである OptiTrack のソフトウェア「Motive」の 3.1.0 

Beta 1 バージョンを採用した。ジャンプ動作は非常に速い動きで

あるため、赤外線カメラがマーカーを見失うことがしばしば発生

した。特に両腕部分は、ジャンプ時に腕を締める動作が加わり、

複雑かつ素早い動きになるため、見失いが顕著であった。この

問題に対応するため、両腕には、カメラがマーカーを見失った

際に補間が可能となるよう、マーカー(図 2)を図 3 のように 3

つ取り付けたフレームを被験者の両腕にテープで巻き付けて固定した。よって、全体で合計 50 個（= 

44 個 + 補間用マーカー6個［3 個×2］）のマーカー位置をトラッキングし、データを取得した。44 個

のマーカーを貼付した位置（黒点）、補間用マーカーの位置（青点）、およびそれぞれのマーカー名称

を図 4 に示す。 

 

 

 

 

 

 

 

 

 

 

 

 

そして被験者がジャンプ動作を行う間、各マーカーの位置座標を 1 秒間に 120 フレームの頻度で取得

し、ジャンプ動作の開始から終了までを 1 つの時系列データとして取得した。得られたデータにおい

て、一連のジャンプ動作の中で同一のマーカーが別

のマーカーとして認識されている場合には、ソフト

ウェアを用いてそれらを結合した。また、データの

欠損部分に対しては、ソフトウェアに搭載されてい

る「Cubic」と「Pattern Based」の 2 種類の補間機能

を使用して補間を行った。Cubic 補間は、欠損したデ

ータに対し、弧を描く形で補間する方法であり、短

い時間範囲での欠損に適用した。一方、Pattern Based

補間は、欠損したマーカーの周辺に位置する複数の

マーカーを基準に、同様の軌道を描く形で補間を行う手

法であり、欠損が比較的長い場合に適用した。それぞれ

図 1 プレテストの様子 

（赤丸部分がカメラの位置） 

図 5  Cubic 補間と Pattern Based 補間 

（Acuity Inc. (2019) p21 の図表を一部修正）

図 4 正面（左）と背面（右）のマーカー位置と名称

図 2 マーカー 

図 3 補間用のフレーム 
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の補間の様子は図 5 の通りである。なお、周囲のマーカーも含めて欠損しているデータについては補

間が困難であったため、分析には使用しなかった。 

従って、本測定で行ったジャンプ動作 57 回のうち、データ解析に使用可能であったのは 41 回分で

あった。これらのデータを「成功」、「両足着地」、「回転不足」、「ふらつき」の 4種類に分類すると、

それぞれ 19、8、3、11 個分の時系列データとなった。 

 

2-2 モデルの作成 

 本研究では三次元の時系列データに基づき、クラスラベルを付与したデータセットを作成し、これ

をトレーニングセットとテストセットに分割して、Google Colab 上の Python によってモデルの構築

を行った。本研究では、基となるモデルとして空間的および時間的な情報を同時に扱うことが可能な

深層学習モデルである STGCN（Spatial-Temporal Graph Convolutional Network）モデルを採用した。

STGCN モデルは、空間的特徴をグラフ畳み込み、時間的特徴を時間畳み込みによって学習すること

で、動作データの複雑なパターンを効果的に捉えることが可能である。その特徴として通常の空間的

な接続に加えて図 6 のように時間軸(Temporal 方向)に対しても接続を用意するので、ノード集合 V は

以下のように表すことが可能である。 

𝑉 ൌ ሼ𝑣௧௜|𝑡 ൌ 1,2,… , 𝑇, 𝑖 ൌ 1,2, … , 𝑁ሽ 

ここでｔ、i はそれぞれ時間ステップとノード番号を表す。 

本研究において、ノードはマーカーの位置とし、エッジは図 7 に示すように関節の接続や身体部位

間の関係に基づいて設定した。グラフを視覚的にわかりやすくするために、右半身のエッジを赤色、

左半身のエッジを青色、身体の中央部のエッジを緑色で示している。 

 

 

 

 

 

 

 

 

 

 

 

各時系列データは一連のジャンプ動作のはじめから終わりまでのデータを持ち、その長さはデータご

とに異なるため、パディング処理を行い、長さが足り

ない場合にはゼロを補填して、すべてのデータをフレ

ーム数 800 の時系列データに統一した。また、モデル

の精度向上にはデータ数が重要であるため、今回取得

した 41 個の三次元時系列データに対して 5 フレーム

ごとのフレームシフトを適用し、各データを 25 個の時

系列データに増強することで、合計 1025 個の時系列デ

ータを使用できるようにした。そして今回構築した

STGCNモデルのネットワーク構造は表1の通りである。
表 1 STGCN モデルのネットワーク構造

図 6 STGCN のグラフ構造 

出典：Sijie Yan(2018) p.1 図 7 入力したグラフ構造（正面向き）
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まず、入力データは N :バッチサイズ、V :グラフのノード数、C :チャネル数、T :フレーム数とし

てサイズ(N、V、C、T)のテンソルである。従って今回の実験ではバッチサイズを 16、ノード数はマ

ーカーの数であるため 44、チャネル数は 3 次元の時系列データであることから 3、そしてフレーム数

はパディング処理により 800 に統一されているので入力するテンソルのサイズは（16, 44, 3, 800)

となる。このテンソルがまず入力層でノード数とチャネル数を掛け合わせた形でフラット化、そして

正規化されて出力される。次に、STGC_block では、グラフ方向と時間方向のそれぞれに対して畳み

込みを行っている。具体的には、空間時間グラフ畳み込みの各層において、隣接行列に学習可能なマ

スク M を導入することで、ノードの隣接ノードへの寄与を学習された重要度の重みに基づいて表現

している。表よりこの STGC_block についてチャネル数を 64、128、256 と段階的に増加させながら繰

り返し使用することで、モデルが処理できる特徴量の容量を増加させている。これにより、データ内

の複雑なパターンやノード間の相関をより効果的に捉え、段階的に学習することが可能となる。そし

て、Global Average Pooling 層では空間的および時間的な特徴全体を平均化することで、最終的な特徴

ベクトルを生成している。そして最後に畳み込み層によって、256 次元の特徴をクラス数（num_classes

＝4) にマッピングしている。また、今回はオプティマイザとして重み減衰により過学習を抑えなが

ら効率的なパラメータ最適化を可能にする特性を持つ AdamW を採用した。 

 

3 研究成果 

 データセット分割し、構築したモデルにおけるエポック数ごとのクラス分類の予測とその分類精度

の結果を示す。但し、図 8 のクラスに関しては「成功」、「両足着地」、「回転不足」、「ふらつき」をそ

れぞれ Class1、2、3、4としている。 

 

モデルの学習において、エポック数が小さい段階では、図 8 の左図に示すように予測ラベルと正解

ラベルとのずれが大きく、テストデータに対する分類精度は 61.46%に留まった。しかし、エポック数

が増加するにつれて分類精度が向上し、エポック数 25 では分類精度が 97.56%と非常に高い精度を達

成した。この結果から、STGCN モデルがジャンプ動作の違いを正確に捉える能力を有していることが

わかる。一方で、エポック数がさらに増加した場合には精度の向上が見られず、むしろエポック数 30

の分類精度は 89.27%に低下した。よって、本データセットに対する適切なエポック数は 25 程度であ

ると考えられる。 

 

4 今後の課題 

本研究では、ジャンプ動作を比較的見分けがつきやすい 4 つのクラスで分類する手法を構築したが、

図 8 エポック数によるクラス分類精度の変化（エポック数：5（左）、25（中央）、30（右）） 
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実用性を高めるにはクラスのさらなる細分化が必要である。フィギュアスケートにおける公平な採点

を実現するためには、細かな姿勢のブレや動作の違いをより詳細に分類できるモデルの開発が求めら

れる。加えて、本研究で対象としたジャンプはアクセルジャンプのみであり、他の 5 種類のジャンプ

や 2 回転以上のジャンプを解析対象に含めるには、さらに多くの動作データを取得する必要がある。

また、選手ごとの体格の違いを考慮し、ジャンプ動作に特化した分析システムを構築しなければなら

ないため、多様な被験者からのデータ収集が必要不可欠である。 

 また、STGCN はノード間、すなわちエッジの重みを学習によって決定するため、その重みに注目す

ることで、モデルがクラス分類を行う際に重要なエッジを特定することが可能ではないかと考えた。

これにより、モデルが予測を行う際に重要視しているジャンプ動作における関節や身体の位置関係を

明らかにでき、選手が行ったジャンプ動作に対して、身体のどの部分が原因で失敗したのかを判別す

る手助けになることが期待される。 

また、今回構築したモデルには学習に膨大な時間がかかるという問題点があり、効率的なアーキテ

クチャの採用や転移学習を活用したモジュールの再利用に加え、その他にも多くのアプローチが考え

られる。例えば、データの増強技術や最適化手法の改善、モデルの軽量化など、さまざまな工夫を通

じて、さらに実用性を高めることができると考えている。 

従って、データ収集の面でもモデル構築の面でも本研究にはさらなる発展の余地が存在し、将来的

な実用に向けて今後の改善と工夫を重ねていきたい。 
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