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We analyze a two-dimensional spring network model comprising breakable and unbreakable springs. Com-
puter simulations showed this system to exhibit intermittent stress drops in a larger strain regime, and these
stress drops resulted in ductilelike behavior. The scaling analysis reveals that the avalanche size distribution
demonstrates a cutoff, depending on its internal structure. This study also investigates the relationship between
cluster growth and stress drop, and we show that the amount of stress drop increases in terms of power law,
corresponding to crack growth. The crack length distribution also demonstrates a cutoff depending on its internal
structure. The results show that both the cluster growth-stress drop relationship and the crack size distribution are
scaled by the quantity related to the internal structure, and the relevance of the exponent that scales the cluster
growth-stress drop relationship to the exponent that scales crack size distribution is verified.

DOI: 10.1103/PhysRevE.110.045001

I. INTRODUCTION

Biological materials such as nacre or wood are composed
of several materials and constitute a specific structure. It is
known that their internal structure serves to improve their
mechanical properties, especially fracture toughness. For ex-
ample, the nacre is a composite material with organic parts
and mineral parts arranged in a layered manner; it displays
better fracture strength because of this laminated structure
[1–3]. The trial to learn from the structure of biomaterial and
exploit it to design a product is called “biomimicry” [4], and
it is still an important field of engineering.

In material science, the effects of composition and struc-
ture on fracture behavior have attracted attention and have
been used to create superior materials for failure. A typical
man-made structural composite is fiber-reinforced ceramics, a
composite of ceramics and fiber. Even though each component
is brittle, fiber-reinforced ceramics show ductilelike behavior
[5,6] because fibers prevent crack propagation when cracks
propagate in the ceramic phase and meet the fiber. More
recently, advancing three-dimensional (3D) printing technol-
ogy has made it possible to create more complex internal
structures of composite materials quickly, cheaply, and at
a large scale [7], and this advancement has gathered much
attention from material science on the relationship between
structure and failure [8,9]. For example, Li et al. [10] created
a composite material with a structure consisting of glassy
polymer skeletons filled with a highly rubbery thermoplastic
elastomer using a 3D printer. By observing the differences
in fracture behavior when altering the skeletal structure, they
demonstrated that even in composite materials composed of
the same type of material, fracture behavior, such as process
zone formation, can be controlled by variations in the skeletal
structure.

The influence of internal structure can appear not only in
fracture behavior but also in scaling behavior. In the layered
structures of soft and hard components like nacre, Okumura
et al. predicted theoretically [11] and numerically [12,13] that
scaling law with the length of the period between soft and hard

layers is valid for the crack tip stress and the crack shape. The
other example is about hierarchical structure. Shi et al. [14]
derived the scaling law of yield strength between different
hierarchy levels and explained the difference in mechanical
properties of the nanoscale hierarchical material in the degree
of dealloying. Such a “structure-based scaling relation” can be
a guide to creating composite materials with more complex
structures, but it is still not enough for our understanding of
how structural properties like the lengthscale that characterize
internal structure appear in fracture behavior.

To bridge this gap, we study the fracture behavior of
composite materials, especially scaling behavior for the
characteristic internal lengthscale, with a simple stochastic
fracture model by a numerical simulation. There are sev-
eral types of stochastic fracture models, such as the fiber
bundle model [15–17], the random fuse model [18,19], the
spring-network (SN) model [20–23], the discrete element
model [24], and so on. They are used to understand disorder-
induced statistical aspects of fracture like the power law of
released-energy statistics [25–28], the self-affine nature of
crack morphology [29–31], intermittent dynamics [27,32],
and pattern formation [33,34]. The basis of our model is
the spring-network model. The model comprises two spring
types: One spring breaks with the application of a specific
amount of load and the other is unbreakable under any load,
and these two kinds of springs comprise internal structure.
In a previous study about the failure of composite material
with the stochastic model, Kun et al. analyzed the fracture
of a random mixture of weak and strong fiber composites by
using equal-load sharing and local-load sharing fiber bundle
models [35,36]. Tauber et al. [37] considered a spring model
that mimics polymer composites. Urabe et al. [23] and Rajesh
et al. [38,39] considered a bimaterial composite using a spring
model with two kinds of springs that have different Young’s
modulus. Compared to their models, we used strong springs
in our SN model to form a regular matrix structure.

The contributions of this study in terms of determining
the effect of the internal structure of composite materials
are threefold. First, the present system demonstrates ductile
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fractures because of its internal structure. Second, the
burst size distribution of the present model shows power-law
behavior in the intermediate size scale, and it shows a cutoff in
the case of the larger avalanche. The scaling analysis showed
that the burst size distribution can be scaled according to the
size scale determined by its internal structure. Finally, the
crack size distribution is scaled by the internal-structure-based
crack length, and the stress drop caused by crack growth is
scaled by the crack-opening length depending on the internal
structure of the material. Our model boasts simplicity in
capturing the fundamental properties of the fracture process
in the composite material with a matrix structure. Moreover,
the model can be used as a prototype for composite materials
with a more complex internal structure.

The organization of this paper is as follows. In Sec. II, the
details of the model and simulation method are presented. Re-
sults are described in Sec. III, and conclusions are summarized
in Sec. IV.

II. MODEL AND SIMULATION

In this study, we analyzed a two-dimensional SN model,
which represents the composite material as a network of par-
ticles connected by Hookean springs. The system comprises
N × N particles on a triangular lattice. We take the x-axis as
parallel to the edge of the triangular lattice. All particles pos-
sess the same mass, which is taken to be a mass unit, and each
pair of nearest-neighbor particles is connected by the Hookean
spring, the natural length of which is represented by lattice
spacing l0, which is the unit of length. The periodic bound-
ary condition was imposed in the x direction, and the fixed
boundary condition was imposed in the y direction for tensile
loading. Each spring has a fracture threshold of l∗, which
was randomly selected from a uniform distribution between
0 and 1. When the strain of the spring, i.e., |l − l0|/l0, be-
comes larger than the threshold, l∗, the spring breaks, and it is
removed from the system. In this system, the strains caused by
the broken springs were distributed among the remaining live
springs to reach the mechanical equilibrium. The successive
breaking of many springs is possible, a phenomenon referred
to hereafter as burst or avalanche. The potential energy of this
model can be formulated as [23]

V = k

2

∑
〈i, j〉

(|ri − r j | − l0)2gi j, (1)

where ri is the position vector of the ith particle, gi j = 1
indicates a live bond, and gi j = 0 indicates a broken bond.
The summing pair 〈i, j〉 runs the nearest-neighbor pairs on
the triangular lattice. Parameter k is a spring constant, taken
as unity.

We replaced some springs with unbreakable springs, l∗ =
∞, for modeling the composite material. These unbreak-
able springs were regularly deployed spatially to constitute
an Lmatrix × Lmatrix almost square frame. Here, Lmatrix is the
number of unbreakable springs for one side of the almost
square matrix, as shown in Fig. 1. For every Lmatrix layer,
unbreakable springs are put parallel to the x-axis and zigzag
for the y-direction. We call this system the “matrix-mixture
system,” and we term the system without unbreakable bonds

FIG. 1. Schematic of the spring network model. N × N particles
are located on a triangular lattice, and nearest-neighbor particles
are connected using springs. We take the x-axis as parallel to the
edge of the triangular lattice. The dotted bonds correspond to break-
able springs, and the red bond corresponds to unbreakable springs.
Unbreakable springs are put parallel to the x-axis and zigzag for
the y-direction for every Lmatrix layer, constituting an Lmatrix × Lmatrix

almost square frame. This figure shows the Lmatrix = 2 case. A pe-
riodic boundary condition is imposed in the x-direction, and a fixed
boundary condition is imposed in the y-direction for tensile loading.

as the “normal system.” In this study, we take N = 96 and
Lmatrix = 6, 8, 12.

Next, the system was simulated under strain control as
follows. The lowest row of particles was fixed, and a small
displacement was implemented among the highest row of par-
ticles. For one small uniaxial extension step, the strain of the
system increased by 0.01%, i.e., �ε = 0.0001. The system
was then allowed to relax to a mechanical equilibrium state.
The equilibrium state was explored using the FIRE algorithm
[40]. After the system relaxed to the mechanical equilibrium
state, we decided on which bonds to break. If a certain spring’s
strain was over the fracture threshold, that spring was removed
from the system. After removing the springs, the mechanical
equilibrium configuration was analyzed again without moving
the top particles. This loop was continued until the springs
stopped breaking in the mechanical equilibrium state. When
the system reached this state, we repeated the same proce-
dure. The simulation was finally stopped when the system
completely broke into two pieces or the strain of the system
reached 1. Here, the statistically independent 1000 configura-
tions were simulated.

III. RESULTS

A. Mechanical property

We first discuss the stress-strain curve of the system. In this
study, we compute

� = k

H0

∑
〈i, j〉

(|ri − r j | − l0)
|y j − yi|
|ri − r j | gi j (2)

as the stress [23], where H0 = Nl0 is the width of the system.
Figure 2 shows the typical stress-strain curve of this system.
At the beginning of tension application, all systems show
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Lmatrix=12

Lmatrix=6
Lmatrix=8

normal

FIG. 2. Typical stress-strain response of the system. Every sys-
tem shows a linear response in a small strain regime. Then, the
normal system breaks in a brittle manner. The matrix-mixture sys-
tems do not demonstrate such an abrupt change but show ductilelike
failures with intermittent stress drops. The size distributions of stress
drops vary in each system. As the matrix size of the system increases,
the larger stress drop also increases, as shown in Fig. 3.

linear behavior, though cracks appear in the system. After that,
the slope of the stress-strain curve reduces because of the in-
crease in damage. Eventually, the normal and matrix-mixture
systems show completely different mechanical responses. The
normal system shows an abrupt stress drop. As shown in
previous studies [41,42], this stress drop is caused by crack
propagation from one side to the other and breaking the
system in two. That is, the normal system shows a brittle
fracture. The matrix-mixture systems show similar behavior
at the beginning of loading as the normal system. However,
these systems behave as a ductile material in the larger strain
regime, i.e., not showing abrupt stress drop, but the fracture
process retains stability up to large strain values with small
yieldings. This ductile behavior could be attributed to the
intermittent and instantaneous stress changes. Hereafter, we
term this stress change as a stress drop, and its magnitude is
denoted as ��.

The ductile regime frequently displays small-scale stress
drops, which cancel out the increase in stress. The comparison
of each Lmatrix shows that the system with a small Lmatrix

value shows less stress drop than the system with a large
Lmatrix value. To quantify this difference, we investigated the
distribution of stress drop, ��, which is denoted as P(��),
as shown in Fig. 3. All negative instantaneous changes in
stress were considered. In the smaller stress drop regime, dis-
tribution P(��) showed power-law decay, and its exponent is
almost the same for the different matrix sizes, Lmatrix. In the
much larger �� region, the cutoff was observed to depend
on Lmatrix. The result in Fig. 3 suggests that a smaller matrix
significantly suppresses large stress drops.

B. Avalanche

To understand the effect of suppressing the stress drop
by using a matrix structure, we studied the difference be-
tween the burst size distribution P(S) between the normal and

10 10 1010
10

10

10

10

10

10
Lmatrix=12

Lmatrix=6
Lmatrix=8

FIG. 3. Distribution of stress drop, P(��). In the smaller ��

regime, P(��) shows power-law decay. The larger �� regime
demonstrates a cutoff, depending on Lmatrix. The distribution is con-
sidered by the binning with 1/N .

matrix-mixture SN models, where S is the number of breaking
springs during the single loading step with respect to �ε.
In the normal SN model, the burst size distribution, P(S),
behaves as ∼S−τ , and exponent τ = 2.5 [41]. We plot the
burst size distribution in Fig. 4, wherein all burst events
are considered. First, as shown, exponent τ decreases with the
consideration of the internal structure in the matrix-mixture
system. This indicates that smaller bursts are more likely to
occur in the smaller matrix-mixture system. Second, Fig. 4
shows that the burst size distribution demonstrates a cutoff
size depending on its matrix size. Based on these observations,
the matrix structure increases the burst events until the inter-
mediate scale and suppresses burst events on a larger scale.
Next, by using scaling analysis, we discuss the differences
among each matrix-mixture system in terms of the burst size
distribution. At first glance, one might assume that the fraction
of breakable springs could be a scaling variable. But actually,
this does not work well: The fraction of breakable springs
is given by 1 − O(L−1

matrix), which only changes slightly with
Lmatrix. Thus we assume that the burst size distribution has the

0 1 2 103

S

S

6

101010

10

510

410

310

210

110

-2.5

Lmatrix=8
Lmatrix=12

Lmatrix=6

P(
S)

FIG. 4. Avalanche size distribution. The black dashed line corre-
sponds to the distribution of the normal SN model, P(S) ∼ S−2.5.
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FIG. 5. Scaled avalanche size distribution. The solid line corre-
sponds to the fitting function, f (x) = x−τ erfc(x − 1), with respect
to the scaling hypothesis shown in Eq. (3). Here, we take scaling
variables as a = 1.0, b = 2.38, and τ = 2.35.

following scaling form with exponents a and b:

P(S, Lmatrix) = S−b
matrix f

(
S/Sa

matrix

)
, (3)

where Smatrix is the number of breakable springs in the ma-
trix calculated as Smatrix = 3Lmatrix(Lmatrix − 1), and f (x) is
the scaling function [36]. The result of the scaling analysis
showed that the distribution of burst size, P(S), collapses
onto the master curve. We achieved a favorable conformance
between the data and master curve f (x), formulated as f (x) =
x−τ erfc(x − a) with a = 1.0, b = 2.38, and τ = 2.35. This
result indicates that the burst event followed the power law
with the same exponent, τ = 2.35, when the burst size was
less than Smatrix and showed sigmoidal decay once it increased
above Smatrix. The functional form of f (x) indicates that any
apparent change in τ and the decay behavior in Fig. 5 can be
attributed to the difference in Smatrix. These results show that
the matrix structure suppressed the stress drops because the
fracture events were suppressed by the cutoff size, Smatrix.

C. Crack coalescence and stress drop

A stress drop depends on not only the number of
avalanches but also the spatial distribution of crack formation.
Figure 6 illustrates the effect of crack coalescence on stress
drops. The figure clearly shows the difference between the
spatial distributions of cracks appearing in the small and large
strain regimes. We could clarify the effects of spatial distribu-
tion on the stress drop by observing the internal states of the
springs. Figure 6 shows the configuration of the SN model at
a certain strain rate. The colors represent the changes in the
spring length compared with a previous state, i.e., red corre-
sponds to extended springs and blue corresponds to shrunken
springs. In addition, green represents the springs broken in the
previous step. In both pictures, the number of breaking springs
caused by the single tiny displacement is 10. In the small
strain regime [Fig. 6(a)], each appeared crack was spatially
isolated. As such, the rupture of springs does not significantly
affect the entire structure. On the contrary, as the fracturing
proceeds to the large strain regime [Fig. 6(b)], the breaking of
springs tends to show a more significant effect on the internal
structure by coalescing with existing cracks.

This result suggests that the amount of crack growth is
essential for how stress is reduced in certain fracture events
[43]. Thus, we quantitatively analyzed the relationship be-
tween crack growth and stress drop. To quantify the effect
of crack growth, we introduced two quantities, C and NC (ε),
where C corresponds to the size of the crack cluster, and NC (ε)
is the number of crack clusters with size C at strain ε, as
shown in Fig. 7. In this study, we assumed that the single
crack cluster does not extend over the unbreakable bond. If
the cluster seems to extend over the unbreakable bond, we
have identified it as two separate clusters.

Based on the percolation theory [44], the increment in
crack cluster size, �C, according to the amount of crack
growth is defined as

�C =
√∑

C

[C2NC (ε) − C2NC (ε − �ε)]. (4)

(a) small strain regime (ε = 0.153, ΔΣ = 0.02) (b) large strain regime (ε = 0.5615, ΔΣ = 0.11)

FIG. 6. Snapshots after breaking events in small and large strain regimes for Lmatrix = 12. Springs with reduced (increased) stress compared
to those in the previous step are indicated in blue (red), respectively. Broken springs in the previous step are indicated in green. In both
snapshots, the number of breaking springs in the previous step is the same, i.e., 10. The left panel shows a smaller stress drop, which is
attributed to the burst events occurring at spatially isolated locations. In the right panel, the stress drop is approximately five times larger than
in the left panel, and this could be attributed to the fracture events occurring in spatially close locations, accompanied by larger crack growth.
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FIG. 7. Schematic of the definition of the cluster size of cracks.
The black, green, and red lines correspond to breakable, broken, and
unbreakable springs, respectively. The single crack cluster does not
extend over the unbreakable bond. Thus, in this case, there are two
clusters: NC=3 = 1 and NC=6 = 1.

This quantity is the square root of the difference between the
average moments of crack cluster size before and after a tiny
loading step in a sample. The increment of the crack cluster
size shows a large value for the appearance of one large cluster
by broken springs and a small value for that of several small
clusters, even with the same number of broken springs. �C
is uniquely determined for a tiny loading step for one sample.
The stress drop �� is also uniquely determined for a tiny
loading step. Thus, the stress drop �� during a tiny loading
step has a one-to-one correspondence with �C, and in each
loading step we can get the pair of crack growth and stress
drop caused by the crack growth (�C,��). To understand
the tendency of stress drop for crack growth, we calculate
the average stress drop �� for binned �C. �� is defined
as follows:

�� =
∑

�C∈bin ��∑
�C∈bin 1

. (5)

Here
∑

�C∈bin �� corresponds to the sum for all �� for a
certain bin, and

∑
�C∈bin 1 is the number of pairs (�C,��)

in a certain bin. The pairs (�C,��) used to calculate �� are
taken over all samples during the whole loading process ε = 0
to 1. Figure 8 shows the relationship between �C, binned by
an integer, and the average stress drop �� in each binned
�C. The magnitudes of the stress drop roughly increase in a
power-law manner. The inset of Fig. 8 shows the behavior of
the stress drop to deviate near �C ∼ 101. This deviation can
be scaled with respect to �C over Lζ

matrix, as shown in Fig. 8.
Exponent ζ � 0.55 results in the best fit in regime �C > 30.
Finally, we analyzed the crack size distribution, P(C), for each
matrix at the final state, ε = 1. Here P(C) is defined as

P(C) =
∑

sample NC (ε = 1)∑
sample

∑
C NC (ε = 1)

. (6)

In the inset of Fig. 9, the distribution shows the power-law
decay in the small crack length regime. This decay is consis-
tent with that observed in previous studies [45]. In this regime,
the matrix structure does not affect the crack size. The effect
of matrix structure becomes apparent in the region with large
cracks. The distribution shows a cutoff corresponding to the
matrix size for a long crack. This result clearly shows that
the matrix structure of the system suppresses crack growth.

Lmatrix

10

10

0

0

100

101

10

C/Lmatrix

2

10 2

10 2

10 1

100

101

C

=12Lmatrix

Lmatrix=6
Lmatrix=8

FIG. 8. Relationship between the amount of crack growth, �C,
and the average amount of stress drop for crack growth, ��, in
terms of matrix size. Inset: Bare relation. All matrix sizes in the
smaller �C � 101 regime display the same behavior, which deviates
in the larger �C regime. Main: Scaled relation. This deviation can
be scaled with respect to �C divided by Lζ

matrix, where the exponent
is ζ = 0.55. For plotting, the horizontal axis, �C, has been binned
by an integer to reduce fluctuations.

By scaling the crack size by using L1+ζ ′
matrix, the point at which

deviation from the power law begins and the cutoff size can
be scaled independently on the matrix size is shown in Fig. 9.
We achieved the best fit by using exponent ζ ′ = 0.56, and this
is almost the same as ζ in Fig. 8. We ascribe this agreement
between ζ and ζ ′ to corresponding Lζ

matrix with an effective

3

Lmatrix=6
Lmatrix=8
Lmatrix

matrix

=12

FIG. 9. Crack size distribution for each matrix size at the final
state, ε = 1. Inset: Bare distribution. This distribution follows the
power law in small-sized cracks. A cutoff size corresponding to
its matrix size is observed in the large-sized cracks. Main: Scaled
distribution. By scaling the crack size with respect to L1+ζ ′

matrix, we
get the point at which deviation from the power law begins and the
cutoff size can be scaled independently on the matrix size. Exponent
ζ ′ = 0.56 is almost the same as ζ in Fig. 8. The black dashed line
corresponds to C/L1+ζ ′

matrix = 1.
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crack width. Previous research [46] showed that the roughness
exponent of the random fuse model was 2/3, and it was 0.62
for the Born model [47]; these values are close to the value
achieved in the current study: ζ � 0.55. Considering Lζ ′

matrix
as the characteristic length of the crack width in the matrix,
L1+ζ ′

matrix can be identified according to the typical crack length
in the matrix. The crack length distribution follows a power
law similar to that of the normal SN model for small crack
lengths. However, due to the matrix structure, the cracks can-
not grow larger, and a peak appears in the distribution after the
scale of L1+ζ ′

matrix.

IV. CONCLUSION

In summary, we analyzed the fracture process of com-
posite materials and their statistical properties according to
the internal structure of the material by using the SN model
with a mixture of breakable and unbreakable springs. We
found that the proposed SN model shows ductilelike fractures
because of intermittent stress drops. In addition, we revealed
that avalanche size distribution is well scaled by the num-
ber of springs in the matrix Lmatrix(3Lmatrix − 1). The scaling
function can be written as x−τ erfc(x − 1), suggesting that the
fracture event follows the power law, similar to the normal SN
model [41], and it decays abruptly when reaching a specific
number of springs in a matrix. We also revealed the relation-
ship between crack cluster growth and stress drop. Larger
clusters appeared when cracks merged, resulting in a more
significant stress drop. On average, the amount of stress drop
increased based on the power law, followed by the growth in
crack clusters. The cluster size distribution showed a cutoff
corresponding to the matrix size, and a typical crack length in

the matrix could rescale the size cutoff. The matrix size limits
the size of the cluster.

This study showed that the material’s internal structure, the
regular matrix structure, affects the fracture behavior under
quasistatic tensile stress. In particular, the lengthscale of the
internal structure significantly controls the fracture behavior
by scaling. Interestingly, these properties appear in the present
simple model. In this study, we used a triangular lattice for
simplicity, but to better represent real materials, a lattice that
includes disorder would be needed. It is known that the frac-
ture and scaling behaviors of disordered lattice systems differ
from those of regular lattices [48,49], so it is important to
investigate how lattice geometry affects the results. Future
work should employ a disordered lattice model to clarify how
the disorder in lattice geometry changes the current results.
Introducing new parameters like the amplitude of average dis-
placement from the regular lattice will be a possible extension
of our model to access this problem. Additionally, the sim-
plicity of the present model enables experimental verification
of the present results using 3D printing techniques [7]. It is
intriguing to consider how the matrix lengthscale appears in
other types of fracture. For example, how does the effect of
the lengthscale of the internal structure appear in the statistical
law of fragmentation [50,51] or fatigue failure [52]? We can
investigate these problems with an extension of the present
model because of its simplicity.
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