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 A B S T R A C T

Twin experiments are conducted to clarify whether assimilation effects can be achieved by data assimilation 
(DA) with measurement data obtained by existing cavitation flow measurement techniques. The analysis object 
is the cavitation flow around a Clark-Y11.7% hydrofoil. The pseudo-measurement data are velocity fields from 
tomographic particle image velocimetry (TPIV) or two-dimensional PIV, both containing missing data in cavity, 
along with indirectly obtained cavity interface shapes. A large-eddy simulation is used for unsteady simulation 
of cavitating turbulent flow, and a local ensemble transform Kalman filter is used as the DA method. Visualized 
flow fields of the ensemble mean show that characteristic phenomena of the pseudo-measurement data are 
qualitatively reproduced. In addition, the time-series data at an observation point located at the position 
where the pseudo-measurement data exists converged following the pseudo-measurement data. The velocity 
inside the cavity, where no pseudo-measurement data exists, is also complemented by CFD that incorporates 
information from outside of the cavity. However, the complementation performance depends on the accuracy 
of the cavitation model. This DA program is applied to the real PIV data of single-phase flow and qualitatively 
reproduces the flow field. Furthermore, the observation noise is reduced and the data outside the measurement 
domain are complemented.
1. Introduction

Since the 1990s, methods for analysis of cavitation flow as a gas–
liquid two-phase flow based on Navier–Stokes equation have been ac-
tively developed. Currently, these methods account for the mainstream 
of practical cavitation flow analysis methods for fluid machinery. These 
cavitation models are broadly classified into homogeneous model and 
two-fluid model.

In the homogeneous fluid model, cavitation phenomena are ex-
pressed by the density change of the homogeneous mixture fluid com-
posed of liquid and vapor phases. The mixture density 𝜌𝑚 is defined by

𝜌𝑚 = 𝛼𝜌𝑉 + (1 − 𝛼)𝜌𝐿 (1)

where 𝛼 denotes vapor volume fraction and 𝜌𝐿 and 𝜌𝑉  denote the den-
sity of liquid and vapor, respectively. Furthermore, depending on the 
method used to model the change in 𝜌𝑚, the homogeneous fluid models 
are classified into the following categories: equation of state models 
in which 𝜌𝑚 is expressed as a function of pressure only (Delannoy 
and Kueny, 1990; Coutier-Delgosha et al., 2003); transport equation 
models that include source terms representing the evaporation rate and 
condensation rate (Merkle et al., 1998; Kunz et al., 2000; Singhal et al., 
2002; Schnerr and Sauer, 2001; Zwart et al., 2004); bubble dynamics 
models that compute the vapor volume fraction from the representative 
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bubble diameter, which are calculated from a simplified Rayleigh–
Plesset (R–P) equation, and the fixed bubble number density (Kubota 
et al., 1992; Ito et al., 2005); and simple models that include source 
terms based on the difference between pressure and saturated vapor 
pressure to the transport equations for density or void fraction (Chen 
and Heister, 1995; Okita and Kajishima, 2002). Homogeneous fluid 
models are implemented in commercial software and widely used in 
industry owing to its simplicity and low computational cost. However, 
in two-fluid models, the basic equations for both vapor and liquid 
phases are solved. The two-fluid model is classified into two types, 
the Eulerian type and the Lagrangian type, depending on the method 
used to predict the spatial distribution of bubbles. The bubble dynamics 
process in both types is based on the R–P equation. Tamura et al. (2001) 
and Tamura and Matsumoto (2009) proposed a Eulerian-type two-
fluid model, in which the transport equation for the number density of 
bubbles is solved. They computed vapor and liquid velocities 𝑢𝑉  and 𝑢𝐿, 
respectively, and considered the slip velocity, 𝑢𝑉 −𝑢𝐿, in R–P equation. 
The Lagrangian-type two-fluid model tracks bubbles based on Newton’s 
equations of motion in the Lagrangian framework, while the liquid 
phase is solved in the Eulerian framework. In the early stages, a method 
using one-way coupling, which assumes that the motion of discrete 
bubbles does not affect the Eulerian liquid phase, was proposed (Hsiao 
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et al., 2003; Hsiao and Chahine, 2005). However, it was difficult to 
convert between structures of different scales, such as the coalescence 
and breakup of bubbles. Vallier (2013) realized two-way coupling by 
combining a method that treats macroscopic structures using a Eulerian 
frame and discrete bubbles using a Lagrangian frame, and a method 
that transitions between structural scales along with coalescence and 
breakup. Subsequently, the model has been improved from various 
perspectives (Wang et al., 2021, 2023). Although the computational 
cost of the two-way coupling is high, the inception and collapse of 
subgrid bubbles can be considered. Therefore, it has an advantage in 
analyzing cavitation erosion and acoustics.

Therefore, cavitation models have been developed from various 
perspectives. However, as cavitation is a phenomenon with a variety 
of morphologies and multi-scale spatio-temporal characteristics, no 
model has yet been developed that can represent the various cavitation 
phenomena and related phenomena in a unified manner. Even for the 
most basic flow, such as those around a hydrofoil, current models have 
been unable to quantitatively reproduce cavitation phenomena. It has 
been pointed out that this is due to the inability of a single model 
to deal with locally different cavitation behaviors and their related 
physics (Kato, 2011).

As a breakthrough in the development of cavitation models, our 
research group has been working on the development of a ‘‘data-driven 
cavitation model’’ (Noda and Okabayashi, 2023) that can represent 
cavitation phenomenon accurately and generally by using a machine 
learning model trained on measurement data, rather than a conven-
tional mathematical model. This model is inspired by the fact that the 
measured flow field data, which are obtained by the recent optical mea-
surement techniques, can be regarded as pixels in image data (Fenjan 
et al., 2016; Ling et al., 2016). The flow field data are input as training 
data for neural network (NN) of image recognition, and a certain 
relation between input and output is obtained as a form of NN. The 
NN, i.e., data-driven cavitation model, is coupled with the governing 
equation as an alternative to the conventional mathematical cavitation 
model. Noda and Okabayashi (2023) established a framework of data-
driven model with CFD data as the training dataset, but if measurement 
data could be used for training, the data-driven model would be even 
more reflective of real physical phenomena.

The measurement data used to train the NN are assumed to be 
the velocity field data of cavitating flow obtained by particle im-
age velocimetry (PIV), high-speed camera images, and wall-mounted 
pressure sensor data etc. However, raw PIV data are not suitable as 
training data because it lacks information inside the bubbles and near 
the boundary layer. Moreover, it contains noise and measurement 
errors, and generates numerical conservation problems when combined 
with computational fluid dynamics (CFD). Furthermore, there is cur-
rently no method for measuring the spatio-temporal distribution of 
bubbles, which is an important physical quantity in cavitating flow, at 
high resolution. Pervunin et al. (2021) proposed a related method for 
measuring the time-averaged bubble population distribution from the 
spatio-temporal particle abundance of PIV. Nevertheless, this method 
does not provide the time-series data of well-defined gas–liquid in-
terfaces and the bubble population distribution. As mentioned above, 
experimental measurement of cavitating flow is challenging; however, 
in the future, it would be ideal to be able to construct machine learning 
models based on readily available measurement data.

Thus, in the analysis of cavitating flow, where both numerical 
simulations and experimental measurements are not yet matured, the 
data assimilation (DA) approach is expected to be effective. DA is a 
method for statistically modifying uncertainties in numerical simula-
tions with measurement data and has been widely used in the field of 
numerical weather prediction (Dee et al., 2011; Honda et al., 2018). 
The advantage of this method is that it can both improve the results of 
numerical simulations with measurement data and supplement unmea-
sured data with CFD. The introduction of DA to cavitating flow analysis 
may lead to a more detailed understanding of the phenomenon and 
2 
improve the accuracy of cavitation models. Furthermore, if this method 
can reproduce the cavitating flow field with the missing data comple-
mented, it could be used to create a training dataset for the construction 
of the machine learning model described above. For example, Bra-
jard et al. (2021) used a dataset created by DA as the training data 
for constructing a data-driven climate model using machine learning. 
The two-scale Lorenz model and the Modular Arbitrary-Order Ocean–
Atmosphere Model (MAOOAM), a type of coupled atmosphere–ocean 
model that is utilized to predict changes in temperature and other 
parameters due to air and water flow, were used for validation. DA 
was used to supplement missing data in a realistic scenario with noisy 
and spatially sparse observations. They constructed machine learning 
models using the training datasets created in this way and reported that 
the constructed models showed high predictive performance for both 
validation cases. The machine learning models in the example above 
adopt a concept that is similar to that of data-driven cavitation models 
and demonstrate the suitability of DA for creating training data sets.

Recently, the four-dimensional variational method (Rabier et al., 
2000) based on optimal control theory and the ensemble Kalman 
filter (EnKF) (Evensen, 1994), a sequential method based on Bayesian 
estimation theory, have been identified as representative DA meth-
ods. These methods are expected to be utilized in the field of fluid 
engineering because of their high affinity with CFD. The applications 
of DA in fluid engineering include estimation of initial and boundary 
conditions (Mons et al., 2016; Sousa and Gorlé, 2019), parameter 
optimization (Kato et al., 2015; Deng et al., 2018), improvement of 
measurement systems (Misaka and Obayashi, 2014), and creation of 
data sets that integrate measurement data with numerical simulations. 
We focus on the creation of datasets, but there are currently no studies 
that focus on the creation of datasets using this method in fluid engi-
neering field. However, with the recent trend toward complementary 
approaches between experimental fluid dynamics (EFD) and CFD, rep-
resented by the Virtual Diagnostics Interface System (ViDI) (Schwartz 
and Fleming, 2007) at the NASA Langley Research Center and the Dig-
ital/Analog-Hybrid Wind Tunnel (DAHWIN) (Watanabe et al., 2014) at 
the Japan Aerospace Exploration Agency (JAXA), the need for analyt-
ical data sets is expected to increase in the future as DA techniques 
become more sophisticated.

In this study, we perform a basic validation of assimilation algo-
rithm performance to establish a dataset of cavitating flow. Several 
examples of such basic validations exist in the field of fluid engineering, 
although their main objective is not to only create datasets. Labahn 
et al. (2020) used the EnKF to validate the performance of an assim-
ilation algorithm for turbulence state estimation. They assimilated a 
three-dimensional velocity field obtained from tomographic PIV (TPIV) 
into a turbulent jet with a Reynolds number of 13500 and verified the 
reproducibility of the statistical behavior of the turbulent field. They 
systematically determined the effects of parameters and measurement 
conditions on the assimilation performance by changing the EnKF 
parameters such as the number of ensemble members and localization 
radius, as well as parameters related to measurement conditions, such 
as measurement data uncertainty, assimilation frequency, and data 
sparsity. They also confirmed that the EnKF is highly robust to mea-
surement data. As a basis for the integration of wind tunnel experiments 
and CFD using DA, Kato and Obayashi (2011) verified the effectiveness 
of DA for the correction of the uncertainties in numerical simulations 
of flows around a square cylinder: They assimilated measured surface 
pressure data at only three points on the cylinder using the EnKF. 
Although the direct correction of the flow field by assimilation is only 
performed near the square cylinder, it also improves the reproducibility 
of the wake of the cylinder. These examples suggest that DA using the 
EnKF is effective even for cavitation flows, which are highly unsteady, 
turbulent, and are expected to have a large spatial data deficit. How-
ever, there are few examples of actual applications of DA to such flow 
fields, and it is not clear whether sufficient assimilation can be achieved 
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Table 1
Problem settings.
 Section Problem setting Reference data of DA Assimilation simulation  
 6 Twin experiment to assimilate 

pseudo-measurement data 
assuming TPIV data of cavitating 
flow.

3D pseudo-measurement data 
created from the database 
computed with the OK model.

Cavitating flow simulation 
with the CH model.

 

 7 Twin experiment to assimilate 
pseudo-measurement data 
assuming PIV data of cavitating 
flow.

2D pseudo-measurement data 
created from the database 
computed with the OK model.

Cavitating flow simulation 
with the CH model.

 

 8 Data assimilation of single-phase 
airflow.

2D-PIV data (Nonomura et al., 
2021).

Single-phase flow 
simulation.

 

Fig. 1. Schematic diagram of the twin experiment.
using data from cavitating flow fields that can be obtained with existing 
measurement techniques.

Therefore, in this study, we verify the effectiveness of DA by using 
cavitating flow data that can be obtained with existing measurement 
techniques. As one of the most basic examples, cavitating flow around a 
hydrofoil is employed. Here, we introduce and validate DA through the 
twin experiment. We demonstrate that the flow field based on pseudo-
measurement data can be reproduced using existing cavitation models 
by introducing DA. We also explore how the spatial dimension of the 
measurement data influence on the assimilation performance. Further-
more, as we aim to establish a framework for performing assimilation 
calculations as soon as real measurement data of the cavitating flow 
field can be obtained, verification using available real measurement 
data of single-phase flow around an airfoil is conducted.

2. Problem setting

This study aims to reproduce a flow field in which real physical 
phenomena are incorporated by assimilating measurement data into 
a numerical simulation of cavitating flow using existing cavitation 
models. In a problem setting similar to this situation, a twin experiment 
is conducted. The term ‘‘twin experiment’’ is often used in the field 
of DA. The schematic diagram of twin experiment is shown in Fig. 
1. It is referred to as a ‘‘twin’’ because it computes both the ‘‘true 
scenario’’ and the predicted value from a single simulation model. The 
pseudo-measurement data is extracted from the true scenario simula-
tion database. The greatest advantage of the twin experiment is that the 
true scenario, which is difficult to determine (because measurements 
can only obtain partial or sparse physical quantities of the flow field), 
is obtained through the computation, thus, it is possible to determine 
whether the flow field estimated by DA is correct by comparing the 
results of DA with the true scenario. Therefore, the twin experiment is 
a validation of DA.

In this study, three different problems are set as listed in Table 
1. In Section 6, 3D-TPIV data of a cavitating flow are assumed as 
the pseudo-measurement data for the twin experiment. In Section 7, 
conversely, 2D-PIV data of a cavitating flow are assumed as the pseudo-
measurement data to investigate the influence of the spatial dimension 
3 
of pseudo-measurement data. These pseudo-measurement data are cre-
ated from the numerical results of cavitating flow simulation using 
the source-term homogeneous fluid model developed by Okita and 
Kajishima (2002) (OK model) as the cavitation model. OK model simu-
lation is regarded as the true scenario in this twin experiment. Another 
source-term homogeneous fluid model developed by Chen and Heister 
(1995) (CH model), which is simpler than the OK model, is used in the 
assimilation simulation of both sections. If the CH model, a relatively 
simple cavitation model, can be used to reproduce the flow field of 
the OK model, which can represent more complex phenomena, we can 
demonstrate that DA can be effectively performed for measurement 
data using an existing cavitation model. Finally, in Section 8, we 
conduct an assimilation validation on real measurement data of a 
single-phase airflow. Note that this is not a twin experiment: in this 
problem, a true scenario does not exist and the pseudo-measurement 
data is not extracted, either.

3. Overview of CFD

In this section, the overview of the simulation that outputs the 
database for creating pseudo-measurement data of the cavitating flow 
and the data assimilation simulation are given. The two different 
cavitation models, the OK model and CH model, are used for those sim-
ulations, respectively; however, the governing equations, turbulence 
model, numerical methods, and computational conditions are common.

3.1. Governing equations and models

The governing equations of the filtered flow field (�̄�𝑖, �̄�) for a 
large-eddy simulation (LES) are employed. Hereafter, all variables are 
non-dimensionalized by the chord length 𝐶, the mainstream velocity 
𝑈∞, and the liquid density at a sufficiently far position 𝜌𝐿∞. The density 
of the homogeneous fluid 𝜌 is approximated as 𝜌 ≈ 𝜌𝐿𝑓𝐿 by the 
local liquid density 𝜌𝐿 and the liquid volumetric fraction 𝑓𝐿. Here, the 
control volume used to define 𝑓𝐿 is the volume of computational cells, 
and thus 𝑓 = 𝑓 .
𝐿 𝐿
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Fig. 2. Illustration of the state variables on each computational grid point.

3.1.1. Governing equations
In cavitating flow, strong pressure fluctuations are generated by 

the expansion and contraction of cavitation. Therefore, a low-Mach 
number formulation (Inagaki et al., 2000) is used to account for the 
compressibility of the liquid phase. The conservation laws for the mass 
of the liquid phase using the low-Mach number formulation is 
𝐷𝑓𝐿
𝐷𝑡

+ 𝑓𝐿

(

M2𝐷�̄�
𝐷𝑡

+
𝜕�̄�𝑖
𝜕𝑥𝑖

)

= 0. (2)

The Mach number M = 𝑈∞∕𝑐 (𝑐: sound speed of a pure liq-
uid) in Eq. (2) is a constant that is uniformly given over the entire 
computational domain. The filtered Navier–Stokes equation is 
𝜕�̄�𝑖
𝜕𝑡

+ �̄�𝑗
𝜕�̄�𝑖
𝜕𝑥𝑗

= − 1
𝑓𝐿

𝜕
𝜕𝑥𝑖

(

�̄� + 2
3
𝑓𝐿𝑘SGS

)

+ 𝜕
𝜕𝑥𝑗

[

2
(

𝜈SGS +
1
Re

)

�̄�𝑖𝑗

]

. (3)

In Eq. (3), �̄�𝑖𝑗 represents the rate-of-strain tensor. The subgrid-scale 
(SGS) turbulent kinetic energy 𝑘SGS and SGS kinetic eddy viscosity 
coefficient 𝜈SGS are described in Section 3.1.3. The Reynolds number 
is defined as Re = 𝑈∞𝐶∕𝜈. From Eqs. (2) and (3), the state vector of 
the DA system is defined as 
𝐱 =

[

�̄� �̄� �̄� �̄� �̄� �̄� �̄� 𝒇𝑳 𝒌𝐒𝐆𝐒
]⊤ . (4)

Eq. (4) is composed of state variables that progress in time at each 
grid point (Fig.  2). Here, �̄�, �̄�, and �̄� are the physical components of 
the velocity in the 𝑥, 𝑦 and 𝑧 directions, respectively, and �̄� , �̄� , and �̄�
are the contravariant velocities which appear in Eqs. (2) and (3). They 
are computed on a collocated grid and defined in cell face generally; 
however, they are treated as physical quantities similar to other state 
variables by interpolating to the center of the grid in this computation.

3.1.2. Cavitation model
To reproduce unsteady cavitation phenomena, changes in liquid vol-

umetric fraction 𝑓𝐿 are represented by the source-term homogeneous 
fluid model. In this study, the OK model (Okita and Kajishima, 2002), 
𝐷𝑓𝐿
𝐷𝑡

=
[

𝐶𝑔
(

1 − 𝑓𝐿
)

+ 𝐶𝑙𝑓𝐿
] (

𝑝 − 𝑝𝑣
)

, (5)

is used for generating the pseudo-measurement data as described in 
Section 4, and the CH model (Chen and Heister, 1995), 
𝐷𝑓𝐿
𝐷𝑡

= 𝐶CH
(

𝑝 − 𝑝𝑣
)

, (6)

is used for the time evolution of 𝑓𝐿 in the assimilation computation. 
The OK model is a numerical model based on the linearized Rayleigh–
Plesset equation, which is an improved version of the CH model, 
and can reproduce complex phenomena such as three-dimensionality 
at the sheet cavity interface (Fig.  3(a)). In contrast, the CH model 
hardly reproduces such cavitation shapes (Fig.  3(b)). Other differences 
between the flow fields of the OK model and CH model are described 
in Sections 3.3 and 6.2. The saturated vapor pressure 𝑝𝑣 is given by the 
cavitation number 
𝜎 =

�̃�∞ − �̃�𝑣
1
2𝜌𝐿∞𝑈2

∞

(7)

where ̃ denotes a dimensional quantity and �̃�∞ represents the pressure 
at a sufficiently far distance. The constants 𝐶𝑔 and 𝐶𝑙 of Eq. (5) are 
optimized for cavitating flow around a square cylinder, with 𝐶 = 1000
𝑔

4 
Fig. 3. Example of a computed instantaneous cavity interface (isosurfaces of 𝑓𝐿 = 0.75). 
(Clark-Y 11.7%, AoA = 2◦, 𝜎 = 0.5).

and 𝐶𝑙 = 1 for 𝑝 < 𝑝𝑣, and 𝐶𝑔 = 100 and 𝐶𝑙 = 1 for 𝑝 > 𝑝𝑣. To 
attenuate the shock at cavity collapse, 𝐶𝑔 is set to be smaller when 
𝑝 > 𝑝𝑣. The constant 𝐶CH of Eq. (6) is defined as 𝐶CH = 𝐶0𝐶𝑈∞ in Chen 
and Heister (1995), which is effectively proportional to the Reynolds 
number. It is reported that the larger 𝐶CH is, the more the pressure 
on the object surface converges to a certain value, and 𝐶0 is set to 
5000, the value of 𝐶0 in case Re = 1.36 × 105 in the headform solution. 
Therefore, the optimal value is estimated as approximately 25000 as 
the Reynolds number in this study is 6.41 × 105 (described below in 
Section 3.3). However, in this study, 𝐶CH is set to 100 as a reference for 
𝐶𝑔 , considering the stability of the computation at the cavity collapse 
described above. The insufficient quantitative reproducibility of the CH 
model is not a problem when examining the assimilation effect; rather, 
it is convenient for examining the effect of model uncertainty.

3.1.3. Subgrid-scale model
The one-equation dynamic SGS model (Kajishima and Nomachi, 

2003) is employed. The kinetic eddy viscosity 𝜈SGS in Eq. (3) is obtained 
by 

𝜈SGS = 𝐶𝜈𝛥𝜈
√

𝑘SGS (8)

from the view point of dimensional analysis. The turbulence kinetic 
energy 𝑘SGS is obtained from the transport equation (Okamoto and 
Shima, 1999) 

𝜕𝑘SGS
𝜕𝑡

+ �̄�𝑗
𝜕𝑘SGS
𝜕𝑥𝑗

= − 𝜏𝑎𝑖𝑗 �̄�𝑖𝑗 − 𝐶𝜀
𝑘

3
2
SGS

𝛥

− 2
Re

𝜕
√

𝑘SGS
𝜕𝑥𝑗

𝜕
√

𝑘SGS
𝜕𝑥𝑗

+ 𝜕
𝜕𝑥𝑗

[

(

𝐶𝑑𝛥𝜈
√

𝑘SGS +
1
Re

) 𝜕𝑘SGS
𝜕𝑥𝑗

]

, (9)

which models the production, dissipation, and diffusion terms on the 
right-hand side. Here, 𝜏𝑎𝑖𝑗 = 𝜏𝑖𝑗 −

1
3 𝛿𝑖𝑗𝜏𝑘𝑘 denotes the anisotropic part of 

the SGS stress, and 𝛥 denotes the length of the grid filter. The length 
scale of the turbulent diffusion term 𝛥𝜈 is defined as the characteristic 
length with the modification to represent the behavior near the solid 
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wall: 

𝛥𝜈 =
𝛥

1 + 𝐶𝑘𝛥2
|�̄�|2∕𝑘SGS

, (10)

where |�̄�| =
√

2�̄�𝑛𝑚�̄�𝑛𝑚 is the magnitude of the rate-of-strain tensor 
�̄�𝑖𝑗 .

One characteristic feature of the one-equation dynamic SGS model 
is that the dynamic procedure proposed by Germano et al. (1991) 
and Lilly (1992) is used for the production term −𝜏𝑎𝑖𝑗 �̄�𝑖𝑗 , the first term 
of the right-hand side of Eq. (9), to deal with the complexity of the flow 
field and the boundary condition at the solid wall: The production term 
is calculated by 
−𝜏𝑎𝑖𝑗 �̄�𝑖𝑗 = 2𝐶𝑠𝛥

2
|�̄�|3 (11)

rather than by using the eddy viscosity model given in Eq. (8), and 
𝐶𝑠 is given by the dynamic Smagorinsky model. The model constants 
𝐶𝜈 = 0.005, 𝐶𝜀 = 0.835, 𝐶𝑑 = 0.10 and 𝐶𝑘 = 0.08 are the same as those 
of the LES performed by Okabayashi et al. (2023).

3.2. Numerical method

The numerical simulation of unsteady flow is based on the frac-
tional step method with the collocated arrangement of the variables. 
The convection term in Eq. (3) is discretized by the Quadratic Up-
stream Interpolation for Convective Kinematics (QUICK) scheme, and 
the other terms in Eq. (3) are discretized by the central finite dif-
ference of second-order accuracy. For the time-marching method, the 
Adams–Bashforth method of second-order accuracy is used for both 
the convective and viscous terms. In the pressure equation, the three-
step method is used to determine the time-derivative of the pressure, 
and the central difference method of second-order accuracy is used 
for the spatial derivatives of the other terms. The successive over-
relaxation (SOR) method is used to perform the iterative computation. 
Furthermore, the Adams–Bashforth method of second-order accuracy 
is used for the time marching of the transport equation for turbulence 
kinetic energy 𝑘SGS, the donor cell method is used for the spatial 
difference of the convection term for stability, and the other terms are 
discretized by the central difference method of second-order accuracy. 
The details of the time marching of the liquid volumetric fraction in the 
OK model are provided in Okita and Kajishima (2002), and the same 
time-marching method is used for the CH model.

3.3. Computational condition

The object of the analysis is the flow around a Clark-Y11.7% hydro-
foil at an angle of attack of 2◦, where reliable experimental data (Nu-
machi et al., 1949; Watanabe et al., 2013) has been obtained. The 
chord length and the mainstream velocity are 70.0 mm and 11.0 m∕s
respectively. The sound speed 𝑐 and kinetic viscosity 𝜈 are those of 
pure water at 13 ◦C. Accordingly, the Reynolds number and Mach 
number are 6.41 × 105 and 7.60 × 10−3, respectively. The computational 
domain and boundary conditions are summarized in Fig.  4. For the 
pressure boundary conditions, the non-reflective conditions of Okita 
and Kajishima (2002) are used for the inflow boundary, outflow bound-
ary, and upper and lower far regions, considering the pressure waves 
caused by the fluctuation in the liquid volume.  The number of grid 
points in each direction is 𝑁𝜉 × 𝑁𝜂 × 𝑁𝜁 = 360 × 100 × 100. The grid 
resolution is based on Suzuki et al. (2011): In their LES of cavitation 
flow, although the turbulence model is different, the C-type grid and OK 
model as in this study were used, and their grid resolution for single-
phase conditions was (𝛥+

𝜉 , 𝛥
+
𝜂 , 𝛥

+
𝜁 ) = (200, 25, 250) (minimum size for 𝛥+

𝜉
and 𝛥+

𝜂 ). In addition, the reproducibility of the flow for single-phase 
flow was verified. In this study, based on Suzuki et al. (2011), the 
grid resolution is set to (𝛥+

𝜉 , 𝛥
+
𝜂 , 𝛥

+
𝜁 ) = (140, 3, 250). The resolution in 

the wall-normal direction, 𝜂, is considerably finer: the first grid point 
5 
Fig. 4. Computational domain and boundary conditions (Clark-Y11.7% at AoA = 2◦).

Fig. 5. Static pressure distribution.

Fig. 6. Time evolution of the lift coefficient.

on the wall is in the viscous sublayer under single-phase conditions; 
thus, the grid resolution is within an acceptable range for imposing no-
slip conditions. Nevertheless, our single-phase flow results are almost 
identical with Suzuki et al. (2011). Therefore, the grid resolution in this 
study is sufficiently fine. As the boundary layer becomes even thicker 
under cavitation conditions, this resolution is sufficient for cavitation 
conditions.

In this study, we validate the assimilation performance under highly 
unsteady cavitation conditions. Therefore, the cavitation number 𝜎 is 
set to 0.5, where the transition cavity oscillations associated with the 
re-entrant jet occur (Watanabe et al., 2013) and the reproducibility of 
cavitation phenomena differs significantly between the OK model and 
CH model. Figs.  5 and 6 show the static pressure distribution and the 
time evolution of lift coefficient at 𝜎 = 0.5, respectively.

In Fig.  5, the region where −𝐶𝑝 = 𝜎 corresponds to the region where 
the hydrofoil surface is always covered by the cavity, and the pressure 
is kept at saturated vapor pressure. Thus, the position where the re-
entrant jet reaches the most upstream can be estimated from 𝑥∕𝐶 where 
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−𝐶𝑝 < 𝜎. By comparison, this position is 𝑥∕𝐶 ≈ 0.8 in the experiment, 
whereas it is 𝑥∕𝐶 ≈ 0.5 in the CH model, revealing a large difference in 
quantitative accuracy. The cavitation behavior is also qualitatively very 
different. In the CH model, the excessive progression of the re-entrant 
jet results in the large cloud cavity shedding compared to the OK model. 
These differences also cause the lift coefficient to fluctuate significantly 
in the CH model (Fig.  6): Okamura and Okabayashi (2023) reported 
that the Strouhal number of the 𝐶𝐿 fluctuation computed using the OK 
model shows good agreement with the experimental results (Watanabe 
et al., 2013). In Fig.  6, conversely, the period of the 𝐶𝐿 fluctuation 
of the CH model is clearly different from that of the OK model. We 
attempted to utilize these different characteristics of the OK model 
and CH model: in Sections 6 and 7, we attempted to reproduce the 
phenomenon more accurately by using the results of the OK model as 
reference data for the assimilation simulation using the CH model.

4. Pseudo-measurement data setup

For the pseudo-measurement data, we assume the TPIV measure-
ment data of a three-dimensional velocity field around the hydrofoil. 
Pseudo-measurement data is extracted from the database of the cav-
itating flow computed using the OK model. In this twin experiment, 
for simplicity, the pseudo-measurement positions correspond to grid 
points, and pseudo-measurement data are given every two grid points 
(at 𝑧 = 0.008𝐶 intervals) in the spanwise direction, i.e., the number 
of the pseudo-measurement cross-section is 50. The computational 
grid near the hydrofoil and an example of the instantaneous pseudo-
measurement area and its boundary (red and green points) are shown in 
Fig.  7. The green points correspond to the ‘‘cavity interface’’ described 
below. The data inside the cavity is assumed to be missing because 
no particles enter the cavity, and no measurement data of velocity 
are given. Therefore, the pseudo-measurement area of each spanwise 
cross-section varies according to the distribution of the cavity at each 
moment when the pseudo-measurement data are obtained. The pseudo-
cavity interface is set to isosurface of 𝑓 interface

𝐿 = 0.75 by comparison 
of the time-averaged liquid volumetric fraction distribution around 
the hydrofoil and the raw PIV data (Pervunin et al., 2021; Ilyushin 
et al., 2023). Although it is difficult to measure the liquid volumetric 
fraction 𝑓𝐿, the cavity interface and the liquid phase region can be 
estimated indirectly, given that the region where particles exist in TPIV 
is in the liquid phase. Therefore, as the pseudo-measurements of liquid 
volumetric fraction, 𝑓𝐿 = 𝑓 interface

𝐿 , is given at the boundary of the 
pseudo-TPIV measurement area (green points in Fig.  7) and the liquid 
phase condition 𝑓𝐿 = 1 is given for the entire pseudo-measurement 
area (red points in Fig.  7). In Section 7, as the pseudo-PIV measurement 
data, the cross-section at 𝑧 = 0.2𝐶 of pseudo-TPIV data is used. The data 
for physical quantities other than the 𝑓 interface

𝐿  and 3D or 2D velocity 
field are not usually available despite TPIV or PIV being conducted 
on a cavitating flow. To represent this situation virtually, no other 
physical quantities are given as pseudo-measurement data in the twin 
experiment. The physical quantities other than the 𝑓 interface

𝐿  and velocity 
field are modified dependently based on the given pseudo-measurement 
data. All of these pseudo-measurements are non-dimensionalized. The 
sampling frequency is 5000 Hz, which corresponds to 4000 time steps 
at time increments of 5.0 × 10−6.

5. Overview of data assimilation

5.1. Local ensemble transform Kalman filter (LETKF)

Numerical simulation and measurement are integrated through the 
local ensemble transform Kalman filter (LETKF) (Hunt et al., 2007). 
This method is based on the local ensemble Kalman filter (LEKF) (Ott 
et al., 2004) that incorporates the localization algorithm (described 
in Section 5.2) into the EnKF and an ensemble update method for 
the ensemble transform Kalman filter (ETKF) (Bishop et al., 2001), 
6 
Fig. 7. Computational grid near the hydrofoil and instantaneous pseudo-TPIV mea-
surement area (red and green points). The cross-section at 𝑧 = 0.2𝐶 is used as the 
pseudo-PIV measurement data. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

reducing the large error covariance matrix 𝐏 to a realistically com-
putationally feasible size and improving the computational efficiency. 
As the cavitating flow around a hydrofoil is a highly unsteady and 
turbulent phenomenon, the sampling error increase considerably if 
the number of ensemble members is not sufficient in the EnKF or 
ETKF. Moreover, localizing the error covariance matrix 𝐏 is impractical 
because doing so requires direct computation of the error covariance 
matrix, which has a matrix size of approximately 𝑂(1015) under the 
present computational conditions. Therefore, the LETKF is suitable for 
this simulation. In a conventional LETKF, localization is implemented 
using a local patch based on the computational grid. However, in this 
study, the grids are densely packed near the wall, so that the localiza-
tion scale becomes smaller near the hydrofoil surface, and measurement 
data cannot be sufficiently assimilated. Thus, we use the LETKF without 
a local patch (Miyoshi et al., 2007) and implement localization based 
on the physical length.

In the LETKF, the analysis is performed in an 𝑚-dimensional space 
spanned by 𝑚 ensemble members in the ‘‘local region’’. This local region 
is defined as a sphere of locarization radius 𝑅 (described in Section 5.2) 
centered at each grid point. The analytical ensemble matrix 𝐗𝑎 is repre-
sented by the sum of its ensemble mean �̂�𝑎 and the perturbation matrix 
𝐄𝑎, and the ensemble update is obtained by a linear transformation 
𝐄𝑎 = 𝐄𝑓𝐖𝑎. Here, superscripts 𝑎 and 𝑓 denote forecast and analysis, 
respectively, and ̂  denotes the ensemble mean. The LETKF analysis 
equation is given by 
𝐗𝑎 =�̂�𝑎 + 𝐄𝑎

=
[

�̂�𝑓 +𝐊
(

𝐲𝑜 −𝐻
(

�̂�𝑓
))]

+
[

𝐄𝑓𝐖𝑎]

=
[

�̂�𝑓 + 𝐄𝑓 �̃�𝑎 (𝐇𝐄𝑓 )⊤ 𝐑−1
(

𝐲𝑜 −𝐻
(

�̂�𝑓
))]

+
[

𝐄𝑓
√

𝑚 − 1
(

�̃�𝑎)
1
2

]

=�̂�𝑓 + 𝐄𝑓
[

�̃�𝑎 (𝐇𝐄𝑓 )⊤ 𝐑−1
(

𝐲𝑜 −𝐻
(

�̂�𝑓
))

+
√

𝑚 − 1
(

�̃�𝑎)
1
2

]

. (12)

The details of each symbol are shown in Table  2. Here, 𝑁𝑣 and 
𝑁𝑐 are the number of variables (i.e., 𝑁𝑣 = 9 as shown in Eq. (4)) 
and the number of grid points in a local region, respectively, and 
𝑁(= 𝑁𝑣𝑁𝑐 ) is the dimension of the state vector. Furthermore, 𝑁𝑜 is the 
number of observation points in a local region (number of dimensions 
of the observation space in a local region). Assuming that observations 
are uncorrelated, which is a common assumption, 𝐑 is diagonal. In 
addition, assuming that all measurements have an uncertainty of ap-
proximately 3%, 𝐑 is set to 9 × 10−4𝐈. The value of 𝐇𝐄𝑓  is obtained 
by replacing the observation operator 𝐇 with the nonlinear operator 
𝐻 resulting in 𝐇𝐄𝑓 ≈ 𝐻

(

𝐗𝑓 ) − 𝐻
(

�̂�𝑓
)

. Considering the covariance 
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Table 2
List of symbols.
 Symbol Size Meaning  
 𝐗 𝑁 × 𝑚 Ensemble matrix composed of 𝑁-dimensional state vectors 𝐱(𝑘) (𝑘 = 1,… , 𝑚) 
 �̂� 𝑁 × 𝑚 Matrix composed of 𝑚 ensemble mean of the state vectors �̂�  
 𝐄 𝑁 × 𝑚 Perturbation matrix constructed by subtracting �̂� from each column of 𝐗  
 𝐲𝑜 𝑁𝑜 Observation vector  
 𝐇 𝑁𝑜 ×𝑁 Observation operator to transform from model space to observation space  
 𝐻 𝑁𝑜 ×𝑁 Nonlinear observation operator  
 �̃�𝑎 𝑚 × 𝑚 Analysis error covariance matrix in 𝑚-dimensional space  
 𝐑 𝑁𝑜 ×𝑁𝑜 Observation error covariance matrix  
 𝐊 𝑁 ×𝑁𝑜 Kalman gain  
Algorithm 1 Non-local patch Local Ensemble Transform Kalman Filter
1: Generate initial ensemble. 
2: while 𝑡 < 𝑡end do 
3: Advance each ensemble independently until measurement data is obtained. 
4: Compute 𝐗𝑓

𝑔  and 𝐻𝑔

(

𝐗𝑓
𝑔

)

. 
5: Compute �̂�𝑓

𝑔  and 𝐻𝑔

(

�̂�𝑓
𝑔

)

, and subtract these from the components of 𝐗𝑓
𝑔  and 𝐻𝑔

(

𝐗𝑓
𝑔

)

 to obtain 𝐄𝑓
𝑔  and 𝐇𝑔𝐄

𝑓
𝑔 . 

6: for 𝑙 = 1 to 𝑁𝑐𝑔(= 𝑁𝜉𝑁𝜂𝑁𝜁 ) do 
7: if 𝑁𝑜 ≠ 0 then 
8: Select the rows of 𝐻𝑔

(

�̂�𝑓
𝑔

)

 and 𝐇𝑔𝐄
𝑓
𝑔  corresponding to a local region around the 𝑙-th grid point, and form the 𝑁𝑜-dimensional vector 

𝐻
(

�̂�𝑓
)

 and the 𝑁𝑜 × 𝑚 matrix 𝐇𝐄𝑓 .
Likewise, select the corresponding rows of 𝐲𝑜𝑔 and rows and columns of 𝐑𝑔 to form the 𝑁𝑜-dimensional vector 𝐲𝑜 and the 𝑁𝑜 ×𝑁𝑜 matrix 
𝐑. 

9: Select the rows of 𝐄𝑓
𝑔  and �̂�𝑓

𝑔  corresponding to the 𝑙-th grid point, and form the 𝑁𝑣 × 𝑚 matrices 𝐄𝑓  and 𝑁𝑣-dimensional vector �̂�𝑓 . 
10: Compute the 𝑚 ×𝑁𝑜 matrix 𝐂 =

(

𝐇𝐄𝑓 )⊤ 𝐑−1. 
11: Compute the 𝑚 × 𝑚 matrix �̃�𝑎 =

[

𝑚−1
1+𝛿 𝐈 + 𝐂

(

𝐇𝐄𝑓 )
]−1

 with the eigenvalue decomposition in Eq.  (13). 

12: Compute the 𝑚 × 𝑚 matrix 𝐖𝑎 =
√

𝑚 − 1
(

�̃�𝑎)
1
2  with the eigenvalue decomposition in Eq.  (13). 

13: Compute the 𝑚-dimensional vector �̂�𝑎 = �̃�𝑎𝐂
(

𝐲𝑜 −𝐻
(

�̂�𝑓
))

 and add it to each column of 𝐖𝑎 to form the 𝑚 × 𝑚 matrix 𝐰𝑎. 
14: Multiply 𝐄𝑓  by 𝐰𝑎 and add �̂�𝑓  to get the 𝑁𝑣 × 𝑚 matrix 𝐗𝑎 at the 𝑙-th grid point.
15: else 
16: 𝐗𝑎 = 𝐗𝑓

17: end if
18: end for
19: Form the 𝑁𝑔(= 𝑁𝑣𝑁𝑐𝑔) × 𝑚 matrix 𝐗𝑎

𝑔 from 𝐗𝑎 of all grid points.
20: end while
inflation (described in Section 6.1.1), �̃�𝑎 is computed by the following 
eigenvalue decomposition. 

�̃�𝑎 =
(𝑚 − 1
1 + 𝛿

𝐈 +
(

𝐇𝐄𝑓 )⊤ 𝐑−1 (𝐇𝐄𝑓 )
)−1

=
(

𝐔𝐃𝐔⊤)−1

= 𝐔𝐃−1𝐔⊤ (13)

The parameters 𝛿, 𝐔 and 𝐃 are the inflation parameter, eigenvector 
and matrix with eigenvalues as diagonal components, respectively. In 
this way, we can obtain the square root of �̃�𝑎 by sharing the same 
eigenvalue decomposition. From Eq. (12), 

�̃�𝑎 (𝐇𝐄𝑓 )⊤ 𝐑−1
(

𝐲𝑜 −𝐻
(

�̂�𝑓
))

+
√

𝑚 − 1
(

�̃�𝑎)
1
2 (14)

is computed only for variables in the observation space and does not 
require 𝑁-dimensional vectors or matrices. Therefore, as soon as 𝐇𝐄𝑓

and 𝐻
(

�̂�𝑓
)

 are obtained, 𝐗𝑎, 𝐗𝑓 , and 𝐄𝑓  are redefined as 𝑁𝑣 × 𝑚
matrices using only the variables at a grid point. The detailed procedure 
is shown in Algorithm 1. In Algorithm 1, the subscript 𝑔 denotes a 
vector or matrix composed of variables in the global computational 
domain. The variables without subscript 𝑔 are defined in a local region.
7 
5.2. Localization

Localization is a method through which the influence of observa-
tions distant from a grid point is eliminated, assuming that there is no 
error correlation between the distant points. When assimilation is per-
formed with a limited number of ensemble members 𝑚, the computed 
correlation with distant observations is mostly due to the sampling 
error. Therefore, in the LETKF, the influence of distant observations 
is eliminated by assimilating only observations within the local region 
for each grid point.

Furthermore, in this study, the observation error covariance matrix 
𝐑 is localized to weight observations near a grid point and to com-
pletely suppress the sampling error when the observation is farther 
from the grid point. Multiplying the inverse of the localization function 
𝐿(𝑟) by each element of the observation error covariance matrix leads 
to an infinite measurement error far away from the grid point, where 𝑟
denotes the distance from the grid center normalized by the localization 
radius 𝑅. The localization function 𝐿(𝑟) is a fifth-order function that 
approximates the Gaussian function proposed by Gaspari and Cohn 
(1999): 

𝐿(𝑟) =

⎧

⎪

⎨

⎪

1 − 1
4 𝑟

5 + 1
2 𝑟

4 + 5
8 𝑟

3 − 5
3 𝑟

2 (𝑟 ≤ 1)
1
12 𝑟

5 − 1
2 𝑟

4 + 5
8 𝑟

3 + 5
3 𝑟

2 − 5𝑟 + 4 − 2
3 𝑟

−1 (1 < 𝑟 ≤ 2) . (15)
⎩
0 (𝑟 > 2)
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This fifth-order function is set to 0 when 𝑟 = 2. The sphere range 
represented by 𝐿(2) = 0 corresponds to the local region based on the 
physical distance of the LETKF.

By introducing this localization, assimilation can be performed ac-
curately even with a limited number of ensemble members 𝑚.

6. Results and discussion of the twin experiment

In this section, TPIV is assumed as the pseudo-measurement data.

6.1. Parameter tuning

The above-mentioned assimilation method includes three parame-
ters: the number of ensemble members 𝑚, the localization radius 𝑅, 
and the inflation parameter 𝛿. Among them, the number of ensemble 
members 𝑚 is the parameter related to the assimilation accuracy and 
computational cost, where the higher its value, the lower the sampling 
error. The other two parameters depend on 𝑚. As the main objective of 
this study is to verify the effectiveness of DA, the number of members 
is set to 10 to prioritize computational efficiency. Below, we determine 
the other parameters based on 𝑚 = 10. Furthermore, we consider the 
number of ensemble members needed to achieve highly accurate DA.

6.1.1. Covariance inflation
Covariance inflation is a technique of intentionally increasing the 

forecast error covariance matrix 𝐏𝑓  by multiplying it by (1 + 𝛿), a 
number larger than 1. This technique is introduced to prevent 𝐏𝑓  from 
becoming excessively small through repeated assimilation, making it 
difficult to reflect the observed information. In the LETKF, covariance 
inflation is introduced as in Eq. (13). In general, the inflation parameter 
𝛿 is set to minimize the root mean square error (RMSE), a measure of 
the magnitude of forecast error. In recent years, adaptive covariance 
inflation has been proposed and improved to reduce the cost and 
improve the assimilation accuracy in the tuning process. In this study, 
we estimate the inflation parameter 𝛿 dynamically by using adaptive 
inflation based on the Gaussian approach developed by Miyoshi (2011). 
The only parameter in this method is the prior inflation variance 
𝑣𝑏, which has been tuned to an optimal value of 𝑣𝑏 = 0.042 in 
the Simplified Reparameterization, Primitive-Equation Dynamics model 
(SPEEDY), a low-resolution Atmospheric General Circulation Model 
(AGCM) (Miyoshi, 2011). Therefore, by assigning several values of 𝑣𝑏
around this optimum value, we can adjust this value so that the RMSE 
is minimized in this problem setup.

Fig.  8 shows the time series of the ensemble mean RMSE and Spread, 
a measure of the spread of ensemble members, at 𝑣𝑏 = 0.042, 0.082, 
and 0.162. Here, the number of ensemble members and the localization 
radius are set to 𝑚 = 10 and 𝑅 = 0.015𝐶, respectively. The localization 
radius is set to a value simply estimated by the method described in 
Section 6.1.2. As the pseudo-measurements are located in non-uniform 
grids, the RSME and Spread are computed as 

RMSE =

√

√

√

√

√

∑𝑁𝑐
𝑖=1

(

y𝑜𝑖 −𝐻
(

�̂�𝑓
)

𝑖
)2 𝑆cell𝑖

∑𝑁𝑐
𝑖=1 𝑆cell𝑖

(16)

and 

Spread =

√

√

√

√

√

√

∑𝑁𝑐
𝑖=1

(

1
𝑚−1

∑𝑚
𝑘=1

(

𝐻
(

𝐱𝑓 (𝑘)
)

𝑖 −𝐻
(

�̂�𝑓
)

𝑖
)2
)

𝑆cell𝑖
∑𝑁𝑐

𝑖=1 𝑆cell𝑖

, (17)

taking into account the weights due to the non-uniform grids, where 
𝑆cell is the area of the cell where the pseudo-measurement data is 
located. As shown in Fig.  8, the RMSE decreases to approximately 0.02 
for all the prior inflation variances. This is smaller than the set standard 
deviation of the observation error, which is 0.03. This may be due to 
a widely contained uniform flow area with almost no error from the 
pseudo-measurements in the measurement area. The RMSE and Spread 
8 
Fig. 8. Time series of the RMSE and Spread at each prior inflation variance.

should be of similar magnitude, and the RMSE being larger than Spread 
means that the Spread is underestimated, and the observation is not 
fully assimilated. Under this condition, the RMSE does not decrease to 
the same degree as the Spread for any of the prior inflation variances. 
The details are described below in Section 6.1.3.

From Fig.  8, the RMSE at 𝑣𝑏 = 0.042 is larger than the other 
two and thus unsuitable. The RMSEs at 0.082 and 0.162 are roughly 
equal in the end, but the Spread is larger at 0.162, overestimating the 
variance of each ensemble member. Considering that a prior inflation 
variance that is too large can cause the inflation parameter to fluctuate 
noisily (Miyoshi, 2011), a prior inflation variance of approximately 
0.082 is considered optimal in this problem setup.

6.1.2. Localization radius
The localization radius 𝑅 is an important parameter that consid-

erably affects the reproducibility of the vortical structure of the flow 
field. Therefore, it must be tuned to a value that reflects the physical 
information of the flow field. In this study, we tune the localization 
radius by focusing on the characteristic turbulent vortical structure 
simulated by the OK model.

Fig.  9 shows the distribution of 𝑣 (velocity component of
𝑦-direction) simulated by the OK model. In the cavitating flow around 
a hydrofoil simulated by the OK model, the spanwise vorticies are 
generated near the inception point attributed to the baroclinic torque 
term, ∇𝑝 × ∇𝑓𝐿, of the vorticity equation and advect  along the sheet 
cavity surface (Okabayashi et al., 2019, 2023). These spanwise vorticies 
cause rippling on the sheet cavity surface as shown in Fig.  9, and 
the spatial gradient of 𝑓𝐿 generates additional spanwise vortices. The 
rippling interface and the spanwise vortices are maintained through 
this interaction, and this interaction is an essential phenomenon to be 
reproduced.  In contrast, such spanwise vortices and interface ripples 
are not observed in the simulation with the CH model. Therefore, we 
focus on this vortical structure characteristic of the OK model and 
determine the localization radius based on the scale of the spanwise 
vortex. In this study, 𝑅 is determined with reference to the spanwise 
vortex radius 𝑅𝑠 in Fig.  9, as we consider that the local features 
of spanwise vortices can be captured as measurement information if 
the localization radius is smaller than the vortex radius. As the size 
of 𝑅𝑠 almost does not change in time, three cases of assimilation 
computations with 𝑅 = 0.01𝐶, 0.015𝐶, 0.02𝐶 are attempted.

The 𝑣 distributions of 𝑅 = 0.01𝐶, 0.015𝐶, 0.02𝐶 at time 𝑡𝑈∞∕𝐶 = 0.2
are shown in Fig.  10 as a representative instantaneous result. The 
number of ensemble members and prior inflation variance are fixed to 
𝑚 = 10 and 𝑣𝑏 = 0.082, respectively. Fig.  10(b) shows that the repro-
ducibility of the vortex in the region A is low when the localization 
radius is small. This is because the measurement information near the 
boundary of the measurement area cannot be sufficiently incorporated, 
and the unsteadiness of this region is particularly strong.

In contrast, the reproducibility of the spanwise vortices at the cavity 
interface (region B) does not deteriorate even when the localization 
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Fig. 9. Sideview of spanwise vortices represented by instantaneous contour of 𝑣∕𝑈∞
simulated by the OK model. Black line : isoline of 𝑓𝐿 = 𝑓 interface

𝐿 , representing the 
boundary of the measurement area.

Fig. 10. Sideviews (𝑧 = 0.2𝐶) of instantaneous velocity contours simulated by the CH 
model + DA (ensemble mean) for different localization radii. Black lines : isoline of 
𝑓𝐿 = 𝑓 interface

𝐿  of OK model.

radius is small. As emphasized above, the essential phenomenon to 
be reproduced in region B is the interaction between the rippling 
interface and the spanwise vortices. In the present DA, this interac-
tion is reproduced owing to three factors: the ripping interface given 
indirectly by the pseudo-interface, baroclinic torque term, ∇𝑝 × ∇𝑓𝐿, 
and pseudo-velocity field corresponding to the spanwise vortices. The 
pseudo-interface is considered to be the most dominant among these, 
because without the pseudo-measurement information of the interface 
(𝑓𝐿 = 𝑓 interface

𝐿 ), the rippling interface is not reproduced well (discussed 
in Section 6.2). Because the pseudo-interface is thin, its effect does not 
depend on the size of the localization radius that incorporates it. Thus, 
the reproducibility of the spanwise vortices in region B in Fig.  10(b) is 
not affected by the localization radius.
9 
Fig. 11. Time series of the RMSE and Spread at each number of ensemble members.

In region C, it is observed that the fine-scale vortical structure 
becomes blurred as the localization radius increases. This is because 
measurement information is excessively captured in the local region at 
the rear of the sheet cavity, where the vortices are finer, and the flow 
field is smeared out.

Thus, the localization radius should be determined so that phenom-
ena of various scales in the flow field are reproduced evenly. In this 
study, the localization radius is set to 𝑅 = 0.015𝐶 based on the above 
observation. However, it is not always possible to apply a constant 
localization radius for cavitating flow around a hydrofoil, where the 
vortex scale is spatially very different. Therefore, it is desirable to 
introduce a dynamic local radius estimation method based on the 
spatial scale of the vortex in the future.

6.1.3. Number of ensemble members
In general, the larger the number of ensemble members 𝑚, the 

easier it is to suppress the sampling error and the more accurate the 
assimilation. However, in large-scale numerical simulations, increasing 
the number of members is a trade-off for computational resources and 
time, and a realistically feasible number of members must be set. In this 
section, we investigate the effect of the number of ensemble members 
on assimilation accuracy under the above tuned parameters.

The RMSE and Spread at 𝑚 = 5, 10, 20, 40 until 𝑡𝑈∞∕𝐶 = 0.2 when 
the assimilation is approximately stable are shown in Fig.  11, where the 
localization radius and prior inflation variance are fixed as 𝑅 = 0.015𝐶
and 𝑣𝑏 = 0.082, respectively. Fig.  11 shows that the RMSE is reduced 
by increasing the number of members, and at 𝑡𝑈∞∕𝐶 = 0.2, the RMSEs 
for 𝑚 = 20, 40 are almost the same. However, even at 𝑚 = 40, the 
RMSE exceeds the Spread, and the assimilation accuracy is insufficient. 
Therefore, other factors besides the number of members are considered 
as responsible for the fundamental lack of assimilation accuracy. One 
candidate is the localization radius. The localization radius is deter-
mined to be 𝑅 = 0.015𝐶 in Section 6.1.2 so that phenomena of the 
various scales in the flow field are reproduced evenly. However, better 
reproducibility of the fine-scale turbulent vortices behind the sheet 
cavity (Fig.  10(b) region C) is observed when the localization radius 
is set to R = 0.01C. Thus, the method in which the localization radius 
is given as a constant is not capable of reproducing multiscale vortices. 
The current lack of assimilation accuracy is likely to be improved by 
introducing a dynamic localization radius estimation method.

6.2. Assimilation result and discussion

Fig.  12 shows a comparison of the overview of the cavity interface 
(isosurface of 𝑓𝐿 = 𝑓 interface

𝐿 ) without and with assimilation, Fig.  12(a) 
and (b), respectively, and the pseudo-measurement data, Fig.  12(c). By 
applying DA to the CH model, the rippling cavity interface based on the 
OK model is qualitatively reproduced. This result suggests that existing 
cavitation models can be used to reconstruct the flow field based on 
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Fig. 12. Overviews of the instantaneous isosurface of 𝑓𝐿 = 𝑓 interface
𝐿  at 𝑡𝑈∞∕𝐶 = 1. The TPIV data is assumed for the pseudo-measurement data.
Fig. 13. Sideviews (𝑧 = 0.2𝐶) of the instantaneous contour of each variable at 𝑡𝑈∞∕𝐶 = 1. (a), (b), (c) CH model only, (d), (e), (f) CH model + DA (̂ : ensemble mean) and (g), 
(h), (i) OK model only (the database for creating the pseudo-measurement data). The TPIV data is assumed for the pseudo-measurement data. Black lines : isoline of 𝑓𝐿 = 𝑓 interface

𝐿
of OK model.
actual phenomena, provided that measurement data of the cavitation 
flow that can serve as reference data exist.

The ensemble mean of the 𝑢, 𝑣, and 𝑓𝐿 distributions at 𝑧 = 0.2𝐶
with 𝑡𝑈∞∕𝐶 = 1 is shown in Fig.  13. The distribution of each variable is 
also qualitatively reproduced based on the pseudo-measurement data; 
namely CFD result by OK model only. In particular, important features 
of cavitating flow, such as the front-line of the re-entrant jet (reverse 
flow) above the hydrofoil surface (Figs.  13(a), (d), (g)), the spanwise 
vortices at the cavity interface (Figs.  13(b), (e), (h)), the rippling of 
the cavity interface, and the presence of cloud cavities (Figs.  13(c), (f), 
(i)), are well reproduced. The interface rippling is replicated despite 
the absence of measurements within the cavity because of the pseudo-
measurement of 𝑓𝐿 = 𝑓 interface

𝐿  at the measurement region boundary and 
the interaction between the spanwise vortices and the interface rippling 
induced by the vortices. The large cloud cavity, which is generated in 
the CH model (Fig.  13(c)), no longer appears owing to assimilation, 
because the pseudo-measurement 𝑓𝐿 = 1 is given for the entire TPIV 
measurement area. Thus, 𝑓 , which is difficult to directly observe, can 
𝐿
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be used as the measurement information. The assimilation computation 
without the pseudo-measurement of the liquid volumetric fraction 𝑓𝐿 is 
also performed in the same way. Without the pseudo-measurement in-
formation of the interface (𝑓𝐿 = 𝑓 interface

𝐿 ), the rippling cavitation shape 
is not reproduced well. Furthermore, without the pseudo-measurement 
information of the liquid phase region (𝑓𝐿 = 1), the reproducibility of 
cloud cavities behind the sheet cavity is significantly impaired. There 
is room for discussion regarding the complementarity of the missing 
data when the measurement data is limited. For example, if the pseudo-
interface 𝑓 interface

𝐿  is set to more larger value, such as 0.9, the spanwise 
vortices will be inside the ‘‘cavity’’ determined by 𝑓 interface

𝐿 , and outside 
the measurement region. Therefore, the spanwise vortices will become 
difficult to reproduce by DA. However, we expect that it will be possible 
to obtain the characteristic velocity field near the cavity interface, even 
if it is only partly, using PIV. Based on this expectation, it is not the 
author’s intention to recognize all the characteristic flows near the 
cavity interface as missing data.
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Fig. 14. Time evolutions of each variable at monitoring point A and B. TPIV data is assumed for the pseudo-measurement data. ‘‘OK model only’’ indicates the database for 
creating the pseudo-measurement data. Gray lines : time evolution for each ensemble member.
Next, we investigate the accuracy of the quantitative reproduction 
of the flow field. Fig.  14 shows the time evolution of 𝑢, 𝑣, and 𝑓𝐿 at 
observation points A and B in Fig.  13(d). Observation points A and B are 
placed at the sheet cavity interface and inside the cavity, respectively, 
to investigate the reproducibility of the characteristic behaviors of the 
cavitation simulated by the OK model (i.e., rippling at the interface 
and low velocity region inside the cavity). For observation point A, 
𝑢 and 𝑣 follow the OK model relatively well. In Fig.  14(a), there is a 
deviation from the OK model at 𝑡𝑈∞∕𝐶 = 0.4 − 0.9, this is because 
the observation point A is outside the pseudo-measurement area at 
𝑡𝑈∞∕𝐶 = 0.4 − 0.9. This can be confirmed from the result that 𝑓𝐿 is 
lower than 0.75(= 𝑓 interface

𝐿 ) with the OK model at 𝑡𝑈∞∕𝐶 = 0.4 − 0.9 in 
Fig.  14(c). For the liquid volumetric fraction 𝑓𝐿, the period and phase of 
the fluctuation agree with those of the OK model, but the assimilated 
values are generally toward the liquid phase side, i.e., 𝑓𝐿 = 1. This 
is because many pseudo-measurements with 𝑓𝐿 = 1 are included in 
the local region at grid points near the interface. However, it is very 
difficult to obtain a dense spatial distribution of 𝑓𝐿 near the interface 
in actual measurements. Therefore, it is important that the period and 
the phase of fluctuation and the spatial distribution of 𝑓𝐿 can be only 
qualitatively represented using only existing measurement methods.

For observation point B, the region inside the sheet cavity where the 
pseudo-measurement data are not given is not assimilated sequentially, 
and each ensemble member evolves independently (Figs.  14(d), (e), 
(f)). This result indicates that there is almost no discontinuity. Discon-
tinuities are observed in Figs.  14(a), (b), (c), in the time evolution of 
each ensemble member: the discontinuity occurs when the correction 
of the flow field by assimilation is performed. At observation point 
B, the correction of the flow field is limited to the region around 
the grid points where pseudo-measurements are obtained, owing to 
the localization effect of the LETKF. However, as the computation 
progresses, the values of each ensemble member at observation point 
B converge, especially for 𝑢 and 𝑣, showing a trend close to that of the 
database for creating the pseudo-measurement data (OK model only). 
This is because the flow around the cavity is assimilated and affects 
the flow inside the cavity located downstream of the assimilated flow. 
This suggests the existence of a complementary effect, as described 
in Kato and Obayashi (2011), where the assimilation of the upstream 
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flow field improves the reproducibility of the downstream flow field. 
For the liquid volume fraction 𝑓𝐿, the values of each ensemble member 
gradually converge as in the case of 𝑢 and 𝑣, but the time evolution 
after convergence is different from the trend for the OK model. This 
is because 𝑓𝐿 inside the cavity, which is not directly assimilated, is 
simulated according to the cavitation model used. As the CH model is 
used as the cavitation model, the behavior of the CH model is strongly 
represented. Thus, the complementary effect described above depends 
on the accuracy of the cavitation model used with the assimilation 
computations.

Fig.  15 shows the time evolution of the lift coefficient. After as-
similation, the region covered by the cavity on the hydrofoil surface 
is comparable to that of the OK model, and the lift coefficient tends 
to be roughly similar with that of the OK model. A spike in the lift 
occurs immediately after assimilation, indicating that the pressure field 
is disturbed. However, as the iteration progresses, the assimilated flow 
field develops and the spike disappears.

Finally, we investigate numerical conservation in the flow field after 
assimilation. We define 

Con. =
𝐷𝑓𝐿
𝐷𝑡

+ 𝑓𝐿

(

M2𝐷�̄�
𝐷𝑡

+
𝜕�̄�𝑖
𝜕𝑥𝑖

)

(18)

using Eq. (2). The pressure equation based on Con. = 0 is computed 
iteratively by CFD. Therefore, the numerical conservation in this as-
similation computation can be evaluated by Con. after the iterative 
computation.

Fig.  16 shows the time series of the spatial mean and maximum 
values of Con. for an ensemble member. The value of Con. after assim-
ilation is within the order of 1 for both the mean and maximum values, 
compared to the flow field before assimilation (red circle in Fig.  16). 
The reason for the increase in Con. is the above-mentioned pressure 
field. Immediately after assimilation, errors in the conservation of the 
velocity field accumulate, and the pressure convergence calculation 
is performed based on that velocity field, which gradually disturbs 
the pressure field. Therefore, to reduce Con. further, it is desirable to 
introduce a method that properly corresponds the measurement data to 
the numerical simulation, for example, by post-processing the velocity 
field immediately after assimilation.
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Fig. 15. Time evolution of the lift coefficient. ‘‘CH model + DA’’ is the result of an 
ensemble member. The TPIV data is assumed for the pseudo-measurement data.

Fig. 16. Time series of the spatial mean and maximum values of Con. for an ensemble 
member. The TPIV data is assumed for the pseudo-measurement data.

7. Influence of spatial dimension of pseudo-measurement data

In Section 6.2, TPIV data is assumed for the pseudo-measurement 
data, but in most situations, the available data is PIV data, which is rel-
atively easier to measure than TPIV data. Therefore, in this section, we 
investigate the assimilation performance of the pseudo-measurement 
data, assuming a two-dimensional velocity field, obtained by PIV under 
the same problem setup. In this case, the irradiated cross section of the 
laser sheet is assumed to be set to 𝑧 = 0.2𝐶: the cross-section at 𝑧 = 0.2𝐶
of Fig.  7 is used as the pseudo-PIV data.

Fig.  17 shows an overview of the cavity interface (isosurface of 𝑓𝐿 =
𝑓 isosurface
𝐿 ) assimilated by the pseudo-PIV data. The assimilated region 
is limited to the width of the local region centered at 𝑧 = 0.2𝐶, which 
is assumed to be the cross-section where the laser sheet is irradiated, 
owing to the localization effect of the LETKF. The ensemble means of 
the 𝑢, 𝑣, and 𝑓𝐿 distributions at 𝑧 = 0.2𝐶 are shown in Fig.  18. The result 
assimilating the pseudo-PIV data reproduce the flow field of the OK 
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Fig. 17. Overview of the instantaneous isosurface of 𝑓𝐿 = 𝑓 interface
𝐿  at 𝑡𝑈∞∕𝐶 = 1 (CH 

model + DA (ensemble mean)). The PIV data is assumed for the pseudo-measurement 
data.

model qualitatively, and do not differ significantly from the ensemble 
mean shown in Figs.  13(d), (e), (f).

Next, we investigate the accuracy of the quantitative reproducibility 
of the flow field. The time evolution of 𝑢, 𝑣, and 𝑓𝐿 at observation 
points A and B (same as in Fig.  13(d)) are shown in Fig.  19. For 
observation point A, as in the case of the pseudo-TPIV measurements, 
the variables generally follow the results of the OK model, and the 
liquid volumetric fraction 𝑓𝐿 also generally shifts toward the liquid-
phase side (𝑓𝐿 = 1), which is the same trend shown in Fig.  14(c). The 
spread of each ensemble member is slightly higher compared to those in 
Figs.  14(a), (b), (c). In contrast, for observation point B, each ensem-
ble member evolves individually depending on the cavitation model, 
i.e., CH model, as shown in Figs.  14(d), (e), (f), and the respective 
values do not converge, which means that the complementary effect 
generated by the assimilation around the cavities located upstream is 
not obtained inside the cavities. Thus, the distribution of each variable 
inside the cavities is significantly different for each ensemble member. 
This is because the effect of the initial flow field, which is independent 
for each ensemble member, persists in the region beyond 𝑧 = 0.2𝐶 to 
be assimilated. The region inside the cavity at 𝑧 = 0.2𝐶 is strongly 
affected by changes in the flow in the mainstream direction, such as 
the development of the sheet cavity and the progression of the re-
entrant jet (Fig.  20). The increased spread of each ensemble member 
at observation point A is presumably due to the same event.

In conclusion, it is found that the flow field in the unmeasured 
region is not assimilated by the 2D-PIV data in three-dimensional nu-
merical simulations, and the influence of the remaining initial flow field 
in each ensemble member has a negative impact on the assimilation 
performance of the measured cross section. The effect is particularly 
large for missing data completion inside cavities, indicating the need 
to align the dimensions of the numerical simulation and measurement 
when completing missing data.

8. Assimilation verification for real measurement data

We have validated DA for cavitating flow around a hydrofoil
through the twin experiment. In this section, we validate the applicabil-
ity of DA to real measurement data. As we do not have measurement 
data for cavitating flow around a hydrofoil yet, we use the publicly 
available 2D-PIV data set (Nonomura et al., 2021) for this validation.

8.1. Overview of CFD

This simulation is a validation for the assimilation calculation for 
the real measurement data of the cavitating flow. Therefore, the gov-
erning equation, numerical model, and numerical method are the same 
as those in Sections 3.1 and 3.2, and the single-phase flow simulation 
is achieved by setting the cavitation number to 100 so that 𝑓𝐿 = 1 at 
all times.
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Fig. 18. Sideviews (𝑧 = 0.2𝐶) of the instantaneous contour of each variable at 𝑡𝑈∞∕𝐶 = 1 (CH model + DA (̂ : ensemble mean)). The PIV data is assumed for the pseudo-measurement 
data. Black lines : isoline of 𝑓𝐿 = 𝑓 interface

𝐿  of OK model.
Fig. 19. Time evolutions of each variable at monitoring points A and B. PIV data is assumed for the pseudo-measurement data. ‘‘OK model only’’ indicates the database for 
creating the pseudo-measurement data. Gray lines : time evolution for each ensemble member.
8.2. Experimental setup and computational condition

The object of the analysis is the single-phase flow around a NACA0
015 airfoil. The chord length, the spanwise length, the angle of attack, 
the mainstream velocity, and the Reynolds number are set to 100.0 mm, 
300.0 mm, 18◦, 10 m∕s and 6.4 × 104, respectively. The sampling fre-
quency is 5000 Hz, which is the same as the problem setup for the 
twin experiment in Section 4. These setups are the same as those 
of the experiments conducted by Nonomura et al. (2021). Based on 
the experimental conditions, the numerical conditions are determined. 
As there is no description of the fluid, the fluid is assumed to be 
air at a temperature of 20◦C, and each physical property is also set 
accordingly. Therefore, the Mach number is set to 2.91 × 10−2. The 
computational domain and boundary conditions are summarized in Fig. 
21. The number of grid points in each direction is 𝑁𝜉 × 𝑁𝜂 × 𝑁𝜁 =
512 × 200 × 100. The spanwise length of the computational domain is 
the same as in Fig.  4, and the irradiated section of the laser sheet is set 
to 𝑧 = 0.2𝐶.

8.3. Overview of data assimilation

We validate this data assimilation program for the real measure-
ment data using the assimilation method described in Section 5. The 
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difference between the assimilation method and the twin experiment 
is that the measurement data are not arranged in grid coordinates 
(Fig.  22). Therefore, the calculation of the nonlinear operator 𝐻 when 
using real measurement data corresponds to interpolating variables 
placed on the grid coordinates to the measurement coordinates. In this 
study, the inverse distance weighting method is used to perform this 
interpolation calculation. The observation error covariance matrix is 
set to 𝐑 = 9 × 10−4𝐈 as in the twin experiment.

The number of members and the prior inflation variance are set to 
𝑚 = 10 and 𝑣𝑏 = 0.082, respectively. The localization radius is deter-
mined based on the spatial scale of the vortex and the reproducibility of 
the flow field, as is the case for the localization radius in cavitating flow 
around a hydrofoil. Under this experimental condition, 𝑅 = 0.02𝐶 is set 
based on the fact that the minimum radius of the observed separated 
vortex is approximately 0.025𝐶 (figure omitted). However, no detailed 
tuning of these values is conducted as described in Section 6.1.

8.4. Assimilation result

The assimilation computations are conducted until 𝑡𝑈∞∕𝐶 = 0.2, 
where the assimilation is stable in the twin experiment, and the repro-
ducibility of the qualitative flow field is evaluated. Because of the short 
computation time, no observation points are set in this validation.
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Fig. 20. Overview of the instantaneous isosurface of 𝑓𝐿 = 𝑓 interface
𝐿  and contour of 𝑓𝐿. 

PIV data is assumed for the pseudo-measurement data. ‘‘OK model only’’ indicates the 
database for creating the pseudo-measurement data. The region inside the cavity at 
𝑧 = 0.2𝐶 is strongly affected by the progression of the re-entrant jet in the region away 
from the 𝑧 = 0.2𝐶.

Fig. 21. Computational domain and boundary conditions (NACA0015 at AoA = 18◦).

Fig. 22. Computational grid near the airfoil and measurement region at 𝑧 = 0.2𝐶.
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Fig.  23 shows the ensemble mean of the 𝑢 and 𝑣 distribution at 
𝑡𝑈∞∕𝐶 = 0.2. Through assimilation, the area of the reverse flow 
region, which is overestimated by CFD, reduces (Fig.  23(c)), and the 
reproducibility of the large-scale separation vortex in the flow behind 
the airfoil is greatly improved (Fig.  23(d)). The PIV data contains 
noise in the entire flow field, but the time evolution of the flow field 
associated with the assimilation computation reduces the noise and 
reproduces a natural flow field. Furthermore, even in areas where 
reliable measurement data could not be obtained, such as the vicinity 
of the airfoil surface and behind the measurement area, CFD can be 
used to generate additional data. Thus, the complementarity between 
measurement data and numerical simulation, which is expected when 
DA methods are employed, is confirmed in this assimilation program.

In conclusion, we have established a framework that is capable 
of conducting assimilation calculations when PIV or TPIV data in a 
cavitating flow field are available.

9. Conclusion

A twin experiment of data assimilation (DA) using the local ensem-
ble transform Kalman filter (LETKF) is conducted for cavitating flow 
around a Clark-Y 11.7% hydrofoil. As pseudo-measurement data which 
can be obtained by existing measurement techniques, particle image 
velocimetry (PIV) and tomographic PIV (TPIV), which are intensively 
missing data inside the cavity, are assumed. The pseudo-measurement 
velocity field and the liquid volumetric fraction are obtained from the 
simulation by the source-term homogeneous fluid model developed 
by Okita and Kajishima (2002) (OK model).

As parameters related to LETKF, the best results are obtained for a 
localization radius of 𝑅 = 0.015 and a prior inflation variance of 𝑣𝑏 =
0.082 for ensemble members of 10. However, the localization radius 
should be given dynamically rather than as a constant to improve the 
quantitative assimilation accuracy, as the vortex scale varies widely and 
spatially in cavitating flow around a hydrofoil.

With the optimized parameters above, the flow field based on 
the reference data is qualitatively and quantitatively reproduced by 
assimilating the measurement data assuming TPIV. The missing data 
inside the cavity are complemented by computational fluid dynamics 
(CFD) and gradually converge to the pseudo-measurement data. This 
is because the flow around the cavity is assimilated and influences the 
flow inside the downstream cavity. However, the degree to which the 
missing data are complemented depends on the accuracy of the nu-
merical simulation and model used with the assimilation. In addition, 
when assimilating the measurement data assuming 2D-PIV, the flow 
field around the cavity is assimilated in the laser sheet cross-section, 
but no assimilation effect is obtained inside the cavity. This is due to 
the inconsistency between the dimensions of the numerical simulation 
and the measurement data, and these dimensions need to be aligned if 
missing data is to be complemented.

The DA program is applied using real measurement data (2D-PIV) of 
single-phase flow around a NACA0015 airfoil. The flow field based on 
the real measurement data is qualitatively reproduced. Furthermore, 
the assimilated flow field reduces the noise in the real measurement 
data and fills in data gaps in the measurement data. Therefore, this DA 
program demonstrates the complementarity between the measurement 
data and the numerical simulation.

Through this study, we show that DA for cavitating flow is effective 
using data that can be obtained with existing measurement techniques. 
Furthermore, we construct a framework for conducting assimilation 
simulations as soon as PIV or TPIV data are available for the cavitating 
flow field. In the future, it will be necessary to further investigate meth-
ods for estimating the localization radius dynamically and improving 
the pressure oscillation immediately after assimilation. This is crucial 
for achieving precise reproduction of the flow field by using the actual 
measurement data of cavitating flows as training data for machine 
learning models.
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Fig. 23. Sideviews (𝑧 = 0.2𝐶) of the instantaneous contour of each variable at 𝑡𝑈∞𝐶 = 0.2. (a), (b) CFD, (c), (d) CFD + DA ( ̂ : ensemble mean) and (e), (f) PIV data.
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