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ARTICLE INFO ABSTRACT

Keywords: Twin experiments are conducted to clarify whether assimilation effects can be achieved by data assimilation
Cavitation (DA) with measurement data obtained by existing cavitation flow measurement techniques. The analysis object
Hydrofoil is the cavitation flow around a Clark-Y11.7% hydrofoil. The pseudo-measurement data are velocity fields from

Twin experiment
Local ensemble transform Kalman filter
Data assimilation

tomographic particle image velocimetry (TPIV) or two-dimensional PIV, both containing missing data in cavity,
along with indirectly obtained cavity interface shapes. A large-eddy simulation is used for unsteady simulation
of cavitating turbulent flow, and a local ensemble transform Kalman filter is used as the DA method. Visualized
flow fields of the ensemble mean show that characteristic phenomena of the pseudo-measurement data are
qualitatively reproduced. In addition, the time-series data at an observation point located at the position
where the pseudo-measurement data exists converged following the pseudo-measurement data. The velocity
inside the cavity, where no pseudo-measurement data exists, is also complemented by CFD that incorporates
information from outside of the cavity. However, the complementation performance depends on the accuracy
of the cavitation model. This DA program is applied to the real PIV data of single-phase flow and qualitatively
reproduces the flow field. Furthermore, the observation noise is reduced and the data outside the measurement
domain are complemented.

1. Introduction bubble diameter, which are calculated from a simplified Rayleigh—
Plesset (R-P) equation, and the fixed bubble number density (Kubota

Since the 1990s, methods for analysis of cavitation flow as a gas— et al.,, 1992; Ito et al., 2005); and simple models that include source
liquid two-phase flow based on Navier-Stokes equation have been ac- terms based on the difference between pressure and saturated vapor
tively developed. Currently, these methods account for the mainstream pressure to the transport equations for density or void fraction (Chen
of practical cavitation flow analysis methods for fluid machinery. These and Heister, 1995; Okita and Kajishima, 2002). Homogeneous fluid
cavitation models are broadly classified into homogeneous model and models are implemented in commercial software and widely used in

two-fluid model.

In the homogeneous fluid model, cavitation phenomena are ex-
pressed by the density change of the homogeneous mixture fluid com-
posed of liquid and vapor phases. The mixture density p,, is defined by

industry owing to its simplicity and low computational cost. However,
in two-fluid models, the basic equations for both vapor and liquid
phases are solved. The two-fluid model is classified into two types,
the Eulerian type and the Lagrangian type, depending on the method
pm=apy + (1 —a)p; ¢h) used to predict the spatial distribution of bubbles. The bubble dynamics
process in both types is based on the R-P equation. Tamura et al. (2001)
and Tamura and Matsumoto (2009) proposed a Eulerian-type two-
fluid model, in which the transport equation for the number density of
bubbles is solved. They computed vapor and liquid velocities u;, and u;,
respectively, and considered the slip velocity, v}, —u;, in R-P equation.
The Lagrangian-type two-fluid model tracks bubbles based on Newton’s
equations of motion in the Lagrangian framework, while the liquid
phase is solved in the Eulerian framework. In the early stages, a method

where a denotes vapor volume fraction and p; and p,, denote the den-
sity of liquid and vapor, respectively. Furthermore, depending on the
method used to model the change in p,,, the homogeneous fluid models
are classified into the following categories: equation of state models
in which p,, is expressed as a function of pressure only (Delannoy
and Kueny, 1990; Coutier-Delgosha et al., 2003); transport equation
models that include source terms representing the evaporation rate and
condensation rate (Merkle et al., 1998; Kunz et al., 2000; Singhal et al.,
2002; Schnerr and Sauer, 2001; Zwart et al., 2004); bubble dynamics using one-way coupling, which assumes that the motion of discrete
models that compute the vapor volume fraction from the representative bubbles does not affect the Eulerian liquid phase, was proposed (Hsiao
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et al., 2003; Hsiao and Chahine, 2005). However, it was difficult to
convert between structures of different scales, such as the coalescence
and breakup of bubbles. Vallier (2013) realized two-way coupling by
combining a method that treats macroscopic structures using a Eulerian
frame and discrete bubbles using a Lagrangian frame, and a method
that transitions between structural scales along with coalescence and
breakup. Subsequently, the model has been improved from various
perspectives (Wang et al., 2021, 2023). Although the computational
cost of the two-way coupling is high, the inception and collapse of
subgrid bubbles can be considered. Therefore, it has an advantage in
analyzing cavitation erosion and acoustics.

Therefore, cavitation models have been developed from various
perspectives. However, as cavitation is a phenomenon with a variety
of morphologies and multi-scale spatio-temporal characteristics, no
model has yet been developed that can represent the various cavitation
phenomena and related phenomena in a unified manner. Even for the
most basic flow, such as those around a hydrofoil, current models have
been unable to quantitatively reproduce cavitation phenomena. It has
been pointed out that this is due to the inability of a single model
to deal with locally different cavitation behaviors and their related
physics (Kato, 2011).

As a breakthrough in the development of cavitation models, our
research group has been working on the development of a “data-driven
cavitation model” (Noda and Okabayashi, 2023) that can represent
cavitation phenomenon accurately and generally by using a machine
learning model trained on measurement data, rather than a conven-
tional mathematical model. This model is inspired by the fact that the
measured flow field data, which are obtained by the recent optical mea-
surement techniques, can be regarded as pixels in image data (Fenjan
et al., 2016; Ling et al., 2016). The flow field data are input as training
data for neural network (NN) of image recognition, and a certain
relation between input and output is obtained as a form of NN. The
NN, i.e., data-driven cavitation model, is coupled with the governing
equation as an alternative to the conventional mathematical cavitation
model. Noda and Okabayashi (2023) established a framework of data-
driven model with CFD data as the training dataset, but if measurement
data could be used for training, the data-driven model would be even
more reflective of real physical phenomena.

The measurement data used to train the NN are assumed to be
the velocity field data of cavitating flow obtained by particle im-
age velocimetry (PIV), high-speed camera images, and wall-mounted
pressure sensor data etc. However, raw PIV data are not suitable as
training data because it lacks information inside the bubbles and near
the boundary layer. Moreover, it contains noise and measurement
errors, and generates numerical conservation problems when combined
with computational fluid dynamics (CFD). Furthermore, there is cur-
rently no method for measuring the spatio-temporal distribution of
bubbles, which is an important physical quantity in cavitating flow, at
high resolution. Pervunin et al. (2021) proposed a related method for
measuring the time-averaged bubble population distribution from the
spatio-temporal particle abundance of PIV. Nevertheless, this method
does not provide the time-series data of well-defined gas-liquid in-
terfaces and the bubble population distribution. As mentioned above,
experimental measurement of cavitating flow is challenging; however,
in the future, it would be ideal to be able to construct machine learning
models based on readily available measurement data.

Thus, in the analysis of cavitating flow, where both numerical
simulations and experimental measurements are not yet matured, the
data assimilation (DA) approach is expected to be effective. DA is a
method for statistically modifying uncertainties in numerical simula-
tions with measurement data and has been widely used in the field of
numerical weather prediction (Dee et al., 2011; Honda et al., 2018).
The advantage of this method is that it can both improve the results of
numerical simulations with measurement data and supplement unmea-
sured data with CFD. The introduction of DA to cavitating flow analysis
may lead to a more detailed understanding of the phenomenon and
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improve the accuracy of cavitation models. Furthermore, if this method
can reproduce the cavitating flow field with the missing data comple-
mented, it could be used to create a training dataset for the construction
of the machine learning model described above. For example, Bra-
jard et al. (2021) used a dataset created by DA as the training data
for constructing a data-driven climate model using machine learning.
The two-scale Lorenz model and the Modular Arbitrary-Order Ocean—
Atmosphere Model (MAOOAM), a type of coupled atmosphere—ocean
model that is utilized to predict changes in temperature and other
parameters due to air and water flow, were used for validation. DA
was used to supplement missing data in a realistic scenario with noisy
and spatially sparse observations. They constructed machine learning
models using the training datasets created in this way and reported that
the constructed models showed high predictive performance for both
validation cases. The machine learning models in the example above
adopt a concept that is similar to that of data-driven cavitation models
and demonstrate the suitability of DA for creating training data sets.

Recently, the four-dimensional variational method (Rabier et al.,
2000) based on optimal control theory and the ensemble Kalman
filter (EnKF) (Evensen, 1994), a sequential method based on Bayesian
estimation theory, have been identified as representative DA meth-
ods. These methods are expected to be utilized in the field of fluid
engineering because of their high affinity with CFD. The applications
of DA in fluid engineering include estimation of initial and boundary
conditions (Mons et al., 2016; Sousa and Gorlé, 2019), parameter
optimization (Kato et al., 2015; Deng et al., 2018), improvement of
measurement systems (Misaka and Obayashi, 2014), and creation of
data sets that integrate measurement data with numerical simulations.
We focus on the creation of datasets, but there are currently no studies
that focus on the creation of datasets using this method in fluid engi-
neering field. However, with the recent trend toward complementary
approaches between experimental fluid dynamics (EFD) and CFD, rep-
resented by the Virtual Diagnostics Interface System (ViDI) (Schwartz
and Fleming, 2007) at the NASA Langley Research Center and the Dig-
ital/Analog-Hybrid Wind Tunnel (DAHWIN) (Watanabe et al., 2014) at
the Japan Aerospace Exploration Agency (JAXA), the need for analyt-
ical data sets is expected to increase in the future as DA techniques
become more sophisticated.

In this study, we perform a basic validation of assimilation algo-
rithm performance to establish a dataset of cavitating flow. Several
examples of such basic validations exist in the field of fluid engineering,
although their main objective is not to only create datasets. Labahn
et al. (2020) used the EnKF to validate the performance of an assim-
ilation algorithm for turbulence state estimation. They assimilated a
three-dimensional velocity field obtained from tomographic PIV (TPIV)
into a turbulent jet with a Reynolds number of 13500 and verified the
reproducibility of the statistical behavior of the turbulent field. They
systematically determined the effects of parameters and measurement
conditions on the assimilation performance by changing the EnKF
parameters such as the number of ensemble members and localization
radius, as well as parameters related to measurement conditions, such
as measurement data uncertainty, assimilation frequency, and data
sparsity. They also confirmed that the EnKF is highly robust to mea-
surement data. As a basis for the integration of wind tunnel experiments
and CFD using DA, Kato and Obayashi (2011) verified the effectiveness
of DA for the correction of the uncertainties in numerical simulations
of flows around a square cylinder: They assimilated measured surface
pressure data at only three points on the cylinder using the EnKF.
Although the direct correction of the flow field by assimilation is only
performed near the square cylinder, it also improves the reproducibility
of the wake of the cylinder. These examples suggest that DA using the
EnKF is effective even for cavitation flows, which are highly unsteady,
turbulent, and are expected to have a large spatial data deficit. How-
ever, there are few examples of actual applications of DA to such flow
fields, and it is not clear whether sufficient assimilation can be achieved
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Table 1
Problem settings.
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Section Problem setting Reference data of DA Assimilation simulation

6 Twin experiment to assimilate 3D pseudo-measurement data Cavitating flow simulation
pseudo-measurement data created from the database with the CH model.
assuming TPIV data of cavitating computed with the OK model.
flow.

7 Twin experiment to assimilate 2D pseudo-measurement data Cavitating flow simulation
pseudo-measurement data created from the database with the CH model.
assuming PIV data of cavitating computed with the OK model.
flow.

8 Data assimilation of single-phase 2D-PIV data (Nonomura et al., Single-phase flow
airflow. 2021). simulation.

Simulation

With CH model
CFD Pseudo-measurement data ——— | Data assimilation (DA) simulation
(LES) The physical quantities corresponding

to the observation (Sec. 4).

Extract from the “true scenario” database

Simulation of “true scenario” ————{ Comparison DA with “true scenario’

With OK model

>

Validation of DA

Fig. 1. Schematic diagram of the twin experiment.

using data from cavitating flow fields that can be obtained with existing
measurement techniques.

Therefore, in this study, we verify the effectiveness of DA by using
cavitating flow data that can be obtained with existing measurement
techniques. As one of the most basic examples, cavitating flow around a
hydrofoil is employed. Here, we introduce and validate DA through the
twin experiment. We demonstrate that the flow field based on pseudo-
measurement data can be reproduced using existing cavitation models
by introducing DA. We also explore how the spatial dimension of the
measurement data influence on the assimilation performance. Further-
more, as we aim to establish a framework for performing assimilation
calculations as soon as real measurement data of the cavitating flow
field can be obtained, verification using available real measurement
data of single-phase flow around an airfoil is conducted.

2. Problem setting

This study aims to reproduce a flow field in which real physical
phenomena are incorporated by assimilating measurement data into
a numerical simulation of cavitating flow using existing cavitation
models. In a problem setting similar to this situation, a twin experiment
is conducted. The term “twin experiment” is often used in the field
of DA. The schematic diagram of twin experiment is shown in Fig.
1. It is referred to as a “twin” because it computes both the “true
scenario” and the predicted value from a single simulation model. The
pseudo-measurement data is extracted from the true scenario simula-
tion database. The greatest advantage of the twin experiment is that the
true scenario, which is difficult to determine (because measurements
can only obtain partial or sparse physical quantities of the flow field),
is obtained through the computation, thus, it is possible to determine
whether the flow field estimated by DA is correct by comparing the
results of DA with the true scenario. Therefore, the twin experiment is
a validation of DA.

In this study, three different problems are set as listed in Table
1. In Section 6, 3D-TPIV data of a cavitating flow are assumed as
the pseudo-measurement data for the twin experiment. In Section 7,
conversely, 2D-PIV data of a cavitating flow are assumed as the pseudo-
measurement data to investigate the influence of the spatial dimension

of pseudo-measurement data. These pseudo-measurement data are cre-
ated from the numerical results of cavitating flow simulation using
the source-term homogeneous fluid model developed by Okita and
Kajishima (2002) (OK model) as the cavitation model. OK model simu-
lation is regarded as the true scenario in this twin experiment. Another
source-term homogeneous fluid model developed by Chen and Heister
(1995) (CH model), which is simpler than the OK model, is used in the
assimilation simulation of both sections. If the CH model, a relatively
simple cavitation model, can be used to reproduce the flow field of
the OK model, which can represent more complex phenomena, we can
demonstrate that DA can be effectively performed for measurement
data using an existing cavitation model. Finally, in Section 8, we
conduct an assimilation validation on real measurement data of a
single-phase airflow. Note that this is not a twin experiment: in this
problem, a true scenario does not exist and the pseudo-measurement
data is not extracted, either.

3. Overview of CFD

In this section, the overview of the simulation that outputs the
database for creating pseudo-measurement data of the cavitating flow
and the data assimilation simulation are given. The two different
cavitation models, the OK model and CH model, are used for those sim-
ulations, respectively; however, the governing equations, turbulence
model, numerical methods, and computational conditions are common.

3.1. Governing equations and models

The governing equations of the filtered flow field (i;, p) for a
large-eddy simulation (LES) are employed. Hereafter, all variables are
non-dimensionalized by the chord length C, the mainstream velocity
U,,, and the liquid density at a sufficiently far position p; ... The density
of the homogeneous fluid p is approximated as p ~ p;f; by the
local liquid density p; and the liquid volumetric fraction f;. Here, the
control volume used to define f; is the volume of computational cells,
and thus f; = f;.



S. Okamura and K. Okabayashi

Fig. 2. Illustration of the state variables on each computational grid point.

3.1.1. Governing equations

In cavitating flow, strong pressure fluctuations are generated by
the expansion and contraction of cavitation. Therefore, a low-Mach
number formulation (Inagaki et al., 2000) is used to account for the
compressibility of the liquid phase. The conservation laws for the mass
of the liquid phase using the low-Mach number formulation is
%+fL (M2%+Z—Z>=o. )

The Mach number M = U,/c (c: sound speed of a pure lig-
uid) in Eq. (2) is a constant that is uniformly given over the entire
computational domain. The filtered Navier-Stokes equation is

0i; 0i; 1 9 2
i g __ 1L 0 (5 20, )
o TNox T ax,.( 3/ iksas
+ 2 [2(\/ +L)S ] 3)
axj SGS Re ijl-

In Eq. (3), §;; represents the rate-of-strain tensor. The subgrid-scale
(SGS) turbulent kinetic energy kggg and SGS kinetic eddy viscosity
coefficient vggg are described in Section 3.1.3. The Reynolds number
is defined as Re = U C/v. From Egs. (2) and (3), the state vector of
the DA system is defined as
x=[a o w U V W p f; kscs]T 4

Eq. (4) is composed of state variables that progress in time at each
grid point (Fig. 2). Here, i1, 0, and w are the physical components of
the velocity in the x, y and z directions, respectively, and U, ¥V, and W
are the contravariant velocities which appear in Egs. (2) and (3). They
are computed on a collocated grid and defined in cell face generally;
however, they are treated as physical quantities similar to other state
variables by interpolating to the center of the grid in this computation.

3.1.2. Cavitation model

To reproduce unsteady cavitation phenomena, changes in liquid vol-
umetric fraction f; are represented by the source-term homogeneous
fluid model. In this study, the OK model (Okita and Kajishima, 2002),
Pl e, (1= 1)+ Gt (0= 0.). ®)
is used for generating the pseudo-measurement data as described in
Section 4, and the CH model (Chen and Heister, 1995),
D
2L~ conp-n.). ®
is used for the time evolution of f; in the assimilation computation.
The OK model is a numerical model based on the linearized Rayleigh—
Plesset equation, which is an improved version of the CH model,
and can reproduce complex phenomena such as three-dimensionality
at the sheet cavity interface (Fig. 3(a)). In contrast, the CH model
hardly reproduces such cavitation shapes (Fig. 3(b)). Other differences
between the flow fields of the OK model and CH model are described
in Sections 3.3 and 6.2. The saturated vapor pressure p,, is given by the
cavitation number
o= lpoo — Dy (7)

3PLoo U 020

where ~ denotes a dimensional quantity and j., represents the pressure
at a sufficiently far distance. The constants C, and C,; of Eq. (5) are
optimized for cavitating flow around a square cylinder, with C, = 1000
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(a) OK model

(b) CH model

Fig. 3. Example of a computed instantaneous cavity interface (isosurfaces of f, = 0.75).
(Clark-Y 11.7%, AoA =2°, ¢ =0.5).

and C; = 1 for p < p,, and C, = 100 and C; = 1 for p > p,. To
attenuate the shock at cavity collapse, C, is set to be smaller when
p > p,. The constant Cy of Eq. (6) is defined as Cy; = C,CU,, in Chen
and Heister (1995), which is effectively proportional to the Reynolds
number. It is reported that the larger Cy is, the more the pressure
on the object surface converges to a certain value, and C, is set to
5000, the value of C, in case Re = 1.36 x 103 in the headform solution.
Therefore, the optimal value is estimated as approximately 25000 as
the Reynolds number in this study is 6.41 x 103 (described below in
Section 3.3). However, in this study, C¢y is set to 100 as a reference for
C,, considering the stability of the computation at the cavity collapse
described above. The insufficient quantitative reproducibility of the CH
model is not a problem when examining the assimilation effect; rather,
it is convenient for examining the effect of model uncertainty.

3.1.3. Subgrid-scale model

The one-equation dynamic SGS model (Kajishima and Nomachi,
2003) is employed. The kinetic eddy viscosity vggg in Eq. (3) is obtained
by

vsgs = C, 4, Vksgs €))

from the view point of dimensional analysis. The turbulence kinetic
energy kggs is obtained from the transport equation (Okamoto and
Shima, 1999)

3
3
Oksas | - 9KsGs _ a5 _ ksas
ot Jox; T WTWo T
2 9vksgs 9vksas
Re ox; 0x;
9 ( 1\ Jksgs
+ 2 |(c,a,Vksgs + —) Zses | 9
ox; [ adVhsos + g2 ) o, ©)

which models the production, dissipation, and diffusion terms on the
right-hand side. Here, T =T %5,- 7k denotes the anisotropic part of
the SGS stress, and 4 denotes the length of the grid filter. The length
scale of the turbulent diffusion term 4, is defined as the characteristic

length with the modification to represent the behavior near the solid
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wall:
A

4= ———
L+ C A% S| [kggs

(10)

where |S| = 1/28,,,S,, is the magnitude of the rate-of-strain tensor
S,

One characteristic feature of the one-equation dynamic SGS model
is that the dynamic procedure proposed by Germano et al. (1991)
and Lilly (1992) is used for the production term —ri"j S, s the first term
of the right-hand side of Eq. (9), to deal with the complexity of the flow
field and the boundary condition at the solid wall: The production term

is calculated by
—12S,; =2C, 2|5’ an

rather than by using the eddy viscosity model given in Eq. (8), and
C, is given by the dynamic Smagorinsky model. The model constants
C, = 0.005, C, = 0.835, C; = 0.10 and C, = 0.08 are the same as those
of the LES performed by Okabayashi et al. (2023).

3.2. Numerical method

The numerical simulation of unsteady flow is based on the frac-
tional step method with the collocated arrangement of the variables.
The convection term in Eq. (3) is discretized by the Quadratic Up-
stream Interpolation for Convective Kinematics (QUICK) scheme, and
the other terms in Eq. (3) are discretized by the central finite dif-
ference of second-order accuracy. For the time-marching method, the
Adams-Bashforth method of second-order accuracy is used for both
the convective and viscous terms. In the pressure equation, the three-
step method is used to determine the time-derivative of the pressure,
and the central difference method of second-order accuracy is used
for the spatial derivatives of the other terms. The successive over-
relaxation (SOR) method is used to perform the iterative computation.
Furthermore, the Adams-Bashforth method of second-order accuracy
is used for the time marching of the transport equation for turbulence
kinetic energy kggg, the donor cell method is used for the spatial
difference of the convection term for stability, and the other terms are
discretized by the central difference method of second-order accuracy.
The details of the time marching of the liquid volumetric fraction in the
OK model are provided in Okita and Kajishima (2002), and the same
time-marching method is used for the CH model.

3.3. Computational condition

The object of the analysis is the flow around a Clark-Y11.7% hydro-
foil at an angle of attack of 2°, where reliable experimental data (Nu-
machi et al., 1949; Watanabe et al., 2013) has been obtained. The
chord length and the mainstream velocity are 70.0 mm and 11.0 m/s
respectively. The sound speed ¢ and kinetic viscosity v are those of
pure water at 13 °C. Accordingly, the Reynolds number and Mach
number are 6.41 x 10° and 7.60 x 103, respectively. The computational
domain and boundary conditions are summarized in Fig. 4. For the
pressure boundary conditions, the non-reflective conditions of Okita
and Kajishima (2002) are used for the inflow boundary, outflow bound-
ary, and upper and lower far regions, considering the pressure waves
caused by the fluctuation in the liquid volume. The number of grid
points in each direction is N X N, X N, = 360 x 100 x 100. The grid
resolution is based on Suzuki et al. (2011): In their LES of cavitation
flow, although the turbulence model is different, the C-type grid and OK
model as in this study were used, and their grid resolution for single-
phase conditions was (A;,A;,A’f) = (200, 25,250) (minimum size for A7
and A;). In addition, the reproducibility of the flow for single-phase
flow was verified. In this study, based on Suzuki et al. (2011), the
grid resolution is set to (A;,A;,Az) = (140, 3,250). The resolution in
the wall-normal direction, #, is considerably finer: the first grid point
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EXP (Watanabe et al., 2013)
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Fig. 5. Static pressure distribution.
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tu,/C

Fig. 6. Time evolution of the lift coefficient.

on the wall is in the viscous sublayer under single-phase conditions;
thus, the grid resolution is within an acceptable range for imposing no-
slip conditions. Nevertheless, our single-phase flow results are almost
identical with Suzuki et al. (2011). Therefore, the grid resolution in this
study is sufficiently fine. As the boundary layer becomes even thicker
under cavitation conditions, this resolution is sufficient for cavitation
conditions.

In this study, we validate the assimilation performance under highly
unsteady cavitation conditions. Therefore, the cavitation number o is
set to 0.5, where the transition cavity oscillations associated with the
re-entrant jet occur (Watanabe et al., 2013) and the reproducibility of
cavitation phenomena differs significantly between the OK model and
CH model. Figs. 5 and 6 show the static pressure distribution and the
time evolution of lift coefficient at ¢ = 0.5, respectively.

In Fig. 5, the region where —C,, = ¢ corresponds to the region where
the hydrofoil surface is always covered by the cavity, and the pressure
is kept at saturated vapor pressure. Thus, the position where the re-
entrant jet reaches the most upstream can be estimated from x/C where
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—C, < 0. By comparison, this position is x/C ~ 0.8 in the experiment,
whereas it is x/C =~ 0.5 in the CH model, revealing a large difference in
quantitative accuracy. The cavitation behavior is also qualitatively very
different. In the CH model, the excessive progression of the re-entrant
jet results in the large cloud cavity shedding compared to the OK model.
These differences also cause the lift coefficient to fluctuate significantly
in the CH model (Fig. 6): Okamura and Okabayashi (2023) reported
that the Strouhal number of the C; fluctuation computed using the OK
model shows good agreement with the experimental results (Watanabe
et al.,, 2013). In Fig. 6, conversely, the period of the C; fluctuation
of the CH model is clearly different from that of the OK model. We
attempted to utilize these different characteristics of the OK model
and CH model: in Sections 6 and 7, we attempted to reproduce the
phenomenon more accurately by using the results of the OK model as
reference data for the assimilation simulation using the CH model.

4. Pseudo-measurement data setup

For the pseudo-measurement data, we assume the TPIV measure-
ment data of a three-dimensional velocity field around the hydrofoil.
Pseudo-measurement data is extracted from the database of the cav-
itating flow computed using the OK model. In this twin experiment,
for simplicity, the pseudo-measurement positions correspond to grid
points, and pseudo-measurement data are given every two grid points
(at z = 0.008C intervals) in the spanwise direction, i.e., the number
of the pseudo-measurement cross-section is 50. The computational
grid near the hydrofoil and an example of the instantaneous pseudo-
measurement area and its boundary (red and green points) are shown in
Fig. 7. The green points correspond to the “cavity interface” described
below. The data inside the cavity is assumed to be missing because
no particles enter the cavity, and no measurement data of velocity
are given. Therefore, the pseudo-measurement area of each spanwise
cross-section varies according to the distribution of the cavity at each
moment when the pseudo-measurement data are obtained. The pseudo-
cavity interface is set to isosurface of fiLmerface = 0.75 by comparison
of the time-averaged liquid volumetric fraction distribution around
the hydrofoil and the raw PIV data (Pervunin et al., 2021; Ilyushin
et al., 2023). Although it is difficult to measure the liquid volumetric
fraction f;, the cavity interface and the liquid phase region can be
estimated indirectly, given that the region where particles exist in TPIV
is in the liquid phase. Therefore, as the pseudo-measurements of liquid
volumetric fraction, f; = firterfe js given at the boundary of the
pseudo-TPIV measurement area (green points in Fig. 7) and the liquid
phase condition f; = 1 is given for the entire pseudo-measurement
area (red points in Fig. 7). In Section 7, as the pseudo-PIV measurement
data, the cross-section at z = 0.2C of pseudo-TPIV data is used. The data
for physical quantities other than the fiMef« and 3D or 2D velocity
field are not usually available despite TPIV or PIV being conducted
on a cavitating flow. To represent this situation virtually, no other
physical quantities are given as pseudo-measurement data in the twin
experiment. The physical quantities other than the f ?‘e'f“e and velocity
field are modified dependently based on the given pseudo-measurement
data. All of these pseudo-measurements are non-dimensionalized. The
sampling frequency is 5000 Hz, which corresponds to 4000 time steps
at time increments of 5.0 x 1075,

5. Overview of data assimilation
5.1. Local ensemble transform Kalman filter (LETKF)

Numerical simulation and measurement are integrated through the
local ensemble transform Kalman filter (LETKF) (Hunt et al., 2007).
This method is based on the local ensemble Kalman filter (LEKF) (Ott
et al., 2004) that incorporates the localization algorithm (described
in Section 5.2) into the EnKF and an ensemble update method for
the ensemble transform Kalman filter (ETKF) (Bishop et al., 2001),
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H']\

fL —_ fLinterface (= 075)

Fig. 7. Computational grid near the hydrofoil and instantaneous pseudo-TPIV mea-
surement area (red and green points). The cross-section at z = 0.2C is used as the
pseudo-PIV measurement data. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

reducing the large error covariance matrix P to a realistically com-
putationally feasible size and improving the computational efficiency.
As the cavitating flow around a hydrofoil is a highly unsteady and
turbulent phenomenon, the sampling error increase considerably if
the number of ensemble members is not sufficient in the EnKF or
ETKF. Moreover, localizing the error covariance matrix P is impractical
because doing so requires direct computation of the error covariance
matrix, which has a matrix size of approximately O(10'%) under the
present computational conditions. Therefore, the LETKF is suitable for
this simulation. In a conventional LETKF, localization is implemented
using a local patch based on the computational grid. However, in this
study, the grids are densely packed near the wall, so that the localiza-
tion scale becomes smaller near the hydrofoil surface, and measurement
data cannot be sufficiently assimilated. Thus, we use the LETKF without
a local patch (Miyoshi et al., 2007) and implement localization based
on the physical length.

In the LETKEF, the analysis is performed in an m-dimensional space
spanned by m ensemble members in the “local region”. This local region
is defined as a sphere of locarization radius R (described in Section 5.2)
centered at each grid point. The analytical ensemble matrix X¢ is repre-
sented by the sum of its ensemble mean X¢ and the perturbation matrix
E¢, and the ensemble update is obtained by a linear transformation
E° = E/W¢. Here, superscripts a and f denote forecast and analysis,
respectively, and " denotes the ensemble mean. The LETKF analysis
equation is given by

X? =X +E*
_ [Xf +K(ya_ H (Xf) ]+ [E/We|
= [% +EBe () R (v - 1 (X))

v [ vt
=X/ + B/ [13“ (HE/) R (v = 1 (X)) +Vm =1 (f’”)%] - a2

The details of each symbol are shown in Table 2. Here, N, and
N, are the number of variables (i.e., N, = 9 as shown in Eq. (4))
and the number of grid points in a local region, respectively, and
N(= N,N,) is the dimension of the state vector. Furthermore, N, is the
number of observation points in a local region (number of dimensions
of the observation space in a local region). Assuming that observations
are uncorrelated, which is a common assumption, R is diagonal. In
addition, assuming that all measurements have an uncertainty of ap-
proximately 3%, R is set to 9 x 10~*L. The value of HE/ is obtained
by replacing the observation operator H with the nonlinear operator
H resulting in HE/ ~ H (X/) - H <Xf ) Considering the covariance
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Table 2
List of symbols.
Symbol Size Meaning
X N xm Ensemble matrix composed of N-dimensional state vectors x¥ (k=1,...,m)
X Nxm Matrix composed of m ensemble mean of the state vectors
E N Xm Perturbation matrix constructed by subtracting % from each column of X
y° N, Observation vector
H N,x N Observation operator to transform from model space to observation space
H N,x N Nonlinear observation operator
Pe mXxm Analysis error covariance matrix in m-dimensional space
R N,xN, Observation error covariance matrix
K NXN, Kalman gain

Algorithm 1 Non-local patch Local Ensemble Transform Kalman Filter

1: Generate initial ensemble.
2: while r < 7.4 do

3:  Advance each ensemble independently until measurement data is obtained.

4:  Compute Xg and H, (Xﬁ )

5. Compute X£ and H, (Xg ), and subtract these from the components of X{{' and H, (XQ to obtain E{ and HgE{{'.
6: for/=1to N, (= N:N,N¢) do
7: if N, # 0 then
8: Select the rows of H, ()A(g ) and HgEg corresponding to a local region around the /-th grid point, and form the N, -dimensional vector
H (Xf ) and the N, x m matrix HE'.
Likewise, select the corresponding rows of Y and rows and columns of R, to form the N,-dimensional vector y° and the N, x N, matrix
R.
9: Select the rows of Eg and Xg corresponding to the /-th grid point, and form the N, x m matrices E/ and N,-dimensional vector X/
10: Compute the m x N, matrix C = (HEf)T R
_ -1
11: Compute the m x m matrix P* = [%I +C (HE/ )] with the eigenvalue decomposition in Eq. (13).
L1
12: Compute the m x m matrix W* = v/m — 1 (P*)2 with the eigenvalue decomposition in Eq. (13).
13: Compute the m-dimensional vector w* = P*C (y" -H (f(f )) and add it to each column of W* to form the m x m matrix w*.
14: Multiply E/ by w* and add X/ to get the N, x m matrix X¢ at the /-th grid point.
15: else
16: X4 =X/
17: end if

18: end for

19:  Form the N (= N,N,,) x m matrix X{ from X¢ of all grid points.

20: end while

inflation (described in Section 6.1.1), P is computed by the following

eigenvalue decomposition.

pa_(m—1 AR (HE))
P“_(1+51+(HE) R (HE/))

= (upu")™
=UuDp"'uT 13)

The parameters 6, U and D are the inflation parameter, eigenvector
and matrix with eigenvalues as diagonal components, respectively. In
this way, we can obtain the square root of P? by sharing the same
eigenvalue decomposition. From Eq. (12),

P (HE/) R (v = H (X)) + V=1 ()2 14)

is computed only for variables in the observation space and does not
require N-dimensional vectors or matrices. Therefore, as soon as HE/
and H (X/) are obtained, X¢, X/, and E/ are redefined as N, x m
matrices using only the variables at a grid point. The detailed procedure
is shown in Algorithm 1. In Algorithm 1, the subscript g denotes a
vector or matrix composed of variables in the global computational

domain. The variables without subscript g are defined in a local region.

5.2. Localization

Localization is a method through which the influence of observa-
tions distant from a grid point is eliminated, assuming that there is no
error correlation between the distant points. When assimilation is per-
formed with a limited number of ensemble members m, the computed
correlation with distant observations is mostly due to the sampling
error. Therefore, in the LETKF, the influence of distant observations
is eliminated by assimilating only observations within the local region
for each grid point.

Furthermore, in this study, the observation error covariance matrix
R is localized to weight observations near a grid point and to com-
pletely suppress the sampling error when the observation is farther
from the grid point. Multiplying the inverse of the localization function
L(r) by each element of the observation error covariance matrix leads
to an infinite measurement error far away from the grid point, where r
denotes the distance from the grid center normalized by the localization
radius R. The localization function L(r) is a fifth-order function that
approximates the Gaussian function proposed by Gaspari and Cohn
(1999):

l—ir5+%r4+§r3—§r2 (r<l
L=15r -3t +3r + 32 —5r+4- 21 (1<r<2). @15)
0 r>2)
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This fifth-order function is set to 0 when r = 2. The sphere range
represented by L(2) = 0 corresponds to the local region based on the
physical distance of the LETKF.

By introducing this localization, assimilation can be performed ac-
curately even with a limited number of ensemble members m.

6. Results and discussion of the twin experiment
In this section, TPIV is assumed as the pseudo-measurement data.
6.1. Parameter tuning

The above-mentioned assimilation method includes three parame-
ters: the number of ensemble members m, the localization radius R,
and the inflation parameter §. Among them, the number of ensemble
members m is the parameter related to the assimilation accuracy and
computational cost, where the higher its value, the lower the sampling
error. The other two parameters depend on m. As the main objective of
this study is to verify the effectiveness of DA, the number of members
is set to 10 to prioritize computational efficiency. Below, we determine
the other parameters based on m = 10. Furthermore, we consider the
number of ensemble members needed to achieve highly accurate DA.

6.1.1. Covariance inflation

Covariance inflation is a technique of intentionally increasing the
forecast error covariance matrix P/ by multiplying it by (1 + 6), a
number larger than 1. This technique is introduced to prevent P/ from
becoming excessively small through repeated assimilation, making it
difficult to reflect the observed information. In the LETKF, covariance
inflation is introduced as in Eq. (13). In general, the inflation parameter
§ is set to minimize the root mean square error (RMSE), a measure of
the magnitude of forecast error. In recent years, adaptive covariance
inflation has been proposed and improved to reduce the cost and
improve the assimilation accuracy in the tuning process. In this study,
we estimate the inflation parameter § dynamically by using adaptive
inflation based on the Gaussian approach developed by Miyoshi (2011).
The only parameter in this method is the prior inflation variance
v?, which has been tuned to an optimal value of v* = 0.04% in
the Simplified Reparameterization, Primitive-Equation Dynamics model
(SPEEDY), a low-resolution Atmospheric General Circulation Model
(AGCM) (Miyoshi, 2011). Therefore, by assigning several values of v°
around this optimum value, we can adjust this value so that the RMSE
is minimized in this problem setup.

Fig. 8 shows the time series of the ensemble mean RMSE and Spread,
a measure of the spread of ensemble members, at v® = 0.042,0.082,
and 0.162. Here, the number of ensemble members and the localization
radius are set to m = 10 and R = 0.015C, respectively. The localization
radius is set to a value simply estimated by the method described in
Section 6.1.2. As the pseudo-measurements are located in non-uniform
grids, the RSME and Spread are computed as

Ne (yo — H (7)) Soans
RMSE = _| 22! it = (R7),)" Sean (16)
\ Z,-;l Scelli
and
Ly \2
2 (5 i (H (0®), = H (37),)7 ) Seany
Spread = ~ R a7
Z,:ll Scclli

taking into account the weights due to the non-uniform grids, where
Scn is the area of the cell where the pseudo-measurement data is
located. As shown in Fig. 8, the RMSE decreases to approximately 0.02
for all the prior inflation variances. This is smaller than the set standard
deviation of the observation error, which is 0.03. This may be due to
a widely contained uniform flow area with almost no error from the

pseudo-measurements in the measurement area. The RMSE and Spread
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Fig. 8. Time series of the RMSE and Spread at each prior inflation variance.

should be of similar magnitude, and the RMSE being larger than Spread
means that the Spread is underestimated, and the observation is not
fully assimilated. Under this condition, the RMSE does not decrease to
the same degree as the Spread for any of the prior inflation variances.
The details are described below in Section 6.1.3.

From Fig. 8, the RMSE at v = 0.04? is larger than the other
two and thus unsuitable. The RMSEs at 0.08> and 0.16> are roughly
equal in the end, but the Spread is larger at 0.16%, overestimating the
variance of each ensemble member. Considering that a prior inflation
variance that is too large can cause the inflation parameter to fluctuate
noisily (Miyoshi, 2011), a prior inflation variance of approximately
0.082 is considered optimal in this problem setup.

6.1.2. Localization radius

The localization radius R is an important parameter that consid-
erably affects the reproducibility of the vortical structure of the flow
field. Therefore, it must be tuned to a value that reflects the physical
information of the flow field. In this study, we tune the localization
radius by focusing on the characteristic turbulent vortical structure
simulated by the OK model.

Fig. 9 shows the distribution of v (velocity component of
y-direction) simulated by the OK model. In the cavitating flow around
a hydrofoil simulated by the OK model, the spanwise vorticies are
generated near the inception point attributed to the baroclinic torque
term, Vp X Vf;, of the vorticity equation and advect along the sheet
cavity surface (Okabayashi et al., 2019, 2023). These spanwise vorticies
cause rippling on the sheet cavity surface as shown in Fig. 9, and
the spatial gradient of f; generates additional spanwise vortices. The
rippling interface and the spanwise vortices are maintained through
this interaction, and this interaction is an essential phenomenon to be
reproduced. In contrast, such spanwise vortices and interface ripples
are not observed in the simulation with the CH model. Therefore, we
focus on this vortical structure characteristic of the OK model and
determine the localization radius based on the scale of the spanwise
vortex. In this study, R is determined with reference to the spanwise
vortex radius R, in Fig. 9, as we consider that the local features
of spanwise vortices can be captured as measurement information if
the localization radius is smaller than the vortex radius. As the size
of R, almost does not change in time, three cases of assimilation
computations with R =0.01C,0.015C,0.02C are attempted.

The v distributions of R = 0.01C,0.015C,0.02C at time tU_,/C = 0.2
are shown in Fig. 10 as a representative instantaneous result. The
number of ensemble members and prior inflation variance are fixed to
m = 10 and v® = 0.082, respectively. Fig. 10(b) shows that the repro-
ducibility of the vortex in the region A is low when the localization
radius is small. This is because the measurement information near the
boundary of the measurement area cannot be sufficiently incorporated,
and the unsteadiness of this region is particularly strong.

In contrast, the reproducibility of the spanwise vortices at the cavity
interface (region B) does not deteriorate even when the localization
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R,=0.018C

Fig. 9. Sideview of spanwise vortices represented by instantaneous contour of v/U
simulated by the OK model. Black line : isoline of f, = s, representing the
boundary of the measurement area.

0.3
-

(a) Reference (OK model)

(b) R=0.01C

(c) R=0.015C

(d) R=0.02C

Fig. 10. Sideviews (z = 0.2C) of instantaneous velocity contours simulated by the CH
model + DA (ensemble mean) for different localization radii. Black lines : isoline of
[y = fimerface of OK model.

radius is small. As emphasized above, the essential phenomenon to
be reproduced in region B is the interaction between the rippling
interface and the spanwise vortices. In the present DA, this interac-
tion is reproduced owing to three factors: the ripping interface given
indirectly by the pseudo-interface, baroclinic torque term, Vp X Vf,,
and pseudo-velocity field corresponding to the spanwise vortices. The
pseudo-interface is considered to be the most dominant among these,
because without the pseudo-measurement information of the interface
(f. = fiL“‘e'f“e), the rippling interface is not reproduced well (discussed
in Section 6.2). Because the pseudo-interface is thin, its effect does not
depend on the size of the localization radius that incorporates it. Thus,
the reproducibility of the spanwise vortices in region B in Fig. 10(b) is
not affected by the localization radius.
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Fig. 11. Time series of the RMSE and Spread at each number of ensemble members.

In region C, it is observed that the fine-scale vortical structure
becomes blurred as the localization radius increases. This is because
measurement information is excessively captured in the local region at
the rear of the sheet cavity, where the vortices are finer, and the flow
field is smeared out.

Thus, the localization radius should be determined so that phenom-
ena of various scales in the flow field are reproduced evenly. In this
study, the localization radius is set to R = 0.015C based on the above
observation. However, it is not always possible to apply a constant
localization radius for cavitating flow around a hydrofoil, where the
vortex scale is spatially very different. Therefore, it is desirable to
introduce a dynamic local radius estimation method based on the
spatial scale of the vortex in the future.

6.1.3. Number of ensemble members

In general, the larger the number of ensemble members m, the
easier it is to suppress the sampling error and the more accurate the
assimilation. However, in large-scale numerical simulations, increasing
the number of members is a trade-off for computational resources and
time, and a realistically feasible number of members must be set. In this
section, we investigate the effect of the number of ensemble members
on assimilation accuracy under the above tuned parameters.

The RMSE and Spread at m = 5,10,20,40 until tU,/C = 0.2 when
the assimilation is approximately stable are shown in Fig. 11, where the
localization radius and prior inflation variance are fixed as R = 0.015C
and v® = 0.082, respectively. Fig. 11 shows that the RMSE is reduced
by increasing the number of members, and at U, /C = 0.2, the RMSEs
for m = 20,40 are almost the same. However, even at m = 40, the
RMSE exceeds the Spread, and the assimilation accuracy is insufficient.
Therefore, other factors besides the number of members are considered
as responsible for the fundamental lack of assimilation accuracy. One
candidate is the localization radius. The localization radius is deter-
mined to be R = 0.015C in Section 6.1.2 so that phenomena of the
various scales in the flow field are reproduced evenly. However, better
reproducibility of the fine-scale turbulent vortices behind the sheet
cavity (Fig. 10(b) region C) is observed when the localization radius
is set to R = 0.01C. Thus, the method in which the localization radius
is given as a constant is not capable of reproducing multiscale vortices.
The current lack of assimilation accuracy is likely to be improved by
introducing a dynamic localization radius estimation method.

6.2. Assimilation result and discussion

Fig. 12 shows a comparison of the overview of the cavity interface
(isosurface of f; = fiL“te'f‘”) without and with assimilation, Fig. 12(a)
and (b), respectively, and the pseudo-measurement data, Fig. 12(c). By
applying DA to the CH model, the rippling cavity interface based on the
OK model is qualitatively reproduced. This result suggests that existing
cavitation models can be used to reconstruct the flow field based on



S. Okamura and K. Okabayashi

International Journal of Multiphase Flow 188 (2025) 105201

(a) CH model only

(b) CH model + DA (ensemble mean)

(c) OK model only (pseudo-measurement data)

Fig. 12. Overviews of the instantaneous isosurface of f, = fz““”"‘“ at 1U, /C = 1. The TPIV data is assumed for the pseudo-measurement data.
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Fig. 13. Sideviews (z = 0.2C) of the instantaneous contour of each variable at tU,/C = 1. (a), (b), (c) CH model only, (d), (e), (f) CH model + DA (: ensemble mean) and (g),
(h), (i) OK model only (the database for creating the pseudo-measurement data). The TPIV data is assumed for the pseudo-measurement data. Black lines : isoline of f; = f‘L“lerrace

of OK model.

actual phenomena, provided that measurement data of the cavitation
flow that can serve as reference data exist.

The ensemble mean of the u, v, and f; distributions at z = 0.2C
with tU_ /C =1 is shown in Fig. 13. The distribution of each variable is
also qualitatively reproduced based on the pseudo-measurement data;
namely CFD result by OK model only. In particular, important features
of cavitating flow, such as the front-line of the re-entrant jet (reverse
flow) above the hydrofoil surface (Figs. 13(a), (d), (g)), the spanwise
vortices at the cavity interface (Figs. 13(b), (e), (h)), the rippling of
the cavity interface, and the presence of cloud cavities (Figs. 13(c), (),
(1)), are well reproduced. The interface rippling is replicated despite
the absence of measurements within the cavity because of the pseudo-
measurement of f/; = f iL‘“e‘face at the measurement region boundary and
the interaction between the spanwise vortices and the interface rippling
induced by the vortices. The large cloud cavity, which is generated in
the CH model (Fig. 13(c)), no longer appears owing to assimilation,
because the pseudo-measurement f; = 1 is given for the entire TPIV
measurement area. Thus, f;, which is difficult to directly observe, can
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be used as the measurement information. The assimilation computation
without the pseudo-measurement of the liquid volumetric fraction f; is
also performed in the same way. Without the pseudo-measurement in-
formation of the interface (f; = fiL“‘erfm), the rippling cavitation shape
is not reproduced well. Furthermore, without the pseudo-measurement
information of the liquid phase region (f; = 1), the reproducibility of
cloud cavities behind the sheet cavity is significantly impaired. There
is room for discussion regarding the complementarity of the missing
data when the measurement data is limited. For example, if the pseudo-
interface fiL““”f‘ﬂ‘Ce is set to more larger value, such as 0.9, the spanwise
vortices will be inside the “cavity” determined by fg“erf"‘ce, and outside
the measurement region. Therefore, the spanwise vortices will become
difficult to reproduce by DA. However, we expect that it will be possible
to obtain the characteristic velocity field near the cavity interface, even
if it is only partly, using PIV. Based on this expectation, it is not the
author’s intention to recognize all the characteristic flows near the
cavity interface as missing data.
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Fig. 14. Time evolutions of each variable at monitoring point A and B. TPIV data is assumed for the pseudo-measurement data. “OK model only” indicates the database for
creating the pseudo-measurement data. Gray lines : time evolution for each ensemble member.

Next, we investigate the accuracy of the quantitative reproduction
of the flow field. Fig. 14 shows the time evolution of u, v, and f; at
observation points A and B in Fig. 13(d). Observation points A and B are
placed at the sheet cavity interface and inside the cavity, respectively,
to investigate the reproducibility of the characteristic behaviors of the
cavitation simulated by the OK model (i.e., rippling at the interface
and low velocity region inside the cavity). For observation point A,
u and v follow the OK model relatively well. In Fig. 14(a), there is a
deviation from the OK model at tU,/C = 0.4 — 0.9, this is because
the observation point A is outside the pseudo-measurement area at
tU,,/C = 0.4 —0.9. This can be confirmed from the result that f, is
lower than 0.75(= finerface) with the OK model at 1U,,/C = 0.4 — 0.9 in
Fig. 14(c). For the liquid volumetric fraction f;, the period and phase of
the fluctuation agree with those of the OK model, but the assimilated
values are generally toward the liquid phase side, i.e., f;, = 1. This
is because many pseudo-measurements with f; = 1 are included in
the local region at grid points near the interface. However, it is very
difficult to obtain a dense spatial distribution of f; near the interface
in actual measurements. Therefore, it is important that the period and
the phase of fluctuation and the spatial distribution of f; can be only
qualitatively represented using only existing measurement methods.

For observation point B, the region inside the sheet cavity where the
pseudo-measurement data are not given is not assimilated sequentially,
and each ensemble member evolves independently (Figs. 14(d), (e),
(f)). This result indicates that there is almost no discontinuity. Discon-
tinuities are observed in Figs. 14(a), (b), (c), in the time evolution of
each ensemble member: the discontinuity occurs when the correction
of the flow field by assimilation is performed. At observation point
B, the correction of the flow field is limited to the region around
the grid points where pseudo-measurements are obtained, owing to
the localization effect of the LETKF. However, as the computation
progresses, the values of each ensemble member at observation point
B converge, especially for u and v, showing a trend close to that of the
database for creating the pseudo-measurement data (OK model only).
This is because the flow around the cavity is assimilated and affects
the flow inside the cavity located downstream of the assimilated flow.
This suggests the existence of a complementary effect, as described
in Kato and Obayashi (2011), where the assimilation of the upstream
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flow field improves the reproducibility of the downstream flow field.
For the liquid volume fraction f;, the values of each ensemble member
gradually converge as in the case of u and v, but the time evolution
after convergence is different from the trend for the OK model. This
is because f; inside the cavity, which is not directly assimilated, is
simulated according to the cavitation model used. As the CH model is
used as the cavitation model, the behavior of the CH model is strongly
represented. Thus, the complementary effect described above depends
on the accuracy of the cavitation model used with the assimilation
computations.

Fig. 15 shows the time evolution of the lift coefficient. After as-
similation, the region covered by the cavity on the hydrofoil surface
is comparable to that of the OK model, and the lift coefficient tends
to be roughly similar with that of the OK model. A spike in the lift
occurs immediately after assimilation, indicating that the pressure field
is disturbed. However, as the iteration progresses, the assimilated flow
field develops and the spike disappears.

Finally, we investigate numerical conservation in the flow field after
assimilation. We define

Dp 0
)
using Eq. (2). The pressure equation based on Con. = 0 is computed
iteratively by CFD. Therefore, the numerical conservation in this as-
similation computation can be evaluated by Con. after the iterative
computation.

Fig. 16 shows the time series of the spatial mean and maximum
values of Con. for an ensemble member. The value of Con. after assim-
ilation is within the order of 1 for both the mean and maximum values,
compared to the flow field before assimilation (red circle in Fig. 16).
The reason for the increase in Con. is the above-mentioned pressure
field. Immediately after assimilation, errors in the conservation of the
velocity field accumulate, and the pressure convergence calculation
is performed based on that velocity field, which gradually disturbs
the pressure field. Therefore, to reduce Con. further, it is desirable to
introduce a method that properly corresponds the measurement data to
the numerical simulation, for example, by post-processing the velocity
field immediately after assimilation.

_Df
Con. = F +fL (M (18)
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Fig. 16. Time series of the spatial mean and maximum values of Con. for an ensemble
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7. Influence of spatial dimension of pseudo-measurement data

In Section 6.2, TPIV data is assumed for the pseudo-measurement
data, but in most situations, the available data is PIV data, which is rel-
atively easier to measure than TPIV data. Therefore, in this section, we
investigate the assimilation performance of the pseudo-measurement
data, assuming a two-dimensional velocity field, obtained by PIV under
the same problem setup. In this case, the irradiated cross section of the
laser sheet is assumed to be set to z = 0.2C: the cross-section at z = 0.2C
of Fig. 7 is used as the pseudo-PIV data.

Fig. 17 shows an overview of the cavity interface (isosurface of f; =
fiLS"S“rfacc) assimilated by the pseudo-PIV data. The assimilated region
is limited to the width of the local region centered at z = 0.2C, which
is assumed to be the cross-section where the laser sheet is irradiated,
owing to the localization effect of the LETKF. The ensemble means of
the u, v, and f; distributions at z = 0.2C are shown in Fig. 18. The result
assimilating the pseudo-PIV data reproduce the flow field of the OK
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Fig. 17. Overview of the instantaneous isosurface of f, = finefxe at 1U_/C =1 (CH
model + DA (ensemble mean)). The PIV data is assumed for the pseudo-measurement
data.

model qualitatively, and do not differ significantly from the ensemble
mean shown in Figs. 13(d), (e), (f).

Next, we investigate the accuracy of the quantitative reproducibility
of the flow field. The time evolution of u, v, and f; at observation
points A and B (same as in Fig. 13(d)) are shown in Fig. 19. For
observation point A, as in the case of the pseudo-TPIV measurements,
the variables generally follow the results of the OK model, and the
liquid volumetric fraction f; also generally shifts toward the liquid-
phase side (f; = 1), which is the same trend shown in Fig. 14(c). The
spread of each ensemble member is slightly higher compared to those in
Figs. 14(a), (b), (c). In contrast, for observation point B, each ensem-
ble member evolves individually depending on the cavitation model,
i.e., CH model, as shown in Figs. 14(d), (e), (f), and the respective
values do not converge, which means that the complementary effect
generated by the assimilation around the cavities located upstream is
not obtained inside the cavities. Thus, the distribution of each variable
inside the cavities is significantly different for each ensemble member.
This is because the effect of the initial flow field, which is independent
for each ensemble member, persists in the region beyond z = 0.2C to
be assimilated. The region inside the cavity at z = 0.2C is strongly
affected by changes in the flow in the mainstream direction, such as
the development of the sheet cavity and the progression of the re-
entrant jet (Fig. 20). The increased spread of each ensemble member
at observation point A is presumably due to the same event.

In conclusion, it is found that the flow field in the unmeasured
region is not assimilated by the 2D-PIV data in three-dimensional nu-
merical simulations, and the influence of the remaining initial flow field
in each ensemble member has a negative impact on the assimilation
performance of the measured cross section. The effect is particularly
large for missing data completion inside cavities, indicating the need
to align the dimensions of the numerical simulation and measurement
when completing missing data.

8. Assimilation verification for real measurement data

We have validated DA for cavitating flow around a hydrofoil
through the twin experiment. In this section, we validate the applicabil-
ity of DA to real measurement data. As we do not have measurement
data for cavitating flow around a hydrofoil yet, we use the publicly
available 2D-PIV data set (Nonomura et al., 2021) for this validation.

8.1. Overview of CFD

This simulation is a validation for the assimilation calculation for
the real measurement data of the cavitating flow. Therefore, the gov-
erning equation, numerical model, and numerical method are the same
as those in Sections 3.1 and 3.2, and the single-phase flow simulation
is achieved by setting the cavitation number to 100 so that f;, = 1 at
all times.
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Fig. 18. Sideviews (z = 0.2C) of the instantaneous contour of each variable at 1U_ /C = 1 (CH model + DA (: ensemble mean)). The PIV data is assumed for the pseudo-measurement
data. Black lines :
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Fig. 19. Time evolutions of each variable at monitoring points A and B. PIV data is assumed for the pseudo-measurement data. “OK model only” indicates the database for

creating the pseudo-measurement data. Gray lines

8.2. Experimental setup and computational condition

The object of the analysis is the single-phase flow around a NACAOQ
015 airfoil. The chord length, the spanwise length, the angle of attack,
the mainstream velocity, and the Reynolds number are set to 100.0 mm,
300.0 mm, 18°, 10 m/s and 6.4 x 10*, respectively. The sampling fre-
quency is 5000 Hz, which is the same as the problem setup for the
twin experiment in Section 4. These setups are the same as those
of the experiments conducted by Nonomura et al. (2021). Based on
the experimental conditions, the numerical conditions are determined.
As there is no description of the fluid, the fluid is assumed to be
air at a temperature of 20°C, and each physical property is also set
accordingly. Therefore, the Mach number is set to 2.91 x 1072. The
computational domain and boundary conditions are summarized in Fig.
21. The number of grid points in each direction is N; X N, X N, =
512 x 200 x 100. The spanwise length of the computational domain is
the same as in Fig. 4, and the irradiated section of the laser sheet is set
to z=0.2C.

8.3. Overview of data assimilation

We validate this data assimilation program for the real measure-
ment data using the assimilation method described in Section 5. The
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: time evolution for each ensemble member.

difference between the assimilation method and the twin experiment
is that the measurement data are not arranged in grid coordinates
(Fig. 22). Therefore, the calculation of the nonlinear operator H when
using real measurement data corresponds to interpolating variables
placed on the grid coordinates to the measurement coordinates. In this
study, the inverse distance weighting method is used to perform this
interpolation calculation. The observation error covariance matrix is
set to R = 9 x 10~*I as in the twin experiment.

The number of members and the prior inflation variance are set to

= 10 and v® = 0.08%, respectively. The localization radius is deter-
mined based on the spatial scale of the vortex and the reproducibility of
the flow field, as is the case for the localization radius in cavitating flow
around a hydrofoil. Under this experimental condition, R = 0.02C is set
based on the fact that the minimum radius of the observed separated
vortex is approximately 0.025C (figure omitted). However, no detailed
tuning of these values is conducted as described in Section 6.1.

8.4. Assimilation result

The assimilation computations are conducted until tU_/C = 0.2,
where the assimilation is stable in the twin experiment, and the repro-
ducibility of the qualitative flow field is evaluated. Because of the short
computation time, no observation points are set in this validation.
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(a) CH model + DA (an ensemble member)

(b) OK model only

Fig. 20. Overview of the instantaneous isosurface of f; = fz“e”“‘e and contour of f;.
PIV data is assumed for the pseudo-measurement data. “OK model only” indicates the
database for creating the pseudo-measurement data. The region inside the cavity at
z = 0.2C is strongly affected by the progression of the re-entrant jet in the region away
from the z =0.2C.
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Fig. 23 shows the ensemble mean of the u and v distribution at
tU,/C = 0.2. Through assimilation, the area of the reverse flow
region, which is overestimated by CFD, reduces (Fig. 23(c)), and the
reproducibility of the large-scale separation vortex in the flow behind
the airfoil is greatly improved (Fig. 23(d)). The PIV data contains
noise in the entire flow field, but the time evolution of the flow field
associated with the assimilation computation reduces the noise and
reproduces a natural flow field. Furthermore, even in areas where
reliable measurement data could not be obtained, such as the vicinity
of the airfoil surface and behind the measurement area, CFD can be
used to generate additional data. Thus, the complementarity between
measurement data and numerical simulation, which is expected when
DA methods are employed, is confirmed in this assimilation program.

In conclusion, we have established a framework that is capable
of conducting assimilation calculations when PIV or TPIV data in a
cavitating flow field are available.

9. Conclusion

A twin experiment of data assimilation (DA) using the local ensem-
ble transform Kalman filter (LETKF) is conducted for cavitating flow
around a Clark-Y 11.7% hydrofoil. As pseudo-measurement data which
can be obtained by existing measurement techniques, particle image
velocimetry (PIV) and tomographic PIV (TPIV), which are intensively
missing data inside the cavity, are assumed. The pseudo-measurement
velocity field and the liquid volumetric fraction are obtained from the
simulation by the source-term homogeneous fluid model developed
by Okita and Kajishima (2002) (OK model).

As parameters related to LETKF, the best results are obtained for a
localization radius of R = 0.015 and a prior inflation variance of v* =
0.08% for ensemble members of 10. However, the localization radius
should be given dynamically rather than as a constant to improve the
quantitative assimilation accuracy, as the vortex scale varies widely and
spatially in cavitating flow around a hydrofoil.

With the optimized parameters above, the flow field based on
the reference data is qualitatively and quantitatively reproduced by
assimilating the measurement data assuming TPIV. The missing data
inside the cavity are complemented by computational fluid dynamics
(CFD) and gradually converge to the pseudo-measurement data. This
is because the flow around the cavity is assimilated and influences the
flow inside the downstream cavity. However, the degree to which the
missing data are complemented depends on the accuracy of the nu-
merical simulation and model used with the assimilation. In addition,
when assimilating the measurement data assuming 2D-PIV, the flow
field around the cavity is assimilated in the laser sheet cross-section,
but no assimilation effect is obtained inside the cavity. This is due to
the inconsistency between the dimensions of the numerical simulation
and the measurement data, and these dimensions need to be aligned if
missing data is to be complemented.

The DA program is applied using real measurement data (2D-PIV) of
single-phase flow around a NACA0015 airfoil. The flow field based on
the real measurement data is qualitatively reproduced. Furthermore,
the assimilated flow field reduces the noise in the real measurement
data and fills in data gaps in the measurement data. Therefore, this DA
program demonstrates the complementarity between the measurement
data and the numerical simulation.

Through this study, we show that DA for cavitating flow is effective
using data that can be obtained with existing measurement techniques.
Furthermore, we construct a framework for conducting assimilation
simulations as soon as PIV or TPIV data are available for the cavitating
flow field. In the future, it will be necessary to further investigate meth-
ods for estimating the localization radius dynamically and improving
the pressure oscillation immediately after assimilation. This is crucial
for achieving precise reproduction of the flow field by using the actual
measurement data of cavitating flows as training data for machine
learning models.
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(a) u/Us (CFD)

(¢) #/Us (CED + DA)

(d) /U (CFD + DA)

(e) u/Us (PIV data)

(f) v/Us (PIV data)

Fig. 23. Sideviews (z = 0.2C) of the instantaneous contour of each variable at 1U,C =0.2. (a), (b) CFD, (c), (d) CFD + DA (": ensemble mean) and (e), (f) PIV data.
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